X86MCCodeEmitter.cpp revision 296417
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MCTargetDesc/X86MCTargetDesc.h"
15#include "MCTargetDesc/X86BaseInfo.h"
16#include "MCTargetDesc/X86FixupKinds.h"
17#include "llvm/MC/MCCodeEmitter.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/MC/MCSymbol.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29#define DEBUG_TYPE "mccodeemitter"
30
31namespace {
32class X86MCCodeEmitter : public MCCodeEmitter {
33  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
34  void operator=(const X86MCCodeEmitter &) = delete;
35  const MCInstrInfo &MCII;
36  MCContext &Ctx;
37public:
38  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
39    : MCII(mcii), Ctx(ctx) {
40  }
41
42  ~X86MCCodeEmitter() override {}
43
44  bool is64BitMode(const MCSubtargetInfo &STI) const {
45    return STI.getFeatureBits()[X86::Mode64Bit];
46  }
47
48  bool is32BitMode(const MCSubtargetInfo &STI) const {
49    return STI.getFeatureBits()[X86::Mode32Bit];
50  }
51
52  bool is16BitMode(const MCSubtargetInfo &STI) const {
53    return STI.getFeatureBits()[X86::Mode16Bit];
54  }
55
56  /// Is16BitMemOperand - Return true if the specified instruction has
57  /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
58  bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
59                         const MCSubtargetInfo &STI) const {
60    const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
61    const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
62    const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
63
64    if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
65        Disp.isImm() && Disp.getImm() < 0x10000)
66      return true;
67    if ((BaseReg.getReg() != 0 &&
68         X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
69        (IndexReg.getReg() != 0 &&
70         X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
71      return true;
72    return false;
73  }
74
75  unsigned GetX86RegNum(const MCOperand &MO) const {
76    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
77  }
78
79  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
80  // 0-7 and the difference between the 2 groups is given by the REX prefix.
81  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
82  // in 1's complement form, example:
83  //
84  //  ModRM field => XMM9 => 1
85  //  VEX.VVVV    => XMM9 => ~9
86  //
87  // See table 4-35 of Intel AVX Programming Reference for details.
88  unsigned char getVEXRegisterEncoding(const MCInst &MI,
89                                       unsigned OpNum) const {
90    unsigned SrcReg = MI.getOperand(OpNum).getReg();
91    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
92    if (X86II::isX86_64ExtendedReg(SrcReg))
93      SrcRegNum |= 8;
94
95    // The registers represented through VEX_VVVV should
96    // be encoded in 1's complement form.
97    return (~SrcRegNum) & 0xf;
98  }
99
100  unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
101                                             unsigned OpNum) const {
102    assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
103           "Invalid mask register as write-mask!");
104    unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
105    return MaskRegNum;
106  }
107
108  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
109    OS << (char)C;
110    ++CurByte;
111  }
112
113  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
114                    raw_ostream &OS) const {
115    // Output the constant in little endian byte order.
116    for (unsigned i = 0; i != Size; ++i) {
117      EmitByte(Val & 255, CurByte, OS);
118      Val >>= 8;
119    }
120  }
121
122  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
123                     unsigned ImmSize, MCFixupKind FixupKind,
124                     unsigned &CurByte, raw_ostream &OS,
125                     SmallVectorImpl<MCFixup> &Fixups,
126                     int ImmOffset = 0) const;
127
128  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
129                                        unsigned RM) {
130    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
131    return RM | (RegOpcode << 3) | (Mod << 6);
132  }
133
134  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
135                        unsigned &CurByte, raw_ostream &OS) const {
136    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
137  }
138
139  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
140                   unsigned &CurByte, raw_ostream &OS) const {
141    // SIB byte is in the same format as the ModRMByte.
142    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
143  }
144
145
146  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
147                        unsigned RegOpcodeField,
148                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
149                        SmallVectorImpl<MCFixup> &Fixups,
150                        const MCSubtargetInfo &STI) const;
151
152  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
153                         SmallVectorImpl<MCFixup> &Fixups,
154                         const MCSubtargetInfo &STI) const override;
155
156  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
157                           const MCInst &MI, const MCInstrDesc &Desc,
158                           raw_ostream &OS) const;
159
160  void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
161                                 const MCInst &MI, raw_ostream &OS) const;
162
163  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
164                        const MCInst &MI, const MCInstrDesc &Desc,
165                        const MCSubtargetInfo &STI,
166                        raw_ostream &OS) const;
167};
168
169} // end anonymous namespace
170
171MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
172                                            const MCRegisterInfo &MRI,
173                                            MCContext &Ctx) {
174  return new X86MCCodeEmitter(MCII, Ctx);
175}
176
177/// isDisp8 - Return true if this signed displacement fits in a 8-bit
178/// sign-extended field.
179static bool isDisp8(int Value) {
180  return Value == (signed char)Value;
181}
182
183/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
184/// compressed dispacement field.
185static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
186  assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
187         "Compressed 8-bit displacement is only valid for EVEX inst.");
188
189  unsigned CD8_Scale =
190    (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
191  if (CD8_Scale == 0) {
192    CValue = Value;
193    return isDisp8(Value);
194  }
195
196  unsigned Mask = CD8_Scale - 1;
197  assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
198  if (Value & Mask) // Unaligned offset
199    return false;
200  Value /= (int)CD8_Scale;
201  bool Ret = (Value == (signed char)Value);
202
203  if (Ret)
204    CValue = Value;
205  return Ret;
206}
207
208/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
209/// in an instruction with the specified TSFlags.
