X86MCCodeEmitter.cpp revision 314564
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MCTargetDesc/X86MCTargetDesc.h"
15#include "MCTargetDesc/X86BaseInfo.h"
16#include "MCTargetDesc/X86FixupKinds.h"
17#include "llvm/MC/MCCodeEmitter.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/MC/MCSymbol.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29#define DEBUG_TYPE "mccodeemitter"
30
31namespace {
32class X86MCCodeEmitter : public MCCodeEmitter {
33  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
34  void operator=(const X86MCCodeEmitter &) = delete;
35  const MCInstrInfo &MCII;
36  MCContext &Ctx;
37public:
38  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
39    : MCII(mcii), Ctx(ctx) {
40  }
41
42  ~X86MCCodeEmitter() override {}
43
44  bool is64BitMode(const MCSubtargetInfo &STI) const {
45    return STI.getFeatureBits()[X86::Mode64Bit];
46  }
47
48  bool is32BitMode(const MCSubtargetInfo &STI) const {
49    return STI.getFeatureBits()[X86::Mode32Bit];
50  }
51
52  bool is16BitMode(const MCSubtargetInfo &STI) const {
53    return STI.getFeatureBits()[X86::Mode16Bit];
54  }
55
56  /// Is16BitMemOperand - Return true if the specified instruction has
57  /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
58  bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
59                         const MCSubtargetInfo &STI) const {
60    const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
61    const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
62    const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
63
64    if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
65        Disp.isImm() && Disp.getImm() < 0x10000)
66      return true;
67    if ((BaseReg.getReg() != 0 &&
68         X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
69        (IndexReg.getReg() != 0 &&
70         X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
71      return true;
72    return false;
73  }
74
75  unsigned GetX86RegNum(const MCOperand &MO) const {
76    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
77  }
78
79  unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const {
80    return Ctx.getRegisterInfo()->getEncodingValue(
81                                                 MI.getOperand(OpNum).getReg());
82  }
83
84  // Does this register require a bit to be set in REX prefix.
85  bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const {
86    return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
87  }
88
89  void EmitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const {
90    OS << (char)C;
91    ++CurByte;
92  }
93
94  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
95                    raw_ostream &OS) const {
96    // Output the constant in little endian byte order.
97    for (unsigned i = 0; i != Size; ++i) {
98      EmitByte(Val & 255, CurByte, OS);
99      Val >>= 8;
100    }
101  }
102
103  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
104                     unsigned ImmSize, MCFixupKind FixupKind,
105                     unsigned &CurByte, raw_ostream &OS,
106                     SmallVectorImpl<MCFixup> &Fixups,
107                     int ImmOffset = 0) const;
108
109  inline static uint8_t ModRMByte(unsigned Mod, unsigned RegOpcode,
110                                  unsigned RM) {
111    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
112    return RM | (RegOpcode << 3) | (Mod << 6);
113  }
114
115  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
116                        unsigned &CurByte, raw_ostream &OS) const {
117    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
118  }
119
120  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
121                   unsigned &CurByte, raw_ostream &OS) const {
122    // SIB byte is in the same format as the ModRMByte.
123    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
124  }
125
126  void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
127                        uint64_t TSFlags, bool Rex, unsigned &CurByte,
128                        raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
129                        const MCSubtargetInfo &STI) const;
130
131  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
132                         SmallVectorImpl<MCFixup> &Fixups,
133                         const MCSubtargetInfo &STI) const override;
134
135  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
136                           const MCInst &MI, const MCInstrDesc &Desc,
137                           raw_ostream &OS) const;
138
139  void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
140                                 const MCInst &MI, raw_ostream &OS) const;
141
142  bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
143                        const MCInst &MI, const MCInstrDesc &Desc,
144                        const MCSubtargetInfo &STI, raw_ostream &OS) const;
145
146  uint8_t DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
147                             int MemOperand, const MCInstrDesc &Desc) const;
148};
149
150} // end anonymous namespace
151
152MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
153                                            const MCRegisterInfo &MRI,
154                                            MCContext &Ctx) {
155  return new X86MCCodeEmitter(MCII, Ctx);
156}
157
158/// isDisp8 - Return true if this signed displacement fits in a 8-bit
159/// sign-extended field.
160static bool isDisp8(int Value) {
161  return Value == (int8_t)Value;
162}
163
164/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
165/// compressed dispacement field.
166static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
167  assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
168         "Compressed 8-bit displacement is only valid for EVEX inst.");
169
170  unsigned CD8_Scale =
171    (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
172  if (CD8_Scale == 0) {
173    CValue = Value;
174    return isDisp8(Value);
175  }
176
177  unsigned Mask = CD8_Scale - 1;
178  assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
179  if (Value & Mask) // Unaligned offset
180    return false;
181  Value /= (int)CD8_Scale;
182  bool Ret = (Value == (int8_t)Value);
183
184  if (Ret)
185    CValue = Value;
186  return Ret;
187}
188
189/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
190/// in an instruction with the specified TSFlags.
191static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
192  unsigned Size = X86II::getSizeOfImm(TSFlags);
193  bool isPCRel = X86II::isImmPCRel(TSFlags);
194
195  if (X86II::isImmSigned(TSFlags)) {
196    switch (Size) {
197    default: llvm_unreachable("Unsupported signed fixup size!");
198    case 4: return MCFixupKind(X86::reloc_signed_4byte);
199    }
200  }
201  return MCFixup::getKindForSize(Size, isPCRel);
202}
203
204/// Is32BitMemOperand - Return true if the specified instruction has
205/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
206static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
207  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
208  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
209
210  if ((BaseReg.getReg() != 0 &&
211       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
212      (IndexReg.getReg() != 0 &&
213       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
214    return true;
215  if (BaseReg.getReg() == X86::EIP) {
216    assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
217    return true;
218  }
219  return false;
220}
221
222/// Is64BitMemOperand - Return true if the specified instruction has
223/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
224#ifndef NDEBUG
225static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
226  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
227  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
228
229  if ((BaseReg.getReg() != 0 &&
230       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
231      (IndexReg.getReg() != 0 &&
232       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
233    return true;
234  return false;
235}
236#endif
237
238/// StartsWithGlobalOffsetTable - Check if this expression starts with
239///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
240///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
241/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
242/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
243/// of a binary expression.
