X86MCCodeEmitter.cpp revision 226584
1//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "mccodeemitter"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/MC/MCSymbol.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29namespace {
30class X86MCCodeEmitter : public MCCodeEmitter {
31  X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
32  void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
33  const MCInstrInfo &MCII;
34  const MCSubtargetInfo &STI;
35  MCContext &Ctx;
36public:
37  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
38                   MCContext &ctx)
39    : MCII(mcii), STI(sti), Ctx(ctx) {
40  }
41
42  ~X86MCCodeEmitter() {}
43
44  bool is64BitMode() const {
45    // FIXME: Can tablegen auto-generate this?
46    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
47  }
48
49  static unsigned GetX86RegNum(const MCOperand &MO) {
50    return X86_MC::getX86RegNum(MO.getReg());
51  }
52
53  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
54  // 0-7 and the difference between the 2 groups is given by the REX prefix.
55  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
56  // in 1's complement form, example:
57  //
58  //  ModRM field => XMM9 => 1
59  //  VEX.VVVV    => XMM9 => ~9
60  //
61  // See table 4-35 of Intel AVX Programming Reference for details.
62  static unsigned char getVEXRegisterEncoding(const MCInst &MI,
63                                              unsigned OpNum) {
64    unsigned SrcReg = MI.getOperand(OpNum).getReg();
65    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
66    if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
67        (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
68      SrcRegNum += 8;
69
70    // The registers represented through VEX_VVVV should
71    // be encoded in 1's complement form.
72    return (~SrcRegNum) & 0xf;
73  }
74
75  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
76    OS << (char)C;
77    ++CurByte;
78  }
79
80  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
81                    raw_ostream &OS) const {
82    // Output the constant in little endian byte order.
83    for (unsigned i = 0; i != Size; ++i) {
84      EmitByte(Val & 255, CurByte, OS);
85      Val >>= 8;
86    }
87  }
88
89  void EmitImmediate(const MCOperand &Disp,
90                     unsigned ImmSize, MCFixupKind FixupKind,
91                     unsigned &CurByte, raw_ostream &OS,
92                     SmallVectorImpl<MCFixup> &Fixups,
93                     int ImmOffset = 0) const;
94
95  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
96                                        unsigned RM) {
97    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
98    return RM | (RegOpcode << 3) | (Mod << 6);
99  }
100
101  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
102                        unsigned &CurByte, raw_ostream &OS) const {
103    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
104  }
105
106  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
107                   unsigned &CurByte, raw_ostream &OS) const {
108    // SIB byte is in the same format as the ModRMByte.
109    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
110  }
111
112
113  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
114                        unsigned RegOpcodeField,
115                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
116                        SmallVectorImpl<MCFixup> &Fixups) const;
117
118  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
119                         SmallVectorImpl<MCFixup> &Fixups) const;
120
121  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
122                           const MCInst &MI, const MCInstrDesc &Desc,
123                           raw_ostream &OS) const;
124
125  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
126                                 int MemOperand, const MCInst &MI,
127                                 raw_ostream &OS) const;
128
129  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
130                        const MCInst &MI, const MCInstrDesc &Desc,
131                        raw_ostream &OS) const;
132};
133
134} // end anonymous namespace
135
136
137MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
138                                            const MCSubtargetInfo &STI,
139                                            MCContext &Ctx) {
140  return new X86MCCodeEmitter(MCII, STI, Ctx);
141}
142
143/// isDisp8 - Return true if this signed displacement fits in a 8-bit
144/// sign-extended field.
145static bool isDisp8(int Value) {
146  return Value == (signed char)Value;
147}
148
149/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
150/// in an instruction with the specified TSFlags.
151static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
152  unsigned Size = X86II::getSizeOfImm(TSFlags);
153  bool isPCRel = X86II::isImmPCRel(TSFlags);
154
155  return MCFixup::getKindForSize(Size, isPCRel);
156}
157
158/// Is32BitMemOperand - Return true if the specified instruction with a memory
159/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
160/// memory operand.  Op specifies the operand # of the memoperand.
161static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
162  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
163  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
164
165  if ((BaseReg.getReg() != 0 &&
166       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
167      (IndexReg.getReg() != 0 &&
168       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
169    return true;
170  return false;
171}
172
173/// StartsWithGlobalOffsetTable - Return true for the simple cases where this
174/// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
175/// PIC on ELF i386 as that symbol is magic. We check only simple case that
176/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
177/// of a binary expression.
