X86ISelDAGToDAG.cpp revision 203954
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15// Force NDEBUG on in any optimized build on Darwin.
16//
17// FIXME: This is a huge hack, to work around ridiculously awful compile times
18// on this file with gcc-4.2 on Darwin, in Release mode.
19#if (!defined(__llvm__) && defined(__APPLE__) && \
20     defined(__OPTIMIZE__) && !defined(NDEBUG))
21#define NDEBUG
22#endif
23
24#define DEBUG_TYPE "x86-isel"
25#include "X86.h"
26#include "X86InstrBuilder.h"
27#include "X86ISelLowering.h"
28#include "X86MachineFunctionInfo.h"
29#include "X86RegisterInfo.h"
30#include "X86Subtarget.h"
31#include "X86TargetMachine.h"
32#include "llvm/GlobalValue.h"
33#include "llvm/Instructions.h"
34#include "llvm/Intrinsics.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Type.h"
37#include "llvm/CodeGen/MachineConstantPool.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/SelectionDAGISel.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
54
55//===----------------------------------------------------------------------===//
56//                      Pattern Matcher Implementation
57//===----------------------------------------------------------------------===//
58
59namespace {
60  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
61  /// SDValue's instead of register numbers for the leaves of the matched
62  /// tree.
63  struct X86ISelAddressMode {
64    enum {
65      RegBase,
66      FrameIndexBase
67    } BaseType;
68
69    struct {            // This is really a union, discriminated by BaseType!
70      SDValue Reg;
71      int FrameIndex;
72    } Base;
73
74    unsigned Scale;
75    SDValue IndexReg;
76    int32_t Disp;
77    SDValue Segment;
78    GlobalValue *GV;
79    Constant *CP;
80    BlockAddress *BlockAddr;
81    const char *ES;
82    int JT;
83    unsigned Align;    // CP alignment.
84    unsigned char SymbolFlags;  // X86II::MO_*
85
86    X86ISelAddressMode()
87      : BaseType(RegBase), Scale(1), IndexReg(), Disp(0),
88        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
89        SymbolFlags(X86II::MO_NO_FLAG) {
90    }
91
92    bool hasSymbolicDisplacement() const {
93      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
94    }
95
96    bool hasBaseOrIndexReg() const {
97      return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0;
98    }
99
100    /// isRIPRelative - Return true if this addressing mode is already RIP
101    /// relative.
102    bool isRIPRelative() const {
103      if (BaseType != RegBase) return false;
104      if (RegisterSDNode *RegNode =
105            dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode()))
106        return RegNode->getReg() == X86::RIP;
107      return false;
108    }
109
110    void setBaseReg(SDValue Reg) {
111      BaseType = RegBase;
112      Base.Reg = Reg;
113    }
114
115    void dump() {
116      dbgs() << "X86ISelAddressMode " << this << '\n';
117      dbgs() << "Base.Reg ";
118      if (Base.Reg.getNode() != 0)
119        Base.Reg.getNode()->dump();
120      else
121        dbgs() << "nul";
122      dbgs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
123             << " Scale" << Scale << '\n'
124             << "IndexReg ";
125      if (IndexReg.getNode() != 0)
126        IndexReg.getNode()->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << " Disp " << Disp << '\n'
130             << "GV ";
131      if (GV)
132        GV->dump();
133      else
134        dbgs() << "nul";
135      dbgs() << " CP ";
136      if (CP)
137        CP->dump();
138      else
139        dbgs() << "nul";
140      dbgs() << '\n'
141             << "ES ";
142      if (ES)
143        dbgs() << ES;
144      else
145        dbgs() << "nul";
146      dbgs() << " JT" << JT << " Align" << Align << '\n';
147    }
148  };
149}
150
151namespace {
152  //===--------------------------------------------------------------------===//
153  /// ISel - X86 specific code to select X86 machine instructions for
154  /// SelectionDAG operations.
155  ///
156  class X86DAGToDAGISel : public SelectionDAGISel {
157    /// X86Lowering - This object fully describes how to lower LLVM code to an
158    /// X86-specific SelectionDAG.
159    X86TargetLowering &X86Lowering;
160
161    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
162    /// make the right decision when generating code for different targets.
163    const X86Subtarget *Subtarget;
164
165    /// OptForSize - If true, selector should try to optimize for code size
166    /// instead of performance.
167    bool OptForSize;
168
169  public:
170    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
171      : SelectionDAGISel(tm, OptLevel),
172        X86Lowering(*tm.getTargetLowering()),
173        Subtarget(&tm.getSubtarget<X86Subtarget>()),
174        OptForSize(false) {}
175
176    virtual const char *getPassName() const {
177      return "X86 DAG->DAG Instruction Selection";
178    }
179
180    /// InstructionSelect - This callback is invoked by
181    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
182    virtual void InstructionSelect();
183
184    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
185
186    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
187
188    virtual bool IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const;
189
190// Include the pieces autogenerated from the target description.
191#include "X86GenDAGISel.inc"
192
193  private:
194    SDNode *Select(SDNode *N);
195    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
196    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
197
198    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
199    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
200    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
201    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
202    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
203                                 unsigned Depth);
204    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
205    bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
206                    SDValue &Scale, SDValue &Index, SDValue &Disp,
207                    SDValue &Segment);
208    bool SelectLEAAddr(SDNode *Op, SDValue N, SDValue &Base,
209                       SDValue &Scale, SDValue &Index, SDValue &Disp);
210    bool SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
211                       SDValue &Scale, SDValue &Index, SDValue &Disp);
212    bool SelectScalarSSELoad(SDNode *Op, SDValue Pred,
213                             SDValue N, SDValue &Base, SDValue &Scale,
214                             SDValue &Index, SDValue &Disp,
215                             SDValue &Segment,
216                             SDValue &InChain, SDValue &OutChain);
217    bool TryFoldLoad(SDNode *P, SDValue N,
218                     SDValue &Base, SDValue &Scale,
219                     SDValue &Index, SDValue &Disp,
220                     SDValue &Segment);
221    void PreprocessForRMW();
222    void PreprocessForFPConvert();
223
224    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
225    /// inline asm expressions.
226    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
227                                              char ConstraintCode,
228                                              std::vector<SDValue> &OutOps);
229
230    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
231
232    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
233                                   SDValue &Scale, SDValue &Index,
234                                   SDValue &Disp, SDValue &Segment) {
235      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
236        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
237        AM.Base.Reg;
238      Scale = getI8Imm(AM.Scale);
239      Index = AM.IndexReg;
240      // These are 32-bit even in 64-bit mode since RIP relative offset
241      // is 32-bit.
242      if (AM.GV)
243        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp,
244                                              AM.SymbolFlags);
245      else if (AM.CP)
246        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
247                                             AM.Align, AM.Disp, AM.SymbolFlags);
248      else if (AM.ES)
249        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
250      else if (AM.JT != -1)
251        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
252      else if (AM.BlockAddr)
253        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
254                                       true, AM.SymbolFlags);
255      else
256        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
257
258      if (AM.Segment.getNode())
259        Segment = AM.Segment;
260      else
261        Segment = CurDAG->getRegister(0, MVT::i32);
262    }
263
264    /// getI8Imm - Return a target constant with the specified value, of type
265    /// i8.
266    inline SDValue getI8Imm(unsigned Imm) {
267      return CurDAG->getTargetConstant(Imm, MVT::i8);
268    }
269
270    /// getI16Imm - Return a target constant with the specified value, of type
271    /// i16.
272    inline SDValue getI16Imm(unsigned Imm) {
273      return CurDAG->getTargetConstant(Imm, MVT::i16);
274    }
275
276    /// getI32Imm - Return a target constant with the specified value, of type
277    /// i32.
278    inline SDValue getI32Imm(unsigned Imm) {
279      return CurDAG->getTargetConstant(Imm, MVT::i32);
280    }
281
282    /// getGlobalBaseReg - Return an SDNode that returns the value of
283    /// the global base register. Output instructions required to
284    /// initialize the global base register, if necessary.
285    ///
286    SDNode *getGlobalBaseReg();
287
288    /// getTargetMachine - Return a reference to the TargetMachine, casted
289    /// to the target-specific type.
290    const X86TargetMachine &getTargetMachine() {
291      return static_cast<const X86TargetMachine &>(TM);
292    }
293
294    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
295    /// to the target-specific type.
