X86MCCodeEmitter.cpp revision 234353
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "mccodeemitter"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/MC/MCSymbol.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29namespace {
30class X86MCCodeEmitter : public MCCodeEmitter {
31  X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
32  void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
33  const MCInstrInfo &MCII;
34  const MCSubtargetInfo &STI;
35  MCContext &Ctx;
36public:
37  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
38                   MCContext &ctx)
39    : MCII(mcii), STI(sti), Ctx(ctx) {
40  }
41
42  ~X86MCCodeEmitter() {}
43
44  bool is64BitMode() const {
45    // FIXME: Can tablegen auto-generate this?
46    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
47  }
48
49  bool is32BitMode() const {
50    // FIXME: Can tablegen auto-generate this?
51    return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
52  }
53
54  static unsigned GetX86RegNum(const MCOperand &MO) {
55    return X86_MC::getX86RegNum(MO.getReg());
56  }
57
58  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
59  // 0-7 and the difference between the 2 groups is given by the REX prefix.
60  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
61  // in 1's complement form, example:
62  //
63  //  ModRM field => XMM9 => 1
64  //  VEX.VVVV    => XMM9 => ~9
65  //
66  // See table 4-35 of Intel AVX Programming Reference for details.
67  static unsigned char getVEXRegisterEncoding(const MCInst &MI,
68                                              unsigned OpNum) {
69    unsigned SrcReg = MI.getOperand(OpNum).getReg();
70    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
71    if (X86II::isX86_64ExtendedReg(SrcReg))
72      SrcRegNum |= 8;
73
74    // The registers represented through VEX_VVVV should
75    // be encoded in 1's complement form.
76    return (~SrcRegNum) & 0xf;
77  }
78
79  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
80    OS << (char)C;
81    ++CurByte;
82  }
83
84  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
85                    raw_ostream &OS) const {
86    // Output the constant in little endian byte order.
87    for (unsigned i = 0; i != Size; ++i) {
88      EmitByte(Val & 255, CurByte, OS);
89      Val >>= 8;
90    }
91  }
92
93  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
94                     unsigned ImmSize, MCFixupKind FixupKind,
95                     unsigned &CurByte, raw_ostream &OS,
96                     SmallVectorImpl<MCFixup> &Fixups,
97                     int ImmOffset = 0) const;
98
99  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
100                                        unsigned RM) {
101    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
102    return RM | (RegOpcode << 3) | (Mod << 6);
103  }
104
105  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
106                        unsigned &CurByte, raw_ostream &OS) const {
107    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
108  }
109
110  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
111                   unsigned &CurByte, raw_ostream &OS) const {
112    // SIB byte is in the same format as the ModRMByte.
113    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
114  }
115
116
117  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
118                        unsigned RegOpcodeField,
119                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
120                        SmallVectorImpl<MCFixup> &Fixups) const;
121
122  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
123                         SmallVectorImpl<MCFixup> &Fixups) const;
124
125  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
126                           const MCInst &MI, const MCInstrDesc &Desc,
127                           raw_ostream &OS) const;
128
129  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
130                                 int MemOperand, const MCInst &MI,
131                                 raw_ostream &OS) const;
132
133  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
134                        const MCInst &MI, const MCInstrDesc &Desc,
135                        raw_ostream &OS) const;
136};
137
138} // end anonymous namespace
139
140
141MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
142                                            const MCSubtargetInfo &STI,
143                                            MCContext &Ctx) {
144  return new X86MCCodeEmitter(MCII, STI, Ctx);
145}
146
147/// isDisp8 - Return true if this signed displacement fits in a 8-bit
148/// sign-extended field.
149static bool isDisp8(int Value) {
150  return Value == (signed char)Value;
151}
152
153/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
154/// in an instruction with the specified TSFlags.
155static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
156  unsigned Size = X86II::getSizeOfImm(TSFlags);
157  bool isPCRel = X86II::isImmPCRel(TSFlags);
158
159  return MCFixup::getKindForSize(Size, isPCRel);
160}
161
162/// Is32BitMemOperand - Return true if the specified instruction has
163/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
164static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
165  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
166  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
167
168  if ((BaseReg.getReg() != 0 &&
169       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
170      (IndexReg.getReg() != 0 &&
171       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
172    return true;
173  return false;
174}
175
176/// Is64BitMemOperand - Return true if the specified instruction has
177/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
178#ifndef NDEBUG
179static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
180  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
181  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
182
183  if ((BaseReg.getReg() != 0 &&
184       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
185      (IndexReg.getReg() != 0 &&
186       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
187    return true;
188  return false;
189}
190#endif
191
192/// Is16BitMemOperand - Return true if the specified instruction has
193/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
194static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
195  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
196  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
197
198  if ((BaseReg.getReg() != 0 &&
199       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
200      (IndexReg.getReg() != 0 &&
201       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
202    return true;
203  return false;
204}
205
206/// StartsWithGlobalOffsetTable - Check if this expression starts with
207///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
208///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
209/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
210/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
211/// of a binary expression.