244enum GlobalOffsetTableExprKind {
245  GOT_None,
246  GOT_Normal,
247  GOT_SymDiff
248};
249static GlobalOffsetTableExprKind
250StartsWithGlobalOffsetTable(const MCExpr *Expr) {
251  const MCExpr *RHS = nullptr;
252  if (Expr->getKind() == MCExpr::Binary) {
253    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
254    Expr = BE->getLHS();
255    RHS = BE->getRHS();
256  }
257
258  if (Expr->getKind() != MCExpr::SymbolRef)
259    return GOT_None;
260
261  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
262  const MCSymbol &S = Ref->getSymbol();
263  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
264    return GOT_None;
265  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
266    return GOT_SymDiff;
267  return GOT_Normal;
268}
269
270static bool HasSecRelSymbolRef(const MCExpr *Expr) {
271  if (Expr->getKind() == MCExpr::SymbolRef) {
272    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
273    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
274  }
275  return false;
276}
277
278void X86MCCodeEmitter::
279EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
280              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
281              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
282  const MCExpr *Expr = nullptr;
283  if (DispOp.isImm()) {
284    // If this is a simple integer displacement that doesn't require a
285    // relocation, emit it now.
286    if (FixupKind != FK_PCRel_1 &&
287        FixupKind != FK_PCRel_2 &&
288        FixupKind != FK_PCRel_4) {
289      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
290      return;
291    }
292    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
293  } else {
294    Expr = DispOp.getExpr();
295  }
296
297  // If we have an immoffset, add it to the expression.
298  if ((FixupKind == FK_Data_4 ||
299       FixupKind == FK_Data_8 ||
300       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
301    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
302    if (Kind != GOT_None) {
303      assert(ImmOffset == 0);
304
305      if (Size == 8) {
306        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
307      } else {
308        assert(Size == 4);
309        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
310      }
311
312      if (Kind == GOT_Normal)
313        ImmOffset = CurByte;
314    } else if (Expr->getKind() == MCExpr::SymbolRef) {
315      if (HasSecRelSymbolRef(Expr)) {
316        FixupKind = MCFixupKind(FK_SecRel_4);
317      }
318    } else if (Expr->getKind() == MCExpr::Binary) {
319      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
320      if (HasSecRelSymbolRef(Bin->getLHS())
321          || HasSecRelSymbolRef(Bin->getRHS())) {
322        FixupKind = MCFixupKind(FK_SecRel_4);
323      }
324    }
325  }
326
327  // If the fixup is pc-relative, we need to bias the value to be relative to
328  // the start of the field, not the end of the field.
329  if (FixupKind == FK_PCRel_4 ||
330      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
331      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
332      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
333      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex))
334    ImmOffset -= 4;
335  if (FixupKind == FK_PCRel_2)
336    ImmOffset -= 2;
337  if (FixupKind == FK_PCRel_1)
338    ImmOffset -= 1;
339
340  if (ImmOffset)
341    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
342                                   Ctx);
343
344  // Emit a symbolic constant as a fixup and 4 zeros.
345  Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
346  EmitConstant(0, Size, CurByte, OS);
347}
348
349void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
350                                        unsigned RegOpcodeField,
351                                        uint64_t TSFlags, bool Rex,
352                                        unsigned &CurByte, raw_ostream &OS,
353                                        SmallVectorImpl<MCFixup> &Fixups,
354                                        const MCSubtargetInfo &STI) const {
355  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
356  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
357  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
358  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
359  unsigned BaseReg = Base.getReg();
360  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
361
362  // Handle %rip relative addressing.
363  if (BaseReg == X86::RIP ||
364      BaseReg == X86::EIP) {    // [disp32+rIP] in X86-64 mode
365    assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
366    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
367    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
368
369    unsigned Opcode = MI.getOpcode();
370    // movq loads are handled with a special relocation form which allows the
371    // linker to eliminate some loads for GOT references which end up in the
372    // same linkage unit.
373    unsigned FixupKind = [=]() {
374      switch (Opcode) {
375      default:
376        return X86::reloc_riprel_4byte;
377      case X86::MOV64rm:
378        assert(Rex);
379        return X86::reloc_riprel_4byte_movq_load;
380      case X86::CALL64m:
381      case X86::JMP64m:
382      case X86::TEST64rm:
383      case X86::ADC64rm:
384      case X86::ADD64rm:
385      case X86::AND64rm:
386      case X86::CMP64rm:
387      case X86::OR64rm:
388      case X86::SBB64rm:
389      case X86::SUB64rm:
390      case X86::XOR64rm:
391        return Rex ? X86::reloc_riprel_4byte_relax_rex
392                   : X86::reloc_riprel_4byte_relax;
393      }
394    }();
395
396    // rip-relative addressing is actually relative to the *next* instruction.
397    // Since an immediate can follow the mod/rm byte for an instruction, this
398    // means that we need to bias the immediate field of the instruction with
399    // the size of the immediate field.  If we have this case, add it into the
400    // expression to emit.
401    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
402
403    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
404                  CurByte, OS, Fixups, -ImmSize);
405    return;
406  }
407
408  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
409
410  // 16-bit addressing forms of the ModR/M byte have a different encoding for
411  // the R/M field and are far more limited in which registers can be used.
412  if (Is16BitMemOperand(MI, Op, STI)) {
413    if (BaseReg) {
414      // For 32-bit addressing, the row and column values in Table 2-2 are
415      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
416      // some special cases. And GetX86RegNum reflects that numbering.