296    const X86InstrInfo *getInstrInfo() {
297      return getTargetMachine().getInstrInfo();
298    }
299
300#ifndef NDEBUG
301    unsigned Indent;
302#endif
303  };
304}
305
306
307bool
308X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
309  if (OptLevel == CodeGenOpt::None) return false;
310
311  if (!N.hasOneUse())
312    return false;
313
314  if (N.getOpcode() != ISD::LOAD)
315    return true;
316
317  // If N is a load, do additional profitability checks.
318  if (U == Root) {
319    switch (U->getOpcode()) {
320    default: break;
321    case X86ISD::ADD:
322    case X86ISD::SUB:
323    case X86ISD::AND:
324    case X86ISD::XOR:
325    case X86ISD::OR:
326    case ISD::ADD:
327    case ISD::ADDC:
328    case ISD::ADDE:
329    case ISD::AND:
330    case ISD::OR:
331    case ISD::XOR: {
332      SDValue Op1 = U->getOperand(1);
333
334      // If the other operand is a 8-bit immediate we should fold the immediate
335      // instead. This reduces code size.
336      // e.g.
337      // movl 4(%esp), %eax
338      // addl $4, %eax
339      // vs.
340      // movl $4, %eax
341      // addl 4(%esp), %eax
342      // The former is 2 bytes shorter. In case where the increment is 1, then
343      // the saving can be 4 bytes (by using incl %eax).
344      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
345        if (Imm->getAPIntValue().isSignedIntN(8))
346          return false;
347
348      // If the other operand is a TLS address, we should fold it instead.
349      // This produces
350      // movl    %gs:0, %eax
351      // leal    i@NTPOFF(%eax), %eax
352      // instead of
353      // movl    $i@NTPOFF, %eax
354      // addl    %gs:0, %eax
355      // if the block also has an access to a second TLS address this will save
356      // a load.
357      // FIXME: This is probably also true for non TLS addresses.
358      if (Op1.getOpcode() == X86ISD::Wrapper) {
359        SDValue Val = Op1.getOperand(0);
360        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
361          return false;
362      }
363    }
364    }
365  }
366
367  return true;
368}
369
370
371bool X86DAGToDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const {
372  if (OptLevel == CodeGenOpt::None) return false;
373
374  // Proceed to 'generic' cycle finder code
375  return SelectionDAGISel::IsLegalToFold(N, U, Root);
376}
377
378/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
379/// and move load below the TokenFactor. Replace store's chain operand with
380/// load's chain result.
381static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
382                                 SDValue Store, SDValue TF) {
383  SmallVector<SDValue, 4> Ops;
384  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
385    if (Load.getNode() == TF.getOperand(i).getNode())
386      Ops.push_back(Load.getOperand(0));
387    else
388      Ops.push_back(TF.getOperand(i));
389  SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
390  SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
391                                               Load.getOperand(1),
392                                               Load.getOperand(2));
393  CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
394                             Store.getOperand(2), Store.getOperand(3));
395}
396
397/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.  The
398/// chain produced by the load must only be used by the store's chain operand,
399/// otherwise this may produce a cycle in the DAG.
400///
401static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
402                      SDValue &Load) {
403  if (N.getOpcode() == ISD::BIT_CONVERT) {
404    if (!N.hasOneUse())
405      return false;
406    N = N.getOperand(0);
407  }
408
409  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
410  if (!LD || LD->isVolatile())
411    return false;
412  if (LD->getAddressingMode() != ISD::UNINDEXED)
413    return false;
414
415  ISD::LoadExtType ExtType = LD->getExtensionType();
416  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
417    return false;
418
419  if (N.hasOneUse() &&
420      LD->hasNUsesOfValue(1, 1) &&
421      N.getOperand(1) == Address &&
422      LD->isOperandOf(Chain.getNode())) {
423    Load = N;
424    return true;
425  }
426  return false;
427}
428
429/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
430/// operand and move load below the call's chain operand.
431static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
432                                  SDValue Call, SDValue CallSeqStart) {
433  SmallVector<SDValue, 8> Ops;
434  SDValue Chain = CallSeqStart.getOperand(0);
435  if (Chain.getNode() == Load.getNode())
436    Ops.push_back(Load.getOperand(0));
437  else {
438    assert(Chain.getOpcode() == ISD::TokenFactor &&
439           "Unexpected CallSeqStart chain operand");
440    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
441      if (Chain.getOperand(i).getNode() == Load.getNode())
442        Ops.push_back(Load.getOperand(0));
443      else
444        Ops.push_back(Chain.getOperand(i));
445    SDValue NewChain =
446      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
447                      MVT::Other, &Ops[0], Ops.size());
448    Ops.clear();
449    Ops.push_back(NewChain);
450  }
451  for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
452    Ops.push_back(CallSeqStart.getOperand(i));
453  CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
454  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
455                             Load.getOperand(1), Load.getOperand(2));
456  Ops.clear();
457  Ops.push_back(SDValue(Load.getNode(), 1));
458  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
459    Ops.push_back(Call.getOperand(i));
460  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
461}
462
463/// isCalleeLoad - Return true if call address is a load and it can be
464/// moved below CALLSEQ_START and the chains leading up to the call.
465/// Return the CALLSEQ_START by reference as a second output.
466static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
467  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
468    return false;
469  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
470  if (!LD ||
471      LD->isVolatile() ||
472      LD->getAddressingMode() != ISD::UNINDEXED ||
473      LD->getExtensionType() != ISD::NON_EXTLOAD)
474    return false;
475
476  // Now let's find the callseq_start.
477  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
478    if (!Chain.hasOneUse())
479      return false;
480    Chain = Chain.getOperand(0);
481  }
482
483  if (Chain.getOperand(0).getNode() == Callee.getNode())
484    return true;
485  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
486      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
487      Callee.getValue(1).hasOneUse())
488    return true;
489  return false;
490}
491
492
493/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
494/// This is only run if not in -O0 mode.
495/// This allows the instruction selector to pick more read-modify-write
496/// instructions. This is a common case:
497///
498///     [Load chain]
499///         ^
500///         |
501///       [Load]
502///       ^    ^
503///       |    |
504///      /      \-
505///     /         |
506/// [TokenFactor] [Op]
507///     ^          ^
508///     |          |
509///      \        /
510///       \      /
511///       [Store]
512///
513/// The fact the store's chain operand != load's chain will prevent the
514/// (store (op (load))) instruction from being selected. We can transform it to:
515///
516///     [Load chain]
517///         ^
518///         |
519///    [TokenFactor]
520///         ^
521///         |
522///       [Load]
523///       ^    ^
524///       |    |
525///       |     \-
526///       |       |
527///       |     [Op]
528///       |       ^
529///       |       |
530///       \      /
531///        \    /
532///       [Store]
533void X86DAGToDAGISel::PreprocessForRMW() {
534  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
535         E = CurDAG->allnodes_end(); I != E; ++I) {
536    if (I->getOpcode() == X86ISD::CALL) {
537      /// Also try moving call address load from outside callseq_start to just
538      /// before the call to allow it to be folded.
