X86MCCodeEmitter.cpp revision 251662
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "mccodeemitter"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCContext.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/MC/MCInstrInfo.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/Support/raw_ostream.h"
27
28using namespace llvm;
29
30namespace {
31class X86MCCodeEmitter : public MCCodeEmitter {
32  X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
33  void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
34  const MCInstrInfo &MCII;
35  const MCSubtargetInfo &STI;
36  MCContext &Ctx;
37public:
38  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
39                   MCContext &ctx)
40    : MCII(mcii), STI(sti), Ctx(ctx) {
41  }
42
43  ~X86MCCodeEmitter() {}
44
45  bool is64BitMode() const {
46    // FIXME: Can tablegen auto-generate this?
47    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
48  }
49
50  bool is32BitMode() const {
51    // FIXME: Can tablegen auto-generate this?
52    return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
53  }
54
55  unsigned GetX86RegNum(const MCOperand &MO) const {
56    return Ctx.getRegisterInfo().getEncodingValue(MO.getReg()) & 0x7;
57  }
58
59  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
60  // 0-7 and the difference between the 2 groups is given by the REX prefix.
61  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
62  // in 1's complement form, example:
63  //
64  //  ModRM field => XMM9 => 1
65  //  VEX.VVVV    => XMM9 => ~9
66  //
67  // See table 4-35 of Intel AVX Programming Reference for details.
68  unsigned char getVEXRegisterEncoding(const MCInst &MI,
69                                       unsigned OpNum) const {
70    unsigned SrcReg = MI.getOperand(OpNum).getReg();
71    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
72    if (X86II::isX86_64ExtendedReg(SrcReg))
73      SrcRegNum |= 8;
74
75    // The registers represented through VEX_VVVV should
76    // be encoded in 1's complement form.
77    return (~SrcRegNum) & 0xf;
78  }
79
80  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
81    OS << (char)C;
82    ++CurByte;
83  }
84
85  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
86                    raw_ostream &OS) const {
87    // Output the constant in little endian byte order.
88    for (unsigned i = 0; i != Size; ++i) {
89      EmitByte(Val & 255, CurByte, OS);
90      Val >>= 8;
91    }
92  }
93
94  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
95                     unsigned ImmSize, MCFixupKind FixupKind,
96                     unsigned &CurByte, raw_ostream &OS,
97                     SmallVectorImpl<MCFixup> &Fixups,
98                     int ImmOffset = 0) const;
99
100  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
101                                        unsigned RM) {
102    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
103    return RM | (RegOpcode << 3) | (Mod << 6);
104  }
105
106  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
107                        unsigned &CurByte, raw_ostream &OS) const {
108    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
109  }
110
111  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
112                   unsigned &CurByte, raw_ostream &OS) const {
113    // SIB byte is in the same format as the ModRMByte.
114    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
115  }
116
117
118  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
119                        unsigned RegOpcodeField,
120                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
121                        SmallVectorImpl<MCFixup> &Fixups) const;
122
123  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
124                         SmallVectorImpl<MCFixup> &Fixups) const;
125
126  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
127                           const MCInst &MI, const MCInstrDesc &Desc,
128                           raw_ostream &OS) const;
129
130  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
131                                 int MemOperand, const MCInst &MI,
132                                 raw_ostream &OS) const;
133
134  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
135                        const MCInst &MI, const MCInstrDesc &Desc,
136                        raw_ostream &OS) const;
137};
138
139} // end anonymous namespace
140
141
142MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
143                                            const MCRegisterInfo &MRI,
144                                            const MCSubtargetInfo &STI,
145                                            MCContext &Ctx) {
146  return new X86MCCodeEmitter(MCII, STI, Ctx);
147}
148
149/// isDisp8 - Return true if this signed displacement fits in a 8-bit
150/// sign-extended field.
151static bool isDisp8(int Value) {
152  return Value == (signed char)Value;
153}
154
155/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
156/// in an instruction with the specified TSFlags.
157static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
158  unsigned Size = X86II::getSizeOfImm(TSFlags);
159  bool isPCRel = X86II::isImmPCRel(TSFlags);
160
161  return MCFixup::getKindForSize(Size, isPCRel);
162}
163
164/// Is32BitMemOperand - Return true if the specified instruction has
165/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
166static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
167  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
168  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
169
170  if ((BaseReg.getReg() != 0 &&
171       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
172      (IndexReg.getReg() != 0 &&
173       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
174    return true;
175  return false;
176}
177
178/// Is64BitMemOperand - Return true if the specified instruction has
179/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
180#ifndef NDEBUG
181static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
182  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
183  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
184
185  if ((BaseReg.getReg() != 0 &&
186       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
187      (IndexReg.getReg() != 0 &&
188       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
189    return true;
190  return false;
191}
192#endif
193
194/// Is16BitMemOperand - Return true if the specified instruction has
195/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
196static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
197  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
198  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
199
200  if ((BaseReg.getReg() != 0 &&
201       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
202      (IndexReg.getReg() != 0 &&
203       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
204    return true;
205  return false;
206}
207
208/// StartsWithGlobalOffsetTable - Check if this expression starts with
209///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
210///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
211/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
212/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
213/// of a binary expression.