417      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
418      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
419      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
420      // while values 0-3 indicate the allowed combinations (base+index) of
421      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
422      //
423      // R16Table[] is a lookup from the normal RegNo, to the row values from
424      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
425      static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
426      unsigned RMfield = R16Table[BaseRegNo];
427
428      assert(RMfield && "invalid 16-bit base register");
429
430      if (IndexReg.getReg()) {
431        unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
432
433        assert(IndexReg16 && "invalid 16-bit index register");
434        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
435        assert(((IndexReg16 ^ RMfield) & 2) &&
436               "invalid 16-bit base/index register combination");
437        assert(Scale.getImm() == 1 &&
438               "invalid scale for 16-bit memory reference");
439
440        // Allow base/index to appear in either order (although GAS doesn't).
441        if (IndexReg16 & 2)
442          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
443        else
444          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
445      }
446
447      if (Disp.isImm() && isDisp8(Disp.getImm())) {
448        if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
449          // There is no displacement; just the register.
450          EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
451          return;
452        }
453        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
454        EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
455        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
456        return;
457      }
458      // This is the [REG]+disp16 case.
459      EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
460    } else {
461      // There is no BaseReg; this is the plain [disp16] case.
462      EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
463    }
464
465    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
466    EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
467    return;
468  }
469
470  // Determine whether a SIB byte is needed.
471  // If no BaseReg, issue a RIP relative instruction only if the MCE can
472  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
473  // 2-7) and absolute references.
474
475  if (// The SIB byte must be used if there is an index register.
476      IndexReg.getReg() == 0 &&
477      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
478      // encode to an R/M value of 4, which indicates that a SIB byte is
479      // present.
480      BaseRegNo != N86::ESP &&
481      // If there is no base register and we're in 64-bit mode, we need a SIB
482      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
483      (!is64BitMode(STI) || BaseReg != 0)) {
484
485    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
486      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
487      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
488      return;
489    }
490
491    // If the base is not EBP/ESP and there is no displacement, use simple
492    // indirect register encoding, this handles addresses like [EAX].  The
493    // encoding for [EBP] with no displacement means [disp32] so we handle it
494    // by emitting a displacement of 0 below.
495    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
496      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
497      return;
498    }
499
500    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
501    if (Disp.isImm()) {
502      if (!HasEVEX && isDisp8(Disp.getImm())) {
503        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
504        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
505        return;
506      }
507      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
508      // 32-bit displacement.
509      int CDisp8 = 0;
510      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
511        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
512        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
513                      CDisp8 - Disp.getImm());
514        return;
515      }
516    }
517
518    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
519    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
520    unsigned Opcode = MI.getOpcode();
521    unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
522                                                : X86::reloc_signed_4byte;
523    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
524                  Fixups);
525    return;
526  }
527
528  // We need a SIB byte, so start by outputting the ModR/M byte first
529  assert(IndexReg.getReg() != X86::ESP &&
530         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
531
532  bool ForceDisp32 = false;
533  bool ForceDisp8  = false;
534  int CDisp8 = 0;
535  int ImmOffset = 0;
536  if (BaseReg == 0) {
537    // If there is no base register, we emit the special case SIB byte with
538    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
539    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
540    ForceDisp32 = true;
541  } else if (!Disp.isImm()) {
542    // Emit the normal disp32 encoding.
543    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
544    ForceDisp32 = true;
545  } else if (Disp.getImm() == 0 &&
546             // Base reg can't be anything that ends up with '5' as the base
547             // reg, it is the magic [*] nomenclature that indicates no base.
548             BaseRegNo != N86::EBP) {
549    // Emit no displacement ModR/M byte
550    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
551  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
552    // Emit the disp8 encoding.
553    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
554    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
555  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
556    // Emit the disp8 encoding.
557    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
558    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
559    ImmOffset = CDisp8 - Disp.getImm();
560  } else {
561    // Emit the normal disp32 encoding.
562    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
563  }
564
565  // Calculate what the SS field value should be...
566  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
567  unsigned SS = SSTable[Scale.getImm()];
568
569  if (BaseReg == 0) {
570    // Handle the SIB byte for the case where there is no base, see Intel
571    // Manual 2A, table 2-7. The displacement has already been output.
572    unsigned IndexRegNo;
573    if (IndexReg.getReg())
574      IndexRegNo = GetX86RegNum(IndexReg);
575    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
576      IndexRegNo = 4;
577    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
578  } else {
579    unsigned IndexRegNo;
580    if (IndexReg.getReg())
581      IndexRegNo = GetX86RegNum(IndexReg);
582    else
583      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
584    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
585  }
586
587  // Do we need to output a displacement?
588  if (ForceDisp8)
589    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
590  else if (ForceDisp32 || Disp.getImm() != 0)
591    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
592                  CurByte, OS, Fixups);
593}
594
595/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
596/// called VEX.
597void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
598                                           int MemOperand, const MCInst &MI,
599                                           const MCInstrDesc &Desc,
600                                           raw_ostream &OS) const {
601  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
602
603  uint64_t Encoding = TSFlags & X86II::EncodingMask;
604  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
605  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
606  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
607
608  // VEX_R: opcode externsion equivalent to REX.R in
609  // 1's complement (inverted) form
610  //
611  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
612  //  0: Same as REX_R=1 (64 bit mode only)
613  //
614  uint8_t VEX_R = 0x1;
615  uint8_t EVEX_R2 = 0x1;
616
617  // VEX_X: equivalent to REX.X, only used when a
618  // register is used for index in SIB Byte.
