X86FastISel.cpp revision 363496
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the X86-specific support for the FastISel class. Much
10// of the target-specific code is generated by tablegen in the file
11// X86GenFastISel.inc, which is #included here.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86CallingConv.h"
17#include "X86InstrBuilder.h"
18#include "X86InstrInfo.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/Analysis/BranchProbabilityInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/IR/CallSite.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DebugInfo.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/GetElementPtrTypeIterator.h"
34#include "llvm/IR/GlobalAlias.h"
35#include "llvm/IR/GlobalVariable.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/IntrinsicsX86.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/MC/MCAsmInfo.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Target/TargetOptions.h"
44using namespace llvm;
45
46namespace {
47
48class X86FastISel final : public FastISel {
49  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50  /// make the right decision when generating code for different targets.
51  const X86Subtarget *Subtarget;
52
53  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54  /// floating point ops.
55  /// When SSE is available, use it for f32 operations.
56  /// When SSE2 is available, use it for f64 operations.
57  bool X86ScalarSSEf64;
58  bool X86ScalarSSEf32;
59
60public:
61  explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62                       const TargetLibraryInfo *libInfo)
63      : FastISel(funcInfo, libInfo) {
64    Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
65    X86ScalarSSEf64 = Subtarget->hasSSE2();
66    X86ScalarSSEf32 = Subtarget->hasSSE1();
67  }
68
69  bool fastSelectInstruction(const Instruction *I) override;
70
71  /// The specified machine instr operand is a vreg, and that
72  /// vreg is being provided by the specified load instruction.  If possible,
73  /// try to fold the load as an operand to the instruction, returning true if
74  /// possible.
75  bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76                           const LoadInst *LI) override;
77
78  bool fastLowerArguments() override;
79  bool fastLowerCall(CallLoweringInfo &CLI) override;
80  bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81
82#include "X86GenFastISel.inc"
83
84private:
85  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
86                          const DebugLoc &DL);
87
88  bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
89                       unsigned &ResultReg, unsigned Alignment = 1);
90
91  bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
92                        MachineMemOperand *MMO = nullptr, bool Aligned = false);
93  bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
94                        X86AddressMode &AM,
95                        MachineMemOperand *MMO = nullptr, bool Aligned = false);
96
97  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98                         unsigned &ResultReg);
99
100  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102
103  bool X86SelectLoad(const Instruction *I);
104
105  bool X86SelectStore(const Instruction *I);
106
107  bool X86SelectRet(const Instruction *I);
108
109  bool X86SelectCmp(const Instruction *I);
110
111  bool X86SelectZExt(const Instruction *I);
112
113  bool X86SelectSExt(const Instruction *I);
114
115  bool X86SelectBranch(const Instruction *I);
116
117  bool X86SelectShift(const Instruction *I);
118
119  bool X86SelectDivRem(const Instruction *I);
120
121  bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
122
123  bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
124
125  bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
126
127  bool X86SelectSelect(const Instruction *I);
128
129  bool X86SelectTrunc(const Instruction *I);
130
131  bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
132                               const TargetRegisterClass *RC);
133
134  bool X86SelectFPExt(const Instruction *I);
135  bool X86SelectFPTrunc(const Instruction *I);
136  bool X86SelectSIToFP(const Instruction *I);
137  bool X86SelectUIToFP(const Instruction *I);
138  bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
139
140  const X86InstrInfo *getInstrInfo() const {
141    return Subtarget->getInstrInfo();
142  }
143  const X86TargetMachine *getTargetMachine() const {
144    return static_cast<const X86TargetMachine *>(&TM);
145  }
146
147  bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
148
149  unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
150  unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
151  unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
152  unsigned fastMaterializeConstant(const Constant *C) override;
153
154  unsigned fastMaterializeAlloca(const AllocaInst *C) override;
155
156  unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
157
158  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
159  /// computed in an SSE register, not on the X87 floating point stack.
160  bool isScalarFPTypeInSSEReg(EVT VT) const {
161    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
162      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
163  }
164
165  bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
166
167  bool IsMemcpySmall(uint64_t Len);
168
169  bool TryEmitSmallMemcpy(X86AddressMode DestAM,
170                          X86AddressMode SrcAM, uint64_t Len);
171
172  bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
173                            const Value *Cond);
174
175  const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
176                                            X86AddressMode &AM);
177
178  unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
179                             const TargetRegisterClass *RC, unsigned Op0,
180                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
181                             unsigned Op2, bool Op2IsKill, unsigned Op3,
182                             bool Op3IsKill);
183};
184
185} // end anonymous namespace.
186
187static std::pair<unsigned, bool>
188getX86SSEConditionCode(CmpInst::Predicate Predicate) {
189  unsigned CC;
190  bool NeedSwap = false;
191
192  // SSE Condition code mapping:
193  //  0 - EQ
194  //  1 - LT
195  //  2 - LE
196  //  3 - UNORD
197  //  4 - NEQ
198  //  5 - NLT
199  //  6 - NLE
200  //  7 - ORD
201  switch (Predicate) {
202  default: llvm_unreachable("Unexpected predicate");
203  case CmpInst::FCMP_OEQ: CC = 0;          break;
204  case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
205  case CmpInst::FCMP_OLT: CC = 1;          break;
206  case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
207  case CmpInst::FCMP_OLE: CC = 2;          break;
208  case CmpInst::FCMP_UNO: CC = 3;          break;
209  case CmpInst::FCMP_UNE: CC = 4;          break;
210  case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
211  case CmpInst::FCMP_UGE: CC = 5;          break;
212  case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
213  case CmpInst::FCMP_UGT: CC = 6;          break;
214  case CmpInst::FCMP_ORD: CC = 7;          break;
215  case CmpInst::FCMP_UEQ: CC = 8;          break;
216  case CmpInst::FCMP_ONE: CC = 12;         break;
217  }
218
219  return std::make_pair(CC, NeedSwap);
220}
221
222/// Adds a complex addressing mode to the given machine instr builder.
223/// Note, this will constrain the index register.  If its not possible to
224/// constrain the given index register, then a new one will be created.  The
225/// IndexReg field of the addressing mode will be updated to match in this case.
226const MachineInstrBuilder &
227X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
228                            X86AddressMode &AM) {
229  // First constrain the index register.  It needs to be a GR64_NOSP.
230  AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
231                                         MIB->getNumOperands() +
232                                         X86::AddrIndexReg);
233  return ::addFullAddress(MIB, AM);
234}
235
236/// Check if it is possible to fold the condition from the XALU intrinsic
237/// into the user. The condition code will only be updated on success.
238bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
239                                       const Value *Cond) {
240  if (!isa<ExtractValueInst>(Cond))
241    return false;
242
243  const auto *EV = cast<ExtractValueInst>(Cond);
244  if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
245    return false;
246
247  const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
248  MVT RetVT;
249  const Function *Callee = II->getCalledFunction();
250  Type *RetTy =
251    cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
252  if (!isTypeLegal(RetTy, RetVT))
253    return false;
254
255  if (RetVT != MVT::i32 && RetVT != MVT::i64)
256    return false;
257
258  X86::CondCode TmpCC;
259  switch (II->getIntrinsicID()) {
260  default: return false;
261  case Intrinsic::sadd_with_overflow:
262  case Intrinsic::ssub_with_overflow:
263  case Intrinsic::smul_with_overflow:
264  case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
265  case Intrinsic::uadd_with_overflow:
266  case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
267  }
268
269  // Check if both instructions are in the same basic block.
270  if (II->getParent() != I->getParent())
271    return false;
272
273  // Make sure nothing is in the way
274  BasicBlock::const_iterator Start(I);
275  BasicBlock::const_iterator End(II);
276  for (auto Itr = std::prev(Start); Itr != End; --Itr) {
277    // We only expect extractvalue instructions between the intrinsic and the
278    // instruction to be selected.
279    if (!isa<ExtractValueInst>(Itr))
280      return false;
281
282    // Check that the extractvalue operand comes from the intrinsic.
283    const auto *EVI = cast<ExtractValueInst>(Itr);
284    if (EVI->getAggregateOperand() != II)
285      return false;
286  }
287
288  CC = TmpCC;
289  return true;
290}
291
292bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
293  EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
294  if (evt == MVT::Other || !evt.isSimple())
295    // Unhandled type. Halt "fast" selection and bail.
296    return false;
297
298  VT = evt.getSimpleVT();
299  // For now, require SSE/SSE2 for performing floating-point operations,
300  // since x87 requires additional work.
301  if (VT == MVT::f64 && !X86ScalarSSEf64)
302    return false;
303  if (VT == MVT::f32 && !X86ScalarSSEf32)
304    return false;
305  // Similarly, no f80 support yet.
306  if (VT == MVT::f80)
307    return false;
308  // We only handle legal types. For example, on x86-32 the instruction
309  // selector contains all of the 64-bit instructions from x86-64,
310  // under the assumption that i64 won't be used if the target doesn't
311  // support it.
312  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
313}
314
315/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
316/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
317/// Return true and the result register by reference if it is possible.
318bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
319                                  MachineMemOperand *MMO, unsigned &ResultReg,
320                                  unsigned Alignment) {
321  bool HasSSE41 = Subtarget->hasSSE41();
322  bool HasAVX = Subtarget->hasAVX();
323  bool HasAVX2 = Subtarget->hasAVX2();
324  bool HasAVX512 = Subtarget->hasAVX512();
325  bool HasVLX = Subtarget->hasVLX();
326  bool IsNonTemporal = MMO && MMO->isNonTemporal();
327
328  // Treat i1 loads the same as i8 loads. Masking will be done when storing.
329  if (VT == MVT::i1)
330    VT = MVT::i8;
331
332  // Get opcode and regclass of the output for the given load instruction.
333  unsigned Opc = 0;
334  switch (VT.SimpleTy) {
335  default: return false;
336  case MVT::i8:
337    Opc = X86::MOV8rm;
338    break;
339  case MVT::i16:
340    Opc = X86::MOV16rm;
341    break;
342  case MVT::i32:
343    Opc = X86::MOV32rm;
344    break;
345  case MVT::i64:
346    // Must be in x86-64 mode.
347    Opc = X86::MOV64rm;
348    break;
349  case MVT::f32:
350    if (X86ScalarSSEf32)
351      Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
352            HasAVX    ? X86::VMOVSSrm_alt :
353                        X86::MOVSSrm_alt;
354    else
355      Opc = X86::LD_Fp32m;
356    break;
357  case MVT::f64:
358    if (X86ScalarSSEf64)
359      Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
360            HasAVX    ? X86::VMOVSDrm_alt :
361                        X86::MOVSDrm_alt;
362    else
363      Opc = X86::LD_Fp64m;
364    break;
365  case MVT::f80:
366    // No f80 support yet.
367    return false;
368  case MVT::v4f32:
369    if (IsNonTemporal && Alignment >= 16 && HasSSE41)
370      Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
371            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
372    else if (Alignment >= 16)
373      Opc = HasVLX ? X86::VMOVAPSZ128rm :
374            HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
375    else
376      Opc = HasVLX ? X86::VMOVUPSZ128rm :
377            HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
378    break;
379  case MVT::v2f64:
380    if (IsNonTemporal && Alignment >= 16 && HasSSE41)
381      Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
382            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
383    else if (Alignment >= 16)
384      Opc = HasVLX ? X86::VMOVAPDZ128rm :
385            HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
386    else
387      Opc = HasVLX ? X86::VMOVUPDZ128rm :
388            HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
389    break;
390  case MVT::v4i32:
391  case MVT::v2i64:
392  case MVT::v8i16:
393  case MVT::v16i8:
394    if (IsNonTemporal && Alignment >= 16 && HasSSE41)
395      Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
396            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
397    else if (Alignment >= 16)
398      Opc = HasVLX ? X86::VMOVDQA64Z128rm :
399            HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
400    else
401      Opc = HasVLX ? X86::VMOVDQU64Z128rm :
402            HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
403    break;
404  case MVT::v8f32:
405    assert(HasAVX);
406    if (IsNonTemporal && Alignment >= 32 && HasAVX2)
407      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
408    else if (IsNonTemporal && Alignment >= 16)
409      return false; // Force split for X86::VMOVNTDQArm
410    else if (Alignment >= 32)
411      Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
412    else
413      Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
414    break;
415  case MVT::v4f64:
416    assert(HasAVX);
417    if (IsNonTemporal && Alignment >= 32 && HasAVX2)
418      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
419    else if (IsNonTemporal && Alignment >= 16)
420      return false; // Force split for X86::VMOVNTDQArm
421    else if (Alignment >= 32)
422      Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
423    else
424      Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
425    break;
426  case MVT::v8i32:
427  case MVT::v4i64:
428  case MVT::v16i16:
429  case MVT::v32i8:
430    assert(HasAVX);
431    if (IsNonTemporal && Alignment >= 32 && HasAVX2)
432      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
433    else if (IsNonTemporal && Alignment >= 16)
434      return false; // Force split for X86::VMOVNTDQArm
435    else if (Alignment >= 32)
436      Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
437    else
438      Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
439    break;
440  case MVT::v16f32:
441    assert(HasAVX512);
442    if (IsNonTemporal && Alignment >= 64)
443      Opc = X86::VMOVNTDQAZrm;
444    else
445      Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
446    break;
447  case MVT::v8f64:
448    assert(HasAVX512);
449    if (IsNonTemporal && Alignment >= 64)
450      Opc = X86::VMOVNTDQAZrm;
451    else
452      Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
453    break;
454  case MVT::v8i64:
455  case MVT::v16i32:
456  case MVT::v32i16:
457  case MVT::v64i8:
458    assert(HasAVX512);
459    // Note: There are a lot more choices based on type with AVX-512, but
460    // there's really no advantage when the load isn't masked.
461    if (IsNonTemporal && Alignment >= 64)
462      Opc = X86::VMOVNTDQAZrm;
463    else
464      Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
465    break;
466  }
467
468  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
469
470  ResultReg = createResultReg(RC);
471  MachineInstrBuilder MIB =
472    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
473  addFullAddress(MIB, AM);
474  if (MMO)
475    MIB->addMemOperand(*FuncInfo.MF, MMO);
476  return true;
477}
478
479/// X86FastEmitStore - Emit a machine instruction to store a value Val of
480/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
481/// and a displacement offset, or a GlobalAddress,
482/// i.e. V. Return true if it is possible.
483bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
484                                   X86AddressMode &AM,
485                                   MachineMemOperand *MMO, bool Aligned) {
486  bool HasSSE1 = Subtarget->hasSSE1();
487  bool HasSSE2 = Subtarget->hasSSE2();
488  bool HasSSE4A = Subtarget->hasSSE4A();
489  bool HasAVX = Subtarget->hasAVX();
490  bool HasAVX512 = Subtarget->hasAVX512();
491  bool HasVLX = Subtarget->hasVLX();
492  bool IsNonTemporal = MMO && MMO->isNonTemporal();
493
494  // Get opcode and regclass of the output for the given store instruction.
495  unsigned Opc = 0;
496  switch (VT.getSimpleVT().SimpleTy) {
497  case MVT::f80: // No f80 support yet.
498  default: return false;
499  case MVT::i1: {
500    // Mask out all but lowest bit.
501    unsigned AndResult = createResultReg(&X86::GR8RegClass);
502    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
503            TII.get(X86::AND8ri), AndResult)
504      .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
505    ValReg = AndResult;
506    LLVM_FALLTHROUGH; // handle i1 as i8.
507  }
508  case MVT::i8:  Opc = X86::MOV8mr;  break;
509  case MVT::i16: Opc = X86::MOV16mr; break;
510  case MVT::i32:
511    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
512    break;
513  case MVT::i64:
514    // Must be in x86-64 mode.