210static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
211  unsigned Size = X86II::getSizeOfImm(TSFlags);
212  bool isPCRel = X86II::isImmPCRel(TSFlags);
213
214  if (X86II::isImmSigned(TSFlags)) {
215    switch (Size) {
216    default: llvm_unreachable("Unsupported signed fixup size!");
217    case 4: return MCFixupKind(X86::reloc_signed_4byte);
218    }
219  }
220  return MCFixup::getKindForSize(Size, isPCRel);
221}
222
223/// Is32BitMemOperand - Return true if the specified instruction has
224/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
225static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
226  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
227  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
228
229  if ((BaseReg.getReg() != 0 &&
230       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
231      (IndexReg.getReg() != 0 &&
232       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
233    return true;
234  return false;
235}
236
237/// Is64BitMemOperand - Return true if the specified instruction has
238/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
239#ifndef NDEBUG
240static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
241  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
242  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
243
244  if ((BaseReg.getReg() != 0 &&
245       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
246      (IndexReg.getReg() != 0 &&
247       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
248    return true;
249  return false;
250}
251#endif
252
253/// StartsWithGlobalOffsetTable - Check if this expression starts with
254///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
255///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
256/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
257/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
258/// of a binary expression.
259enum GlobalOffsetTableExprKind {
260  GOT_None,
261  GOT_Normal,
262  GOT_SymDiff
263};
264static GlobalOffsetTableExprKind
265StartsWithGlobalOffsetTable(const MCExpr *Expr) {
266  const MCExpr *RHS = nullptr;
267  if (Expr->getKind() == MCExpr::Binary) {
268    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
269    Expr = BE->getLHS();
270    RHS = BE->getRHS();
271  }
272
273  if (Expr->getKind() != MCExpr::SymbolRef)
274    return GOT_None;
275
276  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
277  const MCSymbol &S = Ref->getSymbol();
278  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
279    return GOT_None;
280  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
281    return GOT_SymDiff;
282  return GOT_Normal;
283}
284
285static bool HasSecRelSymbolRef(const MCExpr *Expr) {
286  if (Expr->getKind() == MCExpr::SymbolRef) {
287    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
288    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
289  }
290  return false;
291}
292
293void X86MCCodeEmitter::
294EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
295              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
296              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
297  const MCExpr *Expr = nullptr;
298  if (DispOp.isImm()) {
299    // If this is a simple integer displacement that doesn't require a
300    // relocation, emit it now.
301    if (FixupKind != FK_PCRel_1 &&
302        FixupKind != FK_PCRel_2 &&
303        FixupKind != FK_PCRel_4) {
304      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
305      return;
306    }
307    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
308  } else {
309    Expr = DispOp.getExpr();
310  }
311
312  // If we have an immoffset, add it to the expression.
313  if ((FixupKind == FK_Data_4 ||
314       FixupKind == FK_Data_8 ||
315       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
316    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
317    if (Kind != GOT_None) {
318      assert(ImmOffset == 0);
319
320      if (Size == 8) {
321        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
322      } else {
323        assert(Size == 4);
324        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
325      }
326
327      if (Kind == GOT_Normal)
328        ImmOffset = CurByte;
329    } else if (Expr->getKind() == MCExpr::SymbolRef) {
330      if (HasSecRelSymbolRef(Expr)) {
331        FixupKind = MCFixupKind(FK_SecRel_4);
332      }
333    } else if (Expr->getKind() == MCExpr::Binary) {
334      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
335      if (HasSecRelSymbolRef(Bin->getLHS())
336          || HasSecRelSymbolRef(Bin->getRHS())) {
337        FixupKind = MCFixupKind(FK_SecRel_4);
338      }
339    }
340  }
341
342  // If the fixup is pc-relative, we need to bias the value to be relative to
343  // the start of the field, not the end of the field.
344  if (FixupKind == FK_PCRel_4 ||
345      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
346      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
347    ImmOffset -= 4;
348  if (FixupKind == FK_PCRel_2)
349    ImmOffset -= 2;
350  if (FixupKind == FK_PCRel_1)
351    ImmOffset -= 1;
352
353  if (ImmOffset)
354    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
355                                   Ctx);
356
357  // Emit a symbolic constant as a fixup and 4 zeros.
358  Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
359  EmitConstant(0, Size, CurByte, OS);
360}
361
362void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
363                                        unsigned RegOpcodeField,
364                                        uint64_t TSFlags, unsigned &CurByte,
365                                        raw_ostream &OS,
366                                        SmallVectorImpl<MCFixup> &Fixups,
367                                        const MCSubtargetInfo &STI) const{
368  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
369  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
370  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
371  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
372  unsigned BaseReg = Base.getReg();
373  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
374
375  // Handle %rip relative addressing.
376  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
377    assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
378    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
379    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
380
381    unsigned FixupKind = X86::reloc_riprel_4byte;
382
383    // movq loads are handled with a special relocation form which allows the
384    // linker to eliminate some loads for GOT references which end up in the
385    // same linkage unit.
386    if (MI.getOpcode() == X86::MOV64rm)
387      FixupKind = X86::reloc_riprel_4byte_movq_load;
388
389    // rip-relative addressing is actually relative to the *next* instruction.
390    // Since an immediate can follow the mod/rm byte for an instruction, this
391    // means that we need to bias the immediate field of the instruction with
392    // the size of the immediate field.  If we have this case, add it into the
393    // expression to emit.
394    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
395
396    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
397                  CurByte, OS, Fixups, -ImmSize);
398    return;
399  }
400
401  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
402
403  // 16-bit addressing forms of the ModR/M byte have a different encoding for
404  // the R/M field and are far more limited in which registers can be used.
405  if (Is16BitMemOperand(MI, Op, STI)) {
406    if (BaseReg) {
407      // For 32-bit addressing, the row and column values in Table 2-2 are
408      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
409      // some special cases. And GetX86RegNum reflects that numbering.