619  //
620  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
621  //  0: Same as REX.X=1 (64-bit mode only)
622  uint8_t VEX_X = 0x1;
623
624  // VEX_B:
625  //
626  //  1: Same as REX_B=0 (ignored in 32-bit mode)
627  //  0: Same as REX_B=1 (64 bit mode only)
628  //
629  uint8_t VEX_B = 0x1;
630
631  // VEX_W: opcode specific (use like REX.W, or used for
632  // opcode extension, or ignored, depending on the opcode byte)
633  uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
634
635  // VEX_5M (VEX m-mmmmm field):
636  //
637  //  0b00000: Reserved for future use
638  //  0b00001: implied 0F leading opcode
639  //  0b00010: implied 0F 38 leading opcode bytes
640  //  0b00011: implied 0F 3A leading opcode bytes
641  //  0b00100-0b11111: Reserved for future use
642  //  0b01000: XOP map select - 08h instructions with imm byte
643  //  0b01001: XOP map select - 09h instructions with no imm byte
644  //  0b01010: XOP map select - 0Ah instructions with imm dword
645  uint8_t VEX_5M;
646  switch (TSFlags & X86II::OpMapMask) {
647  default: llvm_unreachable("Invalid prefix!");
648  case X86II::TB:   VEX_5M = 0x1; break; // 0F
649  case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
650  case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
651  case X86II::XOP8: VEX_5M = 0x8; break;
652  case X86II::XOP9: VEX_5M = 0x9; break;
653  case X86II::XOPA: VEX_5M = 0xA; break;
654  }
655
656  // VEX_4V (VEX vvvv field): a register specifier
657  // (in 1's complement form) or 1111 if unused.
658  uint8_t VEX_4V = 0xf;
659  uint8_t EVEX_V2 = 0x1;
660
661  // EVEX_L2/VEX_L (Vector Length):
662  //
663  // L2 L
664  //  0 0: scalar or 128-bit vector
665  //  0 1: 256-bit vector
666  //  1 0: 512-bit vector
667  //
668  uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
669  uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
670
671  // VEX_PP: opcode extension providing equivalent
672  // functionality of a SIMD prefix
673  //
674  //  0b00: None
675  //  0b01: 66
676  //  0b10: F3
677  //  0b11: F2
678  //
679  uint8_t VEX_PP;
680  switch (TSFlags & X86II::OpPrefixMask) {
681  default: llvm_unreachable("Invalid op prefix!");
682  case X86II::PS: VEX_PP = 0x0; break; // none
683  case X86II::PD: VEX_PP = 0x1; break; // 66
684  case X86II::XS: VEX_PP = 0x2; break; // F3
685  case X86II::XD: VEX_PP = 0x3; break; // F2
686  }
687
688  // EVEX_U
689  uint8_t EVEX_U = 1; // Always '1' so far
690
691  // EVEX_z
692  uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
693
694  // EVEX_b
695  uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
696
697  // EVEX_rc
698  uint8_t EVEX_rc = 0;
699
700  // EVEX_aaa
701  uint8_t EVEX_aaa = 0;
702
703  bool EncodeRC = false;
704
705  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
706  unsigned NumOps = Desc.getNumOperands();
707  unsigned CurOp = X86II::getOperandBias(Desc);
708
709  switch (TSFlags & X86II::FormMask) {
710  default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
711  case X86II::RawFrm:
712    break;
713  case X86II::MRMDestMem: {
714    // MRMDestMem instructions forms:
715    //  MemAddr, src1(ModR/M)
716    //  MemAddr, src1(VEX_4V), src2(ModR/M)
717    //  MemAddr, src1(ModR/M), imm8
718    //
719    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
720    VEX_B = ~(BaseRegEnc >> 3) & 1;
721    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
722    VEX_X = ~(IndexRegEnc >> 3) & 1;
723    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
724      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
725
726    CurOp += X86::AddrNumOperands;
727
728    if (HasEVEX_K)
729      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
730
731    if (HasVEX_4V) {
732      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
733      VEX_4V = ~VRegEnc & 0xf;
734      EVEX_V2 = ~(VRegEnc >> 4) & 1;
735    }
736
737    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
738    VEX_R = ~(RegEnc >> 3) & 1;
739    EVEX_R2 = ~(RegEnc >> 4) & 1;
740    break;
741  }
742  case X86II::MRMSrcMem: {
743    // MRMSrcMem instructions forms:
744    //  src1(ModR/M), MemAddr
745    //  src1(ModR/M), src2(VEX_4V), MemAddr
746    //  src1(ModR/M), MemAddr, imm8
747    //  src1(ModR/M), MemAddr, src2(Imm[7:4])
748    //
749    //  FMA4:
750    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
751    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
752    VEX_R = ~(RegEnc >> 3) & 1;
753    EVEX_R2 = ~(RegEnc >> 4) & 1;
754
755    if (HasEVEX_K)
756      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
757
758    if (HasVEX_4V) {
759      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
760      VEX_4V = ~VRegEnc & 0xf;
761      EVEX_V2 = ~(VRegEnc >> 4) & 1;
762    }
763
764    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
765    VEX_B = ~(BaseRegEnc >> 3) & 1;
766    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
767    VEX_X = ~(IndexRegEnc >> 3) & 1;
768    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
769      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
770
771    break;
772  }
773  case X86II::MRMSrcMem4VOp3: {
774    // Instruction format for 4VOp3:
775    //   src1(ModR/M), MemAddr, src3(VEX_4V)
776    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
777    VEX_R = ~(RegEnc >> 3) & 1;
778
779    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
780    VEX_B = ~(BaseRegEnc >> 3) & 1;
781    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
782    VEX_X = ~(IndexRegEnc >> 3) & 1;
783
784    VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
785    break;
786  }
787  case X86II::MRMSrcMemOp4: {
788    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
789    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
790    VEX_R = ~(RegEnc >> 3) & 1;
791
792    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
793    VEX_4V = ~VRegEnc & 0xf;
794
795    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
796    VEX_B = ~(BaseRegEnc >> 3) & 1;
797    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
798    VEX_X = ~(IndexRegEnc >> 3) & 1;
799    break;
800  }
801  case X86II::MRM0m: case X86II::MRM1m:
802  case X86II::MRM2m: case X86II::MRM3m:
803  case X86II::MRM4m: case X86II::MRM5m:
804  case X86II::MRM6m: case X86II::MRM7m: {
805    // MRM[0-9]m instructions forms:
806    //  MemAddr
807    //  src1(VEX_4V), MemAddr
808    if (HasVEX_4V) {
809      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
810      VEX_4V = ~VRegEnc & 0xf;