178static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) {
179  if (Expr->getKind() == MCExpr::Binary) {
180    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
181    Expr = BE->getLHS();
182  }
183
184  if (Expr->getKind() != MCExpr::SymbolRef)
185    return false;
186
187  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
188  const MCSymbol &S = Ref->getSymbol();
189  return S.getName() == "_GLOBAL_OFFSET_TABLE_";
190}
191
192void X86MCCodeEmitter::
193EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
194              unsigned &CurByte, raw_ostream &OS,
195              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
196  const MCExpr *Expr = NULL;
197  if (DispOp.isImm()) {
198    // If this is a simple integer displacement that doesn't require a
199    // relocation, emit it now.
200    if (FixupKind != FK_PCRel_1 &&
201        FixupKind != FK_PCRel_2 &&
202        FixupKind != FK_PCRel_4) {
203      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
204      return;
205    }
206    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
207  } else {
208    Expr = DispOp.getExpr();
209  }
210
211  // If we have an immoffset, add it to the expression.
212  if ((FixupKind == FK_Data_4 ||
213       FixupKind == MCFixupKind(X86::reloc_signed_4byte)) &&
214      StartsWithGlobalOffsetTable(Expr)) {
215    assert(ImmOffset == 0);
216
217    FixupKind = MCFixupKind(X86::reloc_global_offset_table);
218    ImmOffset = CurByte;
219  }
220
221  // If the fixup is pc-relative, we need to bias the value to be relative to
222  // the start of the field, not the end of the field.
223  if (FixupKind == FK_PCRel_4 ||
224      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
225      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
226    ImmOffset -= 4;
227  if (FixupKind == FK_PCRel_2)
228    ImmOffset -= 2;
229  if (FixupKind == FK_PCRel_1)
230    ImmOffset -= 1;
231
232  if (ImmOffset)
233    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
234                                   Ctx);
235
236  // Emit a symbolic constant as a fixup and 4 zeros.
237  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
238  EmitConstant(0, Size, CurByte, OS);
239}
240
241void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
242                                        unsigned RegOpcodeField,
243                                        uint64_t TSFlags, unsigned &CurByte,
244                                        raw_ostream &OS,
245                                        SmallVectorImpl<MCFixup> &Fixups) const{
246  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
247  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
248  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
249  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
250  unsigned BaseReg = Base.getReg();
251
252  // Handle %rip relative addressing.
253  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
254    assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
255    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
256    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
257
258    unsigned FixupKind = X86::reloc_riprel_4byte;
259
260    // movq loads are handled with a special relocation form which allows the
261    // linker to eliminate some loads for GOT references which end up in the
262    // same linkage unit.
263    if (MI.getOpcode() == X86::MOV64rm)
264      FixupKind = X86::reloc_riprel_4byte_movq_load;
265
266    // rip-relative addressing is actually relative to the *next* instruction.
267    // Since an immediate can follow the mod/rm byte for an instruction, this
268    // means that we need to bias the immediate field of the instruction with
269    // the size of the immediate field.  If we have this case, add it into the
270    // expression to emit.
271    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
272
273    EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
274                  CurByte, OS, Fixups, -ImmSize);
275    return;
276  }
277
278  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
279
280  // Determine whether a SIB byte is needed.
281  // If no BaseReg, issue a RIP relative instruction only if the MCE can
282  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
283  // 2-7) and absolute references.
284
285  if (// The SIB byte must be used if there is an index register.
286      IndexReg.getReg() == 0 &&
287      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
288      // encode to an R/M value of 4, which indicates that a SIB byte is
289      // present.
290      BaseRegNo != N86::ESP &&
291      // If there is no base register and we're in 64-bit mode, we need a SIB
292      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
293      (!is64BitMode() || BaseReg != 0)) {
294
295    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
296      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
297      EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
298      return;
299    }
300
301    // If the base is not EBP/ESP and there is no displacement, use simple
302    // indirect register encoding, this handles addresses like [EAX].  The
303    // encoding for [EBP] with no displacement means [disp32] so we handle it
304    // by emitting a displacement of 0 below.
