SystemZInstrVector.td revision 360660
1//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// Move instructions
11//===----------------------------------------------------------------------===//
12
13let Predicates = [FeatureVector] in {
14  // Register move.
15  def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
16  def VLR32 : UnaryAliasVRR<null_frag, v32sb, v32sb>;
17  def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;
18
19  // Load GR from VR element.
20  def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
21  def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
22  def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
23  def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
24  def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;
25
26  // Load VR element from GR.
27  def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
28  def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
29                          v128b, v128b, GR32, 0>;
30  def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
31                          v128h, v128h, GR32, 1>;
32  def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
33                          v128f, v128f, GR32, 2>;
34  def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
35                          v128g, v128g, GR64, 3>;
36
37  // Load VR from GRs disjoint.
38  def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
39  def VLVGP32 : BinaryAliasVRRf<GR32>;
40}
41
42// Extractions always assign to the full GR64, even if the element would
43// fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
44// subreg of the result.
45class VectorExtractSubreg<ValueType type, Instruction insn>
46  : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
47        (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;
48
49def : VectorExtractSubreg<v16i8, VLGVB>;
50def : VectorExtractSubreg<v8i16, VLGVH>;
51def : VectorExtractSubreg<v4i32, VLGVF>;
52
53//===----------------------------------------------------------------------===//
54// Immediate instructions
55//===----------------------------------------------------------------------===//
56
57let Predicates = [FeatureVector] in {
58  let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
59
60    // Generate byte mask.
61    def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
62    def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
63    def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>;
64
65    // Generate mask.
66    def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
67    def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
68    def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
69    def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
70    def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;
71
72    // Replicate immediate.
73    def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
74    def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>;
75    def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>;
76    def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>;
77    def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>;
78  }
79
80  // Load element immediate.
81  //
82  // We want these instructions to be used ahead of VLVG* where possible.
83  // However, VLVG* takes a variable BD-format index whereas VLEI takes
84  // a plain immediate index.  This means that VLVG* has an extra "base"
85  // register operand and is 3 units more complex.  Bumping the complexity
86  // of the VLEI* instructions by 4 means that they are strictly better
87  // than VLVG* in cases where both forms match.
88  let AddedComplexity = 4 in {
89    def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
90                            v128b, v128b, imm32sx16trunc, imm32zx4>;
91    def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
92                            v128h, v128h, imm32sx16trunc, imm32zx3>;
93    def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
94                            v128f, v128f, imm32sx16, imm32zx2>;
95    def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
96                            v128g, v128g, imm64sx16, imm32zx1>;
97  }
98}
99
100//===----------------------------------------------------------------------===//
101// Loads
102//===----------------------------------------------------------------------===//
103
104let Predicates = [FeatureVector] in {
105  // Load.
106  defm VL : UnaryVRXAlign<"vl", 0xE706>;
107
108  // Load to block boundary.  The number of loaded bytes is only known
109  // at run time.  The instruction is really polymorphic, but v128b matches
110  // the return type of the associated intrinsic.
111  def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;
112
113  // Load count to block boundary.
114  let Defs = [CC] in
115    def LCBB : InstRXE<0xE727, (outs GR32:$R1),
116                               (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
117                       "lcbb\t$R1, $XBD2, $M3",
118                       [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
119                                                      imm32zx4:$M3))]>;
120
121  // Load with length.  The number of loaded bytes is only known at run time.
122  def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;
123
124  // Load multiple.
125  defm VLM : LoadMultipleVRSaAlign<"vlm", 0xE736>;
126
127  // Load and replicate
128  def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
129  def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
130  def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
131  def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
132  def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
133  def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
134            (VLREPF bdxaddr12only:$addr)>;
135  def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
136            (VLREPG bdxaddr12only:$addr)>;
137
138  // Use VLREP to load subvectors.  These patterns use "12pair" because
139  // LEY and LDY offer full 20-bit displacement fields.  It's often better
140  // to use those instructions rather than force a 20-bit displacement
141  // into a GPR temporary.
142  let mayLoad = 1 in {
143    def VL32 : UnaryAliasVRX<load, v32sb, bdxaddr12pair>;
144    def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
145  }
146
147  // Load logical element and zero.
148  def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
149  def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
150  def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
151  def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
152  def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
153  def : Pat<(z_vllezf32 bdxaddr12only:$addr),
154            (VLLEZF bdxaddr12only:$addr)>;
155  def : Pat<(z_vllezf64 bdxaddr12only:$addr),
156            (VLLEZG bdxaddr12only:$addr)>;
157  let Predicates = [FeatureVectorEnhancements1] in {
158    def VLLEZLF : UnaryVRX<"vllezlf", 0xE704, z_vllezli32, v128f, 4, 6>;
159    def : Pat<(z_vllezlf32 bdxaddr12only:$addr),
160              (VLLEZLF bdxaddr12only:$addr)>;
161  }
162
163  // Load element.