811      EVEX_V2 = ~(VRegEnc >> 4) & 1;
812    }
813
814    if (HasEVEX_K)
815      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
816
817    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
818    VEX_B = ~(BaseRegEnc >> 3) & 1;
819    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
820    VEX_X = ~(IndexRegEnc >> 3) & 1;
821    break;
822  }
823  case X86II::MRMSrcReg: {
824    // MRMSrcReg instructions forms:
825    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
826    //  dst(ModR/M), src1(ModR/M)
827    //  dst(ModR/M), src1(ModR/M), imm8
828    //
829    //  FMA4:
830    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
831    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
832    VEX_R = ~(RegEnc >> 3) & 1;
833    EVEX_R2 = ~(RegEnc >> 4) & 1;
834
835    if (HasEVEX_K)
836      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
837
838    if (HasVEX_4V) {
839      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
840      VEX_4V = ~VRegEnc & 0xf;
841      EVEX_V2 = ~(VRegEnc >> 4) & 1;
842    }
843
844    RegEnc = getX86RegEncoding(MI, CurOp++);
845    VEX_B = ~(RegEnc >> 3) & 1;
846    VEX_X = ~(RegEnc >> 4) & 1;
847
848    if (EVEX_b) {
849      if (HasEVEX_RC) {
850        unsigned RcOperand = NumOps-1;
851        assert(RcOperand >= CurOp);
852        EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
853      }
854      EncodeRC = true;
855    }
856    break;
857  }
858  case X86II::MRMSrcReg4VOp3: {
859    // Instruction format for 4VOp3:
860    //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
861    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
862    VEX_R = ~(RegEnc >> 3) & 1;
863
864    RegEnc = getX86RegEncoding(MI, CurOp++);
865    VEX_B = ~(RegEnc >> 3) & 1;
866
867    VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
868    break;
869  }
870  case X86II::MRMSrcRegOp4: {
871    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
872    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
873    VEX_R = ~(RegEnc >> 3) & 1;
874
875    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
876    VEX_4V = ~VRegEnc & 0xf;
877
878    // Skip second register source (encoded in Imm[7:4])
879    ++CurOp;
880
881    RegEnc = getX86RegEncoding(MI, CurOp++);
882    VEX_B = ~(RegEnc >> 3) & 1;
883    VEX_X = ~(RegEnc >> 4) & 1;
884    break;
885  }
886  case X86II::MRMDestReg: {
887    // MRMDestReg instructions forms:
888    //  dst(ModR/M), src(ModR/M)
889    //  dst(ModR/M), src(ModR/M), imm8
890    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
891    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
892    VEX_B = ~(RegEnc >> 3) & 1;
893    VEX_X = ~(RegEnc >> 4) & 1;
894
895    if (HasEVEX_K)
896      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
897
898    if (HasVEX_4V) {
899      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
900      VEX_4V = ~VRegEnc & 0xf;
901      EVEX_V2 = ~(VRegEnc >> 4) & 1;
902    }
903
904    RegEnc = getX86RegEncoding(MI, CurOp++);
905    VEX_R = ~(RegEnc >> 3) & 1;
906    EVEX_R2 = ~(RegEnc >> 4) & 1;
907    if (EVEX_b)
908      EncodeRC = true;
909    break;
910  }
911  case X86II::MRM0r: case X86II::MRM1r:
912  case X86II::MRM2r: case X86II::MRM3r:
913  case X86II::MRM4r: case X86II::MRM5r:
914  case X86II::MRM6r: case X86II::MRM7r: {
915    // MRM0r-MRM7r instructions forms:
916    //  dst(VEX_4V), src(ModR/M), imm8
917    if (HasVEX_4V) {
918      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
919      VEX_4V = ~VRegEnc & 0xf;
920      EVEX_V2 = ~(VRegEnc >> 4) & 1;
921    }
922    if (HasEVEX_K)
923      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
924
925    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
926    VEX_B = ~(RegEnc >> 3) & 1;
927    VEX_X = ~(RegEnc >> 4) & 1;
928    break;
929  }
930  }
931
932  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
933    // VEX opcode prefix can have 2 or 3 bytes
934    //
935    //  3 bytes:
936    //    +-----+ +--------------+ +-------------------+
937    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
938    //    +-----+ +--------------+ +-------------------+
939    //  2 bytes:
940    //    +-----+ +-------------------+
941    //    | C5h | | R | vvvv | L | pp |
942    //    +-----+ +-------------------+
943    //
944    //  XOP uses a similar prefix:
945    //    +-----+ +--------------+ +-------------------+
946    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
947    //    +-----+ +--------------+ +-------------------+
948    uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
949
950    // Can we use the 2 byte VEX prefix?
951    if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
952      EmitByte(0xC5, CurByte, OS);
953      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
954      return;
955    }
956
957    // 3 byte VEX prefix
958    EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
959    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
960    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
961  } else {
962    assert(Encoding == X86II::EVEX && "unknown encoding!");
963    // EVEX opcode prefix can have 4 bytes
964    //
965    // +-----+ +--------------+ +-------------------+ +------------------------+
966    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
967    // +-----+ +--------------+ +-------------------+ +------------------------+
968    assert((VEX_5M & 0x3) == VEX_5M
969           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
970
971    EmitByte(0x62, CurByte, OS);
972    EmitByte((VEX_R   << 7) |
973             (VEX_X   << 6) |
974             (VEX_B   << 5) |
975             (EVEX_R2 << 4) |
976             VEX_5M, CurByte, OS);
977    EmitByte((VEX_W   << 7) |
978             (VEX_4V  << 3) |
979             (EVEX_U  << 2) |
980             VEX_PP, CurByte, OS);
981    if (EncodeRC)
982      EmitByte((EVEX_z  << 7) |
983               (EVEX_rc << 5) |
984               (EVEX_b  << 4) |
985               (EVEX_V2 << 3) |
986               EVEX_aaa, CurByte, OS);
987    else
988      EmitByte((EVEX_z  << 7) |
989               (EVEX_L2 << 6) |
990               (VEX_L   << 5) |
991               (EVEX_b  << 4) |
992               (EVEX_V2 << 3) |
993               EVEX_aaa, CurByte, OS);
994  }
995}
996
997/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
998/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
999/// size, and 3) use of X86-64 extended registers.