214enum GlobalOffsetTableExprKind {
215  GOT_None,
216  GOT_Normal,
217  GOT_SymDiff
218};
219static GlobalOffsetTableExprKind
220StartsWithGlobalOffsetTable(const MCExpr *Expr) {
221  const MCExpr *RHS = 0;
222  if (Expr->getKind() == MCExpr::Binary) {
223    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
224    Expr = BE->getLHS();
225    RHS = BE->getRHS();
226  }
227
228  if (Expr->getKind() != MCExpr::SymbolRef)
229    return GOT_None;
230
231  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
232  const MCSymbol &S = Ref->getSymbol();
233  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
234    return GOT_None;
235  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
236    return GOT_SymDiff;
237  return GOT_Normal;
238}
239
240static bool HasSecRelSymbolRef(const MCExpr *Expr) {
241  if (Expr->getKind() == MCExpr::SymbolRef) {
242    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
243    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
244  }
245  return false;
246}
247
248void X86MCCodeEmitter::
249EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
250              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
251              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
252  const MCExpr *Expr = NULL;
253  if (DispOp.isImm()) {
254    // If this is a simple integer displacement that doesn't require a
255    // relocation, emit it now.
256    if (FixupKind != FK_PCRel_1 &&
257        FixupKind != FK_PCRel_2 &&
258        FixupKind != FK_PCRel_4) {
259      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
260      return;
261    }
262    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
263  } else {
264    Expr = DispOp.getExpr();
265  }
266
267  // If we have an immoffset, add it to the expression.
268  if ((FixupKind == FK_Data_4 ||
269       FixupKind == FK_Data_8 ||
270       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
271    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
272    if (Kind != GOT_None) {
273      assert(ImmOffset == 0);
274
275      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
276      if (Kind == GOT_Normal)
277        ImmOffset = CurByte;
278    } else if (Expr->getKind() == MCExpr::SymbolRef) {
279      if (HasSecRelSymbolRef(Expr)) {
280        FixupKind = MCFixupKind(FK_SecRel_4);
281      }
282    } else if (Expr->getKind() == MCExpr::Binary) {
283      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
284      if (HasSecRelSymbolRef(Bin->getLHS())
285          || HasSecRelSymbolRef(Bin->getRHS())) {
286        FixupKind = MCFixupKind(FK_SecRel_4);
287      }
288    }
289  }
290
291  // If the fixup is pc-relative, we need to bias the value to be relative to
292  // the start of the field, not the end of the field.
293  if (FixupKind == FK_PCRel_4 ||
294      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
295      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
296    ImmOffset -= 4;
297  if (FixupKind == FK_PCRel_2)
298    ImmOffset -= 2;
299  if (FixupKind == FK_PCRel_1)
300    ImmOffset -= 1;
301
302  if (ImmOffset)
303    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
304                                   Ctx);
305
306  // Emit a symbolic constant as a fixup and 4 zeros.
307  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
308  EmitConstant(0, Size, CurByte, OS);
309}
310
311void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
312                                        unsigned RegOpcodeField,
313                                        uint64_t TSFlags, unsigned &CurByte,
314                                        raw_ostream &OS,
315                                        SmallVectorImpl<MCFixup> &Fixups) const{
316  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
317  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
318  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
319  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
320  unsigned BaseReg = Base.getReg();
321
322  // Handle %rip relative addressing.
323  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
324    assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
325    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
326    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
327
328    unsigned FixupKind = X86::reloc_riprel_4byte;
329
330    // movq loads are handled with a special relocation form which allows the
331    // linker to eliminate some loads for GOT references which end up in the
332    // same linkage unit.
333    if (MI.getOpcode() == X86::MOV64rm)
334      FixupKind = X86::reloc_riprel_4byte_movq_load;
335
336    // rip-relative addressing is actually relative to the *next* instruction.
337    // Since an immediate can follow the mod/rm byte for an instruction, this
338    // means that we need to bias the immediate field of the instruction with
339    // the size of the immediate field.  If we have this case, add it into the
340    // expression to emit.
341    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
342
343    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
344                  CurByte, OS, Fixups, -ImmSize);
345    return;
346  }
347
348  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
349
350  // Determine whether a SIB byte is needed.
351  // If no BaseReg, issue a RIP relative instruction only if the MCE can
352  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
353  // 2-7) and absolute references.
354
355  if (// The SIB byte must be used if there is an index register.
356      IndexReg.getReg() == 0 &&
357      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
358      // encode to an R/M value of 4, which indicates that a SIB byte is
359      // present.