305    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
306      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
307      return;
308    }
309
310    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
311    if (Disp.isImm() && isDisp8(Disp.getImm())) {
312      EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
313      EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
314      return;
315    }
316
317    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
318    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
319    EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
320                  Fixups);
321    return;
322  }
323
324  // We need a SIB byte, so start by outputting the ModR/M byte first
325  assert(IndexReg.getReg() != X86::ESP &&
326         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
327
328  bool ForceDisp32 = false;
329  bool ForceDisp8  = false;
330  if (BaseReg == 0) {
331    // If there is no base register, we emit the special case SIB byte with
332    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
333    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
334    ForceDisp32 = true;
335  } else if (!Disp.isImm()) {
336    // Emit the normal disp32 encoding.
337    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
338    ForceDisp32 = true;
339  } else if (Disp.getImm() == 0 &&
340             // Base reg can't be anything that ends up with '5' as the base
341             // reg, it is the magic [*] nomenclature that indicates no base.
342             BaseRegNo != N86::EBP) {
343    // Emit no displacement ModR/M byte
344    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
345  } else if (isDisp8(Disp.getImm())) {
346    // Emit the disp8 encoding.
347    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
348    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
349  } else {
350    // Emit the normal disp32 encoding.
351    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
352  }
353
354  // Calculate what the SS field value should be...
355  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
356  unsigned SS = SSTable[Scale.getImm()];
357
358  if (BaseReg == 0) {
359    // Handle the SIB byte for the case where there is no base, see Intel
360    // Manual 2A, table 2-7. The displacement has already been output.
361    unsigned IndexRegNo;
362    if (IndexReg.getReg())
363      IndexRegNo = GetX86RegNum(IndexReg);
364    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
365      IndexRegNo = 4;
366    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
367  } else {
368    unsigned IndexRegNo;
369    if (IndexReg.getReg())
370      IndexRegNo = GetX86RegNum(IndexReg);
371    else
372      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
373    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
374  }
375
376  // Do we need to output a displacement?
377  if (ForceDisp8)
378    EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
379  else if (ForceDisp32 || Disp.getImm() != 0)
380    EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
381                  Fixups);
382}
383
384/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
385/// called VEX.
386void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
387                                           int MemOperand, const MCInst &MI,
388                                           const MCInstrDesc &Desc,
389                                           raw_ostream &OS) const {
390  bool HasVEX_4V = false;
391  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
392    HasVEX_4V = true;
393
394  // VEX_R: opcode externsion equivalent to REX.R in
395  // 1's complement (inverted) form
396  //
397  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
398  //  0: Same as REX_R=1 (64 bit mode only)
399  //
400  unsigned char VEX_R = 0x1;
401
402  // VEX_X: equivalent to REX.X, only used when a
403  // register is used for index in SIB Byte.
404  //
405  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
406  //  0: Same as REX.X=1 (64-bit mode only)
407  unsigned char VEX_X = 0x1;
408
409  // VEX_B:
410  //
411  //  1: Same as REX_B=0 (ignored in 32-bit mode)
412  //  0: Same as REX_B=1 (64 bit mode only)
413  //
414  unsigned char VEX_B = 0x1;
415
416  // VEX_W: opcode specific (use like REX.W, or used for
417  // opcode extension, or ignored, depending on the opcode byte)
418  unsigned char VEX_W = 0;
419
420  // VEX_5M (VEX m-mmmmm field):
421  //
422  //  0b00000: Reserved for future use
423  //  0b00001: implied 0F leading opcode
424  //  0b00010: implied 0F 38 leading opcode bytes
425  //  0b00011: implied 0F 3A leading opcode bytes
426  //  0b00100-0b11111: Reserved for future use
427  //
428  unsigned char VEX_5M = 0x1;
429
430  // VEX_4V (VEX vvvv field): a register specifier
431  // (in 1's complement form) or 1111 if unused.
432  unsigned char VEX_4V = 0xf;
433
434  // VEX_L (Vector Length):
435  //
436  //  0: scalar or 128-bit vector
437  //  1: 256-bit vector
438  //
439  unsigned char VEX_L = 0;
440
441  // VEX_PP: opcode extension providing equivalent
442  // functionality of a SIMD prefix
443  //
444  //  0b00: None
445  //  0b01: 66
446  //  0b10: F3
447  //  0b11: F2
448  //
449  unsigned char VEX_PP = 0;
450
451  // Encode the operand size opcode prefix as needed.