410      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
411      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
412      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
413      // while values 0-3 indicate the allowed combinations (base+index) of
414      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
415      //
416      // R16Table[] is a lookup from the normal RegNo, to the row values from
417      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
418      static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
419      unsigned RMfield = R16Table[BaseRegNo];
420
421      assert(RMfield && "invalid 16-bit base register");
422
423      if (IndexReg.getReg()) {
424        unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
425
426        assert(IndexReg16 && "invalid 16-bit index register");
427        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
428        assert(((IndexReg16 ^ RMfield) & 2) &&
429               "invalid 16-bit base/index register combination");
430        assert(Scale.getImm() == 1 &&
431               "invalid scale for 16-bit memory reference");
432
433        // Allow base/index to appear in either order (although GAS doesn't).
434        if (IndexReg16 & 2)
435          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
436        else
437          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
438      }
439
440      if (Disp.isImm() && isDisp8(Disp.getImm())) {
441        if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
442          // There is no displacement; just the register.
443          EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
444          return;
445        }
446        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
447        EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
448        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
449        return;
450      }
451      // This is the [REG]+disp16 case.
452      EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
453    } else {
454      // There is no BaseReg; this is the plain [disp16] case.
455      EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
456    }
457
458    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
459    EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
460    return;
461  }
462
463  // Determine whether a SIB byte is needed.
464  // If no BaseReg, issue a RIP relative instruction only if the MCE can
465  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
466  // 2-7) and absolute references.
467
468  if (// The SIB byte must be used if there is an index register.
469      IndexReg.getReg() == 0 &&
470      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
471      // encode to an R/M value of 4, which indicates that a SIB byte is
472      // present.
473      BaseRegNo != N86::ESP &&
474      // If there is no base register and we're in 64-bit mode, we need a SIB
475      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
476      (!is64BitMode(STI) || BaseReg != 0)) {
477
478    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
479      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
480      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
481      return;
482    }
483
484    // If the base is not EBP/ESP and there is no displacement, use simple
485    // indirect register encoding, this handles addresses like [EAX].  The
486    // encoding for [EBP] with no displacement means [disp32] so we handle it
487    // by emitting a displacement of 0 below.
488    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
489      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
490      return;
491    }
492
493    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
494    if (Disp.isImm()) {
495      if (!HasEVEX && isDisp8(Disp.getImm())) {
496        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
497        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
498        return;
499      }
500      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
501      // 32-bit displacement.
502      int CDisp8 = 0;
503      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
504        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
505        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
506                      CDisp8 - Disp.getImm());
507        return;
508      }
509    }
510
511    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
512    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
513    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
514                  CurByte, OS, Fixups);
515    return;
516  }
517
518  // We need a SIB byte, so start by outputting the ModR/M byte first
519  assert(IndexReg.getReg() != X86::ESP &&
520         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
521
522  bool ForceDisp32 = false;
523  bool ForceDisp8  = false;
524  int CDisp8 = 0;
525  int ImmOffset = 0;
526  if (BaseReg == 0) {
527    // If there is no base register, we emit the special case SIB byte with
528    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
529    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
530    ForceDisp32 = true;
531  } else if (!Disp.isImm()) {
532    // Emit the normal disp32 encoding.
533    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
534    ForceDisp32 = true;
535  } else if (Disp.getImm() == 0 &&
536             // Base reg can't be anything that ends up with '5' as the base
537             // reg, it is the magic [*] nomenclature that indicates no base.
538             BaseRegNo != N86::EBP) {
539    // Emit no displacement ModR/M byte
540    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
541  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
542    // Emit the disp8 encoding.
543    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
544    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
545  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
546    // Emit the disp8 encoding.
547    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
548    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
549    ImmOffset = CDisp8 - Disp.getImm();
550  } else {
551    // Emit the normal disp32 encoding.
552    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
553  }
554
555  // Calculate what the SS field value should be...
556  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
557  unsigned SS = SSTable[Scale.getImm()];
558
559  if (BaseReg == 0) {
560    // Handle the SIB byte for the case where there is no base, see Intel
561    // Manual 2A, table 2-7. The displacement has already been output.
562    unsigned IndexRegNo;
563    if (IndexReg.getReg())
564      IndexRegNo = GetX86RegNum(IndexReg);
565    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
566      IndexRegNo = 4;
567    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
568  } else {
569    unsigned IndexRegNo;
570    if (IndexReg.getReg())
571      IndexRegNo = GetX86RegNum(IndexReg);
572    else
573      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
574    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
575  }
576
577  // Do we need to output a displacement?
578  if (ForceDisp8)
579    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
580  else if (ForceDisp32 || Disp.getImm() != 0)
581    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
582                  CurByte, OS, Fixups);
583}
584
585/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
586/// called VEX.
587void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
588                                           int MemOperand, const MCInst &MI,
589                                           const MCInstrDesc &Desc,
590                                           raw_ostream &OS) const {
591  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
592
593  uint64_t Encoding = TSFlags & X86II::EncodingMask;
594  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
595  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
596  bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
597  bool HasMemOp4 = TSFlags & X86II::MemOp4;
598  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
599
600  // VEX_R: opcode externsion equivalent to REX.R in
601  // 1's complement (inverted) form
602  //
603  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
604  //  0: Same as REX_R=1 (64 bit mode only)
605  //
606  unsigned char VEX_R = 0x1;
607  unsigned char EVEX_R2 = 0x1;
608
609  // VEX_X: equivalent to REX.X, only used when a
610  // register is used for index in SIB Byte.