360      BaseRegNo != N86::ESP &&
361      // If there is no base register and we're in 64-bit mode, we need a SIB
362      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
363      (!is64BitMode() || BaseReg != 0)) {
364
365    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
366      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
367      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
368      return;
369    }
370
371    // If the base is not EBP/ESP and there is no displacement, use simple
372    // indirect register encoding, this handles addresses like [EAX].  The
373    // encoding for [EBP] with no displacement means [disp32] so we handle it
374    // by emitting a displacement of 0 below.
375    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
376      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
377      return;
378    }
379
380    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
381    if (Disp.isImm() && isDisp8(Disp.getImm())) {
382      EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
383      EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
384      return;
385    }
386
387    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
388    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
389    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
390                  Fixups);
391    return;
392  }
393
394  // We need a SIB byte, so start by outputting the ModR/M byte first
395  assert(IndexReg.getReg() != X86::ESP &&
396         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
397
398  bool ForceDisp32 = false;
399  bool ForceDisp8  = false;
400  if (BaseReg == 0) {
401    // If there is no base register, we emit the special case SIB byte with
402    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
403    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
404    ForceDisp32 = true;
405  } else if (!Disp.isImm()) {
406    // Emit the normal disp32 encoding.
407    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
408    ForceDisp32 = true;
409  } else if (Disp.getImm() == 0 &&
410             // Base reg can't be anything that ends up with '5' as the base
411             // reg, it is the magic [*] nomenclature that indicates no base.
412             BaseRegNo != N86::EBP) {
413    // Emit no displacement ModR/M byte
414    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
415  } else if (isDisp8(Disp.getImm())) {
416    // Emit the disp8 encoding.
417    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
418    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
419  } else {
420    // Emit the normal disp32 encoding.
421    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
422  }
423
424  // Calculate what the SS field value should be...
425  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
426  unsigned SS = SSTable[Scale.getImm()];
427
428  if (BaseReg == 0) {
429    // Handle the SIB byte for the case where there is no base, see Intel
430    // Manual 2A, table 2-7. The displacement has already been output.
431    unsigned IndexRegNo;
432    if (IndexReg.getReg())
433      IndexRegNo = GetX86RegNum(IndexReg);
434    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
435      IndexRegNo = 4;
436    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
437  } else {
438    unsigned IndexRegNo;
439    if (IndexReg.getReg())
440      IndexRegNo = GetX86RegNum(IndexReg);
441    else
442      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
443    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
444  }
445
446  // Do we need to output a displacement?
447  if (ForceDisp8)
448    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
449  else if (ForceDisp32 || Disp.getImm() != 0)
450    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
451                  CurByte, OS, Fixups);
452}
453
454/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
455/// called VEX.
456void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
457                                           int MemOperand, const MCInst &MI,
458                                           const MCInstrDesc &Desc,
459                                           raw_ostream &OS) const {
460  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
461  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
462  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
463
464  // VEX_R: opcode externsion equivalent to REX.R in
465  // 1's complement (inverted) form
466  //
467  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
468  //  0: Same as REX_R=1 (64 bit mode only)
469  //
470  unsigned char VEX_R = 0x1;
471
472  // VEX_X: equivalent to REX.X, only used when a
473  // register is used for index in SIB Byte.
474  //
475  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
476  //  0: Same as REX.X=1 (64-bit mode only)
477  unsigned char VEX_X = 0x1;
478
479  // VEX_B:
480  //
481  //  1: Same as REX_B=0 (ignored in 32-bit mode)
482  //  0: Same as REX_B=1 (64 bit mode only)
483  //
484  unsigned char VEX_B = 0x1;
485
486  // VEX_W: opcode specific (use like REX.W, or used for
487  // opcode extension, or ignored, depending on the opcode byte)
488  unsigned char VEX_W = 0;
489
490  // XOP: Use XOP prefix byte 0x8f instead of VEX.
491  unsigned char XOP = 0;
492
493  // VEX_5M (VEX m-mmmmm field):
494  //
495  //  0b00000: Reserved for future use
496  //  0b00001: implied 0F leading opcode
497  //  0b00010: implied 0F 38 leading opcode bytes
498  //  0b00011: implied 0F 3A leading opcode bytes
499  //  0b00100-0b11111: Reserved for future use
500  //  0b01000: XOP map select - 08h instructions with imm byte
501  //  0b10001: XOP map select - 09h instructions with no imm byte
502  unsigned char VEX_5M = 0x1;
503
504  // VEX_4V (VEX vvvv field): a register specifier
505  // (in 1's complement form) or 1111 if unused.
506  unsigned char VEX_4V = 0xf;
507
508  // VEX_L (Vector Length):
509  //
510  //  0: scalar or 128-bit vector
511  //  1: 256-bit vector
512  //
513  unsigned char VEX_L = 0;
514
515  // VEX_PP: opcode extension providing equivalent
516  // functionality of a SIMD prefix
517  //
518  //  0b00: None
519  //  0b01: 66
520  //  0b10: F3
521  //  0b11: F2
522  //
523  unsigned char VEX_PP = 0;
524
525  // Encode the operand size opcode prefix as needed.