515    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
516    break;
517  case MVT::f32:
518    if (X86ScalarSSEf32) {
519      if (IsNonTemporal && HasSSE4A)
520        Opc = X86::MOVNTSS;
521      else
522        Opc = HasAVX512 ? X86::VMOVSSZmr :
523              HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
524    } else
525      Opc = X86::ST_Fp32m;
526    break;
527  case MVT::f64:
528    if (X86ScalarSSEf32) {
529      if (IsNonTemporal && HasSSE4A)
530        Opc = X86::MOVNTSD;
531      else
532        Opc = HasAVX512 ? X86::VMOVSDZmr :
533              HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
534    } else
535      Opc = X86::ST_Fp64m;
536    break;
537  case MVT::x86mmx:
538    Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
539    break;
540  case MVT::v4f32:
541    if (Aligned) {
542      if (IsNonTemporal)
543        Opc = HasVLX ? X86::VMOVNTPSZ128mr :
544              HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
545      else
546        Opc = HasVLX ? X86::VMOVAPSZ128mr :
547              HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
548    } else
549      Opc = HasVLX ? X86::VMOVUPSZ128mr :
550            HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
551    break;
552  case MVT::v2f64:
553    if (Aligned) {
554      if (IsNonTemporal)
555        Opc = HasVLX ? X86::VMOVNTPDZ128mr :
556              HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
557      else
558        Opc = HasVLX ? X86::VMOVAPDZ128mr :
559              HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
560    } else
561      Opc = HasVLX ? X86::VMOVUPDZ128mr :
562            HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
563    break;
564  case MVT::v4i32:
565  case MVT::v2i64:
566  case MVT::v8i16:
567  case MVT::v16i8:
568    if (Aligned) {
569      if (IsNonTemporal)
570        Opc = HasVLX ? X86::VMOVNTDQZ128mr :
571              HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
572      else
573        Opc = HasVLX ? X86::VMOVDQA64Z128mr :
574              HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
575    } else
576      Opc = HasVLX ? X86::VMOVDQU64Z128mr :
577            HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
578    break;
579  case MVT::v8f32:
580    assert(HasAVX);
581    if (Aligned) {
582      if (IsNonTemporal)
583        Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
584      else
585        Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
586    } else
587      Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
588    break;
589  case MVT::v4f64:
590    assert(HasAVX);
591    if (Aligned) {
592      if (IsNonTemporal)
593        Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
594      else
595        Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
596    } else
597      Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
598    break;
599  case MVT::v8i32:
600  case MVT::v4i64:
601  case MVT::v16i16:
602  case MVT::v32i8:
603    assert(HasAVX);
604    if (Aligned) {
605      if (IsNonTemporal)
606        Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
607      else
608        Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
609    } else
610      Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
611    break;
612  case MVT::v16f32:
613    assert(HasAVX512);
614    if (Aligned)
615      Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
616    else
617      Opc = X86::VMOVUPSZmr;
618    break;
619  case MVT::v8f64:
620    assert(HasAVX512);
621    if (Aligned) {
622      Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
623    } else
624      Opc = X86::VMOVUPDZmr;
625    break;
626  case MVT::v8i64:
627  case MVT::v16i32:
628  case MVT::v32i16:
629  case MVT::v64i8:
630    assert(HasAVX512);
631    // Note: There are a lot more choices based on type with AVX-512, but
632    // there's really no advantage when the store isn't masked.
633    if (Aligned)
634      Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
635    else
636      Opc = X86::VMOVDQU64Zmr;
637    break;
638  }
639
640  const MCInstrDesc &Desc = TII.get(Opc);
641  // Some of the instructions in the previous switch use FR128 instead
642  // of FR32 for ValReg. Make sure the register we feed the instruction
643  // matches its register class constraints.
644  // Note: This is fine to do a copy from FR32 to FR128, this is the
645  // same registers behind the scene and actually why it did not trigger
646  // any bugs before.
647  ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
648  MachineInstrBuilder MIB =
649      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
650  addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
651  if (MMO)
652    MIB->addMemOperand(*FuncInfo.MF, MMO);
653
654  return true;
655}
656
657bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
658                                   X86AddressMode &AM,
659                                   MachineMemOperand *MMO, bool Aligned) {
660  // Handle 'null' like i32/i64 0.
661  if (isa<ConstantPointerNull>(Val))
662    Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
663
664  // If this is a store of a simple constant, fold the constant into the store.
665  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
666    unsigned Opc = 0;
667    bool Signed = true;
668    switch (VT.getSimpleVT().SimpleTy) {
669    default: break;
670    case MVT::i1:
671      Signed = false;
672      LLVM_FALLTHROUGH; // Handle as i8.
673    case MVT::i8:  Opc = X86::MOV8mi;  break;
674    case MVT::i16: Opc = X86::MOV16mi; break;
675    case MVT::i32: Opc = X86::MOV32mi; break;
676    case MVT::i64:
677      // Must be a 32-bit sign extended value.
678      if (isInt<32>(CI->getSExtValue()))
679        Opc = X86::MOV64mi32;
680      break;
681    }
682
683    if (Opc) {
684      MachineInstrBuilder MIB =
685        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
686      addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
687                                            : CI->getZExtValue());
688      if (MMO)
689        MIB->addMemOperand(*FuncInfo.MF, MMO);
690      return true;
691    }
692  }
693
694  unsigned ValReg = getRegForValue(Val);
695  if (ValReg == 0)
696    return false;
697
698  bool ValKill = hasTrivialKill(Val);
699  return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
700}
701
702/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
703/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
704/// ISD::SIGN_EXTEND).
705bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
706                                    unsigned Src, EVT SrcVT,
707                                    unsigned &ResultReg) {
708  unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
709                           Src, /*TODO: Kill=*/false);
710  if (RR == 0)
711    return false;
712
713  ResultReg = RR;
714  return true;
715}
716
717bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
718  // Handle constant address.
719  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
720    // Can't handle alternate code models yet.
721    if (TM.getCodeModel() != CodeModel::Small)
722      return false;
723
724    // Can't handle TLS yet.
725    if (GV->isThreadLocal())
726      return false;
727
728    // Can't handle !absolute_symbol references yet.
729    if (GV->isAbsoluteSymbolRef())
730      return false;
731
732    // RIP-relative addresses can't have additional register operands, so if
733    // we've already folded stuff into the addressing mode, just force the
734    // global value into its own register, which we can use as the basereg.
735    if (!Subtarget->isPICStyleRIPRel() ||
736        (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
737      // Okay, we've committed to selecting this global. Set up the address.
738      AM.GV = GV;
739
740      // Allow the subtarget to classify the global.
741      unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
742
743      // If this reference is relative to the pic base, set it now.
744      if (isGlobalRelativeToPICBase(GVFlags)) {
745        // FIXME: How do we know Base.Reg is free??
746        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
747      }
748
749      // Unless the ABI requires an extra load, return a direct reference to
750      // the global.
751      if (!isGlobalStubReference(GVFlags)) {
752        if (Subtarget->isPICStyleRIPRel()) {
753          // Use rip-relative addressing if we can.  Above we verified that the
754          // base and index registers are unused.
755          assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
756          AM.Base.Reg = X86::RIP;
757        }
758        AM.GVOpFlags = GVFlags;
759        return true;
760      }
761
762      // Ok, we need to do a load from a stub.  If we've already loaded from
763      // this stub, reuse the loaded pointer, otherwise emit the load now.
764      DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
765      unsigned LoadReg;
766      if (I != LocalValueMap.end() && I->second != 0) {
767        LoadReg = I->second;
768      } else {
769        // Issue load from stub.
770        unsigned Opc = 0;
771        const TargetRegisterClass *RC = nullptr;
772        X86AddressMode StubAM;
773        StubAM.Base.Reg = AM.Base.Reg;
774        StubAM.GV = GV;
775        StubAM.GVOpFlags = GVFlags;
776
777        // Prepare for inserting code in the local-value area.
778        SavePoint SaveInsertPt = enterLocalValueArea();
779
780        if (TLI.getPointerTy(DL) == MVT::i64) {
781          Opc = X86::MOV64rm;
782          RC  = &X86::GR64RegClass;
783
784          if (Subtarget->isPICStyleRIPRel())
785            StubAM.Base.Reg = X86::RIP;
786        } else {
787          Opc = X86::MOV32rm;
788          RC  = &X86::GR32RegClass;
789        }
790
791        LoadReg = createResultReg(RC);
792        MachineInstrBuilder LoadMI =
793          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
794        addFullAddress(LoadMI, StubAM);
795
796        // Ok, back to normal mode.
797        leaveLocalValueArea(SaveInsertPt);
798
799        // Prevent loading GV stub multiple times in same MBB.
800        LocalValueMap[V] = LoadReg;
801      }
802
803      // Now construct the final address. Note that the Disp, Scale,
804      // and Index values may already be set here.
805      AM.Base.Reg = LoadReg;
806      AM.GV = nullptr;
807      return true;
808    }
809  }
810
811  // If all else fails, try to materialize the value in a register.
812  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
813    if (AM.Base.Reg == 0) {
814      AM.Base.Reg = getRegForValue(V);
815      return AM.Base.Reg != 0;
816    }
817    if (AM.IndexReg == 0) {
818      assert(AM.Scale == 1 && "Scale with no index!");
819      AM.IndexReg = getRegForValue(V);
820      return AM.IndexReg != 0;
821    }
822  }
823
824  return false;
825}
826
827/// X86SelectAddress - Attempt to fill in an address from the given value.
828///
829bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
830  SmallVector<const Value *, 32> GEPs;
831redo_gep:
832  const User *U = nullptr;
833  unsigned Opcode = Instruction::UserOp1;
834  if (const Instruction *I = dyn_cast<Instruction>(V)) {
835    // Don't walk into other basic blocks; it's possible we haven't
836    // visited them yet, so the instructions may not yet be assigned
837    // virtual registers.
838    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
839        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
840      Opcode = I->getOpcode();
841      U = I;
842    }
843  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
844    Opcode = C->getOpcode();
845    U = C;
846  }
847
848  if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
849    if (Ty->getAddressSpace() > 255)
850      // Fast instruction selection doesn't support the special
851      // address spaces.
852      return false;
853
854  switch (Opcode) {
855  default: break;
856  case Instruction::BitCast:
857    // Look past bitcasts.
858    return X86SelectAddress(U->getOperand(0), AM);
859
860  case Instruction::IntToPtr:
861    // Look past no-op inttoptrs.
862    if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
863        TLI.getPointerTy(DL))
864      return X86SelectAddress(U->getOperand(0), AM);
865    break;
866
867  case Instruction::PtrToInt:
868    // Look past no-op ptrtoints.
869    if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
870      return X86SelectAddress(U->getOperand(0), AM);
871    break;
872
873  case Instruction::Alloca: {
874    // Do static allocas.
875    const AllocaInst *A = cast<AllocaInst>(V);
876    DenseMap<const AllocaInst *, int>::iterator SI =
877      FuncInfo.StaticAllocaMap.find(A);
878    if (SI != FuncInfo.StaticAllocaMap.end()) {
879      AM.BaseType = X86AddressMode::FrameIndexBase;
880      AM.Base.FrameIndex = SI->second;
881      return true;
882    }
883    break;
884  }
885
886  case Instruction::Add: {
887    // Adds of constants are common and easy enough.
888    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
889      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
890      // They have to fit in the 32-bit signed displacement field though.
891      if (isInt<32>(Disp)) {
892        AM.Disp = (uint32_t)Disp;
893        return X86SelectAddress(U->getOperand(0), AM);
894      }
895    }
896    break;
897  }
898
899  case Instruction::GetElementPtr: {
900    X86AddressMode SavedAM = AM;
901
902    // Pattern-match simple GEPs.
903    uint64_t Disp = (int32_t)AM.Disp;
904    unsigned IndexReg = AM.IndexReg;
905    unsigned Scale = AM.Scale;
906    gep_type_iterator GTI = gep_type_begin(U);
907    // Iterate through the indices, folding what we can. Constants can be
908    // folded, and one dynamic index can be handled, if the scale is supported.
909    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
910         i != e; ++i, ++GTI) {
911      const Value *Op = *i;
912      if (StructType *STy = GTI.getStructTypeOrNull()) {
913        const StructLayout *SL = DL.getStructLayout(STy);
914        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
915        continue;
916      }
917
918      // A array/variable index is always of the form i*S where S is the
919      // constant scale size.  See if we can push the scale into immediates.
920      uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
921      for (;;) {
922        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
923          // Constant-offset addressing.
924          Disp += CI->getSExtValue() * S;
925          break;
926        }
927        if (canFoldAddIntoGEP(U, Op)) {
928          // A compatible add with a constant operand. Fold the constant.
929          ConstantInt *CI =
930            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
931          Disp += CI->getSExtValue() * S;
932          // Iterate on the other operand.
933          Op = cast<AddOperator>(Op)->getOperand(0);
934          continue;
935        }
936        if (IndexReg == 0 &&
937            (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
938            (S == 1 || S == 2 || S == 4 || S == 8)) {
939          // Scaled-index addressing.
940          Scale = S;
941          IndexReg = getRegForGEPIndex(Op).first;
942          if (IndexReg == 0)
943            return false;
944          break;
945        }
946        // Unsupported.
947        goto unsupported_gep;
948      }
949    }
950
951    // Check for displacement overflow.
952    if (!isInt<32>(Disp))
953      break;
954
955    AM.IndexReg = IndexReg;
956    AM.Scale = Scale;
957    AM.Disp = (uint32_t)Disp;
958    GEPs.push_back(V);
959
960    if (const GetElementPtrInst *GEP =
961          dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
962      // Ok, the GEP indices were covered by constant-offset and scaled-index
963      // addressing. Update the address state and move on to examining the base.
964      V = GEP;
965      goto redo_gep;
966    } else if (X86SelectAddress(U->getOperand(0), AM)) {
967      return true;
968    }
969
970    // If we couldn't merge the gep value into this addr mode, revert back to
971    // our address and just match the value instead of completely failing.
972    AM = SavedAM;
973
974    for (const Value *I : reverse(GEPs))
975      if (handleConstantAddresses(I, AM))
976        return true;
977
978    return false;
979  unsupported_gep:
980    // Ok, the GEP indices weren't all covered.
981    break;
982  }
983  }
984
985  return handleConstantAddresses(V, AM);
986}
987
988/// X86SelectCallAddress - Attempt to fill in an address from the given value.
989///
990bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
991  const User *U = nullptr;
992  unsigned Opcode = Instruction::UserOp1;
993  const Instruction *I = dyn_cast<Instruction>(V);
994  // Record if the value is defined in the same basic block.
995  //
996  // This information is crucial to know whether or not folding an
997  // operand is valid.
998  // Indeed, FastISel generates or reuses a virtual register for all
999  // operands of all instructions it selects. Obviously, the definition and
1000  // its uses must use the same virtual register otherwise the produced
1001  // code is incorrect.
1002  // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1003  // registers for values that are alive across basic blocks. This ensures
1004  // that the values are consistently set between across basic block, even
1005  // if different instruction selection mechanisms are used (e.g., a mix of
1006  // SDISel and FastISel).
1007  // For values local to a basic block, the instruction selection process
1008  // generates these virtual registers with whatever method is appropriate
1009  // for its needs. In particular, FastISel and SDISel do not share the way
1010  // local virtual registers are set.
1011  // Therefore, this is impossible (or at least unsafe) to share values
1012  // between basic blocks unless they use the same instruction selection
1013  // method, which is not guarantee for X86.
1014  // Moreover, things like hasOneUse could not be used accurately, if we
1015  // allow to reference values across basic blocks whereas they are not
1016  // alive across basic blocks initially.