1000uint8_t X86MCCodeEmitter::DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
1001                                             int MemOperand,
1002                                             const MCInstrDesc &Desc) const {
1003  uint8_t REX = 0;
1004  bool UsesHighByteReg = false;
1005
1006  if (TSFlags & X86II::REX_W)
1007    REX |= 1 << 3; // set REX.W
1008
1009  if (MI.getNumOperands() == 0) return REX;
1010
1011  unsigned NumOps = MI.getNumOperands();
1012  unsigned CurOp = X86II::getOperandBias(Desc);
1013
1014  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1015  for (unsigned i = CurOp; i != NumOps; ++i) {
1016    const MCOperand &MO = MI.getOperand(i);
1017    if (!MO.isReg()) continue;
1018    unsigned Reg = MO.getReg();
1019    if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1020      UsesHighByteReg = true;
1021    if (X86II::isX86_64NonExtLowByteReg(Reg))
1022      // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
1023      // that returns non-zero.
1024      REX |= 0x40; // REX fixed encoding prefix
1025  }
1026
1027  switch (TSFlags & X86II::FormMask) {
1028  case X86II::AddRegFrm:
1029    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1030    break;
1031  case X86II::MRMSrcReg:
1032    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1033    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1034    break;
1035  case X86II::MRMSrcMem: {
1036    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1037    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
1038    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
1039    CurOp += X86::AddrNumOperands;
1040    break;
1041  }
1042  case X86II::MRMDestReg:
1043    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1044    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1045    break;
1046  case X86II::MRMDestMem:
1047    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
1048    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
1049    CurOp += X86::AddrNumOperands;
1050    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1051    break;
1052  case X86II::MRMXm:
1053  case X86II::MRM0m: case X86II::MRM1m:
1054  case X86II::MRM2m: case X86II::MRM3m:
1055  case X86II::MRM4m: case X86II::MRM5m:
1056  case X86II::MRM6m: case X86II::MRM7m:
1057    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
1058    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
1059    break;
1060  case X86II::MRMXr:
1061  case X86II::MRM0r: case X86II::MRM1r:
1062  case X86II::MRM2r: case X86II::MRM3r:
1063  case X86II::MRM4r: case X86II::MRM5r:
1064  case X86II::MRM6r: case X86II::MRM7r:
1065    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1066    break;
1067  }
1068  if (REX && UsesHighByteReg)
1069    report_fatal_error("Cannot encode high byte register in REX-prefixed instruction");
1070
1071  return REX;
1072}
1073
1074/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1075void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
1076                                                 unsigned SegOperand,
1077                                                 const MCInst &MI,
1078                                                 raw_ostream &OS) const {
1079  // Check for explicit segment override on memory operand.
1080  switch (MI.getOperand(SegOperand).getReg()) {
1081  default: llvm_unreachable("Unknown segment register!");
1082  case 0: break;
1083  case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1084  case X86::SS: EmitByte(0x36, CurByte, OS); break;
1085  case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1086  case X86::ES: EmitByte(0x26, CurByte, OS); break;
1087  case X86::FS: EmitByte(0x64, CurByte, OS); break;
1088  case X86::GS: EmitByte(0x65, CurByte, OS); break;
1089  }
1090}
1091
1092/// Emit all instruction prefixes prior to the opcode.
1093///
1094/// MemOperand is the operand # of the start of a memory operand if present.  If
1095/// Not present, it is -1.
1096///
1097/// Returns true if a REX prefix was used.
1098bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1099                                        int MemOperand, const MCInst &MI,
1100                                        const MCInstrDesc &Desc,
1101                                        const MCSubtargetInfo &STI,
1102                                        raw_ostream &OS) const {
1103  bool Ret = false;
1104  // Emit the operand size opcode prefix as needed.
1105  if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
1106                                                         : X86II::OpSize16))
1107    EmitByte(0x66, CurByte, OS);
1108
1109  // Emit the LOCK opcode prefix.
1110  if (TSFlags & X86II::LOCK)
1111    EmitByte(0xF0, CurByte, OS);
1112
1113  switch (TSFlags & X86II::OpPrefixMask) {
1114  case X86II::PD:   // 66
1115    EmitByte(0x66, CurByte, OS);
1116    break;
1117  case X86II::XS:   // F3
1118    EmitByte(0xF3, CurByte, OS);
1119    break;
1120  case X86II::XD:   // F2
1121    EmitByte(0xF2, CurByte, OS);
1122    break;
1123  }
1124
1125  // Handle REX prefix.
1126  // FIXME: Can this come before F2 etc to simplify emission?
1127  if (is64BitMode(STI)) {
1128    if (uint8_t REX = DetermineREXPrefix(MI, TSFlags, MemOperand, Desc)) {
1129      EmitByte(0x40 | REX, CurByte, OS);
1130      Ret = true;
1131    }
1132  }
1133
1134  // 0x0F escape code must be emitted just before the opcode.
1135  switch (TSFlags & X86II::OpMapMask) {
1136  case X86II::TB:  // Two-byte opcode map
1137  case X86II::T8:  // 0F 38
1138  case X86II::TA:  // 0F 3A
1139    EmitByte(0x0F, CurByte, OS);
1140    break;
1141  }
1142
1143  switch (TSFlags & X86II::OpMapMask) {
1144  case X86II::T8:    // 0F 38
1145    EmitByte(0x38, CurByte, OS);
1146    break;
1147  case X86II::TA:    // 0F 3A
1148    EmitByte(0x3A, CurByte, OS);
1149    break;
1150  }
1151  return Ret;
1152}
1153
1154void X86MCCodeEmitter::
1155encodeInstruction(const MCInst &MI, raw_ostream &OS,
1156                  SmallVectorImpl<MCFixup> &Fixups,
1157                  const MCSubtargetInfo &STI) const {
1158  unsigned Opcode = MI.getOpcode();
1159  const MCInstrDesc &Desc = MCII.get(Opcode);
1160  uint64_t TSFlags = Desc.TSFlags;
1161
1162  // Pseudo instructions don't get encoded.