212enum GlobalOffsetTableExprKind {
213  GOT_None,
214  GOT_Normal,
215  GOT_SymDiff
216};
217static GlobalOffsetTableExprKind
218StartsWithGlobalOffsetTable(const MCExpr *Expr) {
219  const MCExpr *RHS = 0;
220  if (Expr->getKind() == MCExpr::Binary) {
221    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
222    Expr = BE->getLHS();
223    RHS = BE->getRHS();
224  }
225
226  if (Expr->getKind() != MCExpr::SymbolRef)
227    return GOT_None;
228
229  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
230  const MCSymbol &S = Ref->getSymbol();
231  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
232    return GOT_None;
233  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
234    return GOT_SymDiff;
235  return GOT_Normal;
236}
237
238void X86MCCodeEmitter::
239EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
240              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
241              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
242  const MCExpr *Expr = NULL;
243  if (DispOp.isImm()) {
244    // If this is a simple integer displacement that doesn't require a
245    // relocation, emit it now.
246    if (FixupKind != FK_PCRel_1 &&
247        FixupKind != FK_PCRel_2 &&
248        FixupKind != FK_PCRel_4) {
249      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
250      return;
251    }
252    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
253  } else {
254    Expr = DispOp.getExpr();
255  }
256
257  // If we have an immoffset, add it to the expression.
258  if ((FixupKind == FK_Data_4 ||
259       FixupKind == FK_Data_8 ||
260       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
261    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
262    if (Kind != GOT_None) {
263      assert(ImmOffset == 0);
264
265      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
266      if (Kind == GOT_Normal)
267        ImmOffset = CurByte;
268    } else if (Expr->getKind() == MCExpr::SymbolRef) {
269      const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
270      if (Ref->getKind() == MCSymbolRefExpr::VK_SECREL) {
271        FixupKind = MCFixupKind(FK_SecRel_4);
272      }
273    }
274  }
275
276  // If the fixup is pc-relative, we need to bias the value to be relative to
277  // the start of the field, not the end of the field.
278  if (FixupKind == FK_PCRel_4 ||
279      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
280      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
281    ImmOffset -= 4;
282  if (FixupKind == FK_PCRel_2)
283    ImmOffset -= 2;
284  if (FixupKind == FK_PCRel_1)
285    ImmOffset -= 1;
286
287  if (ImmOffset)
288    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
289                                   Ctx);
290
291  // Emit a symbolic constant as a fixup and 4 zeros.
292  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
293  EmitConstant(0, Size, CurByte, OS);
294}
295
296void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
297                                        unsigned RegOpcodeField,
298                                        uint64_t TSFlags, unsigned &CurByte,
299                                        raw_ostream &OS,
300                                        SmallVectorImpl<MCFixup> &Fixups) const{
301  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
302  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
303  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
304  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
305  unsigned BaseReg = Base.getReg();
306
307  // Handle %rip relative addressing.
308  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
309    assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
310    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
311    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
312
313    unsigned FixupKind = X86::reloc_riprel_4byte;
314
315    // movq loads are handled with a special relocation form which allows the
316    // linker to eliminate some loads for GOT references which end up in the
317    // same linkage unit.
318    if (MI.getOpcode() == X86::MOV64rm)
319      FixupKind = X86::reloc_riprel_4byte_movq_load;
320
321    // rip-relative addressing is actually relative to the *next* instruction.
322    // Since an immediate can follow the mod/rm byte for an instruction, this
323    // means that we need to bias the immediate field of the instruction with
324    // the size of the immediate field.  If we have this case, add it into the
325    // expression to emit.
326    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
327
328    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
329                  CurByte, OS, Fixups, -ImmSize);
330    return;
331  }
332
333  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
334
335  // Determine whether a SIB byte is needed.
336  // If no BaseReg, issue a RIP relative instruction only if the MCE can
337  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
338  // 2-7) and absolute references.
339
340  if (// The SIB byte must be used if there is an index register.
341      IndexReg.getReg() == 0 &&
342      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
343      // encode to an R/M value of 4, which indicates that a SIB byte is
344      // present.
345      BaseRegNo != N86::ESP &&
346      // If there is no base register and we're in 64-bit mode, we need a SIB
347      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
348      (!is64BitMode() || BaseReg != 0)) {
349
350    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
351      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
352      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
353      return;
354    }
355
356    // If the base is not EBP/ESP and there is no displacement, use simple
357    // indirect register encoding, this handles addresses like [EAX].  The
358    // encoding for [EBP] with no displacement means [disp32] so we handle it
359    // by emitting a displacement of 0 below.
