X86MCCodeEmitter.cpp revision 321369
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MCTargetDesc/X86BaseInfo.h"
15#include "MCTargetDesc/X86FixupKinds.h"
16#include "MCTargetDesc/X86MCTargetDesc.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCContext.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCFixup.h"
22#include "llvm/MC/MCInst.h"
23#include "llvm/MC/MCInstrDesc.h"
24#include "llvm/MC/MCInstrInfo.h"
25#include "llvm/MC/MCRegisterInfo.h"
26#include "llvm/MC/MCSubtargetInfo.h"
27#include "llvm/MC/MCSymbol.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33
34using namespace llvm;
35
36#define DEBUG_TYPE "mccodeemitter"
37
38namespace {
39
40class X86MCCodeEmitter : public MCCodeEmitter {
41  const MCInstrInfo &MCII;
42  MCContext &Ctx;
43
44public:
45  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
46    : MCII(mcii), Ctx(ctx) {
47  }
48  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
49  X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
50  ~X86MCCodeEmitter() override = default;
51
52  bool is64BitMode(const MCSubtargetInfo &STI) const {
53    return STI.getFeatureBits()[X86::Mode64Bit];
54  }
55
56  bool is32BitMode(const MCSubtargetInfo &STI) const {
57    return STI.getFeatureBits()[X86::Mode32Bit];
58  }
59
60  bool is16BitMode(const MCSubtargetInfo &STI) const {
61    return STI.getFeatureBits()[X86::Mode16Bit];
62  }
63
64  /// Is16BitMemOperand - Return true if the specified instruction has
65  /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
66  bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
67                         const MCSubtargetInfo &STI) const {
68    const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
69    const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
70    const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
71
72    if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
73        Disp.isImm() && Disp.getImm() < 0x10000)
74      return true;
75    if ((BaseReg.getReg() != 0 &&
76         X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
77        (IndexReg.getReg() != 0 &&
78         X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
79      return true;
80    return false;
81  }
82
83  unsigned GetX86RegNum(const MCOperand &MO) const {
84    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
85  }
86
87  unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const {
88    return Ctx.getRegisterInfo()->getEncodingValue(
89                                                 MI.getOperand(OpNum).getReg());
90  }
91
92  // Does this register require a bit to be set in REX prefix.
93  bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const {
94    return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
95  }
96
97  void EmitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const {
98    OS << (char)C;
99    ++CurByte;
100  }
101
102  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
103                    raw_ostream &OS) const {
104    // Output the constant in little endian byte order.
105    for (unsigned i = 0; i != Size; ++i) {
106      EmitByte(Val & 255, CurByte, OS);
107      Val >>= 8;
108    }
109  }
110
111  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
112                     unsigned ImmSize, MCFixupKind FixupKind,
113                     unsigned &CurByte, raw_ostream &OS,
114                     SmallVectorImpl<MCFixup> &Fixups,
115                     int ImmOffset = 0) const;
116
117  static uint8_t ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
118    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
119    return RM | (RegOpcode << 3) | (Mod << 6);
120  }
121
122  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
123                        unsigned &CurByte, raw_ostream &OS) const {
124    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
125  }
126
127  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
128                   unsigned &CurByte, raw_ostream &OS) const {
129    // SIB byte is in the same format as the ModRMByte.
130    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
131  }
132
133  void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
134                        uint64_t TSFlags, bool Rex, unsigned &CurByte,
135                        raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
136                        const MCSubtargetInfo &STI) const;
137
138  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
139                         SmallVectorImpl<MCFixup> &Fixups,
140                         const MCSubtargetInfo &STI) const override;
141
142  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
143                           const MCInst &MI, const MCInstrDesc &Desc,
144                           raw_ostream &OS) const;
145
146  void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
147                                 const MCInst &MI, raw_ostream &OS) const;
148
149  bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
150                        const MCInst &MI, const MCInstrDesc &Desc,
151                        const MCSubtargetInfo &STI, raw_ostream &OS) const;
152
153  uint8_t DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
154                             int MemOperand, const MCInstrDesc &Desc) const;
155};
156
157} // end anonymous namespace
158
159/// isDisp8 - Return true if this signed displacement fits in a 8-bit
160/// sign-extended field.
161static bool isDisp8(int Value) {
162  return Value == (int8_t)Value;
163}
164
165/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
166/// compressed dispacement field.
167static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
168  assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
169         "Compressed 8-bit displacement is only valid for EVEX inst.");
170
171  unsigned CD8_Scale =
172    (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
173  if (CD8_Scale == 0) {
174    CValue = Value;
175    return isDisp8(Value);
176  }
177
178  unsigned Mask = CD8_Scale - 1;
179  assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
180  if (Value & Mask) // Unaligned offset
181    return false;
182  Value /= (int)CD8_Scale;
183  bool Ret = (Value == (int8_t)Value);
184
185  if (Ret)
186    CValue = Value;
187  return Ret;
188}
189
190/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
191/// in an instruction with the specified TSFlags.
192static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
193  unsigned Size = X86II::getSizeOfImm(TSFlags);
194  bool isPCRel = X86II::isImmPCRel(TSFlags);
195
196  if (X86II::isImmSigned(TSFlags)) {
197    switch (Size) {
198    default: llvm_unreachable("Unsupported signed fixup size!");
199    case 4: return MCFixupKind(X86::reloc_signed_4byte);
200    }
201  }
202  return MCFixup::getKindForSize(Size, isPCRel);
203}
204
205/// Is32BitMemOperand - Return true if the specified instruction has
206/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
207static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
208  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
209  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
210
211  if ((BaseReg.getReg() != 0 &&
212       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
213      (IndexReg.getReg() != 0 &&
214       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
215    return true;
216  if (BaseReg.getReg() == X86::EIP) {
217    assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
218    return true;
219  }
220  return false;
221}
222
223/// Is64BitMemOperand - Return true if the specified instruction has
224/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
225#ifndef NDEBUG
226static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
227  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
228  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
229
230  if ((BaseReg.getReg() != 0 &&
231       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
232      (IndexReg.getReg() != 0 &&
233       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
234    return true;
235  return false;
236}
237#endif
238
239/// StartsWithGlobalOffsetTable - Check if this expression starts with
240///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
241///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
242/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
243/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
244/// of a binary expression.