526  if (TSFlags & X86II::OpSize)
527    VEX_PP = 0x01;
528
529  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
530    VEX_W = 1;
531
532  if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
533    XOP = 1;
534
535  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
536    VEX_L = 1;
537
538  switch (TSFlags & X86II::Op0Mask) {
539  default: llvm_unreachable("Invalid prefix!");
540  case X86II::T8:  // 0F 38
541    VEX_5M = 0x2;
542    break;
543  case X86II::TA:  // 0F 3A
544    VEX_5M = 0x3;
545    break;
546  case X86II::T8XS: // F3 0F 38
547    VEX_PP = 0x2;
548    VEX_5M = 0x2;
549    break;
550  case X86II::T8XD: // F2 0F 38
551    VEX_PP = 0x3;
552    VEX_5M = 0x2;
553    break;
554  case X86II::TAXD: // F2 0F 3A
555    VEX_PP = 0x3;
556    VEX_5M = 0x3;
557    break;
558  case X86II::XS:  // F3 0F
559    VEX_PP = 0x2;
560    break;
561  case X86II::XD:  // F2 0F
562    VEX_PP = 0x3;
563    break;
564  case X86II::XOP8:
565    VEX_5M = 0x8;
566    break;
567  case X86II::XOP9:
568    VEX_5M = 0x9;
569    break;
570  case X86II::A6:  // Bypass: Not used by VEX
571  case X86II::A7:  // Bypass: Not used by VEX
572  case X86II::TB:  // Bypass: Not used by VEX
573  case 0:
574    break;  // No prefix!
575  }
576
577
578  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
579  unsigned NumOps = Desc.getNumOperands();
580  unsigned CurOp = 0;
581  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
582    ++CurOp;
583  else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0) {
584    assert(Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
585    // Special case for GATHER with 2 TIED_TO operands
586    // Skip the first 2 operands: dst, mask_wb
587    CurOp += 2;
588  }
589
590  switch (TSFlags & X86II::FormMask) {
591  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
592  case X86II::MRMDestMem: {
593    // MRMDestMem instructions forms:
594    //  MemAddr, src1(ModR/M)
595    //  MemAddr, src1(VEX_4V), src2(ModR/M)
596    //  MemAddr, src1(ModR/M), imm8
597    //
598    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
599      VEX_B = 0x0;
600    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
601      VEX_X = 0x0;
602
603    CurOp = X86::AddrNumOperands;
604    if (HasVEX_4V)
605      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
606
607    const MCOperand &MO = MI.getOperand(CurOp);
608    if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
609      VEX_R = 0x0;
610    break;
611  }
612  case X86II::MRMSrcMem:
613    // MRMSrcMem instructions forms:
614    //  src1(ModR/M), MemAddr
615    //  src1(ModR/M), src2(VEX_4V), MemAddr
616    //  src1(ModR/M), MemAddr, imm8
617    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
618    //
619    //  FMA4:
620    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
621    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
622    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp++).getReg()))
623      VEX_R = 0x0;
624
625    if (HasVEX_4V)
626      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
627
628    if (X86II::isX86_64ExtendedReg(
629               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
630      VEX_B = 0x0;
631    if (X86II::isX86_64ExtendedReg(
632               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
633      VEX_X = 0x0;
634
635    if (HasVEX_4VOp3)
636      // Instruction format for 4VOp3:
637      //   src1(ModR/M), MemAddr, src3(VEX_4V)
638      // CurOp points to start of the MemoryOperand,
639      //   it skips TIED_TO operands if exist, then increments past src1.
640      // CurOp + X86::AddrNumOperands will point to src3.
641      VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
642    break;
643  case X86II::MRM0m: case X86II::MRM1m:
644  case X86II::MRM2m: case X86II::MRM3m:
645  case X86II::MRM4m: case X86II::MRM5m:
646  case X86II::MRM6m: case X86II::MRM7m: {
647    // MRM[0-9]m instructions forms:
648    //  MemAddr
649    //  src1(VEX_4V), MemAddr
650    if (HasVEX_4V)
651      VEX_4V = getVEXRegisterEncoding(MI, 0);
652
653    if (X86II::isX86_64ExtendedReg(
654               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
655      VEX_B = 0x0;
656    if (X86II::isX86_64ExtendedReg(
657               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
658      VEX_X = 0x0;
659    break;
660  }
661  case X86II::MRMSrcReg:
662    // MRMSrcReg instructions forms:
663    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
664    //  dst(ModR/M), src1(ModR/M)
665    //  dst(ModR/M), src1(ModR/M), imm8
666    //
667    //  FMA4:
668    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
669    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
670    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
671      VEX_R = 0x0;
672    CurOp++;
673
674    if (HasVEX_4V)
675      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
676
677    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
678      CurOp++;
679
680    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
681      VEX_B = 0x0;
682    CurOp++;
683    if (HasVEX_4VOp3)
684      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
685    break;
686  case X86II::MRMDestReg:
687    // MRMDestReg instructions forms:
688    //  dst(ModR/M), src(ModR/M)
689    //  dst(ModR/M), src(ModR/M), imm8
690    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
691    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
692      VEX_B = 0x0;
693    CurOp++;
694
695    if (HasVEX_4V)
696      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
697
698    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
699      VEX_R = 0x0;
700    break;
701  case X86II::MRM0r: case X86II::MRM1r:
702  case X86II::MRM2r: case X86II::MRM3r:
703  case X86II::MRM4r: case X86II::MRM5r:
704  case X86II::MRM6r: case X86II::MRM7r:
705    // MRM0r-MRM7r instructions forms:
706    //  dst(VEX_4V), src(ModR/M), imm8
707    VEX_4V = getVEXRegisterEncoding(MI, 0);
708    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
709      VEX_B = 0x0;
710    break;
711  default: // RawFrm
712    break;
713  }
714
715  // Emit segment override opcode prefix as needed.