539      ///
540      ///     [Load chain]
541      ///         ^
542      ///         |
543      ///       [Load]
544      ///       ^    ^
545      ///       |    |
546      ///      /      \--
547      ///     /          |
548      ///[CALLSEQ_START] |
549      ///     ^          |
550      ///     |          |
551      /// [LOAD/C2Reg]   |
552      ///     |          |
553      ///      \        /
554      ///       \      /
555      ///       [CALL]
556      SDValue Chain = I->getOperand(0);
557      SDValue Load  = I->getOperand(1);
558      if (!isCalleeLoad(Load, Chain))
559        continue;
560      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
561      ++NumLoadMoved;
562      continue;
563    }
564
565    if (!ISD::isNON_TRUNCStore(I))
566      continue;
567    SDValue Chain = I->getOperand(0);
568
569    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
570      continue;
571
572    SDValue N1 = I->getOperand(1);
573    SDValue N2 = I->getOperand(2);
574    if ((N1.getValueType().isFloatingPoint() &&
575         !N1.getValueType().isVector()) ||
576        !N1.hasOneUse())
577      continue;
578
579    bool RModW = false;
580    SDValue Load;
581    unsigned Opcode = N1.getNode()->getOpcode();
582    switch (Opcode) {
583    case ISD::ADD:
584    case ISD::MUL:
585    case ISD::AND:
586    case ISD::OR:
587    case ISD::XOR:
588    case ISD::ADDC:
589    case ISD::ADDE:
590    case ISD::VECTOR_SHUFFLE: {
591      SDValue N10 = N1.getOperand(0);
592      SDValue N11 = N1.getOperand(1);
593      RModW = isRMWLoad(N10, Chain, N2, Load);
594      if (!RModW)
595        RModW = isRMWLoad(N11, Chain, N2, Load);
596      break;
597    }
598    case ISD::SUB:
599    case ISD::SHL:
600    case ISD::SRA:
601    case ISD::SRL:
602    case ISD::ROTL:
603    case ISD::ROTR:
604    case ISD::SUBC:
605    case ISD::SUBE:
606    case X86ISD::SHLD:
607    case X86ISD::SHRD: {
608      SDValue N10 = N1.getOperand(0);
609      RModW = isRMWLoad(N10, Chain, N2, Load);
610      break;
611    }
612    }
613
614    if (RModW) {
615      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
616      ++NumLoadMoved;
617      checkForCycles(I);
618    }
619  }
620}
621
622
623/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
624/// nodes that target the FP stack to be store and load to the stack.  This is a
625/// gross hack.  We would like to simply mark these as being illegal, but when
626/// we do that, legalize produces these when it expands calls, then expands
627/// these in the same legalize pass.  We would like dag combine to be able to
628/// hack on these between the call expansion and the node legalization.  As such
629/// this pass basically does "really late" legalization of these inline with the
630/// X86 isel pass.
631void X86DAGToDAGISel::PreprocessForFPConvert() {
632  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
633       E = CurDAG->allnodes_end(); I != E; ) {
634    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
635    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
636      continue;
637
638    // If the source and destination are SSE registers, then this is a legal
639    // conversion that should not be lowered.
640    EVT SrcVT = N->getOperand(0).getValueType();
641    EVT DstVT = N->getValueType(0);
642    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
643    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
644    if (SrcIsSSE && DstIsSSE)
645      continue;
646
647    if (!SrcIsSSE && !DstIsSSE) {
648      // If this is an FPStack extension, it is a noop.
649      if (N->getOpcode() == ISD::FP_EXTEND)
650        continue;
651      // If this is a value-preserving FPStack truncation, it is a noop.
652      if (N->getConstantOperandVal(1))
653        continue;
654    }
655
656    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
657    // FPStack has extload and truncstore.  SSE can fold direct loads into other
658    // operations.  Based on this, decide what we want to do.
659    EVT MemVT;
660    if (N->getOpcode() == ISD::FP_ROUND)
661      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
662    else
663      MemVT = SrcIsSSE ? SrcVT : DstVT;
664
665    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
666    DebugLoc dl = N->getDebugLoc();
667
668    // FIXME: optimize the case where the src/dest is a load or store?
669    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
670                                          N->getOperand(0),
671                                          MemTmp, NULL, 0, MemVT,
672                                          false, false, 0);
673    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
674                                        NULL, 0, MemVT, false, false, 0);
675
676    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
677    // extload we created.  This will cause general havok on the dag because
678    // anything below the conversion could be folded into other existing nodes.
679    // To avoid invalidating 'I', back it up to the convert node.
680    --I;
681    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
682
683    // Now that we did that, the node is dead.  Increment the iterator to the
684    // next node to process, then delete N.
685    ++I;
686    CurDAG->DeleteNode(N);
687  }
688}
689
690/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
691/// when it has created a SelectionDAG for us to codegen.
692void X86DAGToDAGISel::InstructionSelect() {
693  const Function *F = MF->getFunction();
694  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
695
696  if (OptLevel != CodeGenOpt::None)
697    PreprocessForRMW();
698
699  // FIXME: This should only happen when not compiled with -O0.
700  PreprocessForFPConvert();
701
702  // Codegen the basic block.
703#ifndef NDEBUG
704  DEBUG(dbgs() << "===== Instruction selection begins:\n");
705  Indent = 0;
706#endif
707  SelectRoot(*CurDAG);
708#ifndef NDEBUG
709  DEBUG(dbgs() << "===== Instruction selection ends:\n");
710#endif
711
712  CurDAG->RemoveDeadNodes();
713}
714
715/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
716/// the main function.
717void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
718                                             MachineFrameInfo *MFI) {
719  const TargetInstrInfo *TII = TM.getInstrInfo();
720  if (Subtarget->isTargetCygMing())
721    BuildMI(BB, DebugLoc::getUnknownLoc(),
722            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
723}
724
725void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
726  // If this is main, emit special code for main.
727  MachineBasicBlock *BB = MF.begin();
728  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
729    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
730}
731
732
733bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
734                                              X86ISelAddressMode &AM) {
735  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
736  SDValue Segment = N.getOperand(0);
737
738  if (AM.Segment.getNode() == 0) {
739    AM.Segment = Segment;
740    return false;
741  }
742
743  return true;
744}
745
746bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
747  // This optimization is valid because the GNU TLS model defines that
748  // gs:0 (or fs:0 on X86-64) contains its own address.
749  // For more information see http://people.redhat.com/drepper/tls.pdf
750
751  SDValue Address = N.getOperand(1);
752  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
753      !MatchSegmentBaseAddress (Address, AM))
754    return false;
755
756  return true;
757}
758
759/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
760/// into an addressing mode.  These wrap things that will resolve down into a
761/// symbol reference.  If no match is possible, this returns true, otherwise it
762/// returns false.
763bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
764  // If the addressing mode already has a symbol as the displacement, we can
765  // never match another symbol.
766  if (AM.hasSymbolicDisplacement())
767    return true;
768
769  SDValue N0 = N.getOperand(0);
770  CodeModel::Model M = TM.getCodeModel();
771
772  // Handle X86-64 rip-relative addresses.  We check this before checking direct
773  // folding because RIP is preferable to non-RIP accesses.
774  if (Subtarget->is64Bit() &&
775      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
776      // they cannot be folded into immediate fields.
777      // FIXME: This can be improved for kernel and other models?
778      (M == CodeModel::Small || M == CodeModel::Kernel) &&
779      // Base and index reg must be 0 in order to use %rip as base and lowering
780      // must allow RIP.
781      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
782    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
783      int64_t Offset = AM.Disp + G->getOffset();
784      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
785      AM.GV = G->getGlobal();
786      AM.Disp = Offset;
787      AM.SymbolFlags = G->getTargetFlags();
788    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
789      int64_t Offset = AM.Disp + CP->getOffset();
790      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
791      AM.CP = CP->getConstVal();
792      AM.Align = CP->getAlignment();
793      AM.Disp = Offset;
794      AM.SymbolFlags = CP->getTargetFlags();
795    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
796      AM.ES = S->getSymbol();
797      AM.SymbolFlags = S->getTargetFlags();
798    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
799      AM.JT = J->getIndex();
800      AM.SymbolFlags = J->getTargetFlags();
801    } else {
802      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
803      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
804    }
805
806    if (N.getOpcode() == X86ISD::WrapperRIP)
807      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
808    return false;
809  }
810
811  // Handle the case when globals fit in our immediate field: This is true for
812  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
813  // mode, this results in a non-RIP-relative computation.
814  if (!Subtarget->is64Bit() ||
815      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
816       TM.getRelocationModel() == Reloc::Static)) {
817    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
818      AM.GV = G->getGlobal();
819      AM.Disp += G->getOffset();
820      AM.SymbolFlags = G->getTargetFlags();
821    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
822      AM.CP = CP->getConstVal();
823      AM.Align = CP->getAlignment();
824      AM.Disp += CP->getOffset();
825      AM.SymbolFlags = CP->getTargetFlags();
826    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
827      AM.ES = S->getSymbol();
828      AM.SymbolFlags = S->getTargetFlags();
829    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
830      AM.JT = J->getIndex();
831      AM.SymbolFlags = J->getTargetFlags();
832    } else {
833      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
834      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
835    }
836    return false;
837  }
838
839  return true;
840}
841
842/// MatchAddress - Add the specified node to the specified addressing mode,
843/// returning true if it cannot be done.  This just pattern matches for the
844/// addressing mode.
845bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
846  if (MatchAddressRecursively(N, AM, 0))
847    return true;
848
849  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
850  // a smaller encoding and avoids a scaled-index.
851  if (AM.Scale == 2 &&
852      AM.BaseType == X86ISelAddressMode::RegBase &&
853      AM.Base.Reg.getNode() == 0) {
854    AM.Base.Reg = AM.IndexReg;
855    AM.Scale = 1;
856  }
857
858  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
859  // because it has a smaller encoding.