1017  bool InMBB = true;
1018  if (I) {
1019    Opcode = I->getOpcode();
1020    U = I;
1021    InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1022  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1023    Opcode = C->getOpcode();
1024    U = C;
1025  }
1026
1027  switch (Opcode) {
1028  default: break;
1029  case Instruction::BitCast:
1030    // Look past bitcasts if its operand is in the same BB.
1031    if (InMBB)
1032      return X86SelectCallAddress(U->getOperand(0), AM);
1033    break;
1034
1035  case Instruction::IntToPtr:
1036    // Look past no-op inttoptrs if its operand is in the same BB.
1037    if (InMBB &&
1038        TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1039            TLI.getPointerTy(DL))
1040      return X86SelectCallAddress(U->getOperand(0), AM);
1041    break;
1042
1043  case Instruction::PtrToInt:
1044    // Look past no-op ptrtoints if its operand is in the same BB.
1045    if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1046      return X86SelectCallAddress(U->getOperand(0), AM);
1047    break;
1048  }
1049
1050  // Handle constant address.
1051  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1052    // Can't handle alternate code models yet.
1053    if (TM.getCodeModel() != CodeModel::Small)
1054      return false;
1055
1056    // RIP-relative addresses can't have additional register operands.
1057    if (Subtarget->isPICStyleRIPRel() &&
1058        (AM.Base.Reg != 0 || AM.IndexReg != 0))
1059      return false;
1060
1061    // Can't handle TLS.
1062    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1063      if (GVar->isThreadLocal())
1064        return false;
1065
1066    // Okay, we've committed to selecting this global. Set up the basic address.
1067    AM.GV = GV;
1068
1069    // Return a direct reference to the global. Fastisel can handle calls to
1070    // functions that require loads, such as dllimport and nonlazybind
1071    // functions.
1072    if (Subtarget->isPICStyleRIPRel()) {
1073      // Use rip-relative addressing if we can.  Above we verified that the
1074      // base and index registers are unused.
1075      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1076      AM.Base.Reg = X86::RIP;
1077    } else {
1078      AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1079    }
1080
1081    return true;
1082  }
1083
1084  // If all else fails, try to materialize the value in a register.
1085  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1086    if (AM.Base.Reg == 0) {
1087      AM.Base.Reg = getRegForValue(V);
1088      return AM.Base.Reg != 0;
1089    }
1090    if (AM.IndexReg == 0) {
1091      assert(AM.Scale == 1 && "Scale with no index!");
1092      AM.IndexReg = getRegForValue(V);
1093      return AM.IndexReg != 0;
1094    }
1095  }
1096
1097  return false;
1098}
1099
1100
1101/// X86SelectStore - Select and emit code to implement store instructions.
1102bool X86FastISel::X86SelectStore(const Instruction *I) {
1103  // Atomic stores need special handling.
1104  const StoreInst *S = cast<StoreInst>(I);
1105
1106  if (S->isAtomic())
1107    return false;
1108
1109  const Value *PtrV = I->getOperand(1);
1110  if (TLI.supportSwiftError()) {
1111    // Swifterror values can come from either a function parameter with
1112    // swifterror attribute or an alloca with swifterror attribute.
1113    if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1114      if (Arg->hasSwiftErrorAttr())
1115        return false;
1116    }
1117
1118    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1119      if (Alloca->isSwiftError())
1120        return false;
1121    }
1122  }
1123
1124  const Value *Val = S->getValueOperand();
1125  const Value *Ptr = S->getPointerOperand();
1126
1127  MVT VT;
1128  if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1129    return false;
1130
1131  unsigned Alignment = S->getAlignment();
1132  unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1133  if (Alignment == 0) // Ensure that codegen never sees alignment 0
1134    Alignment = ABIAlignment;
1135  bool Aligned = Alignment >= ABIAlignment;
1136
1137  X86AddressMode AM;
1138  if (!X86SelectAddress(Ptr, AM))
1139    return false;
1140
1141  return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1142}
1143
1144/// X86SelectRet - Select and emit code to implement ret instructions.
1145bool X86FastISel::X86SelectRet(const Instruction *I) {
1146  const ReturnInst *Ret = cast<ReturnInst>(I);
1147  const Function &F = *I->getParent()->getParent();
1148  const X86MachineFunctionInfo *X86MFInfo =
1149      FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1150
1151  if (!FuncInfo.CanLowerReturn)
1152    return false;
1153
1154  if (TLI.supportSwiftError() &&
1155      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1156    return false;
1157
1158  if (TLI.supportSplitCSR(FuncInfo.MF))
1159    return false;
1160
1161  CallingConv::ID CC = F.getCallingConv();
1162  if (CC != CallingConv::C &&
1163      CC != CallingConv::Fast &&
1164      CC != CallingConv::Tail &&
1165      CC != CallingConv::X86_FastCall &&
1166      CC != CallingConv::X86_StdCall &&
1167      CC != CallingConv::X86_ThisCall &&
1168      CC != CallingConv::X86_64_SysV &&
1169      CC != CallingConv::Win64)
1170    return false;
1171
1172  // Don't handle popping bytes if they don't fit the ret's immediate.
1173  if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1174    return false;
1175
1176  // fastcc with -tailcallopt is intended to provide a guaranteed
1177  // tail call optimization. Fastisel doesn't know how to do that.
1178  if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1179      CC == CallingConv::Tail)
1180    return false;
1181
1182  // Let SDISel handle vararg functions.
1183  if (F.isVarArg())
1184    return false;
1185
1186  // Build a list of return value registers.
1187  SmallVector<unsigned, 4> RetRegs;
1188
1189  if (Ret->getNumOperands() > 0) {
1190    SmallVector<ISD::OutputArg, 4> Outs;
1191    GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1192
1193    // Analyze operands of the call, assigning locations to each operand.
1194    SmallVector<CCValAssign, 16> ValLocs;
1195    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1196    CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1197
1198    const Value *RV = Ret->getOperand(0);
1199    unsigned Reg = getRegForValue(RV);
1200    if (Reg == 0)
1201      return false;
1202
1203    // Only handle a single return value for now.
1204    if (ValLocs.size() != 1)
1205      return false;
1206
1207    CCValAssign &VA = ValLocs[0];
1208
1209    // Don't bother handling odd stuff for now.
1210    if (VA.getLocInfo() != CCValAssign::Full)
1211      return false;
1212    // Only handle register returns for now.
1213    if (!VA.isRegLoc())
1214      return false;
1215
1216    // The calling-convention tables for x87 returns don't tell
1217    // the whole story.
1218    if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1219      return false;
1220
1221    unsigned SrcReg = Reg + VA.getValNo();
1222    EVT SrcVT = TLI.getValueType(DL, RV->getType());
1223    EVT DstVT = VA.getValVT();
1224    // Special handling for extended integers.
1225    if (SrcVT != DstVT) {
1226      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1227        return false;
1228
1229      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1230        return false;
1231
1232      assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1233
1234      if (SrcVT == MVT::i1) {
1235        if (Outs[0].Flags.isSExt())
1236          return false;
1237        SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1238        SrcVT = MVT::i8;
1239      }
1240      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1241                                             ISD::SIGN_EXTEND;
1242      SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1243                          SrcReg, /*TODO: Kill=*/false);
1244    }
1245
1246    // Make the copy.
1247    Register DstReg = VA.getLocReg();
1248    const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1249    // Avoid a cross-class copy. This is very unlikely.
1250    if (!SrcRC->contains(DstReg))
1251      return false;
1252    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1253            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1254
1255    // Add register to return instruction.
1256    RetRegs.push_back(VA.getLocReg());
1257  }
1258
1259  // Swift calling convention does not require we copy the sret argument
1260  // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1261
1262  // All x86 ABIs require that for returning structs by value we copy
1263  // the sret argument into %rax/%eax (depending on ABI) for the return.
1264  // We saved the argument into a virtual register in the entry block,
1265  // so now we copy the value out and into %rax/%eax.
1266  if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
1267    unsigned Reg = X86MFInfo->getSRetReturnReg();
1268    assert(Reg &&
1269           "SRetReturnReg should have been set in LowerFormalArguments()!");
1270    unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1271    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1272            TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1273    RetRegs.push_back(RetReg);
1274  }
1275
1276  // Now emit the RET.
1277  MachineInstrBuilder MIB;
1278  if (X86MFInfo->getBytesToPopOnReturn()) {
1279    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1280                  TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1281              .addImm(X86MFInfo->getBytesToPopOnReturn());
1282  } else {
1283    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1284                  TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1285  }
1286  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1287    MIB.addReg(RetRegs[i], RegState::Implicit);
1288  return true;
1289}
1290
1291/// X86SelectLoad - Select and emit code to implement load instructions.
1292///
1293bool X86FastISel::X86SelectLoad(const Instruction *I) {
1294  const LoadInst *LI = cast<LoadInst>(I);
1295
1296  // Atomic loads need special handling.
1297  if (LI->isAtomic())
1298    return false;
1299
1300  const Value *SV = I->getOperand(0);
1301  if (TLI.supportSwiftError()) {
1302    // Swifterror values can come from either a function parameter with
1303    // swifterror attribute or an alloca with swifterror attribute.
1304    if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1305      if (Arg->hasSwiftErrorAttr())
1306        return false;
1307    }
1308
1309    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1310      if (Alloca->isSwiftError())
1311        return false;
1312    }
1313  }
1314
1315  MVT VT;
1316  if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1317    return false;
1318
1319  const Value *Ptr = LI->getPointerOperand();
1320
1321  X86AddressMode AM;
1322  if (!X86SelectAddress(Ptr, AM))
1323    return false;
1324
1325  unsigned Alignment = LI->getAlignment();
1326  unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1327  if (Alignment == 0) // Ensure that codegen never sees alignment 0
1328    Alignment = ABIAlignment;
1329
1330  unsigned ResultReg = 0;
1331  if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1332                       Alignment))
1333    return false;
1334
1335  updateValueMap(I, ResultReg);
1336  return true;
1337}
1338
1339static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1340  bool HasAVX512 = Subtarget->hasAVX512();
1341  bool HasAVX = Subtarget->hasAVX();
1342  bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1343  bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1344
1345  switch (VT.getSimpleVT().SimpleTy) {
1346  default:       return 0;
1347  case MVT::i8:  return X86::CMP8rr;
1348  case MVT::i16: return X86::CMP16rr;
1349  case MVT::i32: return X86::CMP32rr;
1350  case MVT::i64: return X86::CMP64rr;
1351  case MVT::f32:
1352    return X86ScalarSSEf32
1353               ? (HasAVX512 ? X86::VUCOMISSZrr
1354                            : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
1355               : 0;
1356  case MVT::f64:
1357    return X86ScalarSSEf64
1358               ? (HasAVX512 ? X86::VUCOMISDZrr
1359                            : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
1360               : 0;
1361  }
1362}
1363
1364/// If we have a comparison with RHS as the RHS  of the comparison, return an
1365/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1366static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1367  int64_t Val = RHSC->getSExtValue();
1368  switch (VT.getSimpleVT().SimpleTy) {
1369  // Otherwise, we can't fold the immediate into this comparison.
1370  default:
1371    return 0;
1372  case MVT::i8:
1373    return X86::CMP8ri;
1374  case MVT::i16:
1375    if (isInt<8>(Val))
1376      return X86::CMP16ri8;
1377    return X86::CMP16ri;
1378  case MVT::i32:
1379    if (isInt<8>(Val))
1380      return X86::CMP32ri8;
1381    return X86::CMP32ri;
1382  case MVT::i64:
1383    if (isInt<8>(Val))
1384      return X86::CMP64ri8;
1385    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1386    // field.
1387    if (isInt<32>(Val))
1388      return X86::CMP64ri32;
1389    return 0;
1390  }
1391}
1392
1393bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1394                                     const DebugLoc &CurDbgLoc) {
1395  unsigned Op0Reg = getRegForValue(Op0);
1396  if (Op0Reg == 0) return false;
1397
1398  // Handle 'null' like i32/i64 0.
1399  if (isa<ConstantPointerNull>(Op1))
1400    Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1401
1402  // We have two options: compare with register or immediate.  If the RHS of
1403  // the compare is an immediate that we can fold into this compare, use
1404  // CMPri, otherwise use CMPrr.
1405  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1406    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1407      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1408        .addReg(Op0Reg)
1409        .addImm(Op1C->getSExtValue());
1410      return true;
1411    }
1412  }
1413
1414  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1415  if (CompareOpc == 0) return false;
1416
1417  unsigned Op1Reg = getRegForValue(Op1);
1418  if (Op1Reg == 0) return false;
1419  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1420    .addReg(Op0Reg)
1421    .addReg(Op1Reg);
1422
1423  return true;
1424}
1425
1426bool X86FastISel::X86SelectCmp(const Instruction *I) {
1427  const CmpInst *CI = cast<CmpInst>(I);
1428
1429  MVT VT;
1430  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1431    return false;
1432
1433  // Try to optimize or fold the cmp.
1434  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1435  unsigned ResultReg = 0;
1436  switch (Predicate) {
1437  default: break;
1438  case CmpInst::FCMP_FALSE: {
1439    ResultReg = createResultReg(&X86::GR32RegClass);
1440    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1441            ResultReg);
1442    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1443                                           X86::sub_8bit);
1444    if (!ResultReg)
1445      return false;
1446    break;
1447  }
1448  case CmpInst::FCMP_TRUE: {
1449    ResultReg = createResultReg(&X86::GR8RegClass);
1450    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1451            ResultReg).addImm(1);
1452    break;
1453  }
1454  }
1455
1456  if (ResultReg) {
1457    updateValueMap(I, ResultReg);
1458    return true;
1459  }
1460
1461  const Value *LHS = CI->getOperand(0);
1462  const Value *RHS = CI->getOperand(1);
1463
1464  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1465  // We don't have to materialize a zero constant for this case and can just use
1466  // %x again on the RHS.
1467  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1468    const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1469    if (RHSC && RHSC->isNullValue())
1470      RHS = LHS;
1471  }
1472
1473  // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1474  static const uint16_t SETFOpcTable[2][3] = {
1475    { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1476    { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1477  };
1478  const uint16_t *SETFOpc = nullptr;
1479  switch (Predicate) {
1480  default: break;
1481  case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1482  case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1483  }
1484
1485  ResultReg = createResultReg(&X86::GR8RegClass);
1486  if (SETFOpc) {
1487    if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1488      return false;
1489
1490    unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1491    unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1492    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1493            FlagReg1).addImm(SETFOpc[0]);
1494    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1495            FlagReg2).addImm(SETFOpc[1]);
1496    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1497            ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1498    updateValueMap(I, ResultReg);
1499    return true;
1500  }
1501
1502  X86::CondCode CC;
1503  bool SwapArgs;
1504  std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1505  assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1506
1507  if (SwapArgs)
1508    std::swap(LHS, RHS);
1509
1510  // Emit a compare of LHS/RHS.
1511  if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1512    return false;
1513
1514  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1515          ResultReg).addImm(CC);
1516  updateValueMap(I, ResultReg);
1517  return true;
1518}
1519
1520bool X86FastISel::X86SelectZExt(const Instruction *I) {
1521  EVT DstVT = TLI.getValueType(DL, I->getType());
1522  if (!TLI.isTypeLegal(DstVT))
1523    return false;
1524
1525  unsigned ResultReg = getRegForValue(I->getOperand(0));
1526  if (ResultReg == 0)
1527    return false;
1528
1529  // Handle zero-extension from i1 to i8, which is common.
1530  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1531  if (SrcVT == MVT::i1) {
1532    // Set the high bits to zero.
