X86InstrControl.td revision 341825
1//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 jump, return, call, and related instructions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15//  Control Flow Instructions.
16//
17
18// Return instructions.
19//
20// The X86retflag return instructions are variadic because we may add ST0 and
21// ST1 arguments when returning values on the x87 stack.
22let isTerminator = 1, isReturn = 1, isBarrier = 1,
23    hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
24  def RETL   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
25                    "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
26  def RETQ   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
27                    "ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
28  def RETW   : I   <0xC3, RawFrm, (outs), (ins),
29                    "ret{w}", []>, OpSize16;
30  def RETIL  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
31                    "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
32  def RETIQ  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
33                    "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
34  def RETIW  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
35                    "ret{w}\t$amt", []>, OpSize16;
36  def LRETL  : I   <0xCB, RawFrm, (outs), (ins),
37                    "{l}ret{l|f}", []>, OpSize32;
38  def LRETQ  : RI  <0xCB, RawFrm, (outs), (ins),
39                    "{l}ret{|f}q", []>, Requires<[In64BitMode]>;
40  def LRETW  : I   <0xCB, RawFrm, (outs), (ins),
41                    "{l}ret{w|f}", []>, OpSize16;
42  def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
43                    "{l}ret{l|f}\t$amt", []>, OpSize32;
44  def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
45                    "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
46  def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
47                    "{l}ret{w|f}\t$amt", []>, OpSize16;
48
49  // The machine return from interrupt instruction, but sometimes we need to
50  // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
51  // which expands to include an SP adjustment if necessary.
52  def IRET16 : I   <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
53               OpSize16;
54  def IRET32 : I   <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
55  def IRET64 : RI  <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
56  let isCodeGenOnly = 1 in
57  def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
58  def RET  : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
59}
60
61// Unconditional branches.
62let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
63  def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
64                       "jmp\t$dst", [(br bb:$dst)]>;
65  let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
66    def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
67                          "jmp\t$dst", []>, OpSize16;
68    def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
69                          "jmp\t$dst", []>, OpSize32;
70  }
71}
72
73// Conditional Branches.
74let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in {
75  multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
76    def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm,
77                       [(X86brcond bb:$dst, Cond, EFLAGS)]>;
78    let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
79      def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget16:$dst), asm,
80                         []>, OpSize16, TB;
81      def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget32:$dst), asm,
82                         []>, TB, OpSize32;
83    }
84  }
85}
86
87defm JO  : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
88defm JNO : ICBr<0x71, 0x81, "jno\t$dst", X86_COND_NO>;
89defm JB  : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
90defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
91defm JE  : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
92defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>;
93defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>;
94defm JA  : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>;
95defm JS  : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>;
96defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>;
97defm JP  : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>;
98defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>;
99defm JL  : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>;
100defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>;
101defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>;
102defm JG  : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>;
103
104// jcx/jecx/jrcx instructions.
105let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
106  // These are the 32-bit versions of this instruction for the asmparser.  In
107  // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
108  // jecxz.
109  let Uses = [CX] in
110    def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
111                        "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
112  let Uses = [ECX] in
113    def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
114                        "jecxz\t$dst", []>, AdSize32;
115
116  let Uses = [RCX] in
117    def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
118                         "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
119}
120
121// Indirect branches
122let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
123  def JMP16r     : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
124                     [(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
125                     OpSize16, Sched<[WriteJump]>;
126  def JMP16m     : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
127                     [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
128                     OpSize16, Sched<[WriteJumpLd]>;
129
130  def JMP32r     : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
131                     [(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
132                     OpSize32, Sched<[WriteJump]>;
133  def JMP32m     : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
134                     [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
135                     OpSize32, Sched<[WriteJumpLd]>;
136
137  def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
138                     [(brind GR64:$dst)]>, Requires<[In64BitMode]>,
139                     Sched<[WriteJump]>;
140  def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
141                     [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
142                     Sched<[WriteJumpLd]>;
143
144  // Non-tracking jumps for IBT, use with caution.