245enum GlobalOffsetTableExprKind {
246  GOT_None,
247  GOT_Normal,
248  GOT_SymDiff
249};
250static GlobalOffsetTableExprKind
251StartsWithGlobalOffsetTable(const MCExpr *Expr) {
252  const MCExpr *RHS = nullptr;
253  if (Expr->getKind() == MCExpr::Binary) {
254    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
255    Expr = BE->getLHS();
256    RHS = BE->getRHS();
257  }
258
259  if (Expr->getKind() != MCExpr::SymbolRef)
260    return GOT_None;
261
262  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
263  const MCSymbol &S = Ref->getSymbol();
264  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
265    return GOT_None;
266  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
267    return GOT_SymDiff;
268  return GOT_Normal;
269}
270
271static bool HasSecRelSymbolRef(const MCExpr *Expr) {
272  if (Expr->getKind() == MCExpr::SymbolRef) {
273    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
274    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
275  }
276  return false;
277}
278
279void X86MCCodeEmitter::
280EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
281              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
282              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
283  const MCExpr *Expr = nullptr;
284  if (DispOp.isImm()) {
285    // If this is a simple integer displacement that doesn't require a
286    // relocation, emit it now.
287    if (FixupKind != FK_PCRel_1 &&
288        FixupKind != FK_PCRel_2 &&
289        FixupKind != FK_PCRel_4) {
290      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
291      return;
292    }
293    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
294  } else {
295    Expr = DispOp.getExpr();
296  }
297
298  // If we have an immoffset, add it to the expression.
299  if ((FixupKind == FK_Data_4 ||
300       FixupKind == FK_Data_8 ||
301       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
302    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
303    if (Kind != GOT_None) {
304      assert(ImmOffset == 0);
305
306      if (Size == 8) {
307        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
308      } else {
309        assert(Size == 4);
310        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
311      }
312
313      if (Kind == GOT_Normal)
314        ImmOffset = CurByte;
315    } else if (Expr->getKind() == MCExpr::SymbolRef) {
316      if (HasSecRelSymbolRef(Expr)) {
317        FixupKind = MCFixupKind(FK_SecRel_4);
318      }
319    } else if (Expr->getKind() == MCExpr::Binary) {
320      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
321      if (HasSecRelSymbolRef(Bin->getLHS())
322          || HasSecRelSymbolRef(Bin->getRHS())) {
323        FixupKind = MCFixupKind(FK_SecRel_4);
324      }
325    }
326  }
327
328  // If the fixup is pc-relative, we need to bias the value to be relative to
329  // the start of the field, not the end of the field.
330  if (FixupKind == FK_PCRel_4 ||
331      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
332      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
333      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
334      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex))
335    ImmOffset -= 4;
336  if (FixupKind == FK_PCRel_2)
337    ImmOffset -= 2;
338  if (FixupKind == FK_PCRel_1)
339    ImmOffset -= 1;
340
341  if (ImmOffset)
342    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
343                                   Ctx);
344
345  // Emit a symbolic constant as a fixup and 4 zeros.
346  Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
347  EmitConstant(0, Size, CurByte, OS);
348}
349
350void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
351                                        unsigned RegOpcodeField,
352                                        uint64_t TSFlags, bool Rex,
353                                        unsigned &CurByte, raw_ostream &OS,
354                                        SmallVectorImpl<MCFixup> &Fixups,
355                                        const MCSubtargetInfo &STI) const {
356  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
357  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
358  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
359  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
360  unsigned BaseReg = Base.getReg();
361  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
362
363  // Handle %rip relative addressing.
364  if (BaseReg == X86::RIP ||
365      BaseReg == X86::EIP) {    // [disp32+rIP] in X86-64 mode
366    assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
367    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
368    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
369
370    unsigned Opcode = MI.getOpcode();
371    // movq loads are handled with a special relocation form which allows the
372    // linker to eliminate some loads for GOT references which end up in the
373    // same linkage unit.
374    unsigned FixupKind = [=]() {
375      switch (Opcode) {
376      default:
377        return X86::reloc_riprel_4byte;
378      case X86::MOV64rm:
379        assert(Rex);
380        return X86::reloc_riprel_4byte_movq_load;
381      case X86::CALL64m:
382      case X86::JMP64m:
383      case X86::TEST64rm:
384      case X86::ADC64rm:
385      case X86::ADD64rm:
386      case X86::AND64rm:
387      case X86::CMP64rm:
388      case X86::OR64rm:
389      case X86::SBB64rm:
390      case X86::SUB64rm:
391      case X86::XOR64rm:
392        return Rex ? X86::reloc_riprel_4byte_relax_rex
393                   : X86::reloc_riprel_4byte_relax;
394      }
395    }();
396
397    // rip-relative addressing is actually relative to the *next* instruction.
398    // Since an immediate can follow the mod/rm byte for an instruction, this
399    // means that we need to bias the immediate field of the instruction with
400    // the size of the immediate field.  If we have this case, add it into the
401    // expression to emit.
402    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
403
404    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
405                  CurByte, OS, Fixups, -ImmSize);
406    return;
407  }
408
409  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
410
411  // 16-bit addressing forms of the ModR/M byte have a different encoding for
412  // the R/M field and are far more limited in which registers can be used.
413  if (Is16BitMemOperand(MI, Op, STI)) {
414    if (BaseReg) {
415      // For 32-bit addressing, the row and column values in Table 2-2 are
416      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
417      // some special cases. And GetX86RegNum reflects that numbering.