860  // TODO: Which other code models can use this?
861  if (TM.getCodeModel() == CodeModel::Small &&
862      Subtarget->is64Bit() &&
863      AM.Scale == 1 &&
864      AM.BaseType == X86ISelAddressMode::RegBase &&
865      AM.Base.Reg.getNode() == 0 &&
866      AM.IndexReg.getNode() == 0 &&
867      AM.SymbolFlags == X86II::MO_NO_FLAG &&
868      AM.hasSymbolicDisplacement())
869    AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
870
871  return false;
872}
873
874bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
875                                              unsigned Depth) {
876  bool is64Bit = Subtarget->is64Bit();
877  DebugLoc dl = N.getDebugLoc();
878  DEBUG({
879      dbgs() << "MatchAddress: ";
880      AM.dump();
881    });
882  // Limit recursion.
883  if (Depth > 5)
884    return MatchAddressBase(N, AM);
885
886  CodeModel::Model M = TM.getCodeModel();
887
888  // If this is already a %rip relative address, we can only merge immediates
889  // into it.  Instead of handling this in every case, we handle it here.
890  // RIP relative addressing: %rip + 32-bit displacement!
891  if (AM.isRIPRelative()) {
892    // FIXME: JumpTable and ExternalSymbol address currently don't like
893    // displacements.  It isn't very important, but this should be fixed for
894    // consistency.
895    if (!AM.ES && AM.JT != -1) return true;
896
897    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
898      int64_t Val = AM.Disp + Cst->getSExtValue();
899      if (X86::isOffsetSuitableForCodeModel(Val, M,
900                                            AM.hasSymbolicDisplacement())) {
901        AM.Disp = Val;
902        return false;
903      }
904    }
905    return true;
906  }
907
908  switch (N.getOpcode()) {
909  default: break;
910  case ISD::Constant: {
911    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
912    if (!is64Bit ||
913        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
914                                          AM.hasSymbolicDisplacement())) {
915      AM.Disp += Val;
916      return false;
917    }
918    break;
919  }
920
921  case X86ISD::SegmentBaseAddress:
922    if (!MatchSegmentBaseAddress(N, AM))
923      return false;
924    break;
925
926  case X86ISD::Wrapper:
927  case X86ISD::WrapperRIP:
928    if (!MatchWrapper(N, AM))
929      return false;
930    break;
931
932  case ISD::LOAD:
933    if (!MatchLoad(N, AM))
934      return false;
935    break;
936
937  case ISD::FrameIndex:
938    if (AM.BaseType == X86ISelAddressMode::RegBase
939        && AM.Base.Reg.getNode() == 0) {
940      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
941      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
942      return false;
943    }
944    break;
945
946  case ISD::SHL:
947    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
948      break;
949
950    if (ConstantSDNode
951          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
952      unsigned Val = CN->getZExtValue();
953      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
954      // that the base operand remains free for further matching. If
955      // the base doesn't end up getting used, a post-processing step
956      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
957      if (Val == 1 || Val == 2 || Val == 3) {
958        AM.Scale = 1 << Val;
959        SDValue ShVal = N.getNode()->getOperand(0);
960
961        // Okay, we know that we have a scale by now.  However, if the scaled
962        // value is an add of something and a constant, we can fold the
963        // constant into the disp field here.
964        if (ShVal.getNode()->getOpcode() == ISD::ADD &&
965            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
966          AM.IndexReg = ShVal.getNode()->getOperand(0);
967          ConstantSDNode *AddVal =
968            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
969          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
970          if (!is64Bit ||
971              X86::isOffsetSuitableForCodeModel(Disp, M,
972                                                AM.hasSymbolicDisplacement()))
973            AM.Disp = Disp;
974          else
975            AM.IndexReg = ShVal;
976        } else {
977          AM.IndexReg = ShVal;
978        }
979        return false;
980      }
981    break;
982    }
983
984  case ISD::SMUL_LOHI:
985  case ISD::UMUL_LOHI:
986    // A mul_lohi where we need the low part can be folded as a plain multiply.
987    if (N.getResNo() != 0) break;
988    // FALL THROUGH
989  case ISD::MUL:
990  case X86ISD::MUL_IMM:
991    // X*[3,5,9] -> X+X*[2,4,8]
992    if (AM.BaseType == X86ISelAddressMode::RegBase &&
993        AM.Base.Reg.getNode() == 0 &&
994        AM.IndexReg.getNode() == 0) {
995      if (ConstantSDNode
996            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
997        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
998            CN->getZExtValue() == 9) {
999          AM.Scale = unsigned(CN->getZExtValue())-1;
1000
1001          SDValue MulVal = N.getNode()->getOperand(0);
1002          SDValue Reg;
1003
1004          // Okay, we know that we have a scale by now.  However, if the scaled
1005          // value is an add of something and a constant, we can fold the
1006          // constant into the disp field here.
1007          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1008              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1009            Reg = MulVal.getNode()->getOperand(0);
1010            ConstantSDNode *AddVal =
1011              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1012            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
1013                                      CN->getZExtValue();
1014            if (!is64Bit ||
1015                X86::isOffsetSuitableForCodeModel(Disp, M,
1016                                                  AM.hasSymbolicDisplacement()))
1017              AM.Disp = Disp;
1018            else
1019              Reg = N.getNode()->getOperand(0);
1020          } else {
1021            Reg = N.getNode()->getOperand(0);
1022          }
1023
1024          AM.IndexReg = AM.Base.Reg = Reg;
1025          return false;
1026        }
1027    }
1028    break;
1029
1030  case ISD::SUB: {
1031    // Given A-B, if A can be completely folded into the address and
1032    // the index field with the index field unused, use -B as the index.
1033    // This is a win if a has multiple parts that can be folded into
1034    // the address. Also, this saves a mov if the base register has
1035    // other uses, since it avoids a two-address sub instruction, however
1036    // it costs an additional mov if the index register has other uses.
1037
1038    // Test if the LHS of the sub can be folded.
1039    X86ISelAddressMode Backup = AM;
1040    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1041      AM = Backup;
1042      break;
1043    }
1044    // Test if the index field is free for use.
1045    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1046      AM = Backup;
1047      break;
1048    }
1049    int Cost = 0;
1050    SDValue RHS = N.getNode()->getOperand(1);
1051    // If the RHS involves a register with multiple uses, this
1052    // transformation incurs an extra mov, due to the neg instruction
1053    // clobbering its operand.
1054    if (!RHS.getNode()->hasOneUse() ||
1055        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1056        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1057        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1058        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1059         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1060      ++Cost;
1061    // If the base is a register with multiple uses, this
1062    // transformation may save a mov.
1063    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1064         AM.Base.Reg.getNode() &&
1065         !AM.Base.Reg.getNode()->hasOneUse()) ||
1066        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1067      --Cost;
1068    // If the folded LHS was interesting, this transformation saves
1069    // address arithmetic.
1070    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1071        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1072        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1073      --Cost;
1074    // If it doesn't look like it may be an overall win, don't do it.
1075    if (Cost >= 0) {
1076      AM = Backup;
1077      break;
1078    }
1079
1080    // Ok, the transformation is legal and appears profitable. Go for it.
1081    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1082    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1083    AM.IndexReg = Neg;
1084    AM.Scale = 1;
1085
1086    // Insert the new nodes into the topological ordering.
1087    if (Zero.getNode()->getNodeId() == -1 ||
1088        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1089      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
1090      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
1091    }
1092    if (Neg.getNode()->getNodeId() == -1 ||
1093        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1094      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
1095      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
1096    }
1097    return false;
1098  }
1099
1100  case ISD::ADD: {
1101    X86ISelAddressMode Backup = AM;
1102    if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) &&
1103        !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1))
1104      return false;
1105    AM = Backup;
1106    if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) &&
1107        !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1))
1108      return false;
1109    AM = Backup;
1110
1111    // If we couldn't fold both operands into the address at the same time,
1112    // see if we can just put each operand into a register and fold at least
1113    // the add.