145  let isCodeGenOnly = 1 in {
146    def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
147                      [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
148                      OpSize16, Sched<[WriteJump]>, NOTRACK;
149
150    def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
151                      [(X86NoTrackBrind (loadi16 addr : $dst))]>,
152                      Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
153                      NOTRACK;
154
155    def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
156                      [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
157                      OpSize32, Sched<[WriteJump]>, NOTRACK;
158    def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
159                      [(X86NoTrackBrind (loadi32 addr : $dst))]>,
160                      Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
161                      NOTRACK;
162
163    def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
164                      [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
165                      Sched<[WriteJump]>, NOTRACK;
166    def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
167                      [(X86NoTrackBrind(loadi64 addr : $dst))]>,
168                      Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
169  }
170
171  let Predicates = [Not64BitMode], AsmVariantName = "att" in {
172    def FARJMP16i  : Iseg16<0xEA, RawFrmImm16, (outs),
173                            (ins i16imm:$off, i16imm:$seg),
174                            "ljmp{w}\t$seg, $off", []>,
175                            OpSize16, Sched<[WriteJump]>;
176    def FARJMP32i  : Iseg32<0xEA, RawFrmImm16, (outs),
177                            (ins i32imm:$off, i16imm:$seg),
178                            "ljmp{l}\t$seg, $off", []>,
179                            OpSize32, Sched<[WriteJump]>;
180  }
181  def FARJMP64   : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
182                      "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;
183
184  let AsmVariantName = "att" in
185  def FARJMP16m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
186                     "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
187  def FARJMP32m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
188                     "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
189}
190
191// Loop instructions
192let SchedRW = [WriteJump] in {
193def LOOP   : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
194def LOOPE  : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
195def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
196}
197
198//===----------------------------------------------------------------------===//
199//  Call Instructions...
200//
201let isCall = 1 in
202  // All calls clobber the non-callee saved registers. ESP is marked as
203  // a use to prevent stack-pointer assignments that appear immediately
204  // before calls from potentially appearing dead. Uses for argument
205  // registers are added manually.
206  let Uses = [ESP, SSP] in {
207    def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
208                           (outs), (ins i32imm_pcrel:$dst),
209                           "call{l}\t$dst", []>, OpSize32,
210                      Requires<[Not64BitMode]>, Sched<[WriteJump]>;
211    let hasSideEffects = 0 in
212      def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
213                             (outs), (ins i16imm_pcrel:$dst),
214                             "call{w}\t$dst", []>, OpSize16,
215                        Sched<[WriteJump]>;
216    def CALL16r     : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
217                        "call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
218                      OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
219    def CALL16m     : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
220                        "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
221                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
222                        Sched<[WriteJumpLd]>;
223    def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
224                        "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
225                        Requires<[Not64BitMode,NotUseRetpoline]>, Sched<[WriteJump]>;
226    def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
227                        "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
228                        OpSize32,
229                        Requires<[Not64BitMode,FavorMemIndirectCall,NotUseRetpoline]>,
230                        Sched<[WriteJumpLd]>;
231
232    // Non-tracking calls for IBT, use with caution.
233    let isCodeGenOnly = 1 in {
234      def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
235                        "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
236                        OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
237      def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
238                        "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
239                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
240                        Sched<[WriteJumpLd]>, NOTRACK;
241      def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
242                        "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
243                        OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
244      def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
245                        "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
246                        OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
247                        Sched<[WriteJumpLd]>, NOTRACK;
248    }
249
250    let Predicates = [Not64BitMode], AsmVariantName = "att" in {
251      def FARCALL16i  : Iseg16<0x9A, RawFrmImm16, (outs),
252                               (ins i16imm:$off, i16imm:$seg),
253                               "lcall{w}\t$seg, $off", []>,
254                               OpSize16, Sched<[WriteJump]>;
255      def FARCALL32i  : Iseg32<0x9A, RawFrmImm16, (outs),
256                               (ins i32imm:$off, i16imm:$seg),
257                               "lcall{l}\t$seg, $off", []>,
258                               OpSize32, Sched<[WriteJump]>;
259    }
260
261    def FARCALL16m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
262                        "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
263    def FARCALL32m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
264                        "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
265  }
266
267
268// Tail call stuff.
269let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
270    isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
271  let Uses = [ESP, SSP] in {
272  def TCRETURNdi : PseudoI<(outs),
273                     (ins i32imm_pcrel:$dst, i32imm:$offset), []>, NotMemoryFoldable;
274  def TCRETURNri : PseudoI<(outs),
275                     (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable;
276  let mayLoad = 1 in
277  def TCRETURNmi : PseudoI<(outs),
278                     (ins i32mem_TC:$dst, i32imm:$offset), []>;
279
280  // FIXME: The should be pseudo instructions that are lowered when going to
281  // mcinst.
282  def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
283                           (ins i32imm_pcrel:$dst), "jmp\t$dst", []>;
284
285  def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
286                   "", []>;  // FIXME: Remove encoding when JIT is dead.