360    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
361      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
362      return;
363    }
364
365    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
366    if (Disp.isImm() && isDisp8(Disp.getImm())) {
367      EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
368      EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
369      return;
370    }
371
372    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
373    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
374    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
375                  Fixups);
376    return;
377  }
378
379  // We need a SIB byte, so start by outputting the ModR/M byte first
380  assert(IndexReg.getReg() != X86::ESP &&
381         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
382
383  bool ForceDisp32 = false;
384  bool ForceDisp8  = false;
385  if (BaseReg == 0) {
386    // If there is no base register, we emit the special case SIB byte with
387    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
388    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
389    ForceDisp32 = true;
390  } else if (!Disp.isImm()) {
391    // Emit the normal disp32 encoding.
392    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
393    ForceDisp32 = true;
394  } else if (Disp.getImm() == 0 &&
395             // Base reg can't be anything that ends up with '5' as the base
396             // reg, it is the magic [*] nomenclature that indicates no base.
397             BaseRegNo != N86::EBP) {
398    // Emit no displacement ModR/M byte
399    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
400  } else if (isDisp8(Disp.getImm())) {
401    // Emit the disp8 encoding.
402    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
403    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
404  } else {
405    // Emit the normal disp32 encoding.
406    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
407  }
408
409  // Calculate what the SS field value should be...
410  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
411  unsigned SS = SSTable[Scale.getImm()];
412
413  if (BaseReg == 0) {
414    // Handle the SIB byte for the case where there is no base, see Intel
415    // Manual 2A, table 2-7. The displacement has already been output.
416    unsigned IndexRegNo;
417    if (IndexReg.getReg())
418      IndexRegNo = GetX86RegNum(IndexReg);
419    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
420      IndexRegNo = 4;
421    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
422  } else {
423    unsigned IndexRegNo;
424    if (IndexReg.getReg())
425      IndexRegNo = GetX86RegNum(IndexReg);
426    else
427      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
428    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
429  }
430
431  // Do we need to output a displacement?
432  if (ForceDisp8)
433    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
434  else if (ForceDisp32 || Disp.getImm() != 0)
435    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
436                  CurByte, OS, Fixups);
437}
438
439/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
440/// called VEX.
441void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
442                                           int MemOperand, const MCInst &MI,
443                                           const MCInstrDesc &Desc,
444                                           raw_ostream &OS) const {
445  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
446  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
447
448  // VEX_R: opcode externsion equivalent to REX.R in
449  // 1's complement (inverted) form
450  //
451  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
452  //  0: Same as REX_R=1 (64 bit mode only)
453  //
454  unsigned char VEX_R = 0x1;
455
456  // VEX_X: equivalent to REX.X, only used when a
457  // register is used for index in SIB Byte.
458  //
459  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
460  //  0: Same as REX.X=1 (64-bit mode only)
461  unsigned char VEX_X = 0x1;
462
463  // VEX_B:
464  //
465  //  1: Same as REX_B=0 (ignored in 32-bit mode)
466  //  0: Same as REX_B=1 (64 bit mode only)
467  //
468  unsigned char VEX_B = 0x1;
469
470  // VEX_W: opcode specific (use like REX.W, or used for
471  // opcode extension, or ignored, depending on the opcode byte)
472  unsigned char VEX_W = 0;
473
474  // XOP: Use XOP prefix byte 0x8f instead of VEX.
475  unsigned char XOP = 0;
476
477  // VEX_5M (VEX m-mmmmm field):
478  //
479  //  0b00000: Reserved for future use
480  //  0b00001: implied 0F leading opcode
481  //  0b00010: implied 0F 38 leading opcode bytes
482  //  0b00011: implied 0F 3A leading opcode bytes
483  //  0b00100-0b11111: Reserved for future use
484  //  0b01000: XOP map select - 08h instructions with imm byte
485  //  0b10001: XOP map select - 09h instructions with no imm byte
486  unsigned char VEX_5M = 0x1;
487
488  // VEX_4V (VEX vvvv field): a register specifier
489  // (in 1's complement form) or 1111 if unused.
490  unsigned char VEX_4V = 0xf;
491
492  // VEX_L (Vector Length):
493  //
494  //  0: scalar or 128-bit vector
495  //  1: 256-bit vector
496  //
497  unsigned char VEX_L = 0;
498
499  // VEX_PP: opcode extension providing equivalent
500  // functionality of a SIMD prefix
501  //
502  //  0b00: None
503  //  0b01: 66
504  //  0b10: F3
505  //  0b11: F2
506  //
507  unsigned char VEX_PP = 0;
508
509  // Encode the operand size opcode prefix as needed.