1163  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1164    return;
1165
1166  unsigned NumOps = Desc.getNumOperands();
1167  unsigned CurOp = X86II::getOperandBias(Desc);
1168
1169  // Keep track of the current byte being emitted.
1170  unsigned CurByte = 0;
1171
1172  // Encoding type for this instruction.
1173  uint64_t Encoding = TSFlags & X86II::EncodingMask;
1174
1175  // It uses the VEX.VVVV field?
1176  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1177  bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
1178
1179  // It uses the EVEX.aaa field?
1180  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1181  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1182
1183  // Used if a register is encoded in 7:4 of immediate.
1184  unsigned I8RegNum = 0;
1185
1186  // Determine where the memory operand starts, if present.
1187  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
1188  if (MemoryOperand != -1) MemoryOperand += CurOp;
1189
1190  // Emit segment override opcode prefix as needed.
1191  if (MemoryOperand >= 0)
1192    EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
1193                              MI, OS);
1194
1195  // Emit the repeat opcode prefix as needed.
1196  if (TSFlags & X86II::REP)
1197    EmitByte(0xF3, CurByte, OS);
1198
1199  // Emit the address size opcode prefix as needed.
1200  bool need_address_override;
1201  uint64_t AdSize = TSFlags & X86II::AdSizeMask;
1202  if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
1203      (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
1204      (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
1205    need_address_override = true;
1206  } else if (MemoryOperand < 0) {
1207    need_address_override = false;
1208  } else if (is64BitMode(STI)) {
1209    assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
1210    need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1211  } else if (is32BitMode(STI)) {
1212    assert(!Is64BitMemOperand(MI, MemoryOperand));
1213    need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
1214  } else {
1215    assert(is16BitMode(STI));
1216    assert(!Is64BitMemOperand(MI, MemoryOperand));
1217    need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
1218  }
1219
1220  if (need_address_override)
1221    EmitByte(0x67, CurByte, OS);
1222
1223  bool Rex = false;
1224  if (Encoding == 0)
1225    Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
1226  else
1227    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1228
1229  uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1230
1231  if (TSFlags & X86II::Has3DNow0F0FOpcode)
1232    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
1233
1234  uint64_t Form = TSFlags & X86II::FormMask;
1235  switch (Form) {
1236  default: errs() << "FORM: " << Form << "\n";
1237    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1238  case X86II::Pseudo:
1239    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1240  case X86II::RawFrmDstSrc: {
1241    unsigned siReg = MI.getOperand(1).getReg();
1242    assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
1243            (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
1244            (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
1245           "SI and DI register sizes do not match");
1246    // Emit segment override opcode prefix as needed (not for %ds).
1247    if (MI.getOperand(2).getReg() != X86::DS)
1248      EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
1249    // Emit AdSize prefix as needed.
1250    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1251        (is32BitMode(STI) && siReg == X86::SI))
1252      EmitByte(0x67, CurByte, OS);
1253    CurOp += 3; // Consume operands.
1254    EmitByte(BaseOpcode, CurByte, OS);
1255    break;
1256  }
1257  case X86II::RawFrmSrc: {
1258    unsigned siReg = MI.getOperand(0).getReg();
1259    // Emit segment override opcode prefix as needed (not for %ds).
1260    if (MI.getOperand(1).getReg() != X86::DS)
1261      EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1262    // Emit AdSize prefix as needed.
1263    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1264        (is32BitMode(STI) && siReg == X86::SI))
1265      EmitByte(0x67, CurByte, OS);
1266    CurOp += 2; // Consume operands.
1267    EmitByte(BaseOpcode, CurByte, OS);
1268    break;
1269  }
1270  case X86II::RawFrmDst: {
1271    unsigned siReg = MI.getOperand(0).getReg();
1272    // Emit AdSize prefix as needed.
1273    if ((!is32BitMode(STI) && siReg == X86::EDI) ||
1274        (is32BitMode(STI) && siReg == X86::DI))
1275      EmitByte(0x67, CurByte, OS);
1276    ++CurOp; // Consume operand.
1277    EmitByte(BaseOpcode, CurByte, OS);
1278    break;
1279  }
1280  case X86II::RawFrm:
1281    EmitByte(BaseOpcode, CurByte, OS);
1282    break;
1283  case X86II::RawFrmMemOffs:
1284    // Emit segment override opcode prefix as needed.