611  //
612  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
613  //  0: Same as REX.X=1 (64-bit mode only)
614  unsigned char VEX_X = 0x1;
615
616  // VEX_B:
617  //
618  //  1: Same as REX_B=0 (ignored in 32-bit mode)
619  //  0: Same as REX_B=1 (64 bit mode only)
620  //
621  unsigned char VEX_B = 0x1;
622
623  // VEX_W: opcode specific (use like REX.W, or used for
624  // opcode extension, or ignored, depending on the opcode byte)
625  unsigned char VEX_W = 0;
626
627  // VEX_5M (VEX m-mmmmm field):
628  //
629  //  0b00000: Reserved for future use
630  //  0b00001: implied 0F leading opcode
631  //  0b00010: implied 0F 38 leading opcode bytes
632  //  0b00011: implied 0F 3A leading opcode bytes
633  //  0b00100-0b11111: Reserved for future use
634  //  0b01000: XOP map select - 08h instructions with imm byte
635  //  0b01001: XOP map select - 09h instructions with no imm byte
636  //  0b01010: XOP map select - 0Ah instructions with imm dword
637  unsigned char VEX_5M = 0;
638
639  // VEX_4V (VEX vvvv field): a register specifier
640  // (in 1's complement form) or 1111 if unused.
641  unsigned char VEX_4V = 0xf;
642  unsigned char EVEX_V2 = 0x1;
643
644  // VEX_L (Vector Length):
645  //
646  //  0: scalar or 128-bit vector
647  //  1: 256-bit vector
648  //
649  unsigned char VEX_L = 0;
650  unsigned char EVEX_L2 = 0;
651
652  // VEX_PP: opcode extension providing equivalent
653  // functionality of a SIMD prefix
654  //
655  //  0b00: None
656  //  0b01: 66
657  //  0b10: F3
658  //  0b11: F2
659  //
660  unsigned char VEX_PP = 0;
661
662  // EVEX_U
663  unsigned char EVEX_U = 1; // Always '1' so far
664
665  // EVEX_z
666  unsigned char EVEX_z = 0;
667
668  // EVEX_b
669  unsigned char EVEX_b = 0;
670
671  // EVEX_rc
672  unsigned char EVEX_rc = 0;
673
674  // EVEX_aaa
675  unsigned char EVEX_aaa = 0;
676
677  bool EncodeRC = false;
678
679  if (TSFlags & X86II::VEX_W)
680    VEX_W = 1;
681
682  if (TSFlags & X86II::VEX_L)
683    VEX_L = 1;
684  if (TSFlags & X86II::EVEX_L2)
685    EVEX_L2 = 1;
686
687  if (HasEVEX_K && (TSFlags & X86II::EVEX_Z))
688    EVEX_z = 1;
689
690  if ((TSFlags & X86II::EVEX_B))
691    EVEX_b = 1;
692
693  switch (TSFlags & X86II::OpPrefixMask) {
694  default: break; // VEX_PP already correct
695  case X86II::PD: VEX_PP = 0x1; break; // 66
696  case X86II::XS: VEX_PP = 0x2; break; // F3
697  case X86II::XD: VEX_PP = 0x3; break; // F2
698  }
699
700  switch (TSFlags & X86II::OpMapMask) {
701  default: llvm_unreachable("Invalid prefix!");
702  case X86II::TB:   VEX_5M = 0x1; break; // 0F
703  case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
704  case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
705  case X86II::XOP8: VEX_5M = 0x8; break;
706  case X86II::XOP9: VEX_5M = 0x9; break;
707  case X86II::XOPA: VEX_5M = 0xA; break;
708  }
709
710  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
711  unsigned NumOps = Desc.getNumOperands();
712  unsigned CurOp = X86II::getOperandBias(Desc);
713
714  switch (TSFlags & X86II::FormMask) {
715  default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
716  case X86II::RawFrm:
717    break;
718  case X86II::MRMDestMem: {
719    // MRMDestMem instructions forms:
720    //  MemAddr, src1(ModR/M)
721    //  MemAddr, src1(VEX_4V), src2(ModR/M)
722    //  MemAddr, src1(ModR/M), imm8
723    //
724    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
725                                                 X86::AddrBaseReg).getReg()))
726      VEX_B = 0x0;
727    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
728                                                 X86::AddrIndexReg).getReg()))
729      VEX_X = 0x0;
730    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
731                                          X86::AddrIndexReg).getReg()))
732      EVEX_V2 = 0x0;
733
734    CurOp += X86::AddrNumOperands;
735
736    if (HasEVEX_K)
737      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
738
739    if (HasVEX_4V) {
740      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
741      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
742        EVEX_V2 = 0x0;
743      CurOp++;
744    }
745
746    const MCOperand &MO = MI.getOperand(CurOp);
747    if (MO.isReg()) {
748      if (X86II::isX86_64ExtendedReg(MO.getReg()))
749        VEX_R = 0x0;
750      if (X86II::is32ExtendedReg(MO.getReg()))
751        EVEX_R2 = 0x0;
752    }
753    break;
754  }
755  case X86II::MRMSrcMem:
756    // MRMSrcMem instructions forms:
757    //  src1(ModR/M), MemAddr
758    //  src1(ModR/M), src2(VEX_4V), MemAddr
759    //  src1(ModR/M), MemAddr, imm8
760    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
761    //
762    //  FMA4:
763    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
764    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
765    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
766      VEX_R = 0x0;
767    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
768      EVEX_R2 = 0x0;
769    CurOp++;
770
771    if (HasEVEX_K)
772      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
773
774    if (HasVEX_4V) {
775      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
776      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
777        EVEX_V2 = 0x0;
778      CurOp++;
779    }
780
781    if (X86II::isX86_64ExtendedReg(
782               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
783      VEX_B = 0x0;
784    if (X86II::isX86_64ExtendedReg(
785               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
786      VEX_X = 0x0;
787    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
788                               X86::AddrIndexReg).getReg()))
789      EVEX_V2 = 0x0;
790
791    if (HasVEX_4VOp3)
792      // Instruction format for 4VOp3:
793      //   src1(ModR/M), MemAddr, src3(VEX_4V)
794      // CurOp points to start of the MemoryOperand,
795      //   it skips TIED_TO operands if exist, then increments past src1.
796      // CurOp + X86::AddrNumOperands will point to src3.