510  if (TSFlags & X86II::OpSize)
511    VEX_PP = 0x01;
512
513  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
514    VEX_W = 1;
515
516  if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
517    XOP = 1;
518
519  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
520    VEX_L = 1;
521
522  switch (TSFlags & X86II::Op0Mask) {
523  default: llvm_unreachable("Invalid prefix!");
524  case X86II::T8:  // 0F 38
525    VEX_5M = 0x2;
526    break;
527  case X86II::TA:  // 0F 3A
528    VEX_5M = 0x3;
529    break;
530  case X86II::T8XS: // F3 0F 38
531    VEX_PP = 0x2;
532    VEX_5M = 0x2;
533    break;
534  case X86II::T8XD: // F2 0F 38
535    VEX_PP = 0x3;
536    VEX_5M = 0x2;
537    break;
538  case X86II::TAXD: // F2 0F 3A
539    VEX_PP = 0x3;
540    VEX_5M = 0x3;
541    break;
542  case X86II::XS:  // F3 0F
543    VEX_PP = 0x2;
544    break;
545  case X86II::XD:  // F2 0F
546    VEX_PP = 0x3;
547    break;
548  case X86II::XOP8:
549    VEX_5M = 0x8;
550    break;
551  case X86II::XOP9:
552    VEX_5M = 0x9;
553    break;
554  case X86II::A6:  // Bypass: Not used by VEX
555  case X86II::A7:  // Bypass: Not used by VEX
556  case X86II::TB:  // Bypass: Not used by VEX
557  case 0:
558    break;  // No prefix!
559  }
560
561
562  // Set the vector length to 256-bit if YMM0-YMM15 is used
563  for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
564    if (!MI.getOperand(i).isReg())
565      continue;
566    unsigned SrcReg = MI.getOperand(i).getReg();
567    if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
568      VEX_L = 1;
569  }
570
571  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
572  unsigned CurOp = 0;
573  switch (TSFlags & X86II::FormMask) {
574  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
575  case X86II::MRMDestMem: {
576    // MRMDestMem instructions forms:
577    //  MemAddr, src1(ModR/M)
578    //  MemAddr, src1(VEX_4V), src2(ModR/M)
579    //  MemAddr, src1(ModR/M), imm8
580    //
581    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
582      VEX_B = 0x0;
583    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
584      VEX_X = 0x0;
585
586    CurOp = X86::AddrNumOperands;
587    if (HasVEX_4V)
588      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
589
590    const MCOperand &MO = MI.getOperand(CurOp);
591    if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
592      VEX_R = 0x0;
593    break;
594  }
595  case X86II::MRMSrcMem:
596    // MRMSrcMem instructions forms:
597    //  src1(ModR/M), MemAddr
598    //  src1(ModR/M), src2(VEX_4V), MemAddr
599    //  src1(ModR/M), MemAddr, imm8
600    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
601    //
602    //  FMA4:
603    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
604    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
605    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
606      VEX_R = 0x0;
607
608    if (HasVEX_4V)
609      VEX_4V = getVEXRegisterEncoding(MI, 1);
610
611    if (X86II::isX86_64ExtendedReg(
612               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
613      VEX_B = 0x0;
614    if (X86II::isX86_64ExtendedReg(
615               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
616      VEX_X = 0x0;
617
618    if (HasVEX_4VOp3)
619      VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1);
620    break;
621  case X86II::MRM0m: case X86II::MRM1m:
622  case X86II::MRM2m: case X86II::MRM3m:
623  case X86II::MRM4m: case X86II::MRM5m:
624  case X86II::MRM6m: case X86II::MRM7m: {
625    // MRM[0-9]m instructions forms:
626    //  MemAddr
627    //  src1(VEX_4V), MemAddr
628    if (HasVEX_4V)
629      VEX_4V = getVEXRegisterEncoding(MI, 0);
630
631    if (X86II::isX86_64ExtendedReg(
632               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
633      VEX_B = 0x0;
634    if (X86II::isX86_64ExtendedReg(
635               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
636      VEX_X = 0x0;
637    break;
638  }
639  case X86II::MRMSrcReg:
640    // MRMSrcReg instructions forms:
641    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
642    //  dst(ModR/M), src1(ModR/M)
643    //  dst(ModR/M), src1(ModR/M), imm8
644    //
645    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
646      VEX_R = 0x0;
647    CurOp++;
648
649    if (HasVEX_4V)
650      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
651    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
652      VEX_B = 0x0;
653    CurOp++;
654    if (HasVEX_4VOp3)
655      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
656    break;
657  case X86II::MRMDestReg:
658    // MRMDestReg instructions forms:
659    //  dst(ModR/M), src(ModR/M)
660    //  dst(ModR/M), src(ModR/M), imm8
661    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
662      VEX_B = 0x0;
663    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
664      VEX_R = 0x0;
665    break;
666  case X86II::MRM0r: case X86II::MRM1r:
667  case X86II::MRM2r: case X86II::MRM3r:
668  case X86II::MRM4r: case X86II::MRM5r:
669  case X86II::MRM6r: case X86II::MRM7r:
670    // MRM0r-MRM7r instructions forms:
671    //  dst(VEX_4V), src(ModR/M), imm8
672    VEX_4V = getVEXRegisterEncoding(MI, 0);
673    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
674      VEX_B = 0x0;
675    break;
676  default: // RawFrm
677    break;
678  }
679
680  // Emit segment override opcode prefix as needed.