1533    ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1534    SrcVT = MVT::i8;
1535
1536    if (ResultReg == 0)
1537      return false;
1538  }
1539
1540  if (DstVT == MVT::i64) {
1541    // Handle extension to 64-bits via sub-register shenanigans.
1542    unsigned MovInst;
1543
1544    switch (SrcVT.SimpleTy) {
1545    case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1546    case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1547    case MVT::i32: MovInst = X86::MOV32rr;     break;
1548    default: llvm_unreachable("Unexpected zext to i64 source type");
1549    }
1550
1551    unsigned Result32 = createResultReg(&X86::GR32RegClass);
1552    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1553      .addReg(ResultReg);
1554
1555    ResultReg = createResultReg(&X86::GR64RegClass);
1556    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1557            ResultReg)
1558      .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1559  } else if (DstVT == MVT::i16) {
1560    // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1561    // extend to 32-bits and then extract down to 16-bits.
1562    unsigned Result32 = createResultReg(&X86::GR32RegClass);
1563    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1564            Result32).addReg(ResultReg);
1565
1566    ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1567                                           X86::sub_16bit);
1568  } else if (DstVT != MVT::i8) {
1569    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1570                           ResultReg, /*Kill=*/true);
1571    if (ResultReg == 0)
1572      return false;
1573  }
1574
1575  updateValueMap(I, ResultReg);
1576  return true;
1577}
1578
1579bool X86FastISel::X86SelectSExt(const Instruction *I) {
1580  EVT DstVT = TLI.getValueType(DL, I->getType());
1581  if (!TLI.isTypeLegal(DstVT))
1582    return false;
1583
1584  unsigned ResultReg = getRegForValue(I->getOperand(0));
1585  if (ResultReg == 0)
1586    return false;
1587
1588  // Handle sign-extension from i1 to i8.
1589  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1590  if (SrcVT == MVT::i1) {
1591    // Set the high bits to zero.
1592    unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
1593                                          /*TODO: Kill=*/false);
1594    if (ZExtReg == 0)
1595      return false;
1596
1597    // Negate the result to make an 8-bit sign extended value.
1598    ResultReg = createResultReg(&X86::GR8RegClass);
1599    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1600            ResultReg).addReg(ZExtReg);
1601
1602    SrcVT = MVT::i8;
1603  }
1604
1605  if (DstVT == MVT::i16) {
1606    // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1607    // extend to 32-bits and then extract down to 16-bits.
1608    unsigned Result32 = createResultReg(&X86::GR32RegClass);
1609    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1610            Result32).addReg(ResultReg);
1611
1612    ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1613                                           X86::sub_16bit);
1614  } else if (DstVT != MVT::i8) {
1615    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1616                           ResultReg, /*Kill=*/true);
1617    if (ResultReg == 0)
1618      return false;
1619  }
1620
1621  updateValueMap(I, ResultReg);
1622  return true;
1623}
1624
1625bool X86FastISel::X86SelectBranch(const Instruction *I) {
1626  // Unconditional branches are selected by tablegen-generated code.
1627  // Handle a conditional branch.
1628  const BranchInst *BI = cast<BranchInst>(I);
1629  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1630  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1631
1632  // Fold the common case of a conditional branch with a comparison
1633  // in the same block (values defined on other blocks may not have
1634  // initialized registers).
1635  X86::CondCode CC;
1636  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1637    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1638      EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1639
1640      // Try to optimize or fold the cmp.
1641      CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1642      switch (Predicate) {
1643      default: break;
1644      case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1645      case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
1646      }
1647
1648      const Value *CmpLHS = CI->getOperand(0);
1649      const Value *CmpRHS = CI->getOperand(1);
1650
1651      // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1652      // 0.0.
1653      // We don't have to materialize a zero constant for this case and can just
1654      // use %x again on the RHS.
1655      if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1656        const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1657        if (CmpRHSC && CmpRHSC->isNullValue())
1658          CmpRHS = CmpLHS;
1659      }
1660
1661      // Try to take advantage of fallthrough opportunities.
1662      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1663        std::swap(TrueMBB, FalseMBB);
1664        Predicate = CmpInst::getInversePredicate(Predicate);
1665      }
1666
1667      // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1668      // code check. Instead two branch instructions are required to check all
1669      // the flags. First we change the predicate to a supported condition code,
1670      // which will be the first branch. Later one we will emit the second
1671      // branch.
1672      bool NeedExtraBranch = false;
1673      switch (Predicate) {
1674      default: break;
1675      case CmpInst::FCMP_OEQ:
1676        std::swap(TrueMBB, FalseMBB);
1677        LLVM_FALLTHROUGH;
1678      case CmpInst::FCMP_UNE:
1679        NeedExtraBranch = true;
1680        Predicate = CmpInst::FCMP_ONE;
1681        break;
1682      }
1683
1684      bool SwapArgs;
1685      std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1686      assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1687
1688      if (SwapArgs)
1689        std::swap(CmpLHS, CmpRHS);
1690
1691      // Emit a compare of the LHS and RHS, setting the flags.
1692      if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1693        return false;
1694
1695      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1696        .addMBB(TrueMBB).addImm(CC);
1697
1698      // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1699      // to UNE above).
1700      if (NeedExtraBranch) {
1701        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1702          .addMBB(TrueMBB).addImm(X86::COND_P);
1703      }
1704
1705      finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1706      return true;
1707    }
1708  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1709    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1710    // typically happen for _Bool and C++ bools.
1711    MVT SourceVT;
1712    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1713        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1714      unsigned TestOpc = 0;
1715      switch (SourceVT.SimpleTy) {
1716      default: break;
1717      case MVT::i8:  TestOpc = X86::TEST8ri; break;
1718      case MVT::i16: TestOpc = X86::TEST16ri; break;
1719      case MVT::i32: TestOpc = X86::TEST32ri; break;
1720      case MVT::i64: TestOpc = X86::TEST64ri32; break;
1721      }
1722      if (TestOpc) {
1723        unsigned OpReg = getRegForValue(TI->getOperand(0));
1724        if (OpReg == 0) return false;
1725
1726        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1727          .addReg(OpReg).addImm(1);
1728
1729        unsigned JmpCond = X86::COND_NE;
1730        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1731          std::swap(TrueMBB, FalseMBB);
1732          JmpCond = X86::COND_E;
1733        }
1734
1735        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1736          .addMBB(TrueMBB).addImm(JmpCond);
1737
1738        finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1739        return true;
1740      }
1741    }
1742  } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1743    // Fake request the condition, otherwise the intrinsic might be completely
1744    // optimized away.
1745    unsigned TmpReg = getRegForValue(BI->getCondition());
1746    if (TmpReg == 0)
1747      return false;
1748
1749    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1750      .addMBB(TrueMBB).addImm(CC);
1751    finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1752    return true;
1753  }
1754
1755  // Otherwise do a clumsy setcc and re-test it.
1756  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1757  // in an explicit cast, so make sure to handle that correctly.
1758  unsigned OpReg = getRegForValue(BI->getCondition());
1759  if (OpReg == 0) return false;
1760
1761  // In case OpReg is a K register, COPY to a GPR
1762  if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1763    unsigned KOpReg = OpReg;
1764    OpReg = createResultReg(&X86::GR32RegClass);
1765    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1766            TII.get(TargetOpcode::COPY), OpReg)
1767        .addReg(KOpReg);
1768    OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
1769                                       X86::sub_8bit);
1770  }
1771  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1772      .addReg(OpReg)
1773      .addImm(1);
1774  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1775    .addMBB(TrueMBB).addImm(X86::COND_NE);
1776  finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1777  return true;
1778}
1779
1780bool X86FastISel::X86SelectShift(const Instruction *I) {
1781  unsigned CReg = 0, OpReg = 0;
1782  const TargetRegisterClass *RC = nullptr;
1783  if (I->getType()->isIntegerTy(8)) {
1784    CReg = X86::CL;
1785    RC = &X86::GR8RegClass;
1786    switch (I->getOpcode()) {
1787    case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1788    case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1789    case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1790    default: return false;
1791    }
1792  } else if (I->getType()->isIntegerTy(16)) {
1793    CReg = X86::CX;
1794    RC = &X86::GR16RegClass;
1795    switch (I->getOpcode()) {
1796    default: llvm_unreachable("Unexpected shift opcode");
1797    case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1798    case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1799    case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1800    }
1801  } else if (I->getType()->isIntegerTy(32)) {
1802    CReg = X86::ECX;
1803    RC = &X86::GR32RegClass;
1804    switch (I->getOpcode()) {
1805    default: llvm_unreachable("Unexpected shift opcode");
1806    case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1807    case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1808    case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1809    }
1810  } else if (I->getType()->isIntegerTy(64)) {
1811    CReg = X86::RCX;
1812    RC = &X86::GR64RegClass;
1813    switch (I->getOpcode()) {
1814    default: llvm_unreachable("Unexpected shift opcode");
1815    case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1816    case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1817    case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1818    }
1819  } else {
1820    return false;
1821  }
1822
1823  MVT VT;
1824  if (!isTypeLegal(I->getType(), VT))
1825    return false;
1826
1827  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1828  if (Op0Reg == 0) return false;
1829
1830  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1831  if (Op1Reg == 0) return false;
1832  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1833          CReg).addReg(Op1Reg);
1834
1835  // The shift instruction uses X86::CL. If we defined a super-register
1836  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1837  if (CReg != X86::CL)
1838    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1839            TII.get(TargetOpcode::KILL), X86::CL)
1840      .addReg(CReg, RegState::Kill);
1841
1842  unsigned ResultReg = createResultReg(RC);
1843  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1844    .addReg(Op0Reg);
1845  updateValueMap(I, ResultReg);
1846  return true;
1847}
1848
1849bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1850  const static unsigned NumTypes = 4; // i8, i16, i32, i64
1851  const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1852  const static bool S = true;  // IsSigned
1853  const static bool U = false; // !IsSigned
1854  const static unsigned Copy = TargetOpcode::COPY;
1855  // For the X86 DIV/IDIV instruction, in most cases the dividend
1856  // (numerator) must be in a specific register pair highreg:lowreg,
1857  // producing the quotient in lowreg and the remainder in highreg.
1858  // For most data types, to set up the instruction, the dividend is
1859  // copied into lowreg, and lowreg is sign-extended or zero-extended
1860  // into highreg.  The exception is i8, where the dividend is defined
1861  // as a single register rather than a register pair, and we
1862  // therefore directly sign-extend or zero-extend the dividend into
1863  // lowreg, instead of copying, and ignore the highreg.
1864  const static struct DivRemEntry {
1865    // The following portion depends only on the data type.
1866    const TargetRegisterClass *RC;
1867    unsigned LowInReg;  // low part of the register pair
1868    unsigned HighInReg; // high part of the register pair
1869    // The following portion depends on both the data type and the operation.
1870    struct DivRemResult {
1871    unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1872    unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1873                              // highreg, or copying a zero into highreg.
1874    unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1875                              // zero/sign-extending into lowreg for i8.
1876    unsigned DivRemResultReg; // Register containing the desired result.
1877    bool IsOpSigned;          // Whether to use signed or unsigned form.
1878    } ResultTable[NumOps];
1879  } OpTable[NumTypes] = {
1880    { &X86::GR8RegClass,  X86::AX,  0, {
1881        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1882        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1883        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1884        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1885      }
1886    }, // i8
1887    { &X86::GR16RegClass, X86::AX,  X86::DX, {
1888        { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1889        { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1890        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1891        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1892      }
1893    }, // i16
1894    { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1895        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1896        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1897        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1898        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1899      }
1900    }, // i32
1901    { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1902        { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1903        { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1904        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1905        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1906      }
1907    }, // i64
1908  };
1909
1910  MVT VT;
1911  if (!isTypeLegal(I->getType(), VT))
1912    return false;
1913
1914  unsigned TypeIndex, OpIndex;
1915  switch (VT.SimpleTy) {
1916  default: return false;
1917  case MVT::i8:  TypeIndex = 0; break;
1918  case MVT::i16: TypeIndex = 1; break;
1919  case MVT::i32: TypeIndex = 2; break;
1920  case MVT::i64: TypeIndex = 3;
1921    if (!Subtarget->is64Bit())
1922      return false;
1923    break;
1924  }
1925
1926  switch (I->getOpcode()) {
1927  default: llvm_unreachable("Unexpected div/rem opcode");
1928  case Instruction::SDiv: OpIndex = 0; break;
1929  case Instruction::SRem: OpIndex = 1; break;
1930  case Instruction::UDiv: OpIndex = 2; break;
1931  case Instruction::URem: OpIndex = 3; break;
1932  }
1933
1934  const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1935  const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1936  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1937  if (Op0Reg == 0)
1938    return false;
1939  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1940  if (Op1Reg == 0)
1941    return false;
1942
1943  // Move op0 into low-order input register.
1944  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1945          TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1946  // Zero-extend or sign-extend into high-order input register.
1947  if (OpEntry.OpSignExtend) {
1948    if (OpEntry.IsOpSigned)
1949      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1950              TII.get(OpEntry.OpSignExtend));
1951    else {
1952      unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1953      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1954              TII.get(X86::MOV32r0), Zero32);
1955
1956      // Copy the zero into the appropriate sub/super/identical physical
1957      // register. Unfortunately the operations needed are not uniform enough
1958      // to fit neatly into the table above.
1959      if (VT == MVT::i16) {
1960        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1961                TII.get(Copy), TypeEntry.HighInReg)
1962          .addReg(Zero32, 0, X86::sub_16bit);
1963      } else if (VT == MVT::i32) {
1964        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1965                TII.get(Copy), TypeEntry.HighInReg)
1966            .addReg(Zero32);
1967      } else if (VT == MVT::i64) {
1968        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1969                TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1970            .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1971      }
1972    }
1973  }
1974  // Generate the DIV/IDIV instruction.
1975  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1976          TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1977  // For i8 remainder, we can't reference ah directly, as we'll end
1978  // up with bogus copies like %r9b = COPY %ah. Reference ax
1979  // instead to prevent ah references in a rex instruction.
1980  //
1981  // The current assumption of the fast register allocator is that isel
1982  // won't generate explicit references to the GR8_NOREX registers. If
1983  // the allocator and/or the backend get enhanced to be more robust in
1984  // that regard, this can be, and should be, removed.
1985  unsigned ResultReg = 0;
1986  if ((I->getOpcode() == Instruction::SRem ||
1987       I->getOpcode() == Instruction::URem) &&
1988      OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1989    unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1990    unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1991    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992            TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1993
1994    // Shift AX right by 8 bits instead of using AH.
1995    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1996            ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1997
1998    // Now reference the 8-bit subreg of the result.
1999    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2000                                           /*Kill=*/true, X86::sub_8bit);
2001  }
2002  // Copy the result out of the physreg if we haven't already.
2003  if (!ResultReg) {
2004    ResultReg = createResultReg(TypeEntry.RC);
2005    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2006        .addReg(OpEntry.DivRemResultReg);
2007  }
2008  updateValueMap(I, ResultReg);
2009
2010  return true;
2011}
2012
2013/// Emit a conditional move instruction (if the are supported) to lower
2014/// the select.
2015bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2016  // Check if the subtarget supports these instructions.
2017  if (!Subtarget->hasCMov())
2018    return false;
2019
2020  // FIXME: Add support for i8.
2021  if (RetVT < MVT::i16 || RetVT > MVT::i64)
2022    return false;
2023
2024  const Value *Cond = I->getOperand(0);
2025  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2026  bool NeedTest = true;
2027  X86::CondCode CC = X86::COND_NE;
2028
2029  // Optimize conditions coming from a compare if both instructions are in the
2030  // same basic block (values defined in other basic blocks may not have
2031  // initialized registers).