716  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
717
718  // VEX opcode prefix can have 2 or 3 bytes
719  //
720  //  3 bytes:
721  //    +-----+ +--------------+ +-------------------+
722  //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
723  //    +-----+ +--------------+ +-------------------+
724  //  2 bytes:
725  //    +-----+ +-------------------+
726  //    | C5h | | R | vvvv | L | pp |
727  //    +-----+ +-------------------+
728  //
729  unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
730
731  if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
732    EmitByte(0xC5, CurByte, OS);
733    EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
734    return;
735  }
736
737  // 3 byte VEX prefix
738  EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
739  EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
740  EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
741}
742
743/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
744/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
745/// size, and 3) use of X86-64 extended registers.
746static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
747                                   const MCInstrDesc &Desc) {
748  unsigned REX = 0;
749  if (TSFlags & X86II::REX_W)
750    REX |= 1 << 3; // set REX.W
751
752  if (MI.getNumOperands() == 0) return REX;
753
754  unsigned NumOps = MI.getNumOperands();
755  // FIXME: MCInst should explicitize the two-addrness.
756  bool isTwoAddr = NumOps > 1 &&
757                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
758
759  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
760  unsigned i = isTwoAddr ? 1 : 0;
761  for (; i != NumOps; ++i) {
762    const MCOperand &MO = MI.getOperand(i);
763    if (!MO.isReg()) continue;
764    unsigned Reg = MO.getReg();
765    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
766    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
767    // that returns non-zero.
768    REX |= 0x40; // REX fixed encoding prefix
769    break;
770  }
771
772  switch (TSFlags & X86II::FormMask) {
773  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
774  case X86II::MRMSrcReg:
775    if (MI.getOperand(0).isReg() &&
776        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
777      REX |= 1 << 2; // set REX.R
778    i = isTwoAddr ? 2 : 1;
779    for (; i != NumOps; ++i) {
780      const MCOperand &MO = MI.getOperand(i);
781      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
782        REX |= 1 << 0; // set REX.B
783    }
784    break;
785  case X86II::MRMSrcMem: {
786    if (MI.getOperand(0).isReg() &&
787        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
788      REX |= 1 << 2; // set REX.R
789    unsigned Bit = 0;
790    i = isTwoAddr ? 2 : 1;
791    for (; i != NumOps; ++i) {
792      const MCOperand &MO = MI.getOperand(i);
793      if (MO.isReg()) {
794        if (X86II::isX86_64ExtendedReg(MO.getReg()))
795          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
796        Bit++;
797      }
798    }
799    break;
800  }
801  case X86II::MRM0m: case X86II::MRM1m:
802  case X86II::MRM2m: case X86II::MRM3m:
803  case X86II::MRM4m: case X86II::MRM5m:
804  case X86II::MRM6m: case X86II::MRM7m:
805  case X86II::MRMDestMem: {
806    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
807    i = isTwoAddr ? 1 : 0;
808    if (NumOps > e && MI.getOperand(e).isReg() &&
809        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
810      REX |= 1 << 2; // set REX.R
811    unsigned Bit = 0;
812    for (; i != e; ++i) {
813      const MCOperand &MO = MI.getOperand(i);
814      if (MO.isReg()) {
815        if (X86II::isX86_64ExtendedReg(MO.getReg()))
816          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
817        Bit++;
818      }
819    }
820    break;
821  }
822  default:
823    if (MI.getOperand(0).isReg() &&
824        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
825      REX |= 1 << 0; // set REX.B
826    i = isTwoAddr ? 2 : 1;
827    for (unsigned e = NumOps; i != e; ++i) {
828      const MCOperand &MO = MI.getOperand(i);
829      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
830        REX |= 1 << 2; // set REX.R
831    }
832    break;
833  }
834  return REX;
835}
836
837/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
838void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
839                                        unsigned &CurByte, int MemOperand,
840                                        const MCInst &MI,
841                                        raw_ostream &OS) const {
842  switch (TSFlags & X86II::SegOvrMask) {
843  default: llvm_unreachable("Invalid segment!");
844  case 0:
845    // No segment override, check for explicit one on memory operand.