681  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
682
683  // VEX opcode prefix can have 2 or 3 bytes
684  //
685  //  3 bytes:
686  //    +-----+ +--------------+ +-------------------+
687  //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
688  //    +-----+ +--------------+ +-------------------+
689  //  2 bytes:
690  //    +-----+ +-------------------+
691  //    | C5h | | R | vvvv | L | pp |
692  //    +-----+ +-------------------+
693  //
694  unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
695
696  if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
697    EmitByte(0xC5, CurByte, OS);
698    EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
699    return;
700  }
701
702  // 3 byte VEX prefix
703  EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
704  EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
705  EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
706}
707
708/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
709/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
710/// size, and 3) use of X86-64 extended registers.
711static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
712                                   const MCInstrDesc &Desc) {
713  unsigned REX = 0;
714  if (TSFlags & X86II::REX_W)
715    REX |= 1 << 3; // set REX.W
716
717  if (MI.getNumOperands() == 0) return REX;
718
719  unsigned NumOps = MI.getNumOperands();
720  // FIXME: MCInst should explicitize the two-addrness.
721  bool isTwoAddr = NumOps > 1 &&
722                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
723
724  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
725  unsigned i = isTwoAddr ? 1 : 0;
726  for (; i != NumOps; ++i) {
727    const MCOperand &MO = MI.getOperand(i);
728    if (!MO.isReg()) continue;
729    unsigned Reg = MO.getReg();
730    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
731    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
732    // that returns non-zero.
733    REX |= 0x40; // REX fixed encoding prefix
734    break;
735  }
736
737  switch (TSFlags & X86II::FormMask) {
738  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
739  case X86II::MRMSrcReg:
740    if (MI.getOperand(0).isReg() &&
741        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
742      REX |= 1 << 2; // set REX.R
743    i = isTwoAddr ? 2 : 1;
744    for (; i != NumOps; ++i) {
745      const MCOperand &MO = MI.getOperand(i);
746      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
747        REX |= 1 << 0; // set REX.B
748    }
749    break;
750  case X86II::MRMSrcMem: {
751    if (MI.getOperand(0).isReg() &&
752        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
753      REX |= 1 << 2; // set REX.R
754    unsigned Bit = 0;
755    i = isTwoAddr ? 2 : 1;
756    for (; i != NumOps; ++i) {
757      const MCOperand &MO = MI.getOperand(i);
758      if (MO.isReg()) {
759        if (X86II::isX86_64ExtendedReg(MO.getReg()))
760          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
761        Bit++;
762      }
763    }
764    break;
765  }
766  case X86II::MRM0m: case X86II::MRM1m:
767  case X86II::MRM2m: case X86II::MRM3m:
768  case X86II::MRM4m: case X86II::MRM5m:
769  case X86II::MRM6m: case X86II::MRM7m:
770  case X86II::MRMDestMem: {
771    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
772    i = isTwoAddr ? 1 : 0;
773    if (NumOps > e && MI.getOperand(e).isReg() &&
774        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
775      REX |= 1 << 2; // set REX.R
776    unsigned Bit = 0;
777    for (; i != e; ++i) {
778      const MCOperand &MO = MI.getOperand(i);
779      if (MO.isReg()) {
780        if (X86II::isX86_64ExtendedReg(MO.getReg()))
781          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
782        Bit++;
783      }
784    }
785    break;
786  }
787  default:
788    if (MI.getOperand(0).isReg() &&
789        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
790      REX |= 1 << 0; // set REX.B
791    i = isTwoAddr ? 2 : 1;
792    for (unsigned e = NumOps; i != e; ++i) {
793      const MCOperand &MO = MI.getOperand(i);
794      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
795        REX |= 1 << 2; // set REX.R
796    }
797    break;
798  }
799  return REX;
800}
801
802/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
803void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
804                                        unsigned &CurByte, int MemOperand,
805                                        const MCInst &MI,
806                                        raw_ostream &OS) const {
807  switch (TSFlags & X86II::SegOvrMask) {
808  default: llvm_unreachable("Invalid segment!");
809  case 0:
810    // No segment override, check for explicit one on memory operand.