418      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
419      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
420      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
421      // while values 0-3 indicate the allowed combinations (base+index) of
422      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
423      //
424      // R16Table[] is a lookup from the normal RegNo, to the row values from
425      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
426      static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
427      unsigned RMfield = R16Table[BaseRegNo];
428
429      assert(RMfield && "invalid 16-bit base register");
430
431      if (IndexReg.getReg()) {
432        unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
433
434        assert(IndexReg16 && "invalid 16-bit index register");
435        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
436        assert(((IndexReg16 ^ RMfield) & 2) &&
437               "invalid 16-bit base/index register combination");
438        assert(Scale.getImm() == 1 &&
439               "invalid scale for 16-bit memory reference");
440
441        // Allow base/index to appear in either order (although GAS doesn't).
442        if (IndexReg16 & 2)
443          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
444        else
445          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
446      }
447
448      if (Disp.isImm() && isDisp8(Disp.getImm())) {
449        if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
450          // There is no displacement; just the register.
451          EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
452          return;
453        }
454        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
455        EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
456        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
457        return;
458      }
459      // This is the [REG]+disp16 case.
460      EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
461    } else {
462      // There is no BaseReg; this is the plain [disp16] case.
463      EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
464    }
465
466    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
467    EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
468    return;
469  }
470
471  // Determine whether a SIB byte is needed.
472  // If no BaseReg, issue a RIP relative instruction only if the MCE can
473  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
474  // 2-7) and absolute references.
475
476  if (// The SIB byte must be used if there is an index register.
477      IndexReg.getReg() == 0 &&
478      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
479      // encode to an R/M value of 4, which indicates that a SIB byte is
480      // present.
481      BaseRegNo != N86::ESP &&
482      // If there is no base register and we're in 64-bit mode, we need a SIB
483      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
484      (!is64BitMode(STI) || BaseReg != 0)) {
485
486    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
487      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
488      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
489      return;
490    }
491
492    // If the base is not EBP/ESP and there is no displacement, use simple
493    // indirect register encoding, this handles addresses like [EAX].  The
494    // encoding for [EBP] with no displacement means [disp32] so we handle it
495    // by emitting a displacement of 0 below.
496    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
497      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
498      return;
499    }
500
501    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
502    if (Disp.isImm()) {
503      if (!HasEVEX && isDisp8(Disp.getImm())) {
504        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
505        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
506        return;
507      }
508      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
509      // 32-bit displacement.
510      int CDisp8 = 0;
511      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
512        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
513        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
514                      CDisp8 - Disp.getImm());
515        return;
516      }
517    }
518
519    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
520    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
521    unsigned Opcode = MI.getOpcode();
522    unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
523                                                : X86::reloc_signed_4byte;
524    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
525                  Fixups);
526    return;
527  }
528
529  // We need a SIB byte, so start by outputting the ModR/M byte first
530  assert(IndexReg.getReg() != X86::ESP &&
531         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
532
533  bool ForceDisp32 = false;
534  bool ForceDisp8  = false;
535  int CDisp8 = 0;
536  int ImmOffset = 0;
537  if (BaseReg == 0) {
538    // If there is no base register, we emit the special case SIB byte with
539    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
540    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
541    ForceDisp32 = true;
542  } else if (!Disp.isImm()) {
543    // Emit the normal disp32 encoding.
544    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
545    ForceDisp32 = true;
546  } else if (Disp.getImm() == 0 &&
547             // Base reg can't be anything that ends up with '5' as the base
548             // reg, it is the magic [*] nomenclature that indicates no base.
549             BaseRegNo != N86::EBP) {
550    // Emit no displacement ModR/M byte
551    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
552  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
553    // Emit the disp8 encoding.
554    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
555    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
556  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
557    // Emit the disp8 encoding.
558    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
559    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
560    ImmOffset = CDisp8 - Disp.getImm();
561  } else {
562    // Emit the normal disp32 encoding.
563    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
564  }
565
566  // Calculate what the SS field value should be...
567  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
568  unsigned SS = SSTable[Scale.getImm()];
569
570  if (BaseReg == 0) {
571    // Handle the SIB byte for the case where there is no base, see Intel
572    // Manual 2A, table 2-7. The displacement has already been output.
573    unsigned IndexRegNo;
574    if (IndexReg.getReg())
575      IndexRegNo = GetX86RegNum(IndexReg);
576    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
577      IndexRegNo = 4;
578    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
579  } else {
580    unsigned IndexRegNo;
581    if (IndexReg.getReg())
582      IndexRegNo = GetX86RegNum(IndexReg);
583    else
584      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
585    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
586  }
587
588  // Do we need to output a displacement?
589  if (ForceDisp8)
590    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
591  else if (ForceDisp32 || Disp.getImm() != 0)
592    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
593                  CurByte, OS, Fixups);
594}
595
596/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
597/// called VEX.
598void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
599                                           int MemOperand, const MCInst &MI,
600                                           const MCInstrDesc &Desc,
601                                           raw_ostream &OS) const {
602  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
603
604  uint64_t Encoding = TSFlags & X86II::EncodingMask;
605  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
606  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
607  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
608
609  // VEX_R: opcode externsion equivalent to REX.R in
610  // 1's complement (inverted) form
611  //
612  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
613  //  0: Same as REX_R=1 (64 bit mode only)
614  //
615  uint8_t VEX_R = 0x1;
616  uint8_t EVEX_R2 = 0x1;
617
618  // VEX_X: equivalent to REX.X, only used when a
619  // register is used for index in SIB Byte.
620  //
621  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
622  //  0: Same as REX.X=1 (64-bit mode only)
623  uint8_t VEX_X = 0x1;
624
625  // VEX_B:
626  //
627  //  1: Same as REX_B=0 (ignored in 32-bit mode)
628  //  0: Same as REX_B=1 (64 bit mode only)
629  //
630  uint8_t VEX_B = 0x1;
631
632  // VEX_W: opcode specific (use like REX.W, or used for
633  // opcode extension, or ignored, depending on the opcode byte)
634  uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
635
636  // VEX_5M (VEX m-mmmmm field):
637  //
638  //  0b00000: Reserved for future use
639  //  0b00001: implied 0F leading opcode
640  //  0b00010: implied 0F 38 leading opcode bytes
641  //  0b00011: implied 0F 3A leading opcode bytes
642  //  0b00100-0b11111: Reserved for future use
643  //  0b01000: XOP map select - 08h instructions with imm byte
644  //  0b01001: XOP map select - 09h instructions with no imm byte
645  //  0b01010: XOP map select - 0Ah instructions with imm dword
646  uint8_t VEX_5M;
647  switch (TSFlags & X86II::OpMapMask) {
648  default: llvm_unreachable("Invalid prefix!");
649  case X86II::TB:   VEX_5M = 0x1; break; // 0F
650  case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
651  case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
652  case X86II::XOP8: VEX_5M = 0x8; break;
653  case X86II::XOP9: VEX_5M = 0x9; break;
654  case X86II::XOPA: VEX_5M = 0xA; break;
655  }
656
657  // VEX_4V (VEX vvvv field): a register specifier
658  // (in 1's complement form) or 1111 if unused.