164  def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
165  def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
166  def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
167  def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
168  def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
169            (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
170  def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
171            (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
172
173  // Gather element.
174  def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
175  def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
176}
177
178let Predicates = [FeatureVectorPackedDecimal] in {
179  // Load rightmost with length.  The number of loaded bytes is only known
180  // at run time.
181  def VLRL : BinaryVSI<"vlrl", 0xE635, int_s390_vlrl, 0>;
182  def VLRLR : BinaryVRSd<"vlrlr", 0xE637, int_s390_vlrl, 0>;
183}
184
185// Use replicating loads if we're inserting a single element into an
186// undefined vector.  This avoids a false dependency on the previous
187// register contents.
188multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
189                             SDPatternOperator load, ValueType scalartype> {
190  def : Pat<(vectype (z_vector_insert
191                      (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
192            (vlrep bdxaddr12only:$addr)>;
193  def : Pat<(vectype (scalar_to_vector
194                      (scalartype (load bdxaddr12only:$addr)))),
195            (vlrep bdxaddr12only:$addr)>;
196}
197defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
198defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
199defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
200defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
201defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
202defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;
203
204//===----------------------------------------------------------------------===//
205// Stores
206//===----------------------------------------------------------------------===//
207
208let Predicates = [FeatureVector] in {
209  // Store.
210  defm VST : StoreVRXAlign<"vst", 0xE70E>;
211
212  // Store with length.  The number of stored bytes is only known at run time.
213  def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;
214
215  // Store multiple.
216  defm VSTM : StoreMultipleVRSaAlign<"vstm", 0xE73E>;
217
218  // Store element.
219  def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
220  def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
221  def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
222  def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
223  def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
224                       imm32zx2:$index),
225            (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
226  def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
227                       imm32zx1:$index),
228            (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
229
230  // Use VSTE to store subvectors.  These patterns use "12pair" because
231  // STEY and STDY offer full 20-bit displacement fields.  It's often better
232  // to use those instructions rather than force a 20-bit displacement
233  // into a GPR temporary.
234  let mayStore = 1 in {
235    def VST32 : StoreAliasVRX<store, v32sb, bdxaddr12pair>;
236    def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
237  }
238
239  // Scatter element.
240  def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
241  def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
242}
243
244let Predicates = [FeatureVectorPackedDecimal] in {
245  // Store rightmost with length.  The number of stored bytes is only known
246  // at run time.
247  def VSTRL : StoreLengthVSI<"vstrl", 0xE63D, int_s390_vstrl, 0>;
248  def VSTRLR : StoreLengthVRSd<"vstrlr", 0xE63F, int_s390_vstrl, 0>;
249}
250
251//===----------------------------------------------------------------------===//
252// Byte swaps
253//===----------------------------------------------------------------------===//
254
255let Predicates = [FeatureVectorEnhancements2] in {
256  // Load byte-reversed elements.
257  def VLBR  : UnaryVRXGeneric<"vlbr", 0xE606>;
258  def VLBRH : UnaryVRX<"vlbrh", 0xE606, z_loadbswap, v128h, 16, 1>;
259  def VLBRF : UnaryVRX<"vlbrf", 0xE606, z_loadbswap, v128f, 16, 2>;
260  def VLBRG : UnaryVRX<"vlbrg", 0xE606, z_loadbswap, v128g, 16, 3>;
261  def VLBRQ : UnaryVRX<"vlbrq", 0xE606, null_frag, v128q, 16, 4>;
262
263  // Load elements reversed.
264  def VLER  : UnaryVRXGeneric<"vler", 0xE607>;
265  def VLERH : UnaryVRX<"vlerh", 0xE607, z_loadeswap, v128h, 16, 1>;
266  def VLERF : UnaryVRX<"vlerf", 0xE607, z_loadeswap, v128f, 16, 2>;
267  def VLERG : UnaryVRX<"vlerg", 0xE607, z_loadeswap, v128g, 16, 3>;
268  def : Pat<(v4f32 (z_loadeswap bdxaddr12only:$addr)),
269            (VLERF bdxaddr12only:$addr)>;
270  def : Pat<(v2f64 (z_loadeswap bdxaddr12only:$addr)),
271            (VLERG bdxaddr12only:$addr)>;
272  def : Pat<(v16i8 (z_loadeswap bdxaddr12only:$addr)),
273            (VLBRQ bdxaddr12only:$addr)>;
274
275  // Load byte-reversed element.