1114    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1115        !AM.Base.Reg.getNode() &&
1116        !AM.IndexReg.getNode()) {
1117      AM.Base.Reg = N.getNode()->getOperand(0);
1118      AM.IndexReg = N.getNode()->getOperand(1);
1119      AM.Scale = 1;
1120      return false;
1121    }
1122    break;
1123  }
1124
1125  case ISD::OR:
1126    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1127    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1128      X86ISelAddressMode Backup = AM;
1129      uint64_t Offset = CN->getSExtValue();
1130      // Start with the LHS as an addr mode.
1131      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1132          // Address could not have picked a GV address for the displacement.
1133          AM.GV == NULL &&
1134          // On x86-64, the resultant disp must fit in 32-bits.
1135          (!is64Bit ||
1136           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
1137                                             AM.hasSymbolicDisplacement())) &&
1138          // Check to see if the LHS & C is zero.
1139          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
1140        AM.Disp += Offset;
1141        return false;
1142      }
1143      AM = Backup;
1144    }
1145    break;
1146
1147  case ISD::AND: {
1148    // Perform some heroic transforms on an and of a constant-count shift
1149    // with a constant to enable use of the scaled offset field.
1150
1151    SDValue Shift = N.getOperand(0);
1152    if (Shift.getNumOperands() != 2) break;
1153
1154    // Scale must not be used already.
1155    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1156
1157    SDValue X = Shift.getOperand(0);
1158    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1159    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1160    if (!C1 || !C2) break;
1161
1162    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1163    // allows us to convert the shift and and into an h-register extract and
1164    // a scaled index.
1165    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1166      unsigned ScaleLog = 8 - C1->getZExtValue();
1167      if (ScaleLog > 0 && ScaleLog < 4 &&
1168          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1169        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1170        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1171        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1172                                      X, Eight);
1173        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1174                                      Srl, Mask);
1175        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1176        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1177                                      And, ShlCount);
1178
1179        // Insert the new nodes into the topological ordering.
1180        if (Eight.getNode()->getNodeId() == -1 ||
1181            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1182          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1183          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1184        }
1185        if (Mask.getNode()->getNodeId() == -1 ||
1186            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1187          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1188          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1189        }
1190        if (Srl.getNode()->getNodeId() == -1 ||
1191            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1192          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1193          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1194        }
1195        if (And.getNode()->getNodeId() == -1 ||
1196            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1197          CurDAG->RepositionNode(N.getNode(), And.getNode());
1198          And.getNode()->setNodeId(N.getNode()->getNodeId());
1199        }
1200        if (ShlCount.getNode()->getNodeId() == -1 ||
1201            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1202          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1203          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1204        }
1205        if (Shl.getNode()->getNodeId() == -1 ||
1206            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1207          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1208          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1209        }
1210        CurDAG->ReplaceAllUsesWith(N, Shl);
1211        AM.IndexReg = And;
1212        AM.Scale = (1 << ScaleLog);
1213        return false;
1214      }
1215    }
1216
1217    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1218    // allows us to fold the shift into this addressing mode.
1219    if (Shift.getOpcode() != ISD::SHL) break;
1220
1221    // Not likely to be profitable if either the AND or SHIFT node has more
1222    // than one use (unless all uses are for address computation). Besides,
1223    // isel mechanism requires their node ids to be reused.
1224    if (!N.hasOneUse() || !Shift.hasOneUse())
1225      break;
1226
1227    // Verify that the shift amount is something we can fold.
1228    unsigned ShiftCst = C1->getZExtValue();
1229    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1230      break;
1231
1232    // Get the new AND mask, this folds to a constant.
1233    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1234                                         SDValue(C2, 0), SDValue(C1, 0));
1235    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1236                                     NewANDMask);
1237    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1238                                       NewAND, SDValue(C1, 0));
1239
1240    // Insert the new nodes into the topological ordering.
1241    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1242      CurDAG->RepositionNode(X.getNode(), C1);
1243      C1->setNodeId(X.getNode()->getNodeId());
1244    }
1245    if (NewANDMask.getNode()->getNodeId() == -1 ||
1246        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1247      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1248      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1249    }
1250    if (NewAND.getNode()->getNodeId() == -1 ||
1251        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1252      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1253      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1254    }
1255    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1256        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1257      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1258      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1259    }
1260
1261    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1262
1263    AM.Scale = 1 << ShiftCst;
1264    AM.IndexReg = NewAND;
1265    return false;
1266  }
1267  }
1268
1269  return MatchAddressBase(N, AM);
1270}
1271
1272/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1273/// specified addressing mode without any further recursion.
1274bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1275  // Is the base register already occupied?
1276  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1277    // If so, check to see if the scale index register is set.
1278    if (AM.IndexReg.getNode() == 0) {
1279      AM.IndexReg = N;
1280      AM.Scale = 1;
1281      return false;
1282    }
1283
1284    // Otherwise, we cannot select it.
1285    return true;
1286  }
1287
1288  // Default, generate it as a register.
1289  AM.BaseType = X86ISelAddressMode::RegBase;
1290  AM.Base.Reg = N;
1291  return false;
1292}
1293
1294/// SelectAddr - returns true if it is able pattern match an addressing mode.
1295/// It returns the operands which make up the maximal addressing mode it can
1296/// match by reference.
1297bool X86DAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
1298                                 SDValue &Scale, SDValue &Index,
1299                                 SDValue &Disp, SDValue &Segment) {
1300  X86ISelAddressMode AM;
1301  if (MatchAddress(N, AM))
1302    return false;
1303
1304  EVT VT = N.getValueType();
1305  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1306    if (!AM.Base.Reg.getNode())
1307      AM.Base.Reg = CurDAG->getRegister(0, VT);
1308  }
1309
1310  if (!AM.IndexReg.getNode())
1311    AM.IndexReg = CurDAG->getRegister(0, VT);
1312
1313  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1314  return true;
1315}
1316
1317/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1318/// match a load whose top elements are either undef or zeros.  The load flavor
1319/// is derived from the type of N, which is either v4f32 or v2f64.
1320bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Op, SDValue Pred,
1321                                          SDValue N, SDValue &Base,
1322                                          SDValue &Scale, SDValue &Index,
1323                                          SDValue &Disp, SDValue &Segment,
1324                                          SDValue &InChain,
1325                                          SDValue &OutChain) {
1326  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1327    InChain = N.getOperand(0).getValue(1);
1328    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1329        InChain.getValue(0).hasOneUse() &&
1330        IsProfitableToFold(N, Pred.getNode(), Op) &&
1331        IsLegalToFold(N, Pred.getNode(), Op)) {
1332      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1333      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1334        return false;
1335      OutChain = LD->getChain();
1336      return true;
1337    }
1338  }
1339
1340  // Also handle the case where we explicitly require zeros in the top
1341  // elements.  This is a vector shuffle from the zero vector.
1342  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1343      // Check to see if the top elements are all zeros (or bitcast of zeros).
1344      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1345      N.getOperand(0).getNode()->hasOneUse() &&
1346      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1347      N.getOperand(0).getOperand(0).hasOneUse()) {
1348    // Okay, this is a zero extending load.  Fold it.
1349    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1350    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1351      return false;
1352    OutChain = LD->getChain();
1353    InChain = SDValue(LD, 1);
1354    return true;
1355  }
1356  return false;
1357}
1358
1359
1360/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1361/// mode it matches can be cost effectively emitted as an LEA instruction.
1362bool X86DAGToDAGISel::SelectLEAAddr(SDNode *Op, SDValue N,
1363                                    SDValue &Base, SDValue &Scale,
1364                                    SDValue &Index, SDValue &Disp) {
1365  X86ISelAddressMode AM;
1366
1367  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1368  // segments.
1369  SDValue Copy = AM.Segment;
1370  SDValue T = CurDAG->getRegister(0, MVT::i32);
1371  AM.Segment = T;
1372  if (MatchAddress(N, AM))
1373    return false;
1374  assert (T == AM.Segment);
1375  AM.Segment = Copy;
1376
1377  EVT VT = N.getValueType();
1378  unsigned Complexity = 0;
1379  if (AM.BaseType == X86ISelAddressMode::RegBase)
1380    if (AM.Base.Reg.getNode())
1381      Complexity = 1;
1382    else
1383      AM.Base.Reg = CurDAG->getRegister(0, VT);
1384  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1385    Complexity = 4;
1386
1387  if (AM.IndexReg.getNode())
1388    Complexity++;
1389  else
1390    AM.IndexReg = CurDAG->getRegister(0, VT);
1391
1392  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1393  // a simple shift.