846    if (MemOperand != -1) {   // If the instruction has a memory operand.
847      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
848      default: llvm_unreachable("Unknown segment register!");
849      case 0: break;
850      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
851      case X86::SS: EmitByte(0x36, CurByte, OS); break;
852      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
853      case X86::ES: EmitByte(0x26, CurByte, OS); break;
854      case X86::FS: EmitByte(0x64, CurByte, OS); break;
855      case X86::GS: EmitByte(0x65, CurByte, OS); break;
856      }
857    }
858    break;
859  case X86II::FS:
860    EmitByte(0x64, CurByte, OS);
861    break;
862  case X86II::GS:
863    EmitByte(0x65, CurByte, OS);
864    break;
865  }
866}
867
868/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
869///
870/// MemOperand is the operand # of the start of a memory operand if present.  If
871/// Not present, it is -1.
872void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
873                                        int MemOperand, const MCInst &MI,
874                                        const MCInstrDesc &Desc,
875                                        raw_ostream &OS) const {
876
877  // Emit the lock opcode prefix as needed.
878  if (TSFlags & X86II::LOCK)
879    EmitByte(0xF0, CurByte, OS);
880
881  // Emit segment override opcode prefix as needed.
882  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
883
884  // Emit the repeat opcode prefix as needed.
885  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
886    EmitByte(0xF3, CurByte, OS);
887
888  // Emit the address size opcode prefix as needed.
889  bool need_address_override;
890  if (TSFlags & X86II::AdSize) {
891    need_address_override = true;
892  } else if (MemOperand == -1) {
893    need_address_override = false;
894  } else if (is64BitMode()) {
895    assert(!Is16BitMemOperand(MI, MemOperand));
896    need_address_override = Is32BitMemOperand(MI, MemOperand);
897  } else if (is32BitMode()) {
898    assert(!Is64BitMemOperand(MI, MemOperand));
899    need_address_override = Is16BitMemOperand(MI, MemOperand);
900  } else {
901    need_address_override = false;
902  }
903
904  if (need_address_override)
905    EmitByte(0x67, CurByte, OS);
906
907  // Emit the operand size opcode prefix as needed.
908  if (TSFlags & X86II::OpSize)
909    EmitByte(0x66, CurByte, OS);
910
911  bool Need0FPrefix = false;
912  switch (TSFlags & X86II::Op0Mask) {
913  default: llvm_unreachable("Invalid prefix!");
914  case 0: break;  // No prefix!
915  case X86II::REP: break; // already handled.
916  case X86II::TB:  // Two-byte opcode prefix
917  case X86II::T8:  // 0F 38
918  case X86II::TA:  // 0F 3A
919  case X86II::A6:  // 0F A6
920  case X86II::A7:  // 0F A7
921    Need0FPrefix = true;
922    break;
923  case X86II::T8XS: // F3 0F 38
924    EmitByte(0xF3, CurByte, OS);
925    Need0FPrefix = true;
926    break;
927  case X86II::T8XD: // F2 0F 38
928    EmitByte(0xF2, CurByte, OS);
929    Need0FPrefix = true;
930    break;
931  case X86II::TAXD: // F2 0F 3A
932    EmitByte(0xF2, CurByte, OS);
933    Need0FPrefix = true;
934    break;
935  case X86II::XS:   // F3 0F
936    EmitByte(0xF3, CurByte, OS);
937    Need0FPrefix = true;
938    break;
939  case X86II::XD:   // F2 0F
940    EmitByte(0xF2, CurByte, OS);
941    Need0FPrefix = true;
942    break;
943  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
944  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
945  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
946  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
947  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
948  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
949  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
950  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
951  }
952
953  // Handle REX prefix.
954  // FIXME: Can this come before F2 etc to simplify emission?
955  if (is64BitMode()) {
956    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
957      EmitByte(0x40 | REX, CurByte, OS);
958  }
959
960  // 0x0F escape code must be emitted just before the opcode.
961  if (Need0FPrefix)
962    EmitByte(0x0F, CurByte, OS);
963
964  // FIXME: Pull this up into previous switch if REX can be moved earlier.