2032  const auto *CI = dyn_cast<CmpInst>(Cond);
2033  if (CI && (CI->getParent() == I->getParent())) {
2034    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2035
2036    // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2037    static const uint16_t SETFOpcTable[2][3] = {
2038      { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2039      { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2040    };
2041    const uint16_t *SETFOpc = nullptr;
2042    switch (Predicate) {
2043    default: break;
2044    case CmpInst::FCMP_OEQ:
2045      SETFOpc = &SETFOpcTable[0][0];
2046      Predicate = CmpInst::ICMP_NE;
2047      break;
2048    case CmpInst::FCMP_UNE:
2049      SETFOpc = &SETFOpcTable[1][0];
2050      Predicate = CmpInst::ICMP_NE;
2051      break;
2052    }
2053
2054    bool NeedSwap;
2055    std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2056    assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2057
2058    const Value *CmpLHS = CI->getOperand(0);
2059    const Value *CmpRHS = CI->getOperand(1);
2060    if (NeedSwap)
2061      std::swap(CmpLHS, CmpRHS);
2062
2063    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2064    // Emit a compare of the LHS and RHS, setting the flags.
2065    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2066      return false;
2067
2068    if (SETFOpc) {
2069      unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
2070      unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
2071      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2072              FlagReg1).addImm(SETFOpc[0]);
2073      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2074              FlagReg2).addImm(SETFOpc[1]);
2075      auto const &II = TII.get(SETFOpc[2]);
2076      if (II.getNumDefs()) {
2077        unsigned TmpReg = createResultReg(&X86::GR8RegClass);
2078        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2079          .addReg(FlagReg2).addReg(FlagReg1);
2080      } else {
2081        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2082          .addReg(FlagReg2).addReg(FlagReg1);
2083      }
2084    }
2085    NeedTest = false;
2086  } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2087    // Fake request the condition, otherwise the intrinsic might be completely
2088    // optimized away.
2089    unsigned TmpReg = getRegForValue(Cond);
2090    if (TmpReg == 0)
2091      return false;
2092
2093    NeedTest = false;
2094  }
2095
2096  if (NeedTest) {
2097    // Selects operate on i1, however, CondReg is 8 bits width and may contain
2098    // garbage. Indeed, only the less significant bit is supposed to be
2099    // accurate. If we read more than the lsb, we may see non-zero values
2100    // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2101    // the select. This is achieved by performing TEST against 1.
2102    unsigned CondReg = getRegForValue(Cond);
2103    if (CondReg == 0)
2104      return false;
2105    bool CondIsKill = hasTrivialKill(Cond);
2106
2107    // In case OpReg is a K register, COPY to a GPR
2108    if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2109      unsigned KCondReg = CondReg;
2110      CondReg = createResultReg(&X86::GR32RegClass);
2111      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2112              TII.get(TargetOpcode::COPY), CondReg)
2113          .addReg(KCondReg, getKillRegState(CondIsKill));
2114      CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2115                                           X86::sub_8bit);
2116    }
2117    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2118        .addReg(CondReg, getKillRegState(CondIsKill))
2119        .addImm(1);
2120  }
2121
2122  const Value *LHS = I->getOperand(1);
2123  const Value *RHS = I->getOperand(2);
2124
2125  unsigned RHSReg = getRegForValue(RHS);
2126  bool RHSIsKill = hasTrivialKill(RHS);
2127
2128  unsigned LHSReg = getRegForValue(LHS);
2129  bool LHSIsKill = hasTrivialKill(LHS);
2130
2131  if (!LHSReg || !RHSReg)
2132    return false;
2133
2134  const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2135  unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2136  unsigned ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill,
2137                                        LHSReg, LHSIsKill, CC);
2138  updateValueMap(I, ResultReg);
2139  return true;
2140}
2141
2142/// Emit SSE or AVX instructions to lower the select.
2143///
2144/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2145/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2146/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2147bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2148  // Optimize conditions coming from a compare if both instructions are in the
2149  // same basic block (values defined in other basic blocks may not have
2150  // initialized registers).
2151  const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2152  if (!CI || (CI->getParent() != I->getParent()))
2153    return false;
2154
2155  if (I->getType() != CI->getOperand(0)->getType() ||
2156      !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2157        (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2158    return false;
2159
2160  const Value *CmpLHS = CI->getOperand(0);
2161  const Value *CmpRHS = CI->getOperand(1);
2162  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2163
2164  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2165  // We don't have to materialize a zero constant for this case and can just use
2166  // %x again on the RHS.
2167  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2168    const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2169    if (CmpRHSC && CmpRHSC->isNullValue())
2170      CmpRHS = CmpLHS;
2171  }
2172
2173  unsigned CC;
2174  bool NeedSwap;
2175  std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2176  if (CC > 7 && !Subtarget->hasAVX())
2177    return false;
2178
2179  if (NeedSwap)
2180    std::swap(CmpLHS, CmpRHS);
2181
2182  const Value *LHS = I->getOperand(1);
2183  const Value *RHS = I->getOperand(2);
2184
2185  unsigned LHSReg = getRegForValue(LHS);
2186  bool LHSIsKill = hasTrivialKill(LHS);
2187
2188  unsigned RHSReg = getRegForValue(RHS);
2189  bool RHSIsKill = hasTrivialKill(RHS);
2190
2191  unsigned CmpLHSReg = getRegForValue(CmpLHS);
2192  bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2193
2194  unsigned CmpRHSReg = getRegForValue(CmpRHS);
2195  bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2196
2197  if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2198    return false;
2199
2200  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2201  unsigned ResultReg;
2202
2203  if (Subtarget->hasAVX512()) {
2204    // If we have AVX512 we can use a mask compare and masked movss/sd.
2205    const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2206    const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2207
2208    unsigned CmpOpcode =
2209      (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2210    unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
2211                                       CmpRHSReg, CmpRHSIsKill, CC);
2212
2213    // Need an IMPLICIT_DEF for the input that is used to generate the upper
2214    // bits of the result register since its not based on any of the inputs.
2215    unsigned ImplicitDefReg = createResultReg(VR128X);
2216    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2217            TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2218
2219    // Place RHSReg is the passthru of the masked movss/sd operation and put
2220    // LHS in the input. The mask input comes from the compare.
2221    unsigned MovOpcode =
2222      (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2223    unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
2224                                        CmpReg, true, ImplicitDefReg, true,
2225                                        LHSReg, LHSIsKill);
2226
2227    ResultReg = createResultReg(RC);
2228    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2229            TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2230
2231  } else if (Subtarget->hasAVX()) {
2232    const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2233
2234    // If we have AVX, create 1 blendv instead of 3 logic instructions.
2235    // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2236    // uses XMM0 as the selection register. That may need just as many
2237    // instructions as the AND/ANDN/OR sequence due to register moves, so
2238    // don't bother.
2239    unsigned CmpOpcode =
2240      (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2241    unsigned BlendOpcode =
2242      (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2243
2244    unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
2245                                       CmpRHSReg, CmpRHSIsKill, CC);
2246    unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2247                                          LHSReg, LHSIsKill, CmpReg, true);
2248    ResultReg = createResultReg(RC);
2249    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2250            TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2251  } else {
2252    // Choose the SSE instruction sequence based on data type (float or double).
2253    static const uint16_t OpcTable[2][4] = {
2254      { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2255      { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2256    };
2257
2258    const uint16_t *Opc = nullptr;
2259    switch (RetVT.SimpleTy) {
2260    default: return false;
2261    case MVT::f32: Opc = &OpcTable[0][0]; break;
2262    case MVT::f64: Opc = &OpcTable[1][0]; break;
2263    }
2264
2265    const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2266    unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2267                                       CmpRHSReg, CmpRHSIsKill, CC);
2268    unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
2269                                      LHSReg, LHSIsKill);
2270    unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
2271                                       RHSReg, RHSIsKill);
2272    unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
2273                                     AndReg, /*IsKill=*/true);
2274    ResultReg = createResultReg(RC);
2275    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2276            TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2277  }
2278  updateValueMap(I, ResultReg);
2279  return true;
2280}
2281
2282bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2283  // These are pseudo CMOV instructions and will be later expanded into control-
2284  // flow.
2285  unsigned Opc;
2286  switch (RetVT.SimpleTy) {
2287  default: return false;
2288  case MVT::i8:  Opc = X86::CMOV_GR8;  break;
2289  case MVT::i16: Opc = X86::CMOV_GR16; break;
2290  case MVT::i32: Opc = X86::CMOV_GR32; break;
2291  case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X
2292                                              : X86::CMOV_FR32; break;
2293  case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X
2294                                              : X86::CMOV_FR64; break;
2295  }
2296
2297  const Value *Cond = I->getOperand(0);
2298  X86::CondCode CC = X86::COND_NE;
2299
2300  // Optimize conditions coming from a compare if both instructions are in the
2301  // same basic block (values defined in other basic blocks may not have
2302  // initialized registers).
2303  const auto *CI = dyn_cast<CmpInst>(Cond);
2304  if (CI && (CI->getParent() == I->getParent())) {
2305    bool NeedSwap;
2306    std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2307    if (CC > X86::LAST_VALID_COND)
2308      return false;
2309
2310    const Value *CmpLHS = CI->getOperand(0);
2311    const Value *CmpRHS = CI->getOperand(1);
2312
2313    if (NeedSwap)
2314      std::swap(CmpLHS, CmpRHS);
2315
2316    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2317    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2318      return false;
2319  } else {
2320    unsigned CondReg = getRegForValue(Cond);
2321    if (CondReg == 0)
2322      return false;
2323    bool CondIsKill = hasTrivialKill(Cond);
2324
2325    // In case OpReg is a K register, COPY to a GPR
2326    if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2327      unsigned KCondReg = CondReg;
2328      CondReg = createResultReg(&X86::GR32RegClass);
2329      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2330              TII.get(TargetOpcode::COPY), CondReg)
2331          .addReg(KCondReg, getKillRegState(CondIsKill));
2332      CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2333                                           X86::sub_8bit);
2334    }
2335    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2336        .addReg(CondReg, getKillRegState(CondIsKill))
2337        .addImm(1);
2338  }
2339
2340  const Value *LHS = I->getOperand(1);
2341  const Value *RHS = I->getOperand(2);
2342
2343  unsigned LHSReg = getRegForValue(LHS);
2344  bool LHSIsKill = hasTrivialKill(LHS);
2345
2346  unsigned RHSReg = getRegForValue(RHS);
2347  bool RHSIsKill = hasTrivialKill(RHS);
2348
2349  if (!LHSReg || !RHSReg)
2350    return false;
2351
2352  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2353
2354  unsigned ResultReg =
2355    fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2356  updateValueMap(I, ResultReg);
2357  return true;
2358}
2359
2360bool X86FastISel::X86SelectSelect(const Instruction *I) {
2361  MVT RetVT;
2362  if (!isTypeLegal(I->getType(), RetVT))
2363    return false;
2364
2365  // Check if we can fold the select.
2366  if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2367    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2368    const Value *Opnd = nullptr;
2369    switch (Predicate) {
2370    default:                              break;
2371    case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2372    case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2373    }
2374    // No need for a select anymore - this is an unconditional move.
2375    if (Opnd) {
2376      unsigned OpReg = getRegForValue(Opnd);
2377      if (OpReg == 0)
2378        return false;
2379      bool OpIsKill = hasTrivialKill(Opnd);
2380      const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2381      unsigned ResultReg = createResultReg(RC);
2382      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2383              TII.get(TargetOpcode::COPY), ResultReg)
2384        .addReg(OpReg, getKillRegState(OpIsKill));
2385      updateValueMap(I, ResultReg);
2386      return true;
2387    }
2388  }
2389
2390  // First try to use real conditional move instructions.
2391  if (X86FastEmitCMoveSelect(RetVT, I))
2392    return true;
2393
2394  // Try to use a sequence of SSE instructions to simulate a conditional move.
2395  if (X86FastEmitSSESelect(RetVT, I))
2396    return true;
2397
2398  // Fall-back to pseudo conditional move instructions, which will be later
2399  // converted to control-flow.
2400  if (X86FastEmitPseudoSelect(RetVT, I))
2401    return true;
2402
2403  return false;
2404}
2405
2406// Common code for X86SelectSIToFP and X86SelectUIToFP.
2407bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2408  // The target-independent selection algorithm in FastISel already knows how
2409  // to select a SINT_TO_FP if the target is SSE but not AVX.
2410  // Early exit if the subtarget doesn't have AVX.
2411  // Unsigned conversion requires avx512.
2412  bool HasAVX512 = Subtarget->hasAVX512();
2413  if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2414    return false;
2415
2416  // TODO: We could sign extend narrower types.
2417  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2418  if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2419    return false;
2420
2421  // Select integer to float/double conversion.
2422  unsigned OpReg = getRegForValue(I->getOperand(0));
2423  if (OpReg == 0)
2424    return false;
2425
2426  unsigned Opcode;
2427
2428  static const uint16_t SCvtOpc[2][2][2] = {
2429    { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2430      { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2431    { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2432      { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2433  };
2434  static const uint16_t UCvtOpc[2][2] = {
2435    { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2436    { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2437  };
2438  bool Is64Bit = SrcVT == MVT::i64;
2439
2440  if (I->getType()->isDoubleTy()) {
2441    // s/uitofp int -> double
2442    Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2443  } else if (I->getType()->isFloatTy()) {
2444    // s/uitofp int -> float
2445    Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2446  } else
2447    return false;
2448
2449  MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2450  const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2451  unsigned ImplicitDefReg = createResultReg(RC);
2452  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2453          TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2454  unsigned ResultReg =
2455      fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2456  updateValueMap(I, ResultReg);
2457  return true;
2458}
2459
2460bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2461  return X86SelectIntToFP(I, /*IsSigned*/true);
2462}
2463
2464bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2465  return X86SelectIntToFP(I, /*IsSigned*/false);
2466}
2467
2468// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2469bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2470                                          unsigned TargetOpc,
2471                                          const TargetRegisterClass *RC) {
2472  assert((I->getOpcode() == Instruction::FPExt ||
2473          I->getOpcode() == Instruction::FPTrunc) &&
2474         "Instruction must be an FPExt or FPTrunc!");
2475  bool HasAVX = Subtarget->hasAVX();
2476
2477  unsigned OpReg = getRegForValue(I->getOperand(0));
2478  if (OpReg == 0)
2479    return false;
2480
2481  unsigned ImplicitDefReg;
2482  if (HasAVX) {
2483    ImplicitDefReg = createResultReg(RC);
2484    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2485            TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2486
2487  }
2488
2489  unsigned ResultReg = createResultReg(RC);
2490  MachineInstrBuilder MIB;
2491  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2492                ResultReg);
2493
2494  if (HasAVX)
2495    MIB.addReg(ImplicitDefReg);
2496
2497  MIB.addReg(OpReg);
2498  updateValueMap(I, ResultReg);
2499  return true;
2500}
2501
2502bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2503  if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2504      I->getOperand(0)->getType()->isFloatTy()) {
2505    bool HasAVX512 = Subtarget->hasAVX512();
2506    // fpext from float to double.
2507    unsigned Opc =
2508        HasAVX512 ? X86::VCVTSS2SDZrr
2509                  : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2510    return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2511  }
2512
2513  return false;
2514}
2515
2516bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2517  if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2518      I->getOperand(0)->getType()->isDoubleTy()) {
2519    bool HasAVX512 = Subtarget->hasAVX512();
2520    // fptrunc from double to float.
2521    unsigned Opc =
2522        HasAVX512 ? X86::VCVTSD2SSZrr
2523                  : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2524    return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2525  }
2526
2527  return false;
2528}
2529
2530bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2531  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2532  EVT DstVT = TLI.getValueType(DL, I->getType());
2533
2534  // This code only handles truncation to byte.