1394  if (AM.Scale > 1)
1395    Complexity++;
1396
1397  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1398  // to a LEA. This is determined with some expermentation but is by no means
1399  // optimal (especially for code size consideration). LEA is nice because of
1400  // its three-address nature. Tweak the cost function again when we can run
1401  // convertToThreeAddress() at register allocation time.
1402  if (AM.hasSymbolicDisplacement()) {
1403    // For X86-64, we should always use lea to materialize RIP relative
1404    // addresses.
1405    if (Subtarget->is64Bit())
1406      Complexity = 4;
1407    else
1408      Complexity += 2;
1409  }
1410
1411  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1412    Complexity++;
1413
1414  // If it isn't worth using an LEA, reject it.
1415  if (Complexity <= 2)
1416    return false;
1417
1418  SDValue Segment;
1419  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1420  return true;
1421}
1422
1423/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1424bool X86DAGToDAGISel::SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
1425                                        SDValue &Scale, SDValue &Index,
1426                                        SDValue &Disp) {
1427  assert(Op->getOpcode() == X86ISD::TLSADDR);
1428  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1429  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1430
1431  X86ISelAddressMode AM;
1432  AM.GV = GA->getGlobal();
1433  AM.Disp += GA->getOffset();
1434  AM.Base.Reg = CurDAG->getRegister(0, N.getValueType());
1435  AM.SymbolFlags = GA->getTargetFlags();
1436
1437  if (N.getValueType() == MVT::i32) {
1438    AM.Scale = 1;
1439    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1440  } else {
1441    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1442  }
1443
1444  SDValue Segment;
1445  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1446  return true;
1447}
1448
1449
1450bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1451                                  SDValue &Base, SDValue &Scale,
1452                                  SDValue &Index, SDValue &Disp,
1453                                  SDValue &Segment) {
1454  if (ISD::isNON_EXTLoad(N.getNode()) &&
1455      IsProfitableToFold(N, P, P) &&
1456      IsLegalToFold(N, P, P))
1457    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1458  return false;
1459}
1460
1461/// getGlobalBaseReg - Return an SDNode that returns the value of
1462/// the global base register. Output instructions required to
1463/// initialize the global base register, if necessary.
1464///
1465SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1466  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1467  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1468}
1469
1470static SDNode *FindCallStartFromCall(SDNode *Node) {
1471  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1472    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1473         "Node doesn't have a token chain argument!");
1474  return FindCallStartFromCall(Node->getOperand(0).getNode());
1475}
1476
1477SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1478  SDValue Chain = Node->getOperand(0);
1479  SDValue In1 = Node->getOperand(1);
1480  SDValue In2L = Node->getOperand(2);
1481  SDValue In2H = Node->getOperand(3);
1482  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1483  if (!SelectAddr(In1.getNode(), In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1484    return NULL;
1485  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1486  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1487  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1488  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1489                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1490                                           array_lengthof(Ops));
1491  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1492  return ResNode;
1493}
1494
1495SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1496  if (Node->hasAnyUseOfValue(0))
1497    return 0;
1498
1499  // Optimize common patterns for __sync_add_and_fetch and
1500  // __sync_sub_and_fetch where the result is not used. This allows us
1501  // to use "lock" version of add, sub, inc, dec instructions.
1502  // FIXME: Do not use special instructions but instead add the "lock"
1503  // prefix to the target node somehow. The extra information will then be
1504  // transferred to machine instruction and it denotes the prefix.
1505  SDValue Chain = Node->getOperand(0);
1506  SDValue Ptr = Node->getOperand(1);
1507  SDValue Val = Node->getOperand(2);
1508  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1509  if (!SelectAddr(Ptr.getNode(), Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1510    return 0;
1511
1512  bool isInc = false, isDec = false, isSub = false, isCN = false;
1513  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1514  if (CN) {
1515    isCN = true;
1516    int64_t CNVal = CN->getSExtValue();
1517    if (CNVal == 1)
1518      isInc = true;
1519    else if (CNVal == -1)
1520      isDec = true;
1521    else if (CNVal >= 0)
1522      Val = CurDAG->getTargetConstant(CNVal, NVT);
1523    else {
1524      isSub = true;
1525      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1526    }
1527  } else if (Val.hasOneUse() &&
1528             Val.getOpcode() == ISD::SUB &&
1529             X86::isZeroNode(Val.getOperand(0))) {
1530    isSub = true;
1531    Val = Val.getOperand(1);
1532  }
1533
1534  unsigned Opc = 0;
1535  switch (NVT.getSimpleVT().SimpleTy) {
1536  default: return 0;
1537  case MVT::i8:
1538    if (isInc)
1539      Opc = X86::LOCK_INC8m;
1540    else if (isDec)
1541      Opc = X86::LOCK_DEC8m;
1542    else if (isSub) {
1543      if (isCN)
1544        Opc = X86::LOCK_SUB8mi;
1545      else
1546        Opc = X86::LOCK_SUB8mr;
1547    } else {
1548      if (isCN)
1549        Opc = X86::LOCK_ADD8mi;
1550      else
1551        Opc = X86::LOCK_ADD8mr;
1552    }
1553    break;
1554  case MVT::i16:
1555    if (isInc)
1556      Opc = X86::LOCK_INC16m;
1557    else if (isDec)
1558      Opc = X86::LOCK_DEC16m;
1559    else if (isSub) {
1560      if (isCN) {
1561        if (Predicate_i16immSExt8(Val.getNode()))
1562          Opc = X86::LOCK_SUB16mi8;
1563        else
1564          Opc = X86::LOCK_SUB16mi;
1565      } else
1566        Opc = X86::LOCK_SUB16mr;
1567    } else {
1568      if (isCN) {
1569        if (Predicate_i16immSExt8(Val.getNode()))
1570          Opc = X86::LOCK_ADD16mi8;
1571        else
1572          Opc = X86::LOCK_ADD16mi;
1573      } else
1574        Opc = X86::LOCK_ADD16mr;
1575    }
1576    break;
1577  case MVT::i32:
1578    if (isInc)
1579      Opc = X86::LOCK_INC32m;
1580    else if (isDec)
1581      Opc = X86::LOCK_DEC32m;
1582    else if (isSub) {
1583      if (isCN) {
1584        if (Predicate_i32immSExt8(Val.getNode()))
1585          Opc = X86::LOCK_SUB32mi8;
1586        else
1587          Opc = X86::LOCK_SUB32mi;
1588      } else
1589        Opc = X86::LOCK_SUB32mr;
1590    } else {
1591      if (isCN) {
1592        if (Predicate_i32immSExt8(Val.getNode()))
1593          Opc = X86::LOCK_ADD32mi8;
1594        else
1595          Opc = X86::LOCK_ADD32mi;
1596      } else
1597        Opc = X86::LOCK_ADD32mr;
1598    }
1599    break;
1600  case MVT::i64:
1601    if (isInc)
1602      Opc = X86::LOCK_INC64m;
1603    else if (isDec)
1604      Opc = X86::LOCK_DEC64m;
1605    else if (isSub) {
1606      Opc = X86::LOCK_SUB64mr;
1607      if (isCN) {
1608        if (Predicate_i64immSExt8(Val.getNode()))
1609          Opc = X86::LOCK_SUB64mi8;
1610        else if (Predicate_i64immSExt32(Val.getNode()))
1611          Opc = X86::LOCK_SUB64mi32;
1612      }
1613    } else {
1614      Opc = X86::LOCK_ADD64mr;
1615      if (isCN) {
1616        if (Predicate_i64immSExt8(Val.getNode()))
1617          Opc = X86::LOCK_ADD64mi8;
1618        else if (Predicate_i64immSExt32(Val.getNode()))
1619          Opc = X86::LOCK_ADD64mi32;
1620      }
1621    }
1622    break;
1623  }
1624
1625  DebugLoc dl = Node->getDebugLoc();
1626  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1627                                                 dl, NVT), 0);
1628  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1629  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1630  if (isInc || isDec) {
1631    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1632    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1633    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1634    SDValue RetVals[] = { Undef, Ret };
1635    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1636  } else {
1637    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1638    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1639    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1640    SDValue RetVals[] = { Undef, Ret };
1641    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1642  }
1643}
1644
1645/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1646/// any uses which require the SF or OF bits to be accurate.
1647static bool HasNoSignedComparisonUses(SDNode *N) {
1648  // Examine each user of the node.
1649  for (SDNode::use_iterator UI = N->use_begin(),
1650         UE = N->use_end(); UI != UE; ++UI) {
1651    // Only examine CopyToReg uses.