659  uint8_t VEX_4V = 0xf;
660  uint8_t EVEX_V2 = 0x1;
661
662  // EVEX_L2/VEX_L (Vector Length):
663  //
664  // L2 L
665  //  0 0: scalar or 128-bit vector
666  //  0 1: 256-bit vector
667  //  1 0: 512-bit vector
668  //
669  uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
670  uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
671
672  // VEX_PP: opcode extension providing equivalent
673  // functionality of a SIMD prefix
674  //
675  //  0b00: None
676  //  0b01: 66
677  //  0b10: F3
678  //  0b11: F2
679  //
680  uint8_t VEX_PP;
681  switch (TSFlags & X86II::OpPrefixMask) {
682  default: llvm_unreachable("Invalid op prefix!");
683  case X86II::PS: VEX_PP = 0x0; break; // none
684  case X86II::PD: VEX_PP = 0x1; break; // 66
685  case X86II::XS: VEX_PP = 0x2; break; // F3
686  case X86II::XD: VEX_PP = 0x3; break; // F2
687  }
688
689  // EVEX_U
690  uint8_t EVEX_U = 1; // Always '1' so far
691
692  // EVEX_z
693  uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
694
695  // EVEX_b
696  uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
697
698  // EVEX_rc
699  uint8_t EVEX_rc = 0;
700
701  // EVEX_aaa
702  uint8_t EVEX_aaa = 0;
703
704  bool EncodeRC = false;
705
706  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
707  unsigned NumOps = Desc.getNumOperands();
708  unsigned CurOp = X86II::getOperandBias(Desc);
709
710  switch (TSFlags & X86II::FormMask) {
711  default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
712  case X86II::RawFrm:
713    break;
714  case X86II::MRMDestMem: {
715    // MRMDestMem instructions forms:
716    //  MemAddr, src1(ModR/M)
717    //  MemAddr, src1(VEX_4V), src2(ModR/M)
718    //  MemAddr, src1(ModR/M), imm8
719    //
720    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
721    VEX_B = ~(BaseRegEnc >> 3) & 1;
722    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
723    VEX_X = ~(IndexRegEnc >> 3) & 1;
724    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
725      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
726
727    CurOp += X86::AddrNumOperands;
728
729    if (HasEVEX_K)
730      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
731
732    if (HasVEX_4V) {
733      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
734      VEX_4V = ~VRegEnc & 0xf;
735      EVEX_V2 = ~(VRegEnc >> 4) & 1;
736    }
737
738    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
739    VEX_R = ~(RegEnc >> 3) & 1;
740    EVEX_R2 = ~(RegEnc >> 4) & 1;
741    break;
742  }
743  case X86II::MRMSrcMem: {
744    // MRMSrcMem instructions forms:
745    //  src1(ModR/M), MemAddr
746    //  src1(ModR/M), src2(VEX_4V), MemAddr
747    //  src1(ModR/M), MemAddr, imm8
748    //  src1(ModR/M), MemAddr, src2(Imm[7:4])
749    //
750    //  FMA4:
751    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
752    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
753    VEX_R = ~(RegEnc >> 3) & 1;
754    EVEX_R2 = ~(RegEnc >> 4) & 1;
755
756    if (HasEVEX_K)
757      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
758
759    if (HasVEX_4V) {
760      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
761      VEX_4V = ~VRegEnc & 0xf;
762      EVEX_V2 = ~(VRegEnc >> 4) & 1;
763    }
764
765    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
766    VEX_B = ~(BaseRegEnc >> 3) & 1;
767    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
768    VEX_X = ~(IndexRegEnc >> 3) & 1;
769    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
770      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
771
772    break;
773  }
774  case X86II::MRMSrcMem4VOp3: {
775    // Instruction format for 4VOp3:
776    //   src1(ModR/M), MemAddr, src3(VEX_4V)
777    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
778    VEX_R = ~(RegEnc >> 3) & 1;
779
780    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
781    VEX_B = ~(BaseRegEnc >> 3) & 1;
782    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
783    VEX_X = ~(IndexRegEnc >> 3) & 1;
784
785    VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
786    break;
787  }
788  case X86II::MRMSrcMemOp4: {
789    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
790    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
791    VEX_R = ~(RegEnc >> 3) & 1;
792
793    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
794    VEX_4V = ~VRegEnc & 0xf;
795
796    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
797    VEX_B = ~(BaseRegEnc >> 3) & 1;
798    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
799    VEX_X = ~(IndexRegEnc >> 3) & 1;
800    break;
801  }
802  case X86II::MRM0m: case X86II::MRM1m:
803  case X86II::MRM2m: case X86II::MRM3m:
804  case X86II::MRM4m: case X86II::MRM5m:
805  case X86II::MRM6m: case X86II::MRM7m: {
806    // MRM[0-9]m instructions forms:
807    //  MemAddr
808    //  src1(VEX_4V), MemAddr
809    if (HasVEX_4V) {
810      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
811      VEX_4V = ~VRegEnc & 0xf;
812      EVEX_V2 = ~(VRegEnc >> 4) & 1;
813    }
814
815    if (HasEVEX_K)
816      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
817
818    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
819    VEX_B = ~(BaseRegEnc >> 3) & 1;
820    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
821    VEX_X = ~(IndexRegEnc >> 3) & 1;
822    break;
823  }
824  case X86II::MRMSrcReg: {
825    // MRMSrcReg instructions forms:
826    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
827    //  dst(ModR/M), src1(ModR/M)
828    //  dst(ModR/M), src1(ModR/M), imm8
829    //
830    //  FMA4:
831    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
832    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
833    VEX_R = ~(RegEnc >> 3) & 1;