2535  if (DstVT != MVT::i8 && DstVT != MVT::i1)
2536    return false;
2537  if (!TLI.isTypeLegal(SrcVT))
2538    return false;
2539
2540  unsigned InputReg = getRegForValue(I->getOperand(0));
2541  if (!InputReg)
2542    // Unhandled operand.  Halt "fast" selection and bail.
2543    return false;
2544
2545  if (SrcVT == MVT::i8) {
2546    // Truncate from i8 to i1; no code needed.
2547    updateValueMap(I, InputReg);
2548    return true;
2549  }
2550
2551  // Issue an extract_subreg.
2552  unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2553                                                  InputReg, false,
2554                                                  X86::sub_8bit);
2555  if (!ResultReg)
2556    return false;
2557
2558  updateValueMap(I, ResultReg);
2559  return true;
2560}
2561
2562bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2563  return Len <= (Subtarget->is64Bit() ? 32 : 16);
2564}
2565
2566bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2567                                     X86AddressMode SrcAM, uint64_t Len) {
2568
2569  // Make sure we don't bloat code by inlining very large memcpy's.
2570  if (!IsMemcpySmall(Len))
2571    return false;
2572
2573  bool i64Legal = Subtarget->is64Bit();
2574
2575  // We don't care about alignment here since we just emit integer accesses.
2576  while (Len) {
2577    MVT VT;
2578    if (Len >= 8 && i64Legal)
2579      VT = MVT::i64;
2580    else if (Len >= 4)
2581      VT = MVT::i32;
2582    else if (Len >= 2)
2583      VT = MVT::i16;
2584    else
2585      VT = MVT::i8;
2586
2587    unsigned Reg;
2588    bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2589    RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2590    assert(RV && "Failed to emit load or store??");
2591
2592    unsigned Size = VT.getSizeInBits()/8;
2593    Len -= Size;
2594    DestAM.Disp += Size;
2595    SrcAM.Disp += Size;
2596  }
2597
2598  return true;
2599}
2600
2601bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2602  // FIXME: Handle more intrinsics.
2603  switch (II->getIntrinsicID()) {
2604  default: return false;
2605  case Intrinsic::convert_from_fp16:
2606  case Intrinsic::convert_to_fp16: {
2607    if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2608      return false;
2609
2610    const Value *Op = II->getArgOperand(0);
2611    unsigned InputReg = getRegForValue(Op);
2612    if (InputReg == 0)
2613      return false;
2614
2615    // F16C only allows converting from float to half and from half to float.
2616    bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2617    if (IsFloatToHalf) {
2618      if (!Op->getType()->isFloatTy())
2619        return false;
2620    } else {
2621      if (!II->getType()->isFloatTy())
2622        return false;
2623    }
2624
2625    unsigned ResultReg = 0;
2626    const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2627    if (IsFloatToHalf) {
2628      // 'InputReg' is implicitly promoted from register class FR32 to
2629      // register class VR128 by method 'constrainOperandRegClass' which is
2630      // directly called by 'fastEmitInst_ri'.
2631      // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2632      // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2633      // It's consistent with the other FP instructions, which are usually
2634      // controlled by MXCSR.
2635      InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
2636
2637      // Move the lower 32-bits of ResultReg to another register of class GR32.
2638      ResultReg = createResultReg(&X86::GR32RegClass);
2639      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2640              TII.get(X86::VMOVPDI2DIrr), ResultReg)
2641          .addReg(InputReg, RegState::Kill);
2642
2643      // The result value is in the lower 16-bits of ResultReg.
2644      unsigned RegIdx = X86::sub_16bit;
2645      ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2646    } else {
2647      assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2648      // Explicitly sign-extend the input to 32-bit.
2649      InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2650                            /*Kill=*/false);
2651
2652      // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2653      InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2654                            InputReg, /*Kill=*/true);
2655
2656      InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2657
2658      // The result value is in the lower 32-bits of ResultReg.
2659      // Emit an explicit copy from register class VR128 to register class FR32.
2660      ResultReg = createResultReg(&X86::FR32RegClass);
2661      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2662              TII.get(TargetOpcode::COPY), ResultReg)
2663          .addReg(InputReg, RegState::Kill);
2664    }
2665
2666    updateValueMap(II, ResultReg);
2667    return true;
2668  }
2669  case Intrinsic::frameaddress: {
2670    MachineFunction *MF = FuncInfo.MF;
2671    if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2672      return false;
2673
2674    Type *RetTy = II->getCalledFunction()->getReturnType();
2675
2676    MVT VT;
2677    if (!isTypeLegal(RetTy, VT))
2678      return false;
2679
2680    unsigned Opc;
2681    const TargetRegisterClass *RC = nullptr;
2682
2683    switch (VT.SimpleTy) {
2684    default: llvm_unreachable("Invalid result type for frameaddress.");
2685    case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2686    case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2687    }
2688
2689    // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2690    // we get the wrong frame register.
2691    MachineFrameInfo &MFI = MF->getFrameInfo();
2692    MFI.setFrameAddressIsTaken(true);
2693
2694    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2695    unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2696    assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2697            (FrameReg == X86::EBP && VT == MVT::i32)) &&
2698           "Invalid Frame Register!");
2699
2700    // Always make a copy of the frame register to a vreg first, so that we
2701    // never directly reference the frame register (the TwoAddressInstruction-
2702    // Pass doesn't like that).
2703    unsigned SrcReg = createResultReg(RC);
2704    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2705            TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2706
2707    // Now recursively load from the frame address.
2708    // movq (%rbp), %rax
2709    // movq (%rax), %rax
2710    // movq (%rax), %rax
2711    // ...
2712    unsigned DestReg;
2713    unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2714    while (Depth--) {
2715      DestReg = createResultReg(RC);
2716      addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2717                           TII.get(Opc), DestReg), SrcReg);
2718      SrcReg = DestReg;
2719    }
2720
2721    updateValueMap(II, SrcReg);
2722    return true;
2723  }
2724  case Intrinsic::memcpy: {
2725    const MemCpyInst *MCI = cast<MemCpyInst>(II);
2726    // Don't handle volatile or variable length memcpys.
2727    if (MCI->isVolatile())
2728      return false;
2729
2730    if (isa<ConstantInt>(MCI->getLength())) {
2731      // Small memcpy's are common enough that we want to do them
2732      // without a call if possible.
2733      uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2734      if (IsMemcpySmall(Len)) {
2735        X86AddressMode DestAM, SrcAM;
2736        if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2737            !X86SelectAddress(MCI->getRawSource(), SrcAM))
2738          return false;
2739        TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2740        return true;
2741      }
2742    }
2743
2744    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2745    if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2746      return false;
2747
2748    if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2749      return false;
2750
2751    return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
2752  }
2753  case Intrinsic::memset: {
2754    const MemSetInst *MSI = cast<MemSetInst>(II);
2755
2756    if (MSI->isVolatile())
2757      return false;
2758
2759    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2760    if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2761      return false;
2762
2763    if (MSI->getDestAddressSpace() > 255)
2764      return false;
2765
2766    return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
2767  }
2768  case Intrinsic::stackprotector: {
2769    // Emit code to store the stack guard onto the stack.
2770    EVT PtrTy = TLI.getPointerTy(DL);
2771
2772    const Value *Op1 = II->getArgOperand(0); // The guard's value.
2773    const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2774
2775    MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2776
2777    // Grab the frame index.
2778    X86AddressMode AM;
2779    if (!X86SelectAddress(Slot, AM)) return false;
2780    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2781    return true;
2782  }
2783  case Intrinsic::dbg_declare: {
2784    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2785    X86AddressMode AM;
2786    assert(DI->getAddress() && "Null address should be checked earlier!");
2787    if (!X86SelectAddress(DI->getAddress(), AM))
2788      return false;
2789    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2790    // FIXME may need to add RegState::Debug to any registers produced,
2791    // although ESP/EBP should be the only ones at the moment.
2792    assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2793           "Expected inlined-at fields to agree");
2794    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2795        .addImm(0)
2796        .addMetadata(DI->getVariable())
2797        .addMetadata(DI->getExpression());
2798    return true;
2799  }
2800  case Intrinsic::trap: {
2801    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2802    return true;
2803  }
2804  case Intrinsic::sqrt: {
2805    if (!Subtarget->hasSSE1())
2806      return false;
2807
2808    Type *RetTy = II->getCalledFunction()->getReturnType();
2809
2810    MVT VT;
2811    if (!isTypeLegal(RetTy, VT))
2812      return false;
2813
2814    // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2815    // is not generated by FastISel yet.
2816    // FIXME: Update this code once tablegen can handle it.
2817    static const uint16_t SqrtOpc[3][2] = {
2818      { X86::SQRTSSr,   X86::SQRTSDr },
2819      { X86::VSQRTSSr,  X86::VSQRTSDr },
2820      { X86::VSQRTSSZr, X86::VSQRTSDZr },
2821    };
2822    unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2823                        Subtarget->hasAVX()    ? 1 :
2824                                                 0;
2825    unsigned Opc;
2826    switch (VT.SimpleTy) {
2827    default: return false;
2828    case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2829    case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2830    }
2831
2832    const Value *SrcVal = II->getArgOperand(0);
2833    unsigned SrcReg = getRegForValue(SrcVal);
2834
2835    if (SrcReg == 0)
2836      return false;
2837
2838    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2839    unsigned ImplicitDefReg = 0;
2840    if (AVXLevel > 0) {
2841      ImplicitDefReg = createResultReg(RC);
2842      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2843              TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2844    }
2845
2846    unsigned ResultReg = createResultReg(RC);
2847    MachineInstrBuilder MIB;
2848    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2849                  ResultReg);
2850
2851    if (ImplicitDefReg)
2852      MIB.addReg(ImplicitDefReg);
2853
2854    MIB.addReg(SrcReg);
2855
2856    updateValueMap(II, ResultReg);
2857    return true;
2858  }
2859  case Intrinsic::sadd_with_overflow:
2860  case Intrinsic::uadd_with_overflow:
2861  case Intrinsic::ssub_with_overflow:
2862  case Intrinsic::usub_with_overflow:
2863  case Intrinsic::smul_with_overflow:
2864  case Intrinsic::umul_with_overflow: {
2865    // This implements the basic lowering of the xalu with overflow intrinsics
2866    // into add/sub/mul followed by either seto or setb.
2867    const Function *Callee = II->getCalledFunction();
2868    auto *Ty = cast<StructType>(Callee->getReturnType());
2869    Type *RetTy = Ty->getTypeAtIndex(0U);
2870    assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2871           Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2872           "Overflow value expected to be an i1");
2873
2874    MVT VT;
2875    if (!isTypeLegal(RetTy, VT))
2876      return false;
2877
2878    if (VT < MVT::i8 || VT > MVT::i64)
2879      return false;
2880
2881    const Value *LHS = II->getArgOperand(0);
2882    const Value *RHS = II->getArgOperand(1);
2883
2884    // Canonicalize immediate to the RHS.
2885    if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2886        isCommutativeIntrinsic(II))
2887      std::swap(LHS, RHS);
2888
2889    unsigned BaseOpc, CondCode;
2890    switch (II->getIntrinsicID()) {
2891    default: llvm_unreachable("Unexpected intrinsic!");
2892    case Intrinsic::sadd_with_overflow:
2893      BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2894    case Intrinsic::uadd_with_overflow:
2895      BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2896    case Intrinsic::ssub_with_overflow:
2897      BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2898    case Intrinsic::usub_with_overflow:
2899      BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2900    case Intrinsic::smul_with_overflow:
2901      BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2902    case Intrinsic::umul_with_overflow:
2903      BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2904    }
2905
2906    unsigned LHSReg = getRegForValue(LHS);
2907    if (LHSReg == 0)
2908      return false;
2909    bool LHSIsKill = hasTrivialKill(LHS);
2910
2911    unsigned ResultReg = 0;
2912    // Check if we have an immediate version.
2913    if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2914      static const uint16_t Opc[2][4] = {
2915        { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2916        { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2917      };
2918
2919      if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2920          CondCode == X86::COND_O) {
2921        // We can use INC/DEC.
2922        ResultReg = createResultReg(TLI.getRegClassFor(VT));
2923        bool IsDec = BaseOpc == ISD::SUB;
2924        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2925                TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2926          .addReg(LHSReg, getKillRegState(LHSIsKill));
2927      } else
2928        ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2929                                CI->getZExtValue());
2930    }
2931
2932    unsigned RHSReg;
2933    bool RHSIsKill;
2934    if (!ResultReg) {
2935      RHSReg = getRegForValue(RHS);
2936      if (RHSReg == 0)
2937        return false;
2938      RHSIsKill = hasTrivialKill(RHS);
2939      ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2940                              RHSIsKill);
2941    }
2942
2943    // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2944    // it manually.
2945    if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2946      static const uint16_t MULOpc[] =
2947        { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2948      static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2949      // First copy the first operand into RAX, which is an implicit input to
2950      // the X86::MUL*r instruction.
2951      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2952              TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2953        .addReg(LHSReg, getKillRegState(LHSIsKill));
2954      ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2955                                 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2956    } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2957      static const uint16_t MULOpc[] =
2958        { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2959      if (VT == MVT::i8) {
2960        // Copy the first operand into AL, which is an implicit input to the
2961        // X86::IMUL8r instruction.
2962        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2963               TII.get(TargetOpcode::COPY), X86::AL)
2964          .addReg(LHSReg, getKillRegState(LHSIsKill));
2965        ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2966                                   RHSIsKill);
2967      } else
2968        ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2969                                    TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2970                                    RHSReg, RHSIsKill);
2971    }
2972
2973    if (!ResultReg)
2974      return false;
2975
2976    // Assign to a GPR since the overflow return value is lowered to a SETcc.
2977    unsigned ResultReg2 = createResultReg(&X86::GR8RegClass);
2978    assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2979    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2980            ResultReg2).addImm(CondCode);
2981
2982    updateValueMap(II, ResultReg, 2);
2983    return true;
2984  }
2985  case Intrinsic::x86_sse_cvttss2si:
2986  case Intrinsic::x86_sse_cvttss2si64:
2987  case Intrinsic::x86_sse2_cvttsd2si:
2988  case Intrinsic::x86_sse2_cvttsd2si64: {
2989    bool IsInputDouble;
2990    switch (II->getIntrinsicID()) {
2991    default: llvm_unreachable("Unexpected intrinsic.");
2992    case Intrinsic::x86_sse_cvttss2si:
2993    case Intrinsic::x86_sse_cvttss2si64:
2994      if (!Subtarget->hasSSE1())
2995        return false;
2996      IsInputDouble = false;
2997      break;
2998    case Intrinsic::x86_sse2_cvttsd2si:
2999    case Intrinsic::x86_sse2_cvttsd2si64:
3000      if (!Subtarget->hasSSE2())
3001        return false;
3002      IsInputDouble = true;
3003      break;
3004    }
3005
3006    Type *RetTy = II->getCalledFunction()->getReturnType();
3007    MVT VT;
3008    if (!isTypeLegal(RetTy, VT))
3009      return false;
3010
3011    static const uint16_t CvtOpc[3][2][2] = {
3012      { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
3013        { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
3014      { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
3015        { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
3016      { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
3017        { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
3018    };
3019    unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3020                        Subtarget->hasAVX()    ? 1 :
3021                                                 0;
3022    unsigned Opc;
3023    switch (VT.SimpleTy) {
3024    default: llvm_unreachable("Unexpected result type.");
3025    case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3026    case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3027    }
3028
3029    // Check if we can fold insertelement instructions into the convert.