797      VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
798    break;
799  case X86II::MRM0m: case X86II::MRM1m:
800  case X86II::MRM2m: case X86II::MRM3m:
801  case X86II::MRM4m: case X86II::MRM5m:
802  case X86II::MRM6m: case X86II::MRM7m: {
803    // MRM[0-9]m instructions forms:
804    //  MemAddr
805    //  src1(VEX_4V), MemAddr
806    if (HasVEX_4V) {
807      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
808      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
809        EVEX_V2 = 0x0;
810      CurOp++;
811    }
812
813    if (HasEVEX_K)
814      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
815
816    if (X86II::isX86_64ExtendedReg(
817               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
818      VEX_B = 0x0;
819    if (X86II::isX86_64ExtendedReg(
820               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
821      VEX_X = 0x0;
822    break;
823  }
824  case X86II::MRMSrcReg:
825    // MRMSrcReg instructions forms:
826    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
827    //  dst(ModR/M), src1(ModR/M)
828    //  dst(ModR/M), src1(ModR/M), imm8
829    //
830    //  FMA4:
831    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
832    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
833    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
834      VEX_R = 0x0;
835    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
836      EVEX_R2 = 0x0;
837    CurOp++;
838
839    if (HasEVEX_K)
840      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
841
842    if (HasVEX_4V) {
843      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
844      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
845        EVEX_V2 = 0x0;
846      CurOp++;
847    }
848
849    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
850      CurOp++;
851
852    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
853      VEX_B = 0x0;
854    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
855      VEX_X = 0x0;
856    CurOp++;
857    if (HasVEX_4VOp3)
858      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
859    if (EVEX_b) {
860      if (HasEVEX_RC) {
861        unsigned RcOperand = NumOps-1;
862        assert(RcOperand >= CurOp);
863        EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
864      }
865      EncodeRC = true;
866    }
867    break;
868  case X86II::MRMDestReg:
869    // MRMDestReg instructions forms:
870    //  dst(ModR/M), src(ModR/M)
871    //  dst(ModR/M), src(ModR/M), imm8
872    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
873    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
874      VEX_B = 0x0;
875    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
876      VEX_X = 0x0;
877    CurOp++;
878
879    if (HasEVEX_K)
880      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
881
882    if (HasVEX_4V) {
883      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
884      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
885        EVEX_V2 = 0x0;
886      CurOp++;
887    }
888
889    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
890      VEX_R = 0x0;
891    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
892      EVEX_R2 = 0x0;
893    if (EVEX_b)
894      EncodeRC = true;
895    break;
896  case X86II::MRM0r: case X86II::MRM1r:
897  case X86II::MRM2r: case X86II::MRM3r:
898  case X86II::MRM4r: case X86II::MRM5r:
899  case X86II::MRM6r: case X86II::MRM7r:
900    // MRM0r-MRM7r instructions forms:
901    //  dst(VEX_4V), src(ModR/M), imm8
902    if (HasVEX_4V) {
903      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
904      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
905          EVEX_V2 = 0x0;
906      CurOp++;
907    }
908    if (HasEVEX_K)
909      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
910
911    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
912      VEX_B = 0x0;
913    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
914      VEX_X = 0x0;
915    break;
916  }
917
918  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
919    // VEX opcode prefix can have 2 or 3 bytes
920    //
921    //  3 bytes:
922    //    +-----+ +--------------+ +-------------------+
923    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
924    //    +-----+ +--------------+ +-------------------+
925    //  2 bytes:
926    //    +-----+ +-------------------+
927    //    | C5h | | R | vvvv | L | pp |
928    //    +-----+ +-------------------+
929    //
930    //  XOP uses a similar prefix:
931    //    +-----+ +--------------+ +-------------------+
932    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
933    //    +-----+ +--------------+ +-------------------+
934    unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
935
936    // Can we use the 2 byte VEX prefix?
937    if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
938      EmitByte(0xC5, CurByte, OS);
939      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
940      return;
941    }
942
943    // 3 byte VEX prefix
944    EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
945    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
946    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
947  } else {
948    assert(Encoding == X86II::EVEX && "unknown encoding!");
949    // EVEX opcode prefix can have 4 bytes
950    //
951    // +-----+ +--------------+ +-------------------+ +------------------------+
952    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
953    // +-----+ +--------------+ +-------------------+ +------------------------+
954    assert((VEX_5M & 0x3) == VEX_5M
955           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
956
957    VEX_5M &= 0x3;
958
959    EmitByte(0x62, CurByte, OS);
960    EmitByte((VEX_R   << 7) |
961             (VEX_X   << 6) |
962             (VEX_B   << 5) |
963             (EVEX_R2 << 4) |
964             VEX_5M, CurByte, OS);
965    EmitByte((VEX_W   << 7) |
966             (VEX_4V  << 3) |
967             (EVEX_U  << 2) |
968             VEX_PP, CurByte, OS);
969    if (EncodeRC)
970      EmitByte((EVEX_z  << 7) |
971              (EVEX_rc << 5) |
972              (EVEX_b  << 4) |
973              (EVEX_V2 << 3) |
974              EVEX_aaa, CurByte, OS);
975    else
976      EmitByte((EVEX_z  << 7) |
977              (EVEX_L2 << 6) |
978              (VEX_L   << 5) |
979              (EVEX_b  << 4) |
980              (EVEX_V2 << 3) |
981              EVEX_aaa, CurByte, OS);
982  }
983}
984
985/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
986/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
987/// size, and 3) use of X86-64 extended registers.
988static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
989                                   const MCInstrDesc &Desc) {
990  unsigned REX = 0;
991  bool UsesHighByteReg = false;
992
993  if (TSFlags & X86II::REX_W)
994    REX |= 1 << 3; // set REX.W
995
996  if (MI.getNumOperands() == 0) return REX;
997
998  unsigned NumOps = MI.getNumOperands();
999  // FIXME: MCInst should explicitize the two-addrness.