834    EVEX_R2 = ~(RegEnc >> 4) & 1;
835
836    if (HasEVEX_K)
837      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
838
839    if (HasVEX_4V) {
840      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
841      VEX_4V = ~VRegEnc & 0xf;
842      EVEX_V2 = ~(VRegEnc >> 4) & 1;
843    }
844
845    RegEnc = getX86RegEncoding(MI, CurOp++);
846    VEX_B = ~(RegEnc >> 3) & 1;
847    VEX_X = ~(RegEnc >> 4) & 1;
848
849    if (EVEX_b) {
850      if (HasEVEX_RC) {
851        unsigned RcOperand = NumOps-1;
852        assert(RcOperand >= CurOp);
853        EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
854      }
855      EncodeRC = true;
856    }
857    break;
858  }
859  case X86II::MRMSrcReg4VOp3: {
860    // Instruction format for 4VOp3:
861    //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
862    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
863    VEX_R = ~(RegEnc >> 3) & 1;
864
865    RegEnc = getX86RegEncoding(MI, CurOp++);
866    VEX_B = ~(RegEnc >> 3) & 1;
867
868    VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
869    break;
870  }
871  case X86II::MRMSrcRegOp4: {
872    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
873    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
874    VEX_R = ~(RegEnc >> 3) & 1;
875
876    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
877    VEX_4V = ~VRegEnc & 0xf;
878
879    // Skip second register source (encoded in Imm[7:4])
880    ++CurOp;
881
882    RegEnc = getX86RegEncoding(MI, CurOp++);
883    VEX_B = ~(RegEnc >> 3) & 1;
884    VEX_X = ~(RegEnc >> 4) & 1;
885    break;
886  }
887  case X86II::MRMDestReg: {
888    // MRMDestReg instructions forms:
889    //  dst(ModR/M), src(ModR/M)
890    //  dst(ModR/M), src(ModR/M), imm8
891    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
892    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
893    VEX_B = ~(RegEnc >> 3) & 1;
894    VEX_X = ~(RegEnc >> 4) & 1;
895
896    if (HasEVEX_K)
897      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
898
899    if (HasVEX_4V) {
900      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
901      VEX_4V = ~VRegEnc & 0xf;
902      EVEX_V2 = ~(VRegEnc >> 4) & 1;
903    }
904
905    RegEnc = getX86RegEncoding(MI, CurOp++);
906    VEX_R = ~(RegEnc >> 3) & 1;
907    EVEX_R2 = ~(RegEnc >> 4) & 1;
908    if (EVEX_b)
909      EncodeRC = true;
910    break;
911  }
912  case X86II::MRM0r: case X86II::MRM1r:
913  case X86II::MRM2r: case X86II::MRM3r:
914  case X86II::MRM4r: case X86II::MRM5r:
915  case X86II::MRM6r: case X86II::MRM7r: {
916    // MRM0r-MRM7r instructions forms:
917    //  dst(VEX_4V), src(ModR/M), imm8
918    if (HasVEX_4V) {
919      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
920      VEX_4V = ~VRegEnc & 0xf;
921      EVEX_V2 = ~(VRegEnc >> 4) & 1;
922    }
923    if (HasEVEX_K)
924      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
925
926    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
927    VEX_B = ~(RegEnc >> 3) & 1;
928    VEX_X = ~(RegEnc >> 4) & 1;
929    break;
930  }
931  }
932
933  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
934    // VEX opcode prefix can have 2 or 3 bytes
935    //
936    //  3 bytes:
937    //    +-----+ +--------------+ +-------------------+
938    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
939    //    +-----+ +--------------+ +-------------------+
940    //  2 bytes:
941    //    +-----+ +-------------------+
942    //    | C5h | | R | vvvv | L | pp |
943    //    +-----+ +-------------------+
944    //
945    //  XOP uses a similar prefix:
946    //    +-----+ +--------------+ +-------------------+
947    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
948    //    +-----+ +--------------+ +-------------------+
949    uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
950
951    // Can we use the 2 byte VEX prefix?
952    if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
953      EmitByte(0xC5, CurByte, OS);
954      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
955      return;
956    }
957
958    // 3 byte VEX prefix
959    EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
960    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
961    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
962  } else {
963    assert(Encoding == X86II::EVEX && "unknown encoding!");
964    // EVEX opcode prefix can have 4 bytes
965    //
966    // +-----+ +--------------+ +-------------------+ +------------------------+
967    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
968    // +-----+ +--------------+ +-------------------+ +------------------------+
969    assert((VEX_5M & 0x3) == VEX_5M
970           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
971
972    EmitByte(0x62, CurByte, OS);
973    EmitByte((VEX_R   << 7) |
974             (VEX_X   << 6) |
975             (VEX_B   << 5) |
976             (EVEX_R2 << 4) |
977             VEX_5M, CurByte, OS);
978    EmitByte((VEX_W   << 7) |
979             (VEX_4V  << 3) |
980             (EVEX_U  << 2) |
981             VEX_PP, CurByte, OS);
982    if (EncodeRC)
983      EmitByte((EVEX_z  << 7) |
984               (EVEX_rc << 5) |
985               (EVEX_b  << 4) |
986               (EVEX_V2 << 3) |
987               EVEX_aaa, CurByte, OS);
988    else
989      EmitByte((EVEX_z  << 7) |
990               (EVEX_L2 << 6) |
991               (VEX_L   << 5) |
992               (EVEX_b  << 4) |
993               (EVEX_V2 << 3) |
994               EVEX_aaa, CurByte, OS);
995  }
996}
997
998/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
999/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
1000/// size, and 3) use of X86-64 extended registers.