452  if (TSFlags & X86II::OpSize)
453    VEX_PP = 0x01;
454
455  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
456    VEX_W = 1;
457
458  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
459    VEX_L = 1;
460
461  switch (TSFlags & X86II::Op0Mask) {
462  default: assert(0 && "Invalid prefix!");
463  case X86II::T8:  // 0F 38
464    VEX_5M = 0x2;
465    break;
466  case X86II::TA:  // 0F 3A
467    VEX_5M = 0x3;
468    break;
469  case X86II::TF:  // F2 0F 38
470    VEX_PP = 0x3;
471    VEX_5M = 0x2;
472    break;
473  case X86II::XS:  // F3 0F
474    VEX_PP = 0x2;
475    break;
476  case X86II::XD:  // F2 0F
477    VEX_PP = 0x3;
478    break;
479  case X86II::A6:  // Bypass: Not used by VEX
480  case X86II::A7:  // Bypass: Not used by VEX
481  case X86II::TB:  // Bypass: Not used by VEX
482  case 0:
483    break;  // No prefix!
484  }
485
486  // Set the vector length to 256-bit if YMM0-YMM15 is used
487  for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
488    if (!MI.getOperand(i).isReg())
489      continue;
490    unsigned SrcReg = MI.getOperand(i).getReg();
491    if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
492      VEX_L = 1;
493  }
494
495  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
496  unsigned CurOp = 0;
497  switch (TSFlags & X86II::FormMask) {
498  case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
499  case X86II::MRMDestMem: {
500    // MRMDestMem instructions forms:
501    //  MemAddr, src1(ModR/M)
502    //  MemAddr, src1(VEX_4V), src2(ModR/M)
503    //  MemAddr, src1(ModR/M), imm8
504    //
505    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
506      VEX_B = 0x0;
507    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
508      VEX_X = 0x0;
509
510    CurOp = X86::AddrNumOperands;
511    if (HasVEX_4V)
512      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
513
514    const MCOperand &MO = MI.getOperand(CurOp);
515    if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
516      VEX_R = 0x0;
517    break;
518  }
519  case X86II::MRMSrcMem: {
520    // MRMSrcMem instructions forms:
521    //  src1(ModR/M), MemAddr
522    //  src1(ModR/M), src2(VEX_4V), MemAddr
523    //  src1(ModR/M), MemAddr, imm8
524    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
525    //
526    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
527      VEX_R = 0x0;
528
529    unsigned MemAddrOffset = 1;
530    if (HasVEX_4V) {
531      VEX_4V = getVEXRegisterEncoding(MI, 1);
532      MemAddrOffset++;
533    }
534
535    if (X86II::isX86_64ExtendedReg(
536               MI.getOperand(MemAddrOffset+X86::AddrBaseReg).getReg()))
537      VEX_B = 0x0;
538    if (X86II::isX86_64ExtendedReg(
539               MI.getOperand(MemAddrOffset+X86::AddrIndexReg).getReg()))
540      VEX_X = 0x0;
541    break;
542  }
543  case X86II::MRM0m: case X86II::MRM1m:
544  case X86II::MRM2m: case X86II::MRM3m:
545  case X86II::MRM4m: case X86II::MRM5m:
546  case X86II::MRM6m: case X86II::MRM7m:
547    // MRM[0-9]m instructions forms:
548    //  MemAddr
549    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
550      VEX_B = 0x0;
551    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
552      VEX_X = 0x0;
553    break;
554  case X86II::MRMSrcReg:
555    // MRMSrcReg instructions forms:
556    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
557    //  dst(ModR/M), src1(ModR/M)
558    //  dst(ModR/M), src1(ModR/M), imm8
559    //
560    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
561      VEX_R = 0x0;
562    CurOp++;
563
564    if (HasVEX_4V)
565      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
566    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
567      VEX_B = 0x0;
568    break;
569  case X86II::MRMDestReg:
570    // MRMDestReg instructions forms:
571    //  dst(ModR/M), src(ModR/M)
572    //  dst(ModR/M), src(ModR/M), imm8
573    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
574      VEX_B = 0x0;
575    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
576      VEX_R = 0x0;
577    break;
578  case X86II::MRM0r: case X86II::MRM1r:
579  case X86II::MRM2r: case X86II::MRM3r:
580  case X86II::MRM4r: case X86II::MRM5r:
581  case X86II::MRM6r: case X86II::MRM7r:
582    // MRM0r-MRM7r instructions forms:
583    //  dst(VEX_4V), src(ModR/M), imm8
584    VEX_4V = getVEXRegisterEncoding(MI, 0);
585    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
586      VEX_B = 0x0;
587    break;
588  default: // RawFrm
589    break;
590  }
591
592  // Emit segment override opcode prefix as needed.