811    if (MemOperand != -1) {   // If the instruction has a memory operand.
812      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
813      default: llvm_unreachable("Unknown segment register!");
814      case 0: break;
815      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
816      case X86::SS: EmitByte(0x36, CurByte, OS); break;
817      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
818      case X86::ES: EmitByte(0x26, CurByte, OS); break;
819      case X86::FS: EmitByte(0x64, CurByte, OS); break;
820      case X86::GS: EmitByte(0x65, CurByte, OS); break;
821      }
822    }
823    break;
824  case X86II::FS:
825    EmitByte(0x64, CurByte, OS);
826    break;
827  case X86II::GS:
828    EmitByte(0x65, CurByte, OS);
829    break;
830  }
831}
832
833/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
834///
835/// MemOperand is the operand # of the start of a memory operand if present.  If
836/// Not present, it is -1.
837void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
838                                        int MemOperand, const MCInst &MI,
839                                        const MCInstrDesc &Desc,
840                                        raw_ostream &OS) const {
841
842  // Emit the lock opcode prefix as needed.
843  if (TSFlags & X86II::LOCK)
844    EmitByte(0xF0, CurByte, OS);
845
846  // Emit segment override opcode prefix as needed.
847  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
848
849  // Emit the repeat opcode prefix as needed.
850  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
851    EmitByte(0xF3, CurByte, OS);
852
853  // Emit the address size opcode prefix as needed.
854  bool need_address_override;
855  if (TSFlags & X86II::AdSize) {
856    need_address_override = true;
857  } else if (MemOperand == -1) {
858    need_address_override = false;
859  } else if (is64BitMode()) {
860    assert(!Is16BitMemOperand(MI, MemOperand));
861    need_address_override = Is32BitMemOperand(MI, MemOperand);
862  } else if (is32BitMode()) {
863    assert(!Is64BitMemOperand(MI, MemOperand));
864    need_address_override = Is16BitMemOperand(MI, MemOperand);
865  } else {
866    need_address_override = false;
867  }
868
869  if (need_address_override)
870    EmitByte(0x67, CurByte, OS);
871
872  // Emit the operand size opcode prefix as needed.
873  if (TSFlags & X86II::OpSize)
874    EmitByte(0x66, CurByte, OS);
875
876  bool Need0FPrefix = false;
877  switch (TSFlags & X86II::Op0Mask) {
878  default: llvm_unreachable("Invalid prefix!");
879  case 0: break;  // No prefix!
880  case X86II::REP: break; // already handled.
881  case X86II::TB:  // Two-byte opcode prefix
882  case X86II::T8:  // 0F 38
883  case X86II::TA:  // 0F 3A
884  case X86II::A6:  // 0F A6
885  case X86II::A7:  // 0F A7
886    Need0FPrefix = true;
887    break;
888  case X86II::T8XS: // F3 0F 38
889    EmitByte(0xF3, CurByte, OS);
890    Need0FPrefix = true;
891    break;
892  case X86II::T8XD: // F2 0F 38
893    EmitByte(0xF2, CurByte, OS);
894    Need0FPrefix = true;
895    break;
896  case X86II::TAXD: // F2 0F 3A
897    EmitByte(0xF2, CurByte, OS);
898    Need0FPrefix = true;
899    break;
900  case X86II::XS:   // F3 0F
901    EmitByte(0xF3, CurByte, OS);
902    Need0FPrefix = true;
903    break;
904  case X86II::XD:   // F2 0F
905    EmitByte(0xF2, CurByte, OS);
906    Need0FPrefix = true;
907    break;
908  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
909  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
910  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
911  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
912  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
913  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
914  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
915  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
916  }
917
918  // Handle REX prefix.
919  // FIXME: Can this come before F2 etc to simplify emission?
920  if (is64BitMode()) {
921    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
922      EmitByte(0x40 | REX, CurByte, OS);
923  }
924
925  // 0x0F escape code must be emitted just before the opcode.
926  if (Need0FPrefix)
927    EmitByte(0x0F, CurByte, OS);
928
929  // FIXME: Pull this up into previous switch if REX can be moved earlier.
930  switch (TSFlags & X86II::Op0Mask) {
931  case X86II::T8XS:  // F3 0F 38
932  case X86II::T8XD:  // F2 0F 38
933  case X86II::T8:    // 0F 38
934    EmitByte(0x38, CurByte, OS);
935    break;
936  case X86II::TAXD:  // F2 0F 3A
937  case X86II::TA:    // 0F 3A
938    EmitByte(0x3A, CurByte, OS);
939    break;
940  case X86II::A6:    // 0F A6
941    EmitByte(0xA6, CurByte, OS);
942    break;
943  case X86II::A7:    // 0F A7
944    EmitByte(0xA7, CurByte, OS);
945    break;
946  }
947}
948
949void X86MCCodeEmitter::
950EncodeInstruction(const MCInst &MI, raw_ostream &OS,
951                  SmallVectorImpl<MCFixup> &Fixups) const {
952  unsigned Opcode = MI.getOpcode();
953  const MCInstrDesc &Desc = MCII.get(Opcode);
954  uint64_t TSFlags = Desc.TSFlags;
955
956  // Pseudo instructions don't get encoded.