276  def VLEBRH : TernaryVRX<"vlebrh", 0xE601, z_vlebri16, v128h, v128h, 2, imm32zx3>;
277  def VLEBRF : TernaryVRX<"vlebrf", 0xE603, z_vlebri32, v128f, v128f, 4, imm32zx2>;
278  def VLEBRG : TernaryVRX<"vlebrg", 0xE602, z_vlebri64, v128g, v128g, 8, imm32zx1>;
279
280  // Load byte-reversed element and zero.
281  def VLLEBRZ  : UnaryVRXGeneric<"vllebrz", 0xE604>;
282  def VLLEBRZH : UnaryVRX<"vllebrzh", 0xE604, z_vllebrzi16, v128h, 2, 1>;
283  def VLLEBRZF : UnaryVRX<"vllebrzf", 0xE604, z_vllebrzi32, v128f, 4, 2>;
284  def VLLEBRZG : UnaryVRX<"vllebrzg", 0xE604, z_vllebrzi64, v128g, 8, 3>;
285  def VLLEBRZE : UnaryVRX<"vllebrze", 0xE604, z_vllebrzli32, v128f, 4, 6>;
286  def : InstAlias<"lerv\t$V1, $XBD2",
287                  (VLLEBRZE VR128:$V1, bdxaddr12only:$XBD2), 0>;
288  def : InstAlias<"ldrv\t$V1, $XBD2",
289                  (VLLEBRZG VR128:$V1, bdxaddr12only:$XBD2), 0>;
290
291  // Load byte-reversed element and replicate.
292  def VLBRREP  : UnaryVRXGeneric<"vlbrrep", 0xE605>;
293  def VLBRREPH : UnaryVRX<"vlbrreph", 0xE605, z_replicate_loadbswapi16, v128h, 2, 1>;
294  def VLBRREPF : UnaryVRX<"vlbrrepf", 0xE605, z_replicate_loadbswapi32, v128f, 4, 2>;
295  def VLBRREPG : UnaryVRX<"vlbrrepg", 0xE605, z_replicate_loadbswapi64, v128g, 8, 3>;
296
297  // Store byte-reversed elements.
298  def VSTBR  : StoreVRXGeneric<"vstbr", 0xE60E>;
299  def VSTBRH : StoreVRX<"vstbrh", 0xE60E, z_storebswap, v128h, 16, 1>;
300  def VSTBRF : StoreVRX<"vstbrf", 0xE60E, z_storebswap, v128f, 16, 2>;
301  def VSTBRG : StoreVRX<"vstbrg", 0xE60E, z_storebswap, v128g, 16, 3>;
302  def VSTBRQ : StoreVRX<"vstbrq", 0xE60E, null_frag, v128q, 16, 4>;
303
304  // Store elements reversed.
305  def VSTER  : StoreVRXGeneric<"vster", 0xE60F>;
306  def VSTERH : StoreVRX<"vsterh", 0xE60F, z_storeeswap, v128h, 16, 1>;
307  def VSTERF : StoreVRX<"vsterf", 0xE60F, z_storeeswap, v128f, 16, 2>;
308  def VSTERG : StoreVRX<"vsterg", 0xE60F, z_storeeswap, v128g, 16, 3>;
309  def : Pat<(z_storeeswap (v4f32 VR128:$val), bdxaddr12only:$addr),
310            (VSTERF VR128:$val, bdxaddr12only:$addr)>;
311  def : Pat<(z_storeeswap (v2f64 VR128:$val), bdxaddr12only:$addr),
312            (VSTERG VR128:$val, bdxaddr12only:$addr)>;
313  def : Pat<(z_storeeswap (v16i8 VR128:$val), bdxaddr12only:$addr),
314            (VSTBRQ VR128:$val, bdxaddr12only:$addr)>;
315
316  // Store byte-reversed element.
317  def VSTEBRH : StoreBinaryVRX<"vstebrh", 0xE609, z_vstebri16, v128h, 2, imm32zx3>;
318  def VSTEBRF : StoreBinaryVRX<"vstebrf", 0xE60B, z_vstebri32, v128f, 4, imm32zx2>;
319  def VSTEBRG : StoreBinaryVRX<"vstebrg", 0xE60A, z_vstebri64, v128g, 8, imm32zx1>;
320  def : InstAlias<"sterv\t$V1, $XBD2",
321                  (VSTEBRF VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
322  def : InstAlias<"stdrv\t$V1, $XBD2",
323                  (VSTEBRG VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
324}
325
326//===----------------------------------------------------------------------===//
327// Selects and permutes
328//===----------------------------------------------------------------------===//
329
330let Predicates = [FeatureVector] in {
331  // Merge high.