593  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
594
595  // VEX opcode prefix can have 2 or 3 bytes
596  //
597  //  3 bytes:
598  //    +-----+ +--------------+ +-------------------+
599  //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
600  //    +-----+ +--------------+ +-------------------+
601  //  2 bytes:
602  //    +-----+ +-------------------+
603  //    | C5h | | R | vvvv | L | pp |
604  //    +-----+ +-------------------+
605  //
606  unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
607
608  if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
609    EmitByte(0xC5, CurByte, OS);
610    EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
611    return;
612  }
613
614  // 3 byte VEX prefix
615  EmitByte(0xC4, CurByte, OS);
616  EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
617  EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
618}
619
620/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
621/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
622/// size, and 3) use of X86-64 extended registers.
623static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
624                                   const MCInstrDesc &Desc) {
625  unsigned REX = 0;
626  if (TSFlags & X86II::REX_W)
627    REX |= 1 << 3; // set REX.W
628
629  if (MI.getNumOperands() == 0) return REX;
630
631  unsigned NumOps = MI.getNumOperands();
632  // FIXME: MCInst should explicitize the two-addrness.
633  bool isTwoAddr = NumOps > 1 &&
634                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
635
636  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
637  unsigned i = isTwoAddr ? 1 : 0;
638  for (; i != NumOps; ++i) {
639    const MCOperand &MO = MI.getOperand(i);
640    if (!MO.isReg()) continue;
641    unsigned Reg = MO.getReg();
642    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
643    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
644    // that returns non-zero.
645    REX |= 0x40; // REX fixed encoding prefix
646    break;
647  }
648
649  switch (TSFlags & X86II::FormMask) {
650  case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
651  case X86II::MRMSrcReg:
652    if (MI.getOperand(0).isReg() &&
653        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
654      REX |= 1 << 2; // set REX.R
655    i = isTwoAddr ? 2 : 1;
656    for (; i != NumOps; ++i) {
657      const MCOperand &MO = MI.getOperand(i);
658      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
659        REX |= 1 << 0; // set REX.B
660    }
661    break;
662  case X86II::MRMSrcMem: {
663    if (MI.getOperand(0).isReg() &&
664        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
665      REX |= 1 << 2; // set REX.R
666    unsigned Bit = 0;
667    i = isTwoAddr ? 2 : 1;
668    for (; i != NumOps; ++i) {
669      const MCOperand &MO = MI.getOperand(i);
670      if (MO.isReg()) {
671        if (X86II::isX86_64ExtendedReg(MO.getReg()))
672          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
673        Bit++;
674      }
675    }
676    break;
677  }
678  case X86II::MRM0m: case X86II::MRM1m:
679  case X86II::MRM2m: case X86II::MRM3m:
680  case X86II::MRM4m: case X86II::MRM5m:
681  case X86II::MRM6m: case X86II::MRM7m:
682  case X86II::MRMDestMem: {
683    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
684    i = isTwoAddr ? 1 : 0;
685    if (NumOps > e && MI.getOperand(e).isReg() &&
686        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
687      REX |= 1 << 2; // set REX.R
688    unsigned Bit = 0;
689    for (; i != e; ++i) {
690      const MCOperand &MO = MI.getOperand(i);
691      if (MO.isReg()) {
692        if (X86II::isX86_64ExtendedReg(MO.getReg()))
693          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
694        Bit++;
695      }
696    }
697    break;
698  }
699  default:
700    if (MI.getOperand(0).isReg() &&
701        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
702      REX |= 1 << 0; // set REX.B
703    i = isTwoAddr ? 2 : 1;
704    for (unsigned e = NumOps; i != e; ++i) {
705      const MCOperand &MO = MI.getOperand(i);
706      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
707        REX |= 1 << 2; // set REX.R
708    }
709    break;
710  }
711  return REX;
712}
713
714/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
715void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
716                                        unsigned &CurByte, int MemOperand,
717                                        const MCInst &MI,
718                                        raw_ostream &OS) const {
719  switch (TSFlags & X86II::SegOvrMask) {
720  default: assert(0 && "Invalid segment!");
721  case 0:
722    // No segment override, check for explicit one on memory operand.