965  switch (TSFlags & X86II::Op0Mask) {
966  case X86II::T8XS:  // F3 0F 38
967  case X86II::T8XD:  // F2 0F 38
968  case X86II::T8:    // 0F 38
969    EmitByte(0x38, CurByte, OS);
970    break;
971  case X86II::TAXD:  // F2 0F 3A
972  case X86II::TA:    // 0F 3A
973    EmitByte(0x3A, CurByte, OS);
974    break;
975  case X86II::A6:    // 0F A6
976    EmitByte(0xA6, CurByte, OS);
977    break;
978  case X86II::A7:    // 0F A7
979    EmitByte(0xA7, CurByte, OS);
980    break;
981  }
982}
983
984void X86MCCodeEmitter::
985EncodeInstruction(const MCInst &MI, raw_ostream &OS,
986                  SmallVectorImpl<MCFixup> &Fixups) const {
987  unsigned Opcode = MI.getOpcode();
988  const MCInstrDesc &Desc = MCII.get(Opcode);
989  uint64_t TSFlags = Desc.TSFlags;
990
991  // Pseudo instructions don't get encoded.
992  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
993    return;
994
995  unsigned NumOps = Desc.getNumOperands();
996  unsigned CurOp = X86II::getOperandBias(Desc);
997
998  // Keep track of the current byte being emitted.
999  unsigned CurByte = 0;
1000
1001  // Is this instruction encoded using the AVX VEX prefix?
1002  bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
1003
1004  // It uses the VEX.VVVV field?
1005  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
1006  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
1007  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
1008  const unsigned MemOp4_I8IMMOperand = 2;
1009
1010  // Determine where the memory operand starts, if present.
1011  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1012  if (MemoryOperand != -1) MemoryOperand += CurOp;
1013
1014  if (!HasVEXPrefix)
1015    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1016  else
1017    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1018
1019  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1020
1021  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1022    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
1023
1024  unsigned SrcRegNum = 0;
1025  switch (TSFlags & X86II::FormMask) {
1026  case X86II::MRMInitReg:
1027    llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
1028  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1029    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1030  case X86II::Pseudo:
1031    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1032  case X86II::RawFrm:
1033    EmitByte(BaseOpcode, CurByte, OS);
1034    break;
1035  case X86II::RawFrmImm8:
1036    EmitByte(BaseOpcode, CurByte, OS);
1037    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1038                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1039                  CurByte, OS, Fixups);
1040    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1041                  OS, Fixups);
1042    break;
1043  case X86II::RawFrmImm16:
1044    EmitByte(BaseOpcode, CurByte, OS);
1045    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1046                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1047                  CurByte, OS, Fixups);
1048    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1049                  OS, Fixups);
1050    break;
1051
1052  case X86II::AddRegFrm:
1053    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1054    break;
1055
1056  case X86II::MRMDestReg:
1057    EmitByte(BaseOpcode, CurByte, OS);
1058    SrcRegNum = CurOp + 1;
1059
1060    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1061      ++SrcRegNum;
1062
1063    EmitRegModRMByte(MI.getOperand(CurOp),
1064                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1065    CurOp = SrcRegNum + 1;
1066    break;
1067
1068  case X86II::MRMDestMem:
1069    EmitByte(BaseOpcode, CurByte, OS);
1070    SrcRegNum = CurOp + X86::AddrNumOperands;
1071
1072    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1073      ++SrcRegNum;
1074
1075    EmitMemModRMByte(MI, CurOp,
1076                     GetX86RegNum(MI.getOperand(SrcRegNum)),
1077                     TSFlags, CurByte, OS, Fixups);
1078    CurOp = SrcRegNum + 1;
1079    break;
1080
1081  case X86II::MRMSrcReg:
1082    EmitByte(BaseOpcode, CurByte, OS);
1083    SrcRegNum = CurOp + 1;
1084
1085    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1086      ++SrcRegNum;
1087
1088    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1089      ++SrcRegNum;
1090
1091    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1092                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1093
1094    // 2 operands skipped with HasMemOp4, compensate accordingly
1095    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1096    if (HasVEX_4VOp3)
1097      ++CurOp;
1098    break;
1099
1100  case X86II::MRMSrcMem: {
1101    int AddrOperands = X86::AddrNumOperands;
1102    unsigned FirstMemOp = CurOp+1;
1103    if (HasVEX_4V) {
1104      ++AddrOperands;
1105      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1106    }
1107    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1108      ++FirstMemOp;
1109
1110    EmitByte(BaseOpcode, CurByte, OS);
1111
1112    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1113                     TSFlags, CurByte, OS, Fixups);
1114    CurOp += AddrOperands + 1;