957  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
958    return;
959
960  // If this is a two-address instruction, skip one of the register operands.
961  // FIXME: This should be handled during MCInst lowering.
962  unsigned NumOps = Desc.getNumOperands();
963  unsigned CurOp = 0;
964  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
965    ++CurOp;
966  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
967    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
968    --NumOps;
969
970  // Keep track of the current byte being emitted.
971  unsigned CurByte = 0;
972
973  // Is this instruction encoded using the AVX VEX prefix?
974  bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
975
976  // It uses the VEX.VVVV field?
977  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
978  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
979  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
980  const unsigned MemOp4_I8IMMOperand = 2;
981
982  // Determine where the memory operand starts, if present.
983  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
984  if (MemoryOperand != -1) MemoryOperand += CurOp;
985
986  if (!HasVEXPrefix)
987    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
988  else
989    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
990
991  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
992
993  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
994    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
995
996  unsigned SrcRegNum = 0;
997  switch (TSFlags & X86II::FormMask) {
998  case X86II::MRMInitReg:
999    llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
1000  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1001    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1002  case X86II::Pseudo:
1003    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1004  case X86II::RawFrm:
1005    EmitByte(BaseOpcode, CurByte, OS);
1006    break;
1007  case X86II::RawFrmImm8:
1008    EmitByte(BaseOpcode, CurByte, OS);
1009    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1010                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1011                  CurByte, OS, Fixups);
1012    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1013                  OS, Fixups);
1014    break;
1015  case X86II::RawFrmImm16:
1016    EmitByte(BaseOpcode, CurByte, OS);
1017    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1018                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1019                  CurByte, OS, Fixups);
1020    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1021                  OS, Fixups);
1022    break;
1023
1024  case X86II::AddRegFrm:
1025    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1026    break;
1027
1028  case X86II::MRMDestReg:
1029    EmitByte(BaseOpcode, CurByte, OS);
1030    EmitRegModRMByte(MI.getOperand(CurOp),
1031                     GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
1032    CurOp += 2;
1033    break;
1034
1035  case X86II::MRMDestMem:
1036    EmitByte(BaseOpcode, CurByte, OS);
1037    SrcRegNum = CurOp + X86::AddrNumOperands;
1038
1039    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1040      SrcRegNum++;
1041
1042    EmitMemModRMByte(MI, CurOp,
1043                     GetX86RegNum(MI.getOperand(SrcRegNum)),
1044                     TSFlags, CurByte, OS, Fixups);
1045    CurOp = SrcRegNum + 1;
1046    break;
1047
1048  case X86II::MRMSrcReg:
1049    EmitByte(BaseOpcode, CurByte, OS);
1050    SrcRegNum = CurOp + 1;
1051
1052    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1053      SrcRegNum++;
1054
1055    if(HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1056      SrcRegNum++;
1057
1058    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1059                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1060
1061    // 2 operands skipped with HasMemOp4, comensate accordingly
1062    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1063    if (HasVEX_4VOp3)
1064      ++CurOp;
1065    break;
1066
1067  case X86II::MRMSrcMem: {
1068    int AddrOperands = X86::AddrNumOperands;
1069    unsigned FirstMemOp = CurOp+1;
1070    if (HasVEX_4V) {
1071      ++AddrOperands;
1072      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1073    }
1074    if(HasMemOp4) // Skip second register source (encoded in I8IMM)
1075      ++FirstMemOp;
1076
1077    EmitByte(BaseOpcode, CurByte, OS);
1078
1079    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1080                     TSFlags, CurByte, OS, Fixups);
1081    CurOp += AddrOperands + 1;
1082    if (HasVEX_4VOp3)
1083      ++CurOp;
1084    break;
1085  }
1086
1087  case X86II::MRM0r: case X86II::MRM1r:
1088  case X86II::MRM2r: case X86II::MRM3r:
1089  case X86II::MRM4r: case X86II::MRM5r:
1090  case X86II::MRM6r: case X86II::MRM7r:
1091    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1092      CurOp++;
1093    EmitByte(BaseOpcode, CurByte, OS);
1094    EmitRegModRMByte(MI.getOperand(CurOp++),
1095                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
1096                     CurByte, OS);
1097    break;
1098  case X86II::MRM0m: case X86II::MRM1m:
1099  case X86II::MRM2m: case X86II::MRM3m:
1100  case X86II::MRM4m: case X86II::MRM5m:
1101  case X86II::MRM6m: case X86II::MRM7m:
1102    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1103      CurOp++;
1104    EmitByte(BaseOpcode, CurByte, OS);
1105    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
1106                     TSFlags, CurByte, OS, Fixups);
1107    CurOp += X86::AddrNumOperands;
1108    break;
1109  case X86II::MRM_C1: case X86II::MRM_C2:
1110  case X86II::MRM_C3: case X86II::MRM_C4:
1111  case X86II::MRM_C8: case X86II::MRM_C9:
1112  case X86II::MRM_D0: case X86II::MRM_D1:
1113  case X86II::MRM_D4: case X86II::MRM_D8:
1114  case X86II::MRM_D9: case X86II::MRM_DA:
1115  case X86II::MRM_DB: case X86II::MRM_DC:
1116  case X86II::MRM_DD: case X86II::MRM_DE:
1117  case X86II::MRM_DF: case X86II::MRM_E8:
1118  case X86II::MRM_F0: case X86II::MRM_F8:
1119  case X86II::MRM_F9:
1120    EmitByte(BaseOpcode, CurByte, OS);
1121
1122    unsigned char MRM;
1123    switch (TSFlags & X86II::FormMask) {
1124    default: llvm_unreachable("Invalid Form");
1125    case X86II::MRM_C1: MRM = 0xC1; break;
1126    case X86II::MRM_C2: MRM = 0xC2; break;
1127    case X86II::MRM_C3: MRM = 0xC3; break;
1128    case X86II::MRM_C4: MRM = 0xC4; break;
1129    case X86II::MRM_C8: MRM = 0xC8; break;
1130    case X86II::MRM_C9: MRM = 0xC9; break;
1131    case X86II::MRM_D0: MRM = 0xD0; break;
1132    case X86II::MRM_D1: MRM = 0xD1; break;
1133    case X86II::MRM_D4: MRM = 0xD4; break;
1134    case X86II::MRM_D8: MRM = 0xD8; break;
1135    case X86II::MRM_D9: MRM = 0xD9; break;
1136    case X86II::MRM_DA: MRM = 0xDA; break;
1137    case X86II::MRM_DB: MRM = 0xDB; break;
1138    case X86II::MRM_DC: MRM = 0xDC; break;
1139    case X86II::MRM_DD: MRM = 0xDD; break;
1140    case X86II::MRM_DE: MRM = 0xDE; break;
1141    case X86II::MRM_DF: MRM = 0xDF; break;
1142    case X86II::MRM_E8: MRM = 0xE8; break;
1143    case X86II::MRM_F0: MRM = 0xF0; break;
1144    case X86II::MRM_F8: MRM = 0xF8; break;
1145    case X86II::MRM_F9: MRM = 0xF9; break;
1146    }
1147    EmitByte(MRM, CurByte, OS);
1148    break;
1149  }
1150
1151  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1152  // according to the right size for the instruction.
1153  if (CurOp != NumOps) {
1154    // The last source register of a 4 operand instruction in AVX is encoded
1155    // in bits[7:4] of a immediate byte.
1156    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1157      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1158                                                   : CurOp);
1159      CurOp++;
1160      bool IsExtReg = X86II::isX86_64ExtendedReg(MO.getReg());
1161      unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
1162      RegNum |= GetX86RegNum(MO) << 4;
1163      // If there is an additional 5th operand it must be an immediate, which
1164      // is encoded in bits[3:0]
1165      if(CurOp != NumOps) {
1166        const MCOperand &MIMM = MI.getOperand(CurOp++);
1167        if(MIMM.isImm()) {
1168          unsigned Val = MIMM.getImm();
1169          assert(Val < 16 && "Immediate operand value out of range");
1170          RegNum |= Val;
1171        }
1172      }
1173      EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1174                    CurByte, OS, Fixups);
1175    } else {
1176      unsigned FixupKind;
1177      // FIXME: Is there a better way to know that we need a signed relocation?
1178      if (MI.getOpcode() == X86::ADD64ri32 ||
1179          MI.getOpcode() == X86::MOV64ri32 ||
1180          MI.getOpcode() == X86::MOV64mi32 ||
1181          MI.getOpcode() == X86::PUSH64i32)
1182        FixupKind = X86::reloc_signed_4byte;
1183      else
1184        FixupKind = getImmFixupKind(TSFlags);
1185      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1186                    X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1187                    CurByte, OS, Fixups);
1188    }
1189  }
1190
1191  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1192    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1193
1194#ifndef NDEBUG
1195  // FIXME: Verify.
1196  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1197    errs() << "Cannot encode all operands of: ";
1198    MI.dump();
1199    errs() << '\n';
1200    abort();
1201  }
1202#endif
1203}
1204