723    if (MemOperand != -1) {   // If the instruction has a memory operand.
724      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
725      default: assert(0 && "Unknown segment register!");
726      case 0: break;
727      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
728      case X86::SS: EmitByte(0x36, CurByte, OS); break;
729      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
730      case X86::ES: EmitByte(0x26, CurByte, OS); break;
731      case X86::FS: EmitByte(0x64, CurByte, OS); break;
732      case X86::GS: EmitByte(0x65, CurByte, OS); break;
733      }
734    }
735    break;
736  case X86II::FS:
737    EmitByte(0x64, CurByte, OS);
738    break;
739  case X86II::GS:
740    EmitByte(0x65, CurByte, OS);
741    break;
742  }
743}
744
745/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
746///
747/// MemOperand is the operand # of the start of a memory operand if present.  If
748/// Not present, it is -1.
749void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
750                                        int MemOperand, const MCInst &MI,
751                                        const MCInstrDesc &Desc,
752                                        raw_ostream &OS) const {
753
754  // Emit the lock opcode prefix as needed.
755  if (TSFlags & X86II::LOCK)
756    EmitByte(0xF0, CurByte, OS);
757
758  // Emit segment override opcode prefix as needed.
759  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
760
761  // Emit the repeat opcode prefix as needed.
762  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
763    EmitByte(0xF3, CurByte, OS);
764
765  // Emit the address size opcode prefix as needed.
766  if ((TSFlags & X86II::AdSize) ||
767      (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand)))
768    EmitByte(0x67, CurByte, OS);
769
770  // Emit the operand size opcode prefix as needed.
771  if (TSFlags & X86II::OpSize)
772    EmitByte(0x66, CurByte, OS);
773
774  bool Need0FPrefix = false;
775  switch (TSFlags & X86II::Op0Mask) {
776  default: assert(0 && "Invalid prefix!");
777  case 0: break;  // No prefix!
778  case X86II::REP: break; // already handled.
779  case X86II::TB:  // Two-byte opcode prefix
780  case X86II::T8:  // 0F 38
781  case X86II::TA:  // 0F 3A
782  case X86II::A6:  // 0F A6
783  case X86II::A7:  // 0F A7
784    Need0FPrefix = true;
785    break;
786  case X86II::TF: // F2 0F 38
787    EmitByte(0xF2, CurByte, OS);
788    Need0FPrefix = true;
789    break;
790  case X86II::XS:   // F3 0F
791    EmitByte(0xF3, CurByte, OS);
792    Need0FPrefix = true;
793    break;
794  case X86II::XD:   // F2 0F
795    EmitByte(0xF2, CurByte, OS);
796    Need0FPrefix = true;
797    break;
798  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
799  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
800  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
801  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
802  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
803  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
804  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
805  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
806  }
807
808  // Handle REX prefix.
809  // FIXME: Can this come before F2 etc to simplify emission?
810  if (is64BitMode()) {
811    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
812      EmitByte(0x40 | REX, CurByte, OS);
813  }
814
815  // 0x0F escape code must be emitted just before the opcode.
816  if (Need0FPrefix)
817    EmitByte(0x0F, CurByte, OS);
818
819  // FIXME: Pull this up into previous switch if REX can be moved earlier.