1000  bool isTwoAddr = NumOps > 1 &&
1001                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
1002
1003  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1004  unsigned i = isTwoAddr ? 1 : 0;
1005  for (; i != NumOps; ++i) {
1006    const MCOperand &MO = MI.getOperand(i);
1007    if (!MO.isReg()) continue;
1008    unsigned Reg = MO.getReg();
1009    if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1010      UsesHighByteReg = true;
1011    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
1012    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
1013    // that returns non-zero.
1014    REX |= 0x40; // REX fixed encoding prefix
1015    break;
1016  }
1017
1018  switch (TSFlags & X86II::FormMask) {
1019  case X86II::MRMSrcReg:
1020    if (MI.getOperand(0).isReg() &&
1021        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1022      REX |= 1 << 2; // set REX.R
1023    i = isTwoAddr ? 2 : 1;
1024    for (; i != NumOps; ++i) {
1025      const MCOperand &MO = MI.getOperand(i);
1026      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1027        REX |= 1 << 0; // set REX.B
1028    }
1029    break;
1030  case X86II::MRMSrcMem: {
1031    if (MI.getOperand(0).isReg() &&
1032        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1033      REX |= 1 << 2; // set REX.R
1034    unsigned Bit = 0;
1035    i = isTwoAddr ? 2 : 1;
1036    for (; i != NumOps; ++i) {
1037      const MCOperand &MO = MI.getOperand(i);
1038      if (MO.isReg()) {
1039        if (X86II::isX86_64ExtendedReg(MO.getReg()))
1040          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
1041        Bit++;
1042      }
1043    }
1044    break;
1045  }
1046  case X86II::MRMXm:
1047  case X86II::MRM0m: case X86II::MRM1m:
1048  case X86II::MRM2m: case X86II::MRM3m:
1049  case X86II::MRM4m: case X86II::MRM5m:
1050  case X86II::MRM6m: case X86II::MRM7m:
1051  case X86II::MRMDestMem: {
1052    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
1053    i = isTwoAddr ? 1 : 0;
1054    if (NumOps > e && MI.getOperand(e).isReg() &&
1055        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
1056      REX |= 1 << 2; // set REX.R
1057    unsigned Bit = 0;
1058    for (; i != e; ++i) {
1059      const MCOperand &MO = MI.getOperand(i);
1060      if (MO.isReg()) {
1061        if (X86II::isX86_64ExtendedReg(MO.getReg()))
1062          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
1063        Bit++;
1064      }
1065    }
1066    break;
1067  }
1068  default:
1069    if (MI.getOperand(0).isReg() &&
1070        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1071      REX |= 1 << 0; // set REX.B
1072    i = isTwoAddr ? 2 : 1;
1073    for (unsigned e = NumOps; i != e; ++i) {
1074      const MCOperand &MO = MI.getOperand(i);
1075      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1076        REX |= 1 << 2; // set REX.R
1077    }
1078    break;
1079  }
1080  if (REX && UsesHighByteReg)
1081    report_fatal_error("Cannot encode high byte register in REX-prefixed instruction");
1082
1083  return REX;
1084}
1085
1086/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1087void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
1088                                                 unsigned SegOperand,
1089                                                 const MCInst &MI,
1090                                                 raw_ostream &OS) const {
1091  // Check for explicit segment override on memory operand.
1092  switch (MI.getOperand(SegOperand).getReg()) {
1093  default: llvm_unreachable("Unknown segment register!");
1094  case 0: break;
1095  case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1096  case X86::SS: EmitByte(0x36, CurByte, OS); break;
1097  case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1098  case X86::ES: EmitByte(0x26, CurByte, OS); break;
1099  case X86::FS: EmitByte(0x64, CurByte, OS); break;
1100  case X86::GS: EmitByte(0x65, CurByte, OS); break;
1101  }
1102}
1103
1104/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
1105///
1106/// MemOperand is the operand # of the start of a memory operand if present.  If
1107/// Not present, it is -1.
1108void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1109                                        int MemOperand, const MCInst &MI,
1110                                        const MCInstrDesc &Desc,
1111                                        const MCSubtargetInfo &STI,
1112                                        raw_ostream &OS) const {
1113
1114  // Emit the operand size opcode prefix as needed.
1115  if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
1116                                                         : X86II::OpSize16))
1117    EmitByte(0x66, CurByte, OS);
1118
1119  // Emit the LOCK opcode prefix.
1120  if (TSFlags & X86II::LOCK)
1121    EmitByte(0xF0, CurByte, OS);
1122
1123  switch (TSFlags & X86II::OpPrefixMask) {
1124  case X86II::PD:   // 66
1125    EmitByte(0x66, CurByte, OS);
1126    break;
1127  case X86II::XS:   // F3
1128    EmitByte(0xF3, CurByte, OS);
1129    break;
1130  case X86II::XD:   // F2
1131    EmitByte(0xF2, CurByte, OS);
1132    break;
1133  }
1134
1135  // Handle REX prefix.
1136  // FIXME: Can this come before F2 etc to simplify emission?
1137  if (is64BitMode(STI)) {
1138    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
1139      EmitByte(0x40 | REX, CurByte, OS);
1140  }
1141
1142  // 0x0F escape code must be emitted just before the opcode.
1143  switch (TSFlags & X86II::OpMapMask) {
1144  case X86II::TB:  // Two-byte opcode map
1145  case X86II::T8:  // 0F 38
1146  case X86II::TA:  // 0F 3A
1147    EmitByte(0x0F, CurByte, OS);
1148    break;
1149  }
1150
1151  switch (TSFlags & X86II::OpMapMask) {
1152  case X86II::T8:    // 0F 38
1153    EmitByte(0x38, CurByte, OS);
1154    break;
1155  case X86II::TA:    // 0F 3A
1156    EmitByte(0x3A, CurByte, OS);
1157    break;
1158  }
1159}
1160
1161void X86MCCodeEmitter::
1162encodeInstruction(const MCInst &MI, raw_ostream &OS,
1163                  SmallVectorImpl<MCFixup> &Fixups,
1164                  const MCSubtargetInfo &STI) const {
1165  unsigned Opcode = MI.getOpcode();
1166  const MCInstrDesc &Desc = MCII.get(Opcode);
1167  uint64_t TSFlags = Desc.TSFlags;
1168
1169  // Pseudo instructions don't get encoded.