1001uint8_t X86MCCodeEmitter::DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
1002                                             int MemOperand,
1003                                             const MCInstrDesc &Desc) const {
1004  uint8_t REX = 0;
1005  bool UsesHighByteReg = false;
1006
1007  if (TSFlags & X86II::REX_W)
1008    REX |= 1 << 3; // set REX.W
1009
1010  if (MI.getNumOperands() == 0) return REX;
1011
1012  unsigned NumOps = MI.getNumOperands();
1013  unsigned CurOp = X86II::getOperandBias(Desc);
1014
1015  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1016  for (unsigned i = CurOp; i != NumOps; ++i) {
1017    const MCOperand &MO = MI.getOperand(i);
1018    if (!MO.isReg()) continue;
1019    unsigned Reg = MO.getReg();
1020    if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1021      UsesHighByteReg = true;
1022    if (X86II::isX86_64NonExtLowByteReg(Reg))
1023      // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
1024      // that returns non-zero.
1025      REX |= 0x40; // REX fixed encoding prefix
1026  }
1027
1028  switch (TSFlags & X86II::FormMask) {
1029  case X86II::AddRegFrm:
1030    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1031    break;
1032  case X86II::MRMSrcReg:
1033    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1034    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1035    break;
1036  case X86II::MRMSrcMem: {
1037    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1038    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
1039    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
1040    CurOp += X86::AddrNumOperands;
1041    break;
1042  }
1043  case X86II::MRMDestReg:
1044    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1045    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1046    break;
1047  case X86II::MRMDestMem:
1048    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
1049    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
1050    CurOp += X86::AddrNumOperands;
1051    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1052    break;
1053  case X86II::MRMXm:
1054  case X86II::MRM0m: case X86II::MRM1m:
1055  case X86II::MRM2m: case X86II::MRM3m:
1056  case X86II::MRM4m: case X86II::MRM5m:
1057  case X86II::MRM6m: case X86II::MRM7m:
1058    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
1059    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
1060    break;
1061  case X86II::MRMXr:
1062  case X86II::MRM0r: case X86II::MRM1r:
1063  case X86II::MRM2r: case X86II::MRM3r:
1064  case X86II::MRM4r: case X86II::MRM5r:
1065  case X86II::MRM6r: case X86II::MRM7r:
1066    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1067    break;
1068  }
1069  if (REX && UsesHighByteReg)
1070    report_fatal_error("Cannot encode high byte register in REX-prefixed instruction");
1071
1072  return REX;
1073}
1074
1075/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1076void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
1077                                                 unsigned SegOperand,
1078                                                 const MCInst &MI,
1079                                                 raw_ostream &OS) const {
1080  // Check for explicit segment override on memory operand.
1081  switch (MI.getOperand(SegOperand).getReg()) {
1082  default: llvm_unreachable("Unknown segment register!");
1083  case 0: break;
1084  case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1085  case X86::SS: EmitByte(0x36, CurByte, OS); break;
1086  case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1087  case X86::ES: EmitByte(0x26, CurByte, OS); break;
1088  case X86::FS: EmitByte(0x64, CurByte, OS); break;
1089  case X86::GS: EmitByte(0x65, CurByte, OS); break;
1090  }
1091}
1092
1093/// Emit all instruction prefixes prior to the opcode.
1094///
1095/// MemOperand is the operand # of the start of a memory operand if present.  If
1096/// Not present, it is -1.
1097///
1098/// Returns true if a REX prefix was used.
1099bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1100                                        int MemOperand, const MCInst &MI,
1101                                        const MCInstrDesc &Desc,
1102                                        const MCSubtargetInfo &STI,
1103                                        raw_ostream &OS) const {
1104  bool Ret = false;
1105  // Emit the operand size opcode prefix as needed.
1106  if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
1107                                                         : X86II::OpSize16))
1108    EmitByte(0x66, CurByte, OS);
1109
1110  // Emit the LOCK opcode prefix.
1111  if (TSFlags & X86II::LOCK)
1112    EmitByte(0xF0, CurByte, OS);
1113
1114  switch (TSFlags & X86II::OpPrefixMask) {
1115  case X86II::PD:   // 66
1116    EmitByte(0x66, CurByte, OS);
1117    break;
1118  case X86II::XS:   // F3
1119    EmitByte(0xF3, CurByte, OS);
1120    break;
1121  case X86II::XD:   // F2
1122    EmitByte(0xF2, CurByte, OS);
1123    break;
1124  }
1125
1126  // Handle REX prefix.
1127  // FIXME: Can this come before F2 etc to simplify emission?
1128  if (is64BitMode(STI)) {
1129    if (uint8_t REX = DetermineREXPrefix(MI, TSFlags, MemOperand, Desc)) {
1130      EmitByte(0x40 | REX, CurByte, OS);
1131      Ret = true;
1132    }
1133  }
1134
1135  // 0x0F escape code must be emitted just before the opcode.
1136  switch (TSFlags & X86II::OpMapMask) {
1137  case X86II::TB:  // Two-byte opcode map
1138  case X86II::T8:  // 0F 38
1139  case X86II::TA:  // 0F 3A
1140    EmitByte(0x0F, CurByte, OS);
1141    break;
1142  }
1143
1144  switch (TSFlags & X86II::OpMapMask) {
1145  case X86II::T8:    // 0F 38
1146    EmitByte(0x38, CurByte, OS);
1147    break;
1148  case X86II::TA:    // 0F 3A
1149    EmitByte(0x3A, CurByte, OS);
1150    break;
1151  }
1152  return Ret;
1153}
1154
1155void X86MCCodeEmitter::
1156encodeInstruction(const MCInst &MI, raw_ostream &OS,
1157                  SmallVectorImpl<MCFixup> &Fixups,
1158                  const MCSubtargetInfo &STI) const {
1159  unsigned Opcode = MI.getOpcode();
1160  const MCInstrDesc &Desc = MCII.get(Opcode);
1161  uint64_t TSFlags = Desc.TSFlags;
1162
1163  // Pseudo instructions don't get encoded.