820  switch (TSFlags & X86II::Op0Mask) {
821  case X86II::TF:    // F2 0F 38
822  case X86II::T8:    // 0F 38
823    EmitByte(0x38, CurByte, OS);
824    break;
825  case X86II::TA:    // 0F 3A
826    EmitByte(0x3A, CurByte, OS);
827    break;
828  case X86II::A6:    // 0F A6
829    EmitByte(0xA6, CurByte, OS);
830    break;
831  case X86II::A7:    // 0F A7
832    EmitByte(0xA7, CurByte, OS);
833    break;
834  }
835}
836
837void X86MCCodeEmitter::
838EncodeInstruction(const MCInst &MI, raw_ostream &OS,
839                  SmallVectorImpl<MCFixup> &Fixups) const {
840  unsigned Opcode = MI.getOpcode();
841  const MCInstrDesc &Desc = MCII.get(Opcode);
842  uint64_t TSFlags = Desc.TSFlags;
843
844  // Pseudo instructions don't get encoded.
845  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
846    return;
847
848  // If this is a two-address instruction, skip one of the register operands.
849  // FIXME: This should be handled during MCInst lowering.
850  unsigned NumOps = Desc.getNumOperands();
851  unsigned CurOp = 0;
852  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
853    ++CurOp;
854  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
855    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
856    --NumOps;
857
858  // Keep track of the current byte being emitted.
859  unsigned CurByte = 0;
860
861  // Is this instruction encoded using the AVX VEX prefix?
862  bool HasVEXPrefix = false;
863
864  // It uses the VEX.VVVV field?
865  bool HasVEX_4V = false;
866
867  if ((TSFlags >> X86II::VEXShift) & X86II::VEX)
868    HasVEXPrefix = true;
869  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
870    HasVEX_4V = true;
871
872  // Determine where the memory operand starts, if present.
873  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
874  if (MemoryOperand != -1) MemoryOperand += CurOp;
875
876  if (!HasVEXPrefix)
877    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
878  else
879    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
880
881  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
882
883  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
884    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
885
886  unsigned SrcRegNum = 0;
887  switch (TSFlags & X86II::FormMask) {
888  case X86II::MRMInitReg:
889    assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
890  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
891    assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
892  case X86II::Pseudo:
893    assert(0 && "Pseudo instruction shouldn't be emitted");
894  case X86II::RawFrm:
895    EmitByte(BaseOpcode, CurByte, OS);
896    break;
897  case X86II::RawFrmImm8:
898    EmitByte(BaseOpcode, CurByte, OS);
899    EmitImmediate(MI.getOperand(CurOp++),
900                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
901                  CurByte, OS, Fixups);
902    EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
903    break;
904  case X86II::RawFrmImm16:
905    EmitByte(BaseOpcode, CurByte, OS);
906    EmitImmediate(MI.getOperand(CurOp++),
907                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
908                  CurByte, OS, Fixups);
909    EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
910    break;
911
912  case X86II::AddRegFrm:
913    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
914    break;
915
916  case X86II::MRMDestReg:
917    EmitByte(BaseOpcode, CurByte, OS);
918    EmitRegModRMByte(MI.getOperand(CurOp),
919                     GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
920    CurOp += 2;
921    break;
922
923  case X86II::MRMDestMem:
924    EmitByte(BaseOpcode, CurByte, OS);
925    SrcRegNum = CurOp + X86::AddrNumOperands;
926
927    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
928      SrcRegNum++;
929
930    EmitMemModRMByte(MI, CurOp,
931                     GetX86RegNum(MI.getOperand(SrcRegNum)),
932                     TSFlags, CurByte, OS, Fixups);
933    CurOp = SrcRegNum + 1;
934    break;
935
936  case X86II::MRMSrcReg:
937    EmitByte(BaseOpcode, CurByte, OS);
938    SrcRegNum = CurOp + 1;
939
940    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
941      SrcRegNum++;
942
943    EmitRegModRMByte(MI.getOperand(SrcRegNum),
944                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
945    CurOp = SrcRegNum + 1;
946    break;
947
948  case X86II::MRMSrcMem: {