1170  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1171    return;
1172
1173  unsigned NumOps = Desc.getNumOperands();
1174  unsigned CurOp = X86II::getOperandBias(Desc);
1175
1176  // Keep track of the current byte being emitted.
1177  unsigned CurByte = 0;
1178
1179  // Encoding type for this instruction.
1180  uint64_t Encoding = TSFlags & X86II::EncodingMask;
1181
1182  // It uses the VEX.VVVV field?
1183  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1184  bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
1185  bool HasMemOp4 = TSFlags & X86II::MemOp4;
1186  const unsigned MemOp4_I8IMMOperand = 2;
1187
1188  // It uses the EVEX.aaa field?
1189  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1190  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1191
1192  // Determine where the memory operand starts, if present.
1193  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1194  if (MemoryOperand != -1) MemoryOperand += CurOp;
1195
1196  // Emit segment override opcode prefix as needed.
1197  if (MemoryOperand >= 0)
1198    EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
1199                              MI, OS);
1200
1201  // Emit the repeat opcode prefix as needed.
1202  if (TSFlags & X86II::REP)
1203    EmitByte(0xF3, CurByte, OS);
1204
1205  // Emit the address size opcode prefix as needed.
1206  bool need_address_override;
1207  uint64_t AdSize = TSFlags & X86II::AdSizeMask;
1208  if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
1209      (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
1210      (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
1211    need_address_override = true;
1212  } else if (MemoryOperand < 0) {
1213    need_address_override = false;
1214  } else if (is64BitMode(STI)) {
1215    assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
1216    need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1217  } else if (is32BitMode(STI)) {
1218    assert(!Is64BitMemOperand(MI, MemoryOperand));
1219    need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
1220  } else {
1221    assert(is16BitMode(STI));
1222    assert(!Is64BitMemOperand(MI, MemoryOperand));
1223    need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
1224  }
1225
1226  if (need_address_override)
1227    EmitByte(0x67, CurByte, OS);
1228
1229  if (Encoding == 0)
1230    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
1231  else
1232    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1233
1234  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1235
1236  if (TSFlags & X86II::Has3DNow0F0FOpcode)
1237    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
1238
1239  unsigned SrcRegNum = 0;
1240  switch (TSFlags & X86II::FormMask) {
1241  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1242    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1243  case X86II::Pseudo:
1244    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1245  case X86II::RawFrmDstSrc: {
1246    unsigned siReg = MI.getOperand(1).getReg();
1247    assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
1248            (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
1249            (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
1250           "SI and DI register sizes do not match");
1251    // Emit segment override opcode prefix as needed (not for %ds).
1252    if (MI.getOperand(2).getReg() != X86::DS)
1253      EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
1254    // Emit AdSize prefix as needed.
1255    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1256        (is32BitMode(STI) && siReg == X86::SI))
1257      EmitByte(0x67, CurByte, OS);
1258    CurOp += 3; // Consume operands.
1259    EmitByte(BaseOpcode, CurByte, OS);
1260    break;
1261  }
1262  case X86II::RawFrmSrc: {
1263    unsigned siReg = MI.getOperand(0).getReg();
1264    // Emit segment override opcode prefix as needed (not for %ds).
1265    if (MI.getOperand(1).getReg() != X86::DS)
1266      EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1267    // Emit AdSize prefix as needed.
1268    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1269        (is32BitMode(STI) && siReg == X86::SI))
1270      EmitByte(0x67, CurByte, OS);
1271    CurOp += 2; // Consume operands.
1272    EmitByte(BaseOpcode, CurByte, OS);
1273    break;
1274  }
1275  case X86II::RawFrmDst: {
1276    unsigned siReg = MI.getOperand(0).getReg();
1277    // Emit AdSize prefix as needed.
1278    if ((!is32BitMode(STI) && siReg == X86::EDI) ||
1279        (is32BitMode(STI) && siReg == X86::DI))
1280      EmitByte(0x67, CurByte, OS);
1281    ++CurOp; // Consume operand.
1282    EmitByte(BaseOpcode, CurByte, OS);
1283    break;
1284  }
1285  case X86II::RawFrm:
1286    EmitByte(BaseOpcode, CurByte, OS);
1287    break;
1288  case X86II::RawFrmMemOffs:
1289    // Emit segment override opcode prefix as needed.