1164  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1165    return;
1166
1167  unsigned NumOps = Desc.getNumOperands();
1168  unsigned CurOp = X86II::getOperandBias(Desc);
1169
1170  // Keep track of the current byte being emitted.
1171  unsigned CurByte = 0;
1172
1173  // Encoding type for this instruction.
1174  uint64_t Encoding = TSFlags & X86II::EncodingMask;
1175
1176  // It uses the VEX.VVVV field?
1177  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1178  bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
1179
1180  // It uses the EVEX.aaa field?
1181  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1182  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1183
1184  // Used if a register is encoded in 7:4 of immediate.
1185  unsigned I8RegNum = 0;
1186
1187  // Determine where the memory operand starts, if present.
1188  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
1189  if (MemoryOperand != -1) MemoryOperand += CurOp;
1190
1191  // Emit segment override opcode prefix as needed.
1192  if (MemoryOperand >= 0)
1193    EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
1194                              MI, OS);
1195
1196  // Emit the repeat opcode prefix as needed.
1197  if (TSFlags & X86II::REP)
1198    EmitByte(0xF3, CurByte, OS);
1199
1200  // Emit the address size opcode prefix as needed.
1201  bool need_address_override;
1202  uint64_t AdSize = TSFlags & X86II::AdSizeMask;
1203  if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
1204      (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
1205      (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
1206    need_address_override = true;
1207  } else if (MemoryOperand < 0) {
1208    need_address_override = false;
1209  } else if (is64BitMode(STI)) {
1210    assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
1211    need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1212  } else if (is32BitMode(STI)) {
1213    assert(!Is64BitMemOperand(MI, MemoryOperand));
1214    need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
1215  } else {
1216    assert(is16BitMode(STI));
1217    assert(!Is64BitMemOperand(MI, MemoryOperand));
1218    need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
1219  }
1220
1221  if (need_address_override)
1222    EmitByte(0x67, CurByte, OS);
1223
1224  bool Rex = false;
1225  if (Encoding == 0)
1226    Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
1227  else
1228    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1229
1230  uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1231
1232  if (TSFlags & X86II::Has3DNow0F0FOpcode)
1233    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
1234
1235  uint64_t Form = TSFlags & X86II::FormMask;
1236  switch (Form) {
1237  default: errs() << "FORM: " << Form << "\n";
1238    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1239  case X86II::Pseudo:
1240    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1241  case X86II::RawFrmDstSrc: {
1242    unsigned siReg = MI.getOperand(1).getReg();
1243    assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
1244            (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
1245            (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
1246           "SI and DI register sizes do not match");
1247    // Emit segment override opcode prefix as needed (not for %ds).
1248    if (MI.getOperand(2).getReg() != X86::DS)
1249      EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
1250    // Emit AdSize prefix as needed.
1251    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1252        (is32BitMode(STI) && siReg == X86::SI))
1253      EmitByte(0x67, CurByte, OS);
1254    CurOp += 3; // Consume operands.
1255    EmitByte(BaseOpcode, CurByte, OS);
1256    break;
1257  }
1258  case X86II::RawFrmSrc: {
1259    unsigned siReg = MI.getOperand(0).getReg();
1260    // Emit segment override opcode prefix as needed (not for %ds).
1261    if (MI.getOperand(1).getReg() != X86::DS)
1262      EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1263    // Emit AdSize prefix as needed.
1264    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1265        (is32BitMode(STI) && siReg == X86::SI))
1266      EmitByte(0x67, CurByte, OS);
1267    CurOp += 2; // Consume operands.
1268    EmitByte(BaseOpcode, CurByte, OS);
1269    break;
1270  }
1271  case X86II::RawFrmDst: {
1272    unsigned siReg = MI.getOperand(0).getReg();
1273    // Emit AdSize prefix as needed.
1274    if ((!is32BitMode(STI) && siReg == X86::EDI) ||
1275        (is32BitMode(STI) && siReg == X86::DI))
1276      EmitByte(0x67, CurByte, OS);
1277    ++CurOp; // Consume operand.
1278    EmitByte(BaseOpcode, CurByte, OS);
1279    break;
1280  }
1281  case X86II::RawFrm:
1282    EmitByte(BaseOpcode, CurByte, OS);
1283    break;
1284  case X86II::RawFrmMemOffs:
1285    // Emit segment override opcode prefix as needed.