3030    const Value *Op = II->getArgOperand(0);
3031    while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3032      const Value *Index = IE->getOperand(2);
3033      if (!isa<ConstantInt>(Index))
3034        break;
3035      unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3036
3037      if (Idx == 0) {
3038        Op = IE->getOperand(1);
3039        break;
3040      }
3041      Op = IE->getOperand(0);
3042    }
3043
3044    unsigned Reg = getRegForValue(Op);
3045    if (Reg == 0)
3046      return false;
3047
3048    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3049    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3050      .addReg(Reg);
3051
3052    updateValueMap(II, ResultReg);
3053    return true;
3054  }
3055  }
3056}
3057
3058bool X86FastISel::fastLowerArguments() {
3059  if (!FuncInfo.CanLowerReturn)
3060    return false;
3061
3062  const Function *F = FuncInfo.Fn;
3063  if (F->isVarArg())
3064    return false;
3065
3066  CallingConv::ID CC = F->getCallingConv();
3067  if (CC != CallingConv::C)
3068    return false;
3069
3070  if (Subtarget->isCallingConvWin64(CC))
3071    return false;
3072
3073  if (!Subtarget->is64Bit())
3074    return false;
3075
3076  if (Subtarget->useSoftFloat())
3077    return false;
3078
3079  // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3080  unsigned GPRCnt = 0;
3081  unsigned FPRCnt = 0;
3082  for (auto const &Arg : F->args()) {
3083    if (Arg.hasAttribute(Attribute::ByVal) ||
3084        Arg.hasAttribute(Attribute::InReg) ||
3085        Arg.hasAttribute(Attribute::StructRet) ||
3086        Arg.hasAttribute(Attribute::SwiftSelf) ||
3087        Arg.hasAttribute(Attribute::SwiftError) ||
3088        Arg.hasAttribute(Attribute::Nest))
3089      return false;
3090
3091    Type *ArgTy = Arg.getType();
3092    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3093      return false;
3094
3095    EVT ArgVT = TLI.getValueType(DL, ArgTy);
3096    if (!ArgVT.isSimple()) return false;
3097    switch (ArgVT.getSimpleVT().SimpleTy) {
3098    default: return false;
3099    case MVT::i32:
3100    case MVT::i64:
3101      ++GPRCnt;
3102      break;
3103    case MVT::f32:
3104    case MVT::f64:
3105      if (!Subtarget->hasSSE1())
3106        return false;
3107      ++FPRCnt;
3108      break;
3109    }
3110
3111    if (GPRCnt > 6)
3112      return false;
3113
3114    if (FPRCnt > 8)
3115      return false;
3116  }
3117
3118  static const MCPhysReg GPR32ArgRegs[] = {
3119    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3120  };
3121  static const MCPhysReg GPR64ArgRegs[] = {
3122    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3123  };
3124  static const MCPhysReg XMMArgRegs[] = {
3125    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3126    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3127  };
3128
3129  unsigned GPRIdx = 0;
3130  unsigned FPRIdx = 0;
3131  for (auto const &Arg : F->args()) {
3132    MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3133    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3134    unsigned SrcReg;
3135    switch (VT.SimpleTy) {
3136    default: llvm_unreachable("Unexpected value type.");
3137    case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3138    case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3139    case MVT::f32: LLVM_FALLTHROUGH;
3140    case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3141    }
3142    unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3143    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3144    // Without this, EmitLiveInCopies may eliminate the livein if its only
3145    // use is a bitcast (which isn't turned into an instruction).
3146    unsigned ResultReg = createResultReg(RC);
3147    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3148            TII.get(TargetOpcode::COPY), ResultReg)
3149      .addReg(DstReg, getKillRegState(true));
3150    updateValueMap(&Arg, ResultReg);
3151  }
3152  return true;
3153}
3154
3155static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3156                                                  CallingConv::ID CC,
3157                                                  ImmutableCallSite *CS) {
3158  if (Subtarget->is64Bit())
3159    return 0;
3160  if (Subtarget->getTargetTriple().isOSMSVCRT())
3161    return 0;
3162  if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3163      CC == CallingConv::HiPE || CC == CallingConv::Tail)
3164    return 0;
3165
3166  if (CS)
3167    if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) ||
3168        CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3169      return 0;
3170
3171  return 4;
3172}
3173
3174bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3175  auto &OutVals       = CLI.OutVals;
3176  auto &OutFlags      = CLI.OutFlags;
3177  auto &OutRegs       = CLI.OutRegs;
3178  auto &Ins           = CLI.Ins;
3179  auto &InRegs        = CLI.InRegs;
3180  CallingConv::ID CC  = CLI.CallConv;
3181  bool &IsTailCall    = CLI.IsTailCall;
3182  bool IsVarArg       = CLI.IsVarArg;
3183  const Value *Callee = CLI.Callee;
3184  MCSymbol *Symbol = CLI.Symbol;
3185
3186  bool Is64Bit        = Subtarget->is64Bit();
3187  bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3188
3189  const CallInst *CI =
3190      CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr;
3191  const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
3192
3193  // Call / invoke instructions with NoCfCheck attribute require special
3194  // handling.
3195  const auto *II =
3196      CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr;
3197  if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()))
3198    return false;
3199
3200  // Functions with no_caller_saved_registers that need special handling.
3201  if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3202      (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
3203    return false;
3204
3205  // Functions using thunks for indirect calls need to use SDISel.
3206  if (Subtarget->useIndirectThunkCalls())
3207    return false;
3208
3209  // Handle only C, fastcc, and webkit_js calling conventions for now.
3210  switch (CC) {
3211  default: return false;
3212  case CallingConv::C:
3213  case CallingConv::Fast:
3214  case CallingConv::Tail:
3215  case CallingConv::WebKit_JS:
3216  case CallingConv::Swift:
3217  case CallingConv::X86_FastCall:
3218  case CallingConv::X86_StdCall:
3219  case CallingConv::X86_ThisCall:
3220  case CallingConv::Win64:
3221  case CallingConv::X86_64_SysV:
3222  case CallingConv::CFGuard_Check:
3223    break;
3224  }
3225
3226  // Allow SelectionDAG isel to handle tail calls.
3227  if (IsTailCall)
3228    return false;
3229
3230  // fastcc with -tailcallopt is intended to provide a guaranteed
3231  // tail call optimization. Fastisel doesn't know how to do that.
3232  if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3233      CC == CallingConv::Tail)
3234    return false;
3235
3236  // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3237  // x86-32. Special handling for x86-64 is implemented.
3238  if (IsVarArg && IsWin64)
3239    return false;
3240
3241  // Don't know about inalloca yet.
3242  if (CLI.CS && CLI.CS->hasInAllocaArgument())
3243    return false;
3244
3245  for (auto Flag : CLI.OutFlags)
3246    if (Flag.isSwiftError())
3247      return false;
3248
3249  SmallVector<MVT, 16> OutVTs;
3250  SmallVector<unsigned, 16> ArgRegs;
3251
3252  // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3253  // instruction. This is safe because it is common to all FastISel supported
3254  // calling conventions on x86.
3255  for (int i = 0, e = OutVals.size(); i != e; ++i) {
3256    Value *&Val = OutVals[i];
3257    ISD::ArgFlagsTy Flags = OutFlags[i];
3258    if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3259      if (CI->getBitWidth() < 32) {
3260        if (Flags.isSExt())
3261          Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3262        else
3263          Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3264      }
3265    }
3266
3267    // Passing bools around ends up doing a trunc to i1 and passing it.
3268    // Codegen this as an argument + "and 1".
3269    MVT VT;
3270    auto *TI = dyn_cast<TruncInst>(Val);
3271    unsigned ResultReg;
3272    if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3273              (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3274              TI->hasOneUse()) {
3275      Value *PrevVal = TI->getOperand(0);
3276      ResultReg = getRegForValue(PrevVal);
3277
3278      if (!ResultReg)
3279        return false;
3280
3281      if (!isTypeLegal(PrevVal->getType(), VT))
3282        return false;
3283
3284      ResultReg =
3285        fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3286    } else {
3287      if (!isTypeLegal(Val->getType(), VT))
3288        return false;
3289      ResultReg = getRegForValue(Val);
3290    }
3291
3292    if (!ResultReg)
3293      return false;
3294
3295    ArgRegs.push_back(ResultReg);
3296    OutVTs.push_back(VT);
3297  }
3298
3299  // Analyze operands of the call, assigning locations to each operand.
3300  SmallVector<CCValAssign, 16> ArgLocs;
3301  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3302
3303  // Allocate shadow area for Win64
3304  if (IsWin64)
3305    CCInfo.AllocateStack(32, 8);
3306
3307  CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3308
3309  // Get a count of how many bytes are to be pushed on the stack.
3310  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3311
3312  // Issue CALLSEQ_START
3313  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3314  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3315    .addImm(NumBytes).addImm(0).addImm(0);
3316
3317  // Walk the register/memloc assignments, inserting copies/loads.
3318  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3319  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3320    CCValAssign const &VA = ArgLocs[i];
3321    const Value *ArgVal = OutVals[VA.getValNo()];
3322    MVT ArgVT = OutVTs[VA.getValNo()];
3323
3324    if (ArgVT == MVT::x86mmx)
3325      return false;
3326
3327    unsigned ArgReg = ArgRegs[VA.getValNo()];
3328
3329    // Promote the value if needed.
3330    switch (VA.getLocInfo()) {
3331    case CCValAssign::Full: break;
3332    case CCValAssign::SExt: {
3333      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3334             "Unexpected extend");
3335
3336      if (ArgVT == MVT::i1)
3337        return false;
3338
3339      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3340                                       ArgVT, ArgReg);
3341      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3342      ArgVT = VA.getLocVT();
3343      break;
3344    }
3345    case CCValAssign::ZExt: {
3346      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3347             "Unexpected extend");
3348
3349      // Handle zero-extension from i1 to i8, which is common.
3350      if (ArgVT == MVT::i1) {
3351        // Set the high bits to zero.
3352        ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3353        ArgVT = MVT::i8;
3354
3355        if (ArgReg == 0)
3356          return false;
3357      }
3358
3359      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3360                                       ArgVT, ArgReg);
3361      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3362      ArgVT = VA.getLocVT();
3363      break;
3364    }
3365    case CCValAssign::AExt: {
3366      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3367             "Unexpected extend");
3368      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3369                                       ArgVT, ArgReg);
3370      if (!Emitted)
3371        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3372                                    ArgVT, ArgReg);
3373      if (!Emitted)
3374        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3375                                    ArgVT, ArgReg);
3376
3377      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3378      ArgVT = VA.getLocVT();
3379      break;
3380    }
3381    case CCValAssign::BCvt: {
3382      ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3383                          /*TODO: Kill=*/false);
3384      assert(ArgReg && "Failed to emit a bitcast!");
3385      ArgVT = VA.getLocVT();
3386      break;
3387    }
3388    case CCValAssign::VExt:
3389      // VExt has not been implemented, so this should be impossible to reach
3390      // for now.  However, fallback to Selection DAG isel once implemented.
3391      return false;
3392    case CCValAssign::AExtUpper:
3393    case CCValAssign::SExtUpper:
3394    case CCValAssign::ZExtUpper:
3395    case CCValAssign::FPExt:
3396    case CCValAssign::Trunc:
3397      llvm_unreachable("Unexpected loc info!");
3398    case CCValAssign::Indirect:
3399      // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3400      // support this.
3401      return false;
3402    }
3403
3404    if (VA.isRegLoc()) {
3405      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3406              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3407      OutRegs.push_back(VA.getLocReg());
3408    } else {
3409      assert(VA.isMemLoc());
3410
3411      // Don't emit stores for undef values.
3412      if (isa<UndefValue>(ArgVal))
3413        continue;
3414
3415      unsigned LocMemOffset = VA.getLocMemOffset();
3416      X86AddressMode AM;
3417      AM.Base.Reg = RegInfo->getStackRegister();
3418      AM.Disp = LocMemOffset;
3419      ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3420      unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3421      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3422          MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3423          MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3424      if (Flags.isByVal()) {
3425        X86AddressMode SrcAM;
3426        SrcAM.Base.Reg = ArgReg;
3427        if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3428          return false;
3429      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3430        // If this is a really simple value, emit this with the Value* version
3431        // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3432        // as it can cause us to reevaluate the argument.
3433        if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3434          return false;
3435      } else {
3436        bool ValIsKill = hasTrivialKill(ArgVal);
3437        if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3438          return false;
3439      }
3440    }
3441  }
3442
3443  // ELF / PIC requires GOT in the EBX register before function calls via PLT
3444  // GOT pointer.
3445  if (Subtarget->isPICStyleGOT()) {
3446    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3447    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3448            TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3449  }
3450
3451  if (Is64Bit && IsVarArg && !IsWin64) {
3452    // From AMD64 ABI document:
3453    // For calls that may call functions that use varargs or stdargs
3454    // (prototype-less calls or calls to functions containing ellipsis (...) in
3455    // the declaration) %al is used as hidden argument to specify the number
3456    // of SSE registers used. The contents of %al do not need to match exactly
3457    // the number of registers, but must be an ubound on the number of SSE
3458    // registers used and is in the range 0 - 8 inclusive.
3459
3460    // Count the number of XMM registers allocated.
3461    static const MCPhysReg XMMArgRegs[] = {
3462      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3463      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3464    };
3465    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3466    assert((Subtarget->hasSSE1() || !NumXMMRegs)
3467           && "SSE registers cannot be used when SSE is disabled");
3468    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3469            X86::AL).addImm(NumXMMRegs);
3470  }
3471
3472  // Materialize callee address in a register. FIXME: GV address can be
3473  // handled with a CALLpcrel32 instead.
3474  X86AddressMode CalleeAM;
3475  if (!X86SelectCallAddress(Callee, CalleeAM))
3476    return false;
3477
3478  unsigned CalleeOp = 0;
3479  const GlobalValue *GV = nullptr;
3480  if (CalleeAM.GV != nullptr) {
3481    GV = CalleeAM.GV;
3482  } else if (CalleeAM.Base.Reg != 0) {
3483    CalleeOp = CalleeAM.Base.Reg;
3484  } else
3485    return false;
3486
3487  // Issue the call.
3488  MachineInstrBuilder MIB;
3489  if (CalleeOp) {
3490    // Register-indirect call.
3491    unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3492    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3493      .addReg(CalleeOp);
3494  } else {
3495    // Direct call.
3496    assert(GV && "Not a direct call");
3497    // See if we need any target-specific flags on the GV operand.
3498    unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3499
3500    // This will be a direct call, or an indirect call through memory for
3501    // NonLazyBind calls or dllimport calls.
3502    bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3503                    OpFlags == X86II::MO_GOTPCREL ||
3504                    OpFlags == X86II::MO_COFFSTUB;
3505    unsigned CallOpc = NeedLoad
3506                           ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3507                           : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3508
3509    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3510    if (NeedLoad)
3511      MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3512    if (Symbol)
3513      MIB.addSym(Symbol, OpFlags);
3514    else
3515      MIB.addGlobalAddress(GV, 0, OpFlags);
3516    if (NeedLoad)
3517      MIB.addReg(0);
3518  }
3519
3520  // Add a register mask operand representing the call-preserved registers.
3521  // Proper defs for return values will be added by setPhysRegsDeadExcept().
3522  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3523
3524  // Add an implicit use GOT pointer in EBX.
3525  if (Subtarget->isPICStyleGOT())
3526    MIB.addReg(X86::EBX, RegState::Implicit);
3527
3528  if (Is64Bit && IsVarArg && !IsWin64)
3529    MIB.addReg(X86::AL, RegState::Implicit);
3530
3531  // Add implicit physical register uses to the call.