949    int AddrOperands = X86::AddrNumOperands;
950    unsigned FirstMemOp = CurOp+1;
951    if (HasVEX_4V) {
952      ++AddrOperands;
953      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
954    }
955
956    EmitByte(BaseOpcode, CurByte, OS);
957
958    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
959                     TSFlags, CurByte, OS, Fixups);
960    CurOp += AddrOperands + 1;
961    break;
962  }
963
964  case X86II::MRM0r: case X86II::MRM1r:
965  case X86II::MRM2r: case X86II::MRM3r:
966  case X86II::MRM4r: case X86II::MRM5r:
967  case X86II::MRM6r: case X86II::MRM7r:
968    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
969      CurOp++;
970    EmitByte(BaseOpcode, CurByte, OS);
971    EmitRegModRMByte(MI.getOperand(CurOp++),
972                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
973                     CurByte, OS);
974    break;
975  case X86II::MRM0m: case X86II::MRM1m:
976  case X86II::MRM2m: case X86II::MRM3m:
977  case X86II::MRM4m: case X86II::MRM5m:
978  case X86II::MRM6m: case X86II::MRM7m:
979    EmitByte(BaseOpcode, CurByte, OS);
980    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
981                     TSFlags, CurByte, OS, Fixups);
982    CurOp += X86::AddrNumOperands;
983    break;
984  case X86II::MRM_C1:
985    EmitByte(BaseOpcode, CurByte, OS);
986    EmitByte(0xC1, CurByte, OS);
987    break;
988  case X86II::MRM_C2:
989    EmitByte(BaseOpcode, CurByte, OS);
990    EmitByte(0xC2, CurByte, OS);
991    break;
992  case X86II::MRM_C3:
993    EmitByte(BaseOpcode, CurByte, OS);
994    EmitByte(0xC3, CurByte, OS);
995    break;
996  case X86II::MRM_C4:
997    EmitByte(BaseOpcode, CurByte, OS);
998    EmitByte(0xC4, CurByte, OS);
999    break;
1000  case X86II::MRM_C8:
1001    EmitByte(BaseOpcode, CurByte, OS);
1002    EmitByte(0xC8, CurByte, OS);
1003    break;
1004  case X86II::MRM_C9:
1005    EmitByte(BaseOpcode, CurByte, OS);
1006    EmitByte(0xC9, CurByte, OS);
1007    break;
1008  case X86II::MRM_E8:
1009    EmitByte(BaseOpcode, CurByte, OS);
1010    EmitByte(0xE8, CurByte, OS);
1011    break;
1012  case X86II::MRM_F0:
1013    EmitByte(BaseOpcode, CurByte, OS);
1014    EmitByte(0xF0, CurByte, OS);
1015    break;
1016  case X86II::MRM_F8:
1017    EmitByte(BaseOpcode, CurByte, OS);
1018    EmitByte(0xF8, CurByte, OS);
1019    break;
1020  case X86II::MRM_F9:
1021    EmitByte(BaseOpcode, CurByte, OS);
1022    EmitByte(0xF9, CurByte, OS);
1023    break;
1024  case X86II::MRM_D0:
1025    EmitByte(BaseOpcode, CurByte, OS);
1026    EmitByte(0xD0, CurByte, OS);
1027    break;
1028  case X86II::MRM_D1:
1029    EmitByte(BaseOpcode, CurByte, OS);
1030    EmitByte(0xD1, CurByte, OS);
1031    break;
1032  }
1033
1034  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1035  // according to the right size for the instruction.
1036  if (CurOp != NumOps) {
1037    // The last source register of a 4 operand instruction in AVX is encoded
1038    // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
1039    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1040      const MCOperand &MO = MI.getOperand(CurOp++);
1041      bool IsExtReg = X86II::isX86_64ExtendedReg(MO.getReg());
1042      unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
1043      RegNum |= GetX86RegNum(MO) << 4;
1044      EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
1045                    Fixups);
1046    } else {
1047      unsigned FixupKind;
1048      // FIXME: Is there a better way to know that we need a signed relocation?
1049      if (MI.getOpcode() == X86::ADD64ri32 ||
1050          MI.getOpcode() == X86::MOV64ri32 ||
1051          MI.getOpcode() == X86::MOV64mi32 ||
1052          MI.getOpcode() == X86::PUSH64i32)
1053        FixupKind = X86::reloc_signed_4byte;
1054      else
1055        FixupKind = getImmFixupKind(TSFlags);
1056      EmitImmediate(MI.getOperand(CurOp++),
1057                    X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1058                    CurByte, OS, Fixups);
1059    }
1060  }
1061
1062  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1063    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1064
1065#ifndef NDEBUG
1066  // FIXME: Verify.
1067  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1068    errs() << "Cannot encode all operands of: ";
1069    MI.dump();
1070    errs() << '\n';
1071    abort();
1072  }
1073#endif
1074}
1075