287  let mayLoad = 1 in
288  def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst),
289                   "jmp{l}\t{*}$dst", []>;
290}
291
292// Conditional tail calls are similar to the above, but they are branches
293// rather than barriers, and they use EFLAGS.
294let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
295    isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
296  let Uses = [ESP, EFLAGS, SSP] in {
297  def TCRETURNdicc : PseudoI<(outs),
298                     (ins i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>;
299
300  // This gets substituted to a conditional jump instruction in MC lowering.
301  def TAILJMPd_CC : Ii32PCRel<0x80, RawFrm, (outs),
302                           (ins i32imm_pcrel:$dst, i32imm:$cond), "", []>;
303}
304
305
306//===----------------------------------------------------------------------===//
307//  Call Instructions...
308//
309
310// RSP is marked as a use to prevent stack-pointer assignments that appear
311// immediately before calls from potentially appearing dead. Uses for argument
312// registers are added manually.
313let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
314  // NOTE: this pattern doesn't match "X86call imm", because we do not know
315  // that the offset between an arbitrary immediate and the call will fit in
316  // the 32-bit pcrel field that we have.
317  def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
318                        (outs), (ins i64i32imm_pcrel:$dst),
319                        "call{q}\t$dst", []>, OpSize32,
320                      Requires<[In64BitMode]>;
321  def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
322                        "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
323                      Requires<[In64BitMode,NotUseRetpoline]>;
324  def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
325                        "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
326                      Requires<[In64BitMode,FavorMemIndirectCall,
327                                NotUseRetpoline]>;
328
329  // Non-tracking calls for IBT, use with caution.
330  let isCodeGenOnly = 1 in {
331    def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
332                      "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
333                      Requires<[In64BitMode]>, NOTRACK;
334    def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
335                       "call{q}\t{*}$dst",
336                       [(X86NoTrackCall(loadi64 addr : $dst))]>,
337                       Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
338  }
339
340  def FARCALL64   : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
341                       "lcall{q}\t{*}$dst", []>;
342}
343
344let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
345    isCodeGenOnly = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
346  def TCRETURNdi64   : PseudoI<(outs),
347                        (ins i64i32imm_pcrel:$dst, i32imm:$offset),
348                        []>;
349  def TCRETURNri64   : PseudoI<(outs),
350                        (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable;
351  let mayLoad = 1 in
352  def TCRETURNmi64   : PseudoI<(outs),
353                        (ins i64mem_TC:$dst, i32imm:$offset), []>, NotMemoryFoldable;
354
355  def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs), (ins i64i32imm_pcrel:$dst),
356                   "jmp\t$dst", []>;
357
358  def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
359                     "jmp{q}\t{*}$dst", []>;
360
361  let mayLoad = 1 in
362  def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
363                     "jmp{q}\t{*}$dst", []>;
364
365  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
366  let hasREX_WPrefix = 1 in {
367    def TAILJMPr64_REX : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
368                           "rex64 jmp{q}\t{*}$dst", []>;
369
370    let mayLoad = 1 in
371    def TAILJMPm64_REX : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
372                           "rex64 jmp{q}\t{*}$dst", []>;
373  }
374}
375
376let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
377    Uses = [RSP, SSP],
378    usesCustomInserter = 1,
379    SchedRW = [WriteJump] in {
380  def RETPOLINE_CALL32 :
381    PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
382            Requires<[Not64BitMode,UseRetpoline]>;
383
384  def RETPOLINE_CALL64 :
385    PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
386            Requires<[In64BitMode,UseRetpoline]>;
387
388  // Retpoline variant of indirect tail calls.
389  let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
390    def RETPOLINE_TCRETURN64 :
391      PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
392    def RETPOLINE_TCRETURN32 :
393      PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
394  }
395}
396
397// Conditional tail calls are similar to the above, but they are branches
398// rather than barriers, and they use EFLAGS.
399let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
400    isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
401  let Uses = [RSP, EFLAGS, SSP] in {
402  def TCRETURNdi64cc : PseudoI<(outs),
403                           (ins i64i32imm_pcrel:$dst, i32imm:$offset,
404                            i32imm:$cond), []>;
405
406  // This gets substituted to a conditional jump instruction in MC lowering.
407  def TAILJMPd64_CC : Ii32PCRel<0x80, RawFrm, (outs),
408                           (ins i64i32imm_pcrel:$dst, i32imm:$cond), "", []>;
409}
410