1286    EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1287    EmitByte(BaseOpcode, CurByte, OS);
1288    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1289                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1290                  CurByte, OS, Fixups);
1291    ++CurOp; // skip segment operand
1292    break;
1293  case X86II::RawFrmImm8:
1294    EmitByte(BaseOpcode, CurByte, OS);
1295    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1296                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1297                  CurByte, OS, Fixups);
1298    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1299                  OS, Fixups);
1300    break;
1301  case X86II::RawFrmImm16:
1302    EmitByte(BaseOpcode, CurByte, OS);
1303    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1304                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1305                  CurByte, OS, Fixups);
1306    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1307                  OS, Fixups);
1308    break;
1309
1310  case X86II::AddRegFrm:
1311    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1312    break;
1313
1314  case X86II::MRMDestReg: {
1315    EmitByte(BaseOpcode, CurByte, OS);
1316    unsigned SrcRegNum = CurOp + 1;
1317
1318    if (HasEVEX_K) // Skip writemask
1319      ++SrcRegNum;
1320
1321    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1322      ++SrcRegNum;
1323
1324    EmitRegModRMByte(MI.getOperand(CurOp),
1325                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1326    CurOp = SrcRegNum + 1;
1327    break;
1328  }
1329  case X86II::MRMDestMem: {
1330    EmitByte(BaseOpcode, CurByte, OS);
1331    unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1332
1333    if (HasEVEX_K) // Skip writemask
1334      ++SrcRegNum;
1335
1336    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1337      ++SrcRegNum;
1338
1339    emitMemModRMByte(MI, CurOp, GetX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
1340                     Rex, CurByte, OS, Fixups, STI);
1341    CurOp = SrcRegNum + 1;
1342    break;
1343  }
1344  case X86II::MRMSrcReg: {
1345    EmitByte(BaseOpcode, CurByte, OS);
1346    unsigned SrcRegNum = CurOp + 1;
1347
1348    if (HasEVEX_K) // Skip writemask
1349      ++SrcRegNum;
1350
1351    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1352      ++SrcRegNum;
1353
1354    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1355                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1356    CurOp = SrcRegNum + 1;
1357    if (HasVEX_I8Reg)
1358      I8RegNum = getX86RegEncoding(MI, CurOp++);
1359    // do not count the rounding control operand
1360    if (HasEVEX_RC)
1361      --NumOps;
1362    break;
1363  }
1364  case X86II::MRMSrcReg4VOp3: {
1365    EmitByte(BaseOpcode, CurByte, OS);
1366    unsigned SrcRegNum = CurOp + 1;
1367
1368    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1369                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1370    CurOp = SrcRegNum + 1;
1371    ++CurOp; // Encoded in VEX.VVVV
1372    break;
1373  }
1374  case X86II::MRMSrcRegOp4: {
1375    EmitByte(BaseOpcode, CurByte, OS);
1376    unsigned SrcRegNum = CurOp + 1;
1377
1378    // Skip 1st src (which is encoded in VEX_VVVV)
1379    ++SrcRegNum;
1380
1381    // Capture 2nd src (which is encoded in Imm[7:4])
1382    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1383    I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
1384
1385    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1386                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1387    CurOp = SrcRegNum + 1;
1388    break;
1389  }
1390  case X86II::MRMSrcMem: {
1391    unsigned FirstMemOp = CurOp+1;
1392
1393    if (HasEVEX_K) // Skip writemask
1394      ++FirstMemOp;
1395
1396    if (HasVEX_4V)
1397      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1398
1399    EmitByte(BaseOpcode, CurByte, OS);
1400
1401    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1402                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1403    CurOp = FirstMemOp + X86::AddrNumOperands;
1404    if (HasVEX_I8Reg)
1405      I8RegNum = getX86RegEncoding(MI, CurOp++);
1406    break;
1407  }
1408  case X86II::MRMSrcMem4VOp3: {
1409    unsigned FirstMemOp = CurOp+1;
1410
1411    EmitByte(BaseOpcode, CurByte, OS);
1412
1413    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1414                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1415    CurOp = FirstMemOp + X86::AddrNumOperands;
1416    ++CurOp; // Encoded in VEX.VVVV.
1417    break;
1418  }
1419  case X86II::MRMSrcMemOp4: {
1420    unsigned FirstMemOp = CurOp+1;
1421
1422    ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1423
1424    // Capture second register source (encoded in Imm[7:4])
1425    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1426    I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
1427
1428    EmitByte(BaseOpcode, CurByte, OS);
1429
1430    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1431                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1432    CurOp = FirstMemOp + X86::AddrNumOperands;
1433    break;
1434  }
1435
1436  case X86II::MRMXr:
1437  case X86II::MRM0r: case X86II::MRM1r:
1438  case X86II::MRM2r: case X86II::MRM3r:
1439  case X86II::MRM4r: case X86II::MRM5r:
1440  case X86II::MRM6r: case X86II::MRM7r:
1441    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1442      ++CurOp;
1443    if (HasEVEX_K) // Skip writemask
1444      ++CurOp;
1445    EmitByte(BaseOpcode, CurByte, OS);
1446    EmitRegModRMByte(MI.getOperand(CurOp++),
1447                     (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
1448                     CurByte, OS);
1449    break;
1450
1451  case X86II::MRMXm:
1452  case X86II::MRM0m: case X86II::MRM1m:
1453  case X86II::MRM2m: case X86II::MRM3m:
1454  case X86II::MRM4m: case X86II::MRM5m:
1455  case X86II::MRM6m: case X86II::MRM7m:
1456    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1457      ++CurOp;
1458    if (HasEVEX_K) // Skip writemask
1459      ++CurOp;
1460    EmitByte(BaseOpcode, CurByte, OS);
1461    emitMemModRMByte(MI, CurOp,
1462                     (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
1463                     Rex, CurByte, OS, Fixups, STI);
1464    CurOp += X86::AddrNumOperands;
1465    break;
1466
1467  case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1468  case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1469  case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1470  case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1471  case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1472  case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1473  case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1474  case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1475  case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1476  case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1477  case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1478  case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1479  case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1480  case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1481  case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1482  case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1483  case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1484  case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1485  case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1486  case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1487  case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1488  case X86II::MRM_FF:
1489    EmitByte(BaseOpcode, CurByte, OS);
1490    EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
1491    break;
1492  }
1493
1494  if (HasVEX_I8Reg) {
1495    // The last source register of a 4 operand instruction in AVX is encoded
1496    // in bits[7:4] of a immediate byte.
1497    assert(I8RegNum < 16 && "Register encoding out of range");
1498    I8RegNum <<= 4;
1499    if (CurOp != NumOps) {
1500      unsigned Val = MI.getOperand(CurOp++).getImm();
1501      assert(Val < 16 && "Immediate operand value out of range");
1502      I8RegNum |= Val;
1503    }
1504    EmitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
1505                  CurByte, OS, Fixups);
1506  } else {
1507    // If there is a remaining operand, it must be a trailing immediate. Emit it
1508    // according to the right size for the instruction. Some instructions
1509    // (SSE4a extrq and insertq) have two trailing immediates.
1510    while (CurOp != NumOps && NumOps - CurOp <= 2) {
1511      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1512                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1513                    CurByte, OS, Fixups);
1514    }
1515  }
1516
1517  if (TSFlags & X86II::Has3DNow0F0FOpcode)
1518    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1519
1520#ifndef NDEBUG
1521  // FIXME: Verify.
1522  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1523    errs() << "Cannot encode all operands of: ";
1524    MI.dump();
1525    errs() << '\n';
1526    abort();
1527  }
1528#endif
1529}
1530
1531MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
1532                                            const MCRegisterInfo &MRI,
1533                                            MCContext &Ctx) {
1534  return new X86MCCodeEmitter(MCII, Ctx);
1535}
1536