3532  for (auto Reg : OutRegs)
3533    MIB.addReg(Reg, RegState::Implicit);
3534
3535  // Issue CALLSEQ_END
3536  unsigned NumBytesForCalleeToPop =
3537      X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3538                       TM.Options.GuaranteedTailCallOpt)
3539          ? NumBytes // Callee pops everything.
3540          : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
3541  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3542  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3543    .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3544
3545  // Now handle call return values.
3546  SmallVector<CCValAssign, 16> RVLocs;
3547  CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3548                    CLI.RetTy->getContext());
3549  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3550
3551  // Copy all of the result registers out of their specified physreg.
3552  unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3553  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3554    CCValAssign &VA = RVLocs[i];
3555    EVT CopyVT = VA.getValVT();
3556    unsigned CopyReg = ResultReg + i;
3557    Register SrcReg = VA.getLocReg();
3558
3559    // If this is x86-64, and we disabled SSE, we can't return FP values
3560    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3561        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3562      report_fatal_error("SSE register return with SSE disabled");
3563    }
3564
3565    // If we prefer to use the value in xmm registers, copy it out as f80 and
3566    // use a truncate to move it from fp stack reg to xmm reg.
3567    if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3568        isScalarFPTypeInSSEReg(VA.getValVT())) {
3569      CopyVT = MVT::f80;
3570      CopyReg = createResultReg(&X86::RFP80RegClass);
3571    }
3572
3573    // Copy out the result.
3574    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3575            TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3576    InRegs.push_back(VA.getLocReg());
3577
3578    // Round the f80 to the right size, which also moves it to the appropriate
3579    // xmm register. This is accomplished by storing the f80 value in memory
3580    // and then loading it back.
3581    if (CopyVT != VA.getValVT()) {
3582      EVT ResVT = VA.getValVT();
3583      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3584      unsigned MemSize = ResVT.getSizeInBits()/8;
3585      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3586      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3587                                TII.get(Opc)), FI)
3588        .addReg(CopyReg);
3589      Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3590      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3591                                TII.get(Opc), ResultReg + i), FI);
3592    }
3593  }
3594
3595  CLI.ResultReg = ResultReg;
3596  CLI.NumResultRegs = RVLocs.size();
3597  CLI.Call = MIB;
3598
3599  return true;
3600}
3601
3602bool
3603X86FastISel::fastSelectInstruction(const Instruction *I)  {
3604  switch (I->getOpcode()) {
3605  default: break;
3606  case Instruction::Load:
3607    return X86SelectLoad(I);
3608  case Instruction::Store:
3609    return X86SelectStore(I);
3610  case Instruction::Ret:
3611    return X86SelectRet(I);
3612  case Instruction::ICmp:
3613  case Instruction::FCmp:
3614    return X86SelectCmp(I);
3615  case Instruction::ZExt:
3616    return X86SelectZExt(I);
3617  case Instruction::SExt:
3618    return X86SelectSExt(I);
3619  case Instruction::Br:
3620    return X86SelectBranch(I);
3621  case Instruction::LShr:
3622  case Instruction::AShr:
3623  case Instruction::Shl:
3624    return X86SelectShift(I);
3625  case Instruction::SDiv:
3626  case Instruction::UDiv:
3627  case Instruction::SRem:
3628  case Instruction::URem:
3629    return X86SelectDivRem(I);
3630  case Instruction::Select:
3631    return X86SelectSelect(I);
3632  case Instruction::Trunc:
3633    return X86SelectTrunc(I);
3634  case Instruction::FPExt:
3635    return X86SelectFPExt(I);
3636  case Instruction::FPTrunc:
3637    return X86SelectFPTrunc(I);
3638  case Instruction::SIToFP:
3639    return X86SelectSIToFP(I);
3640  case Instruction::UIToFP:
3641    return X86SelectUIToFP(I);
3642  case Instruction::IntToPtr: // Deliberate fall-through.
3643  case Instruction::PtrToInt: {
3644    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3645    EVT DstVT = TLI.getValueType(DL, I->getType());
3646    if (DstVT.bitsGT(SrcVT))
3647      return X86SelectZExt(I);
3648    if (DstVT.bitsLT(SrcVT))
3649      return X86SelectTrunc(I);
3650    unsigned Reg = getRegForValue(I->getOperand(0));
3651    if (Reg == 0) return false;
3652    updateValueMap(I, Reg);
3653    return true;
3654  }
3655  case Instruction::BitCast: {
3656    // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3657    if (!Subtarget->hasSSE2())
3658      return false;
3659
3660    MVT SrcVT, DstVT;
3661    if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3662        !isTypeLegal(I->getType(), DstVT))
3663      return false;
3664
3665    // Only allow vectors that use xmm/ymm/zmm.
3666    if (!SrcVT.isVector() || !DstVT.isVector() ||
3667        SrcVT.getVectorElementType() == MVT::i1 ||
3668        DstVT.getVectorElementType() == MVT::i1)
3669      return false;
3670
3671    unsigned Reg = getRegForValue(I->getOperand(0));
3672    if (Reg == 0)
3673      return false;
3674
3675    // No instruction is needed for conversion. Reuse the register used by
3676    // the fist operand.
3677    updateValueMap(I, Reg);
3678    return true;
3679  }
3680  }
3681
3682  return false;
3683}
3684
3685unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3686  if (VT > MVT::i64)
3687    return 0;
3688
3689  uint64_t Imm = CI->getZExtValue();
3690  if (Imm == 0) {
3691    unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3692    switch (VT.SimpleTy) {
3693    default: llvm_unreachable("Unexpected value type");
3694    case MVT::i1:
3695    case MVT::i8:
3696      return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3697                                        X86::sub_8bit);
3698    case MVT::i16:
3699      return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3700                                        X86::sub_16bit);
3701    case MVT::i32:
3702      return SrcReg;
3703    case MVT::i64: {
3704      unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3705      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3706              TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3707        .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3708      return ResultReg;
3709    }
3710    }
3711  }
3712
3713  unsigned Opc = 0;
3714  switch (VT.SimpleTy) {
3715  default: llvm_unreachable("Unexpected value type");
3716  case MVT::i1:
3717    VT = MVT::i8;
3718    LLVM_FALLTHROUGH;
3719  case MVT::i8:  Opc = X86::MOV8ri;  break;
3720  case MVT::i16: Opc = X86::MOV16ri; break;
3721  case MVT::i32: Opc = X86::MOV32ri; break;
3722  case MVT::i64: {
3723    if (isUInt<32>(Imm))
3724      Opc = X86::MOV32ri64;
3725    else if (isInt<32>(Imm))
3726      Opc = X86::MOV64ri32;
3727    else
3728      Opc = X86::MOV64ri;
3729    break;
3730  }
3731  }
3732  return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3733}
3734
3735unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3736  if (CFP->isNullValue())
3737    return fastMaterializeFloatZero(CFP);
3738
3739  // Can't handle alternate code models yet.
3740  CodeModel::Model CM = TM.getCodeModel();
3741  if (CM != CodeModel::Small && CM != CodeModel::Large)
3742    return 0;
3743
3744  // Get opcode and regclass of the output for the given load instruction.
3745  unsigned Opc = 0;
3746  bool HasAVX = Subtarget->hasAVX();
3747  bool HasAVX512 = Subtarget->hasAVX512();
3748  switch (VT.SimpleTy) {
3749  default: return 0;
3750  case MVT::f32:
3751    if (X86ScalarSSEf32)
3752      Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
3753            HasAVX    ? X86::VMOVSSrm_alt :
3754                        X86::MOVSSrm_alt;
3755    else
3756      Opc = X86::LD_Fp32m;
3757    break;
3758  case MVT::f64:
3759    if (X86ScalarSSEf64)
3760      Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
3761            HasAVX    ? X86::VMOVSDrm_alt :
3762                        X86::MOVSDrm_alt;
3763    else
3764      Opc = X86::LD_Fp64m;
3765    break;
3766  case MVT::f80:
3767    // No f80 support yet.
3768    return 0;
3769  }
3770
3771  // MachineConstantPool wants an explicit alignment.
3772  unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3773  if (Align == 0) {
3774    // Alignment of vector types. FIXME!
3775    Align = DL.getTypeAllocSize(CFP->getType());
3776  }
3777
3778  // x86-32 PIC requires a PIC base register for constant pools.
3779  unsigned PICBase = 0;
3780  unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3781  if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3782    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3783  else if (OpFlag == X86II::MO_GOTOFF)
3784    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3785  else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3786    PICBase = X86::RIP;
3787
3788  // Create the load from the constant pool.
3789  unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3790  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3791
3792  if (CM == CodeModel::Large) {
3793    unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3794    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3795            AddrReg)
3796      .addConstantPoolIndex(CPI, 0, OpFlag);
3797    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3798                                      TII.get(Opc), ResultReg);
3799    addDirectMem(MIB, AddrReg);
3800    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3801        MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3802        MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
3803    MIB->addMemOperand(*FuncInfo.MF, MMO);
3804    return ResultReg;
3805  }
3806
3807  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3808                                   TII.get(Opc), ResultReg),
3809                           CPI, PICBase, OpFlag);
3810  return ResultReg;
3811}
3812
3813unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3814  // Can't handle alternate code models yet.
3815  if (TM.getCodeModel() != CodeModel::Small)
3816    return 0;
3817
3818  // Materialize addresses with LEA/MOV instructions.
3819  X86AddressMode AM;
3820  if (X86SelectAddress(GV, AM)) {
3821    // If the expression is just a basereg, then we're done, otherwise we need
3822    // to emit an LEA.
3823    if (AM.BaseType == X86AddressMode::RegBase &&
3824        AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3825      return AM.Base.Reg;
3826
3827    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3828    if (TM.getRelocationModel() == Reloc::Static &&
3829        TLI.getPointerTy(DL) == MVT::i64) {
3830      // The displacement code could be more than 32 bits away so we need to use
3831      // an instruction with a 64 bit immediate
3832      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3833              ResultReg)
3834        .addGlobalAddress(GV);
3835    } else {
3836      unsigned Opc =
3837          TLI.getPointerTy(DL) == MVT::i32
3838              ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3839              : X86::LEA64r;
3840      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3841                             TII.get(Opc), ResultReg), AM);
3842    }
3843    return ResultReg;
3844  }
3845  return 0;
3846}
3847
3848unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3849  EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3850
3851  // Only handle simple types.
3852  if (!CEVT.isSimple())
3853    return 0;
3854  MVT VT = CEVT.getSimpleVT();
3855
3856  if (const auto *CI = dyn_cast<ConstantInt>(C))
3857    return X86MaterializeInt(CI, VT);
3858  else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3859    return X86MaterializeFP(CFP, VT);
3860  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3861    return X86MaterializeGV(GV, VT);
3862
3863  return 0;
3864}
3865
3866unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3867  // Fail on dynamic allocas. At this point, getRegForValue has already
3868  // checked its CSE maps, so if we're here trying to handle a dynamic
3869  // alloca, we're not going to succeed. X86SelectAddress has a
3870  // check for dynamic allocas, because it's called directly from
3871  // various places, but targetMaterializeAlloca also needs a check
3872  // in order to avoid recursion between getRegForValue,
3873  // X86SelectAddrss, and targetMaterializeAlloca.
3874  if (!FuncInfo.StaticAllocaMap.count(C))
3875    return 0;
3876  assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3877
3878  X86AddressMode AM;
3879  if (!X86SelectAddress(C, AM))
3880    return 0;
3881  unsigned Opc =
3882      TLI.getPointerTy(DL) == MVT::i32
3883          ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3884          : X86::LEA64r;
3885  const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3886  unsigned ResultReg = createResultReg(RC);
3887  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3888                         TII.get(Opc), ResultReg), AM);
3889  return ResultReg;
3890}
3891
3892unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3893  MVT VT;
3894  if (!isTypeLegal(CF->getType(), VT))
3895    return 0;
3896
3897  // Get opcode and regclass for the given zero.
3898  bool HasAVX512 = Subtarget->hasAVX512();
3899  unsigned Opc = 0;
3900  switch (VT.SimpleTy) {
3901  default: return 0;
3902  case MVT::f32:
3903    if (X86ScalarSSEf32)
3904      Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
3905    else
3906      Opc = X86::LD_Fp032;
3907    break;
3908  case MVT::f64:
3909    if (X86ScalarSSEf64)
3910      Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
3911    else
3912      Opc = X86::LD_Fp064;
3913    break;
3914  case MVT::f80:
3915    // No f80 support yet.
3916    return 0;
3917  }
3918
3919  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3920  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3921  return ResultReg;
3922}
3923
3924
3925bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3926                                      const LoadInst *LI) {
3927  const Value *Ptr = LI->getPointerOperand();
3928  X86AddressMode AM;
3929  if (!X86SelectAddress(Ptr, AM))
3930    return false;
3931
3932  const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3933
3934  unsigned Size = DL.getTypeAllocSize(LI->getType());
3935  unsigned Alignment = LI->getAlignment();
3936
3937  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3938    Alignment = DL.getABITypeAlignment(LI->getType());
3939
3940  SmallVector<MachineOperand, 8> AddrOps;
3941  AM.getFullAddress(AddrOps);
3942
3943  MachineInstr *Result = XII.foldMemoryOperandImpl(
3944      *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3945      /*AllowCommute=*/true);
3946  if (!Result)
3947    return false;
3948
3949  // The index register could be in the wrong register class.  Unfortunately,
3950  // foldMemoryOperandImpl could have commuted the instruction so its not enough
3951  // to just look at OpNo + the offset to the index reg.  We actually need to
3952  // scan the instruction to find the index reg and see if its the correct reg
3953  // class.
3954  unsigned OperandNo = 0;
3955  for (MachineInstr::mop_iterator I = Result->operands_begin(),
3956       E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3957    MachineOperand &MO = *I;
3958    if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3959      continue;
3960    // Found the index reg, now try to rewrite it.
3961    unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
3962                                                 MO.getReg(), OperandNo);
3963    if (IndexReg == MO.getReg())
3964      continue;
3965    MO.setReg(IndexReg);
3966  }
3967
3968  Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3969  Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
3970  MachineBasicBlock::iterator I(MI);
3971  removeDeadCode(I, std::next(I));
3972  return true;
3973}
3974
3975unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3976                                        const TargetRegisterClass *RC,
3977                                        unsigned Op0, bool Op0IsKill,
3978                                        unsigned Op1, bool Op1IsKill,
3979                                        unsigned Op2, bool Op2IsKill,
3980                                        unsigned Op3, bool Op3IsKill) {
3981  const MCInstrDesc &II = TII.get(MachineInstOpcode);
3982
3983  unsigned ResultReg = createResultReg(RC);
3984  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
3985  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
3986  Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
3987  Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
3988
3989  if (II.getNumDefs() >= 1)
3990    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
3991        .addReg(Op0, getKillRegState(Op0IsKill))
3992        .addReg(Op1, getKillRegState(Op1IsKill))
3993        .addReg(Op2, getKillRegState(Op2IsKill))
3994        .addReg(Op3, getKillRegState(Op3IsKill));
3995  else {
3996    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
3997        .addReg(Op0, getKillRegState(Op0IsKill))
3998        .addReg(Op1, getKillRegState(Op1IsKill))
3999        .addReg(Op2, getKillRegState(Op2IsKill))
4000        .addReg(Op3, getKillRegState(Op3IsKill));
4001    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4002            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
4003  }
4004  return ResultReg;
4005}
4006
4007
4008namespace llvm {
4009  FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4010                                const TargetLibraryInfo *libInfo) {
4011    return new X86FastISel(funcInfo, libInfo);
4012  }
4013}
4014