1290    EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1291    EmitByte(BaseOpcode, CurByte, OS);
1292    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1293                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1294                  CurByte, OS, Fixups);
1295    ++CurOp; // skip segment operand
1296    break;
1297  case X86II::RawFrmImm8:
1298    EmitByte(BaseOpcode, CurByte, OS);
1299    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1300                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1301                  CurByte, OS, Fixups);
1302    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1303                  OS, Fixups);
1304    break;
1305  case X86II::RawFrmImm16:
1306    EmitByte(BaseOpcode, CurByte, OS);
1307    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1308                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1309                  CurByte, OS, Fixups);
1310    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1311                  OS, Fixups);
1312    break;
1313
1314  case X86II::AddRegFrm:
1315    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1316    break;
1317
1318  case X86II::MRMDestReg:
1319    EmitByte(BaseOpcode, CurByte, OS);
1320    SrcRegNum = CurOp + 1;
1321
1322    if (HasEVEX_K) // Skip writemask
1323      SrcRegNum++;
1324
1325    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1326      ++SrcRegNum;
1327
1328    EmitRegModRMByte(MI.getOperand(CurOp),
1329                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1330    CurOp = SrcRegNum + 1;
1331    break;
1332
1333  case X86II::MRMDestMem:
1334    EmitByte(BaseOpcode, CurByte, OS);
1335    SrcRegNum = CurOp + X86::AddrNumOperands;
1336
1337    if (HasEVEX_K) // Skip writemask
1338      SrcRegNum++;
1339
1340    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1341      ++SrcRegNum;
1342
1343    EmitMemModRMByte(MI, CurOp,
1344                     GetX86RegNum(MI.getOperand(SrcRegNum)),
1345                     TSFlags, CurByte, OS, Fixups, STI);
1346    CurOp = SrcRegNum + 1;
1347    break;
1348
1349  case X86II::MRMSrcReg:
1350    EmitByte(BaseOpcode, CurByte, OS);
1351    SrcRegNum = CurOp + 1;
1352
1353    if (HasEVEX_K) // Skip writemask
1354      SrcRegNum++;
1355
1356    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1357      ++SrcRegNum;
1358
1359    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1360      ++SrcRegNum;
1361
1362    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1363                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1364
1365    // 2 operands skipped with HasMemOp4, compensate accordingly
1366    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1367    if (HasVEX_4VOp3)
1368      ++CurOp;
1369    // do not count the rounding control operand
1370    if (HasEVEX_RC)
1371      NumOps--;
1372    break;
1373
1374  case X86II::MRMSrcMem: {
1375    int AddrOperands = X86::AddrNumOperands;
1376    unsigned FirstMemOp = CurOp+1;
1377
1378    if (HasEVEX_K) { // Skip writemask
1379      ++AddrOperands;
1380      ++FirstMemOp;
1381    }
1382
1383    if (HasVEX_4V) {
1384      ++AddrOperands;
1385      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1386    }
1387    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1388      ++FirstMemOp;
1389
1390    EmitByte(BaseOpcode, CurByte, OS);
1391
1392    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1393                     TSFlags, CurByte, OS, Fixups, STI);
1394    CurOp += AddrOperands + 1;
1395    if (HasVEX_4VOp3)
1396      ++CurOp;
1397    break;
1398  }
1399
1400  case X86II::MRMXr:
1401  case X86II::MRM0r: case X86II::MRM1r:
1402  case X86II::MRM2r: case X86II::MRM3r:
1403  case X86II::MRM4r: case X86II::MRM5r:
1404  case X86II::MRM6r: case X86II::MRM7r: {
1405    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1406      ++CurOp;
1407    if (HasEVEX_K) // Skip writemask
1408      ++CurOp;
1409    EmitByte(BaseOpcode, CurByte, OS);
1410    uint64_t Form = TSFlags & X86II::FormMask;
1411    EmitRegModRMByte(MI.getOperand(CurOp++),
1412                     (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
1413                     CurByte, OS);
1414    break;
1415  }
1416
1417  case X86II::MRMXm:
1418  case X86II::MRM0m: case X86II::MRM1m:
1419  case X86II::MRM2m: case X86II::MRM3m:
1420  case X86II::MRM4m: case X86II::MRM5m:
1421  case X86II::MRM6m: case X86II::MRM7m: {
1422    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1423      ++CurOp;
1424    if (HasEVEX_K) // Skip writemask
1425      ++CurOp;
1426    EmitByte(BaseOpcode, CurByte, OS);
1427    uint64_t Form = TSFlags & X86II::FormMask;
1428    EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
1429                     TSFlags, CurByte, OS, Fixups, STI);
1430    CurOp += X86::AddrNumOperands;
1431    break;
1432  }
1433  case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1434  case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1435  case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1436  case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1437  case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1438  case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1439  case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1440  case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1441  case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1442  case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1443  case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1444  case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1445  case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1446  case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1447  case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1448  case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1449  case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1450  case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1451  case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1452  case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1453  case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1454  case X86II::MRM_FF:
1455    EmitByte(BaseOpcode, CurByte, OS);
1456
1457    uint64_t Form = TSFlags & X86II::FormMask;
1458    EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
1459    break;
1460  }
1461
1462  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1463  // according to the right size for the instruction. Some instructions
1464  // (SSE4a extrq and insertq) have two trailing immediates.
1465  while (CurOp != NumOps && NumOps - CurOp <= 2) {
1466    // The last source register of a 4 operand instruction in AVX is encoded
1467    // in bits[7:4] of a immediate byte.
1468    if (TSFlags & X86II::VEX_I8IMM) {
1469      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1470                                                    : CurOp);
1471      ++CurOp;
1472      unsigned RegNum = GetX86RegNum(MO) << 4;
1473      if (X86II::isX86_64ExtendedReg(MO.getReg()))
1474        RegNum |= 1 << 7;
1475      // If there is an additional 5th operand it must be an immediate, which
1476      // is encoded in bits[3:0]
1477      if (CurOp != NumOps) {
1478        const MCOperand &MIMM = MI.getOperand(CurOp++);
1479        if (MIMM.isImm()) {
1480          unsigned Val = MIMM.getImm();
1481          assert(Val < 16 && "Immediate operand value out of range");
1482          RegNum |= Val;
1483        }
1484      }
1485      EmitImmediate(MCOperand::createImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1486                    CurByte, OS, Fixups);
1487    } else {
1488      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1489                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1490                    CurByte, OS, Fixups);
1491    }
1492  }
1493
1494  if (TSFlags & X86II::Has3DNow0F0FOpcode)
1495    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1496
1497#ifndef NDEBUG
1498  // FIXME: Verify.
1499  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1500    errs() << "Cannot encode all operands of: ";
1501    MI.dump();
1502    errs() << '\n';
1503    abort();
1504  }
1505#endif
1506}
1507