1115    if (HasVEX_4VOp3)
1116      ++CurOp;
1117    break;
1118  }
1119
1120  case X86II::MRM0r: case X86II::MRM1r:
1121  case X86II::MRM2r: case X86II::MRM3r:
1122  case X86II::MRM4r: case X86II::MRM5r:
1123  case X86II::MRM6r: case X86II::MRM7r:
1124    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1125      ++CurOp;
1126    EmitByte(BaseOpcode, CurByte, OS);
1127    EmitRegModRMByte(MI.getOperand(CurOp++),
1128                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
1129                     CurByte, OS);
1130    break;
1131  case X86II::MRM0m: case X86II::MRM1m:
1132  case X86II::MRM2m: case X86II::MRM3m:
1133  case X86II::MRM4m: case X86II::MRM5m:
1134  case X86II::MRM6m: case X86II::MRM7m:
1135    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1136      ++CurOp;
1137    EmitByte(BaseOpcode, CurByte, OS);
1138    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
1139                     TSFlags, CurByte, OS, Fixups);
1140    CurOp += X86::AddrNumOperands;
1141    break;
1142  case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
1143  case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
1144  case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_D0:
1145  case X86II::MRM_D1: case X86II::MRM_D4: case X86II::MRM_D5:
1146  case X86II::MRM_D6: case X86II::MRM_D8: case X86II::MRM_D9:
1147  case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
1148  case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
1149  case X86II::MRM_E8: case X86II::MRM_F0: case X86II::MRM_F8:
1150  case X86II::MRM_F9:
1151    EmitByte(BaseOpcode, CurByte, OS);
1152
1153    unsigned char MRM;
1154    switch (TSFlags & X86II::FormMask) {
1155    default: llvm_unreachable("Invalid Form");
1156    case X86II::MRM_C1: MRM = 0xC1; break;
1157    case X86II::MRM_C2: MRM = 0xC2; break;
1158    case X86II::MRM_C3: MRM = 0xC3; break;
1159    case X86II::MRM_C4: MRM = 0xC4; break;
1160    case X86II::MRM_C8: MRM = 0xC8; break;
1161    case X86II::MRM_C9: MRM = 0xC9; break;
1162    case X86II::MRM_CA: MRM = 0xCA; break;
1163    case X86II::MRM_CB: MRM = 0xCB; break;
1164    case X86II::MRM_D0: MRM = 0xD0; break;
1165    case X86II::MRM_D1: MRM = 0xD1; break;
1166    case X86II::MRM_D4: MRM = 0xD4; break;
1167    case X86II::MRM_D5: MRM = 0xD5; break;
1168    case X86II::MRM_D6: MRM = 0xD6; break;
1169    case X86II::MRM_D8: MRM = 0xD8; break;
1170    case X86II::MRM_D9: MRM = 0xD9; break;
1171    case X86II::MRM_DA: MRM = 0xDA; break;
1172    case X86II::MRM_DB: MRM = 0xDB; break;
1173    case X86II::MRM_DC: MRM = 0xDC; break;
1174    case X86II::MRM_DD: MRM = 0xDD; break;
1175    case X86II::MRM_DE: MRM = 0xDE; break;
1176    case X86II::MRM_DF: MRM = 0xDF; break;
1177    case X86II::MRM_E8: MRM = 0xE8; break;
1178    case X86II::MRM_F0: MRM = 0xF0; break;
1179    case X86II::MRM_F8: MRM = 0xF8; break;
1180    case X86II::MRM_F9: MRM = 0xF9; break;
1181    }
1182    EmitByte(MRM, CurByte, OS);
1183    break;
1184  }
1185
1186  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1187  // according to the right size for the instruction. Some instructions
1188  // (SSE4a extrq and insertq) have two trailing immediates.
1189  while (CurOp != NumOps && NumOps - CurOp <= 2) {
1190    // The last source register of a 4 operand instruction in AVX is encoded
1191    // in bits[7:4] of a immediate byte.
1192    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1193      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1194                                                    : CurOp);
1195      ++CurOp;
1196      unsigned RegNum = GetX86RegNum(MO) << 4;
1197      if (X86II::isX86_64ExtendedReg(MO.getReg()))
1198        RegNum |= 1 << 7;
1199      // If there is an additional 5th operand it must be an immediate, which
1200      // is encoded in bits[3:0]
1201      if (CurOp != NumOps) {
1202        const MCOperand &MIMM = MI.getOperand(CurOp++);
1203        if (MIMM.isImm()) {
1204          unsigned Val = MIMM.getImm();
1205          assert(Val < 16 && "Immediate operand value out of range");
1206          RegNum |= Val;
1207        }
1208      }
1209      EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1210                    CurByte, OS, Fixups);
1211    } else {
1212      unsigned FixupKind;
1213      // FIXME: Is there a better way to know that we need a signed relocation?
1214      if (MI.getOpcode() == X86::ADD64ri32 ||
1215          MI.getOpcode() == X86::MOV64ri32 ||
1216          MI.getOpcode() == X86::MOV64mi32 ||
1217          MI.getOpcode() == X86::PUSH64i32)
1218        FixupKind = X86::reloc_signed_4byte;
1219      else
1220        FixupKind = getImmFixupKind(TSFlags);
1221      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1222                    X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1223                    CurByte, OS, Fixups);
1224    }
1225  }
1226
1227  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1228    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1229
1230#ifndef NDEBUG
1231  // FIXME: Verify.
1232  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1233    errs() << "Cannot encode all operands of: ";
1234    MI.dump();
1235    errs() << '\n';
1236    abort();
1237  }
1238#endif
1239}
1240