1285    EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1286    EmitByte(BaseOpcode, CurByte, OS);
1287    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1288                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1289                  CurByte, OS, Fixups);
1290    ++CurOp; // skip segment operand
1291    break;
1292  case X86II::RawFrmImm8:
1293    EmitByte(BaseOpcode, CurByte, OS);
1294    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1295                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1296                  CurByte, OS, Fixups);
1297    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1298                  OS, Fixups);
1299    break;
1300  case X86II::RawFrmImm16:
1301    EmitByte(BaseOpcode, CurByte, OS);
1302    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1303                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1304                  CurByte, OS, Fixups);
1305    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1306                  OS, Fixups);
1307    break;
1308
1309  case X86II::AddRegFrm:
1310    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1311    break;
1312
1313  case X86II::MRMDestReg: {
1314    EmitByte(BaseOpcode, CurByte, OS);
1315    unsigned SrcRegNum = CurOp + 1;
1316
1317    if (HasEVEX_K) // Skip writemask
1318      ++SrcRegNum;
1319
1320    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1321      ++SrcRegNum;
1322
1323    EmitRegModRMByte(MI.getOperand(CurOp),
1324                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1325    CurOp = SrcRegNum + 1;
1326    break;
1327  }
1328  case X86II::MRMDestMem: {
1329    EmitByte(BaseOpcode, CurByte, OS);
1330    unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1331
1332    if (HasEVEX_K) // Skip writemask
1333      ++SrcRegNum;
1334
1335    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1336      ++SrcRegNum;
1337
1338    emitMemModRMByte(MI, CurOp, GetX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
1339                     Rex, CurByte, OS, Fixups, STI);
1340    CurOp = SrcRegNum + 1;
1341    break;
1342  }
1343  case X86II::MRMSrcReg: {
1344    EmitByte(BaseOpcode, CurByte, OS);
1345    unsigned SrcRegNum = CurOp + 1;
1346
1347    if (HasEVEX_K) // Skip writemask
1348      ++SrcRegNum;
1349
1350    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1351      ++SrcRegNum;
1352
1353    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1354                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1355    CurOp = SrcRegNum + 1;
1356    if (HasVEX_I8Reg)
1357      I8RegNum = getX86RegEncoding(MI, CurOp++);
1358    // do not count the rounding control operand
1359    if (HasEVEX_RC)
1360      --NumOps;
1361    break;
1362  }
1363  case X86II::MRMSrcReg4VOp3: {
1364    EmitByte(BaseOpcode, CurByte, OS);
1365    unsigned SrcRegNum = CurOp + 1;
1366
1367    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1368                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1369    CurOp = SrcRegNum + 1;
1370    ++CurOp; // Encoded in VEX.VVVV
1371    break;
1372  }
1373  case X86II::MRMSrcRegOp4: {
1374    EmitByte(BaseOpcode, CurByte, OS);
1375    unsigned SrcRegNum = CurOp + 1;
1376
1377    // Skip 1st src (which is encoded in VEX_VVVV)
1378    ++SrcRegNum;
1379
1380    // Capture 2nd src (which is encoded in Imm[7:4])
1381    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1382    I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
1383
1384    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1385                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1386    CurOp = SrcRegNum + 1;
1387    break;
1388  }
1389  case X86II::MRMSrcMem: {
1390    unsigned FirstMemOp = CurOp+1;
1391
1392    if (HasEVEX_K) // Skip writemask
1393      ++FirstMemOp;
1394
1395    if (HasVEX_4V)
1396      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1397
1398    EmitByte(BaseOpcode, CurByte, OS);
1399
1400    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1401                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1402    CurOp = FirstMemOp + X86::AddrNumOperands;
1403    if (HasVEX_I8Reg)
1404      I8RegNum = getX86RegEncoding(MI, CurOp++);
1405    break;
1406  }
1407  case X86II::MRMSrcMem4VOp3: {
1408    unsigned FirstMemOp = CurOp+1;
1409
1410    EmitByte(BaseOpcode, CurByte, OS);
1411
1412    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1413                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1414    CurOp = FirstMemOp + X86::AddrNumOperands;
1415    ++CurOp; // Encoded in VEX.VVVV.
1416    break;
1417  }
1418  case X86II::MRMSrcMemOp4: {
1419    unsigned FirstMemOp = CurOp+1;
1420
1421    ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1422
1423    // Capture second register source (encoded in Imm[7:4])
1424    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1425    I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
1426
1427    EmitByte(BaseOpcode, CurByte, OS);
1428
1429    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1430                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1431    CurOp = FirstMemOp + X86::AddrNumOperands;
1432    break;
1433  }
1434
1435  case X86II::MRMXr:
1436  case X86II::MRM0r: case X86II::MRM1r:
1437  case X86II::MRM2r: case X86II::MRM3r:
1438  case X86II::MRM4r: case X86II::MRM5r:
1439  case X86II::MRM6r: case X86II::MRM7r: {
1440    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1441      ++CurOp;
1442    if (HasEVEX_K) // Skip writemask
1443      ++CurOp;
1444    EmitByte(BaseOpcode, CurByte, OS);
1445    EmitRegModRMByte(MI.getOperand(CurOp++),
1446                     (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
1447                     CurByte, OS);
1448    break;
1449  }
1450
1451  case X86II::MRMXm:
1452  case X86II::MRM0m: case X86II::MRM1m:
1453  case X86II::MRM2m: case X86II::MRM3m:
1454  case X86II::MRM4m: case X86II::MRM5m:
1455  case X86II::MRM6m: case X86II::MRM7m: {
1456    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1457      ++CurOp;
1458    if (HasEVEX_K) // Skip writemask
1459      ++CurOp;
1460    EmitByte(BaseOpcode, CurByte, OS);
1461    emitMemModRMByte(MI, CurOp,
1462                     (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
1463                     Rex, CurByte, OS, Fixups, STI);
1464    CurOp += X86::AddrNumOperands;
1465    break;
1466  }
1467  case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1468  case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1469  case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1470  case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1471  case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1472  case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1473  case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1474  case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1475  case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1476  case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1477  case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1478  case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1479  case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1480  case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1481  case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1482  case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1483  case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1484  case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1485  case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1486  case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1487  case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1488  case X86II::MRM_FF:
1489    EmitByte(BaseOpcode, CurByte, OS);
1490    EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
1491    break;
1492  }
1493
1494  if (HasVEX_I8Reg) {
1495    // The last source register of a 4 operand instruction in AVX is encoded
1496    // in bits[7:4] of a immediate byte.
1497    assert(I8RegNum < 16 && "Register encoding out of range");
1498    I8RegNum <<= 4;
1499    if (CurOp != NumOps) {
1500      unsigned Val = MI.getOperand(CurOp++).getImm();
1501      assert(Val < 16 && "Immediate operand value out of range");
1502      I8RegNum |= Val;
1503    }
1504    EmitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
1505                  CurByte, OS, Fixups);
1506  } else {
1507    // If there is a remaining operand, it must be a trailing immediate. Emit it
1508    // according to the right size for the instruction. Some instructions
1509    // (SSE4a extrq and insertq) have two trailing immediates.
1510    while (CurOp != NumOps && NumOps - CurOp <= 2) {
1511      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1512                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1513                    CurByte, OS, Fixups);
1514    }
1515  }
1516
1517  if (TSFlags & X86II::Has3DNow0F0FOpcode)
1518    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1519
1520#ifndef NDEBUG
1521  // FIXME: Verify.
1522  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1523    errs() << "Cannot encode all operands of: ";
1524    MI.dump();
1525    errs() << '\n';
1526    abort();
1527  }
1528#endif
1529}
1530