1652    if (UI->getOpcode() != ISD::CopyToReg)
1653      return false;
1654    // Only examine CopyToReg uses that copy to EFLAGS.
1655    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1656          X86::EFLAGS)
1657      return false;
1658    // Examine each user of the CopyToReg use.
1659    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1660           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1661      // Only examine the Flag result.
1662      if (FlagUI.getUse().getResNo() != 1) continue;
1663      // Anything unusual: assume conservatively.
1664      if (!FlagUI->isMachineOpcode()) return false;
1665      // Examine the opcode of the user.
1666      switch (FlagUI->getMachineOpcode()) {
1667      // These comparisons don't treat the most significant bit specially.
1668      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1669      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1670      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1671      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1672      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1673      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1674      case X86::CMOVA16rr: case X86::CMOVA16rm:
1675      case X86::CMOVA32rr: case X86::CMOVA32rm:
1676      case X86::CMOVA64rr: case X86::CMOVA64rm:
1677      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1678      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1679      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1680      case X86::CMOVB16rr: case X86::CMOVB16rm:
1681      case X86::CMOVB32rr: case X86::CMOVB32rm:
1682      case X86::CMOVB64rr: case X86::CMOVB64rm:
1683      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1684      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1685      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1686      case X86::CMOVE16rr: case X86::CMOVE16rm:
1687      case X86::CMOVE32rr: case X86::CMOVE32rm:
1688      case X86::CMOVE64rr: case X86::CMOVE64rm:
1689      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1690      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1691      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1692      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1693      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1694      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1695      case X86::CMOVP16rr: case X86::CMOVP16rm:
1696      case X86::CMOVP32rr: case X86::CMOVP32rm:
1697      case X86::CMOVP64rr: case X86::CMOVP64rm:
1698        continue;
1699      // Anything else: assume conservatively.
1700      default: return false;
1701      }
1702    }
1703  }
1704  return true;
1705}
1706
1707SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1708  EVT NVT = Node->getValueType(0);
1709  unsigned Opc, MOpc;
1710  unsigned Opcode = Node->getOpcode();
1711  DebugLoc dl = Node->getDebugLoc();
1712
1713#ifndef NDEBUG
1714  DEBUG({
1715      dbgs() << std::string(Indent, ' ') << "Selecting: ";
1716      Node->dump(CurDAG);
1717      dbgs() << '\n';
1718    });
1719  Indent += 2;
1720#endif
1721
1722  if (Node->isMachineOpcode()) {
1723#ifndef NDEBUG
1724    DEBUG({
1725        dbgs() << std::string(Indent-2, ' ') << "== ";
1726        Node->dump(CurDAG);
1727        dbgs() << '\n';
1728      });
1729    Indent -= 2;
1730#endif
1731    return NULL;   // Already selected.
1732  }
1733
1734  switch (Opcode) {
1735  default: break;
1736  case X86ISD::GlobalBaseReg:
1737    return getGlobalBaseReg();
1738
1739  case X86ISD::ATOMOR64_DAG:
1740    return SelectAtomic64(Node, X86::ATOMOR6432);
1741  case X86ISD::ATOMXOR64_DAG:
1742    return SelectAtomic64(Node, X86::ATOMXOR6432);
1743  case X86ISD::ATOMADD64_DAG:
1744    return SelectAtomic64(Node, X86::ATOMADD6432);
1745  case X86ISD::ATOMSUB64_DAG:
1746    return SelectAtomic64(Node, X86::ATOMSUB6432);
1747  case X86ISD::ATOMNAND64_DAG:
1748    return SelectAtomic64(Node, X86::ATOMNAND6432);
1749  case X86ISD::ATOMAND64_DAG:
1750    return SelectAtomic64(Node, X86::ATOMAND6432);
1751  case X86ISD::ATOMSWAP64_DAG:
1752    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1753
1754  case ISD::ATOMIC_LOAD_ADD: {
1755    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1756    if (RetVal)
1757      return RetVal;
1758    break;
1759  }
1760
1761  case ISD::SMUL_LOHI:
1762  case ISD::UMUL_LOHI: {
1763    SDValue N0 = Node->getOperand(0);
1764    SDValue N1 = Node->getOperand(1);
1765
1766    bool isSigned = Opcode == ISD::SMUL_LOHI;
1767    if (!isSigned) {
1768      switch (NVT.getSimpleVT().SimpleTy) {
1769      default: llvm_unreachable("Unsupported VT!");
1770      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1771      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1772      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1773      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1774      }
1775    } else {
1776      switch (NVT.getSimpleVT().SimpleTy) {
1777      default: llvm_unreachable("Unsupported VT!");
1778      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1779      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1780      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1781      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1782      }
1783    }
1784
1785    unsigned LoReg, HiReg;
1786    switch (NVT.getSimpleVT().SimpleTy) {
1787    default: llvm_unreachable("Unsupported VT!");
1788    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1789    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1790    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1791    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1792    }
1793
1794    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1795    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1796    // Multiply is commmutative.
1797    if (!foldedLoad) {
1798      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1799      if (foldedLoad)
1800        std::swap(N0, N1);
1801    }
1802
1803    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1804                                            N0, SDValue()).getValue(1);
1805
1806    if (foldedLoad) {
1807      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1808                        InFlag };
1809      SDNode *CNode =
1810        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1811                               array_lengthof(Ops));
1812      InFlag = SDValue(CNode, 1);
1813      // Update the chain.
1814      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1815    } else {
1816      InFlag =
1817        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1818    }
1819
1820    // Copy the low half of the result, if it is needed.
1821    if (!SDValue(Node, 0).use_empty()) {
1822      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1823                                                LoReg, NVT, InFlag);
1824      InFlag = Result.getValue(2);
1825      ReplaceUses(SDValue(Node, 0), Result);
1826#ifndef NDEBUG
1827      DEBUG({
1828          dbgs() << std::string(Indent-2, ' ') << "=> ";
1829          Result.getNode()->dump(CurDAG);
1830          dbgs() << '\n';
1831        });
1832#endif
1833    }
1834    // Copy the high half of the result, if it is needed.
1835    if (!SDValue(Node, 1).use_empty()) {
1836      SDValue Result;
1837      if (HiReg == X86::AH && Subtarget->is64Bit()) {
1838        // Prevent use of AH in a REX instruction by referencing AX instead.
1839        // Shift it down 8 bits.
1840        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1841                                        X86::AX, MVT::i16, InFlag);
1842        InFlag = Result.getValue(2);
1843        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1844                                                Result,
1845                                   CurDAG->getTargetConstant(8, MVT::i8)), 0);
1846        // Then truncate it down to i8.
1847        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
1848                                                MVT::i8, Result);
1849      } else {
1850        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1851                                        HiReg, NVT, InFlag);
1852        InFlag = Result.getValue(2);
1853      }
1854      ReplaceUses(SDValue(Node, 1), Result);
1855#ifndef NDEBUG
1856      DEBUG({
1857          dbgs() << std::string(Indent-2, ' ') << "=> ";
1858          Result.getNode()->dump(CurDAG);
1859          dbgs() << '\n';
1860        });
1861#endif
1862    }
1863
1864#ifndef NDEBUG
1865    Indent -= 2;
1866#endif
1867
1868    return NULL;
1869  }
1870
1871  case ISD::SDIVREM:
1872  case ISD::UDIVREM: {
1873    SDValue N0 = Node->getOperand(0);
1874    SDValue N1 = Node->getOperand(1);
1875
1876    bool isSigned = Opcode == ISD::SDIVREM;
1877    if (!isSigned) {
1878      switch (NVT.getSimpleVT().SimpleTy) {
1879      default: llvm_unreachable("Unsupported VT!");
1880      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1881      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1882      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1883      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1884      }
1885    } else {
1886      switch (NVT.getSimpleVT().SimpleTy) {
1887      default: llvm_unreachable("Unsupported VT!");
1888      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1889      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1890      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1891      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1892      }
1893    }
1894
1895    unsigned LoReg, HiReg, ClrReg;
1896    unsigned ClrOpcode, SExtOpcode;
1897    switch (NVT.getSimpleVT().SimpleTy) {
1898    default: llvm_unreachable("Unsupported VT!");
1899    case MVT::i8:
1900      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
1901      ClrOpcode  = 0;
1902      SExtOpcode = X86::CBW;
1903      break;
1904    case MVT::i16:
1905      LoReg = X86::AX;  HiReg = X86::DX;
1906      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
1907      SExtOpcode = X86::CWD;
1908      break;
1909    case MVT::i32:
1910      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1911      ClrOpcode  = X86::MOV32r0;
1912      SExtOpcode = X86::CDQ;
1913      break;
1914    case MVT::i64:
1915      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1916      ClrOpcode  = X86::MOV64r0;
1917      SExtOpcode = X86::CQO;
1918      break;
1919    }
1920
1921    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1922    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1923    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1924
1925    SDValue InFlag;
1926    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1927      // Special case for div8, just use a move with zero extension to AX to
1928      // clear the upper 8 bits (AH).
1929      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1930      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1931        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1932        Move =
1933          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1934                                         MVT::Other, Ops,
1935                                         array_lengthof(Ops)), 0);
1936        Chain = Move.getValue(1);
1937        ReplaceUses(N0.getValue(1), Chain);
1938      } else {
1939        Move =
1940          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1941        Chain = CurDAG->getEntryNode();
1942      }
1943      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1944      InFlag = Chain.getValue(1);
1945    } else {
1946      InFlag =
1947        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1948                             LoReg, N0, SDValue()).getValue(1);
1949      if (isSigned && !signBitIsZero) {
1950        // Sign extend the low part into the high part.
1951        InFlag =
1952          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1953      } else {
1954        // Zero out the high part, effectively zero extending the input.
1955        SDValue ClrNode =
1956          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1957        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
1958                                      ClrNode, InFlag).getValue(1);
1959      }
1960    }
1961
1962    if (foldedLoad) {
1963      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1964                        InFlag };
1965      SDNode *CNode =
1966        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1967                               array_lengthof(Ops));
1968      InFlag = SDValue(CNode, 1);
1969      // Update the chain.
1970      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1971    } else {
1972      InFlag =
1973        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1974    }
1975
1976    // Copy the division (low) result, if it is needed.
1977    if (!SDValue(Node, 0).use_empty()) {
1978      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1979                                                LoReg, NVT, InFlag);
1980      InFlag = Result.getValue(2);
1981      ReplaceUses(SDValue(Node, 0), Result);
1982#ifndef NDEBUG
1983      DEBUG({
1984          dbgs() << std::string(Indent-2, ' ') << "=> ";
1985          Result.getNode()->dump(CurDAG);
1986          dbgs() << '\n';
1987        });
1988#endif
1989    }
1990    // Copy the remainder (high) result, if it is needed.
1991    if (!SDValue(Node, 1).use_empty()) {
1992      SDValue Result;
1993      if (HiReg == X86::AH && Subtarget->is64Bit()) {
1994        // Prevent use of AH in a REX instruction by referencing AX instead.
1995        // Shift it down 8 bits.
1996        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1997                                        X86::AX, MVT::i16, InFlag);
1998        InFlag = Result.getValue(2);
1999        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2000                                      Result,
2001                                      CurDAG->getTargetConstant(8, MVT::i8)),
2002                         0);
2003        // Then truncate it down to i8.
2004        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
2005                                                MVT::i8, Result);
2006      } else {
2007        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2008                                        HiReg, NVT, InFlag);
2009        InFlag = Result.getValue(2);
2010      }
2011      ReplaceUses(SDValue(Node, 1), Result);
2012#ifndef NDEBUG
2013      DEBUG({
2014          dbgs() << std::string(Indent-2, ' ') << "=> ";
2015          Result.getNode()->dump(CurDAG);
2016          dbgs() << '\n';
2017        });
2018#endif
2019    }
2020
2021#ifndef NDEBUG
2022    Indent -= 2;
2023#endif
2024
2025    return NULL;
2026  }
2027
2028  case X86ISD::CMP: {
2029    SDValue N0 = Node->getOperand(0);
2030    SDValue N1 = Node->getOperand(1);
2031
2032    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2033    // use a smaller encoding.
2034    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2035        N0.getValueType() != MVT::i8 &&
2036        X86::isZeroNode(N1)) {
2037      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2038      if (!C) break;
2039
2040      // For example, convert "testl %eax, $8" to "testb %al, $8"
2041      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2042          (!(C->getZExtValue() & 0x80) ||
2043           HasNoSignedComparisonUses(Node))) {
2044        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2045        SDValue Reg = N0.getNode()->getOperand(0);
2046
2047        // On x86-32, only the ABCD registers have 8-bit subregisters.
2048        if (!Subtarget->is64Bit()) {
2049          TargetRegisterClass *TRC = 0;
2050          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2051          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2052          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2053          default: llvm_unreachable("Unsupported TEST operand type!");
2054          }
2055          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2056          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2057                                               Reg.getValueType(), Reg, RC), 0);
2058        }
2059
2060        // Extract the l-register.
2061        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
2062                                                        MVT::i8, Reg);
2063
2064        // Emit a testb.
2065        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2066      }
2067
2068      // For example, "testl %eax, $2048" to "testb %ah, $8".
2069      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2070          (!(C->getZExtValue() & 0x8000) ||
2071           HasNoSignedComparisonUses(Node))) {
2072        // Shift the immediate right by 8 bits.
2073        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2074                                                       MVT::i8);
2075        SDValue Reg = N0.getNode()->getOperand(0);
2076
2077        // Put the value in an ABCD register.
2078        TargetRegisterClass *TRC = 0;
2079        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2080        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2081        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2082        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2083        default: llvm_unreachable("Unsupported TEST operand type!");
2084        }
2085        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2086        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2087                                             Reg.getValueType(), Reg, RC), 0);
2088
2089        // Extract the h-register.
2090        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl,
2091                                                        MVT::i8, Reg);
2092
2093        // Emit a testb. No special NOREX tricks are needed since there's
2094        // only one GPR operand!
2095        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2096                                      Subreg, ShiftedImm);
2097      }
2098
2099      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2100      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2101          N0.getValueType() != MVT::i16 &&
2102          (!(C->getZExtValue() & 0x8000) ||
2103           HasNoSignedComparisonUses(Node))) {
2104        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2105        SDValue Reg = N0.getNode()->getOperand(0);
2106
2107        // Extract the 16-bit subregister.
2108        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl,
2109                                                        MVT::i16, Reg);
2110
2111        // Emit a testw.
2112        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2113      }
2114
2115      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2116      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2117          N0.getValueType() == MVT::i64 &&
2118          (!(C->getZExtValue() & 0x80000000) ||
2119           HasNoSignedComparisonUses(Node))) {
2120        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2121        SDValue Reg = N0.getNode()->getOperand(0);
2122
2123        // Extract the 32-bit subregister.
2124        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl,
2125                                                        MVT::i32, Reg);
2126
2127        // Emit a testl.
2128        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2129      }
2130    }
2131    break;
2132  }
2133  }
2134
2135  SDNode *ResNode = SelectCode(Node);
2136
2137#ifndef NDEBUG
2138  DEBUG({
2139      dbgs() << std::string(Indent-2, ' ') << "=> ";
2140      if (ResNode == NULL || ResNode == Node)
2141        Node->dump(CurDAG);
2142      else
2143        ResNode->dump(CurDAG);
2144      dbgs() << '\n';
2145    });
2146  Indent -= 2;
2147#endif
2148
2149  return ResNode;
2150}
2151
2152bool X86DAGToDAGISel::
2153SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2154                             std::vector<SDValue> &OutOps) {
2155  SDValue Op0, Op1, Op2, Op3, Op4;
2156  switch (ConstraintCode) {
2157  case 'o':   // offsetable        ??
2158  case 'v':   // not offsetable    ??
2159  default: return true;
2160  case 'm':   // memory
2161    if (!SelectAddr(Op.getNode(), Op, Op0, Op1, Op2, Op3, Op4))
2162      return true;
2163    break;
2164  }
2165
2166  OutOps.push_back(Op0);
2167  OutOps.push_back(Op1);
2168  OutOps.push_back(Op2);
2169  OutOps.push_back(Op3);
2170  OutOps.push_back(Op4);
2171  return false;
2172}
2173
2174/// createX86ISelDag - This pass converts a legalized DAG into a
2175/// X86-specific DAG, ready for instruction scheduling.
2176///
2177FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2178                                     llvm::CodeGenOpt::Level OptLevel) {
2179  return new X86DAGToDAGISel(TM, OptLevel);
2180}
2181