332  def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
333  def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
334  def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
335  def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
336  def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
337  def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
338  def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
339
340  // Merge low.
341  def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
342  def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
343  def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
344  def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
345  def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
346  def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
347  def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
348
349  // Permute.
350  def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
351
352  // Permute doubleword immediate.
353  def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;
354
355  // Bit Permute.
356  let Predicates = [FeatureVectorEnhancements1] in
357    def VBPERM : BinaryVRRc<"vbperm", 0xE785, int_s390_vbperm, v128g, v128b>;
358
359  // Replicate.
360  def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
361  def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
362  def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
363  def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
364  def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
365  def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)),
366            (VREPF VR128:$vec, imm32zx16:$index)>;
367  def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)),
368            (VREPG VR128:$vec, imm32zx16:$index)>;
369
370  // Select.
371  def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
372}
373
374//===----------------------------------------------------------------------===//
375// Widening and narrowing
376//===----------------------------------------------------------------------===//
377
378let Predicates = [FeatureVector] in {
379  // Pack
380  def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
381  def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
382  def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
383  def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;
384
385  // Pack saturate.
386  def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
387  defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
388                               v128b, v128h, 1>;
389  defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
390                               v128h, v128f, 2>;
391  defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
392                               v128f, v128g, 3>;
393
394  // Pack saturate logical.
395  def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
396  defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
397                                v128b, v128h, 1>;
398  defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
399                                v128h, v128f, 2>;
400  defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
401                                v128f, v128g, 3>;
402
403  // Sign-extend to doubleword.
404  def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
405  def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
406  def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
407  def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
408  def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
409  def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
410  def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;
411
412  // Unpack high.
413  def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
414  def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
415  def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
416  def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;
417
418  // Unpack logical high.
419  def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
420  def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
421  def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
422  def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;
423
424  // Unpack low.
425  def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
426  def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
427  def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
428  def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;
429
430  // Unpack logical low.
431  def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
432  def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
433  def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
434  def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
435}
436
437//===----------------------------------------------------------------------===//
438// Instantiating generic operations for specific types.
439//===----------------------------------------------------------------------===//
440
441multiclass GenericVectorOps<ValueType type, ValueType inttype> {
442  let Predicates = [FeatureVector] in {
443    def : Pat<(type (load bdxaddr12only:$addr)),
444              (VL bdxaddr12only:$addr)>;
445    def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
446              (VST VR128:$src, bdxaddr12only:$addr)>;
447    def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
448              (VSEL VR128:$y, VR128:$z, VR128:$x)>;
449    def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
450              (VSEL VR128:$z, VR128:$y, VR128:$x)>;
451  }
452}
453
454defm : GenericVectorOps<v16i8, v16i8>;
455defm : GenericVectorOps<v8i16, v8i16>;
456defm : GenericVectorOps<v4i32, v4i32>;
457defm : GenericVectorOps<v2i64, v2i64>;
458defm : GenericVectorOps<v4f32, v4i32>;
459defm : GenericVectorOps<v2f64, v2i64>;
460
461//===----------------------------------------------------------------------===//
462// Integer arithmetic
463//===----------------------------------------------------------------------===//
464
465let Predicates = [FeatureVector] in {
466  // Add.
467  def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
468  def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
469  def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
470  def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
471  def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
472  def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;
473
474  // Add compute carry.
475  def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
476  def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
477  def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
478  def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
479  def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
480  def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;
481
482  // Add with carry.
483  def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
484  def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;
485
486  // Add with carry compute carry.
487  def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
488  def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;
489
490  // And.
491  def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;
492
493  // And with complement.
494  def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;
495
496  // Average.
497  def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
498  def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
499  def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
500  def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
501  def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;
502
503  // Average logical.
504  def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
505  def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
506  def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
507  def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
508  def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
509
510  // Checksum.
511  def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;
512
513  // Count leading zeros.
514  def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
515  def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
516  def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
517  def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
518  def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;
519
520  // Count trailing zeros.
521  def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
522  def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
523  def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
524  def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
525  def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;
526
527  // Not exclusive or.
528  let Predicates = [FeatureVectorEnhancements1] in
529    def VNX : BinaryVRRc<"vnx", 0xE76C, null_frag, v128any, v128any>;
530
531  // Exclusive or.
532  def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
533
534  // Galois field multiply sum.
535  def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
536  def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
537  def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
538  def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
539  def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;
540
541  // Galois field multiply sum and accumulate.
542  def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
543  def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
544  def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
545  def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
546  def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;
547
548  // Load complement.
549  def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
550  def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
551  def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
552  def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
553  def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;
554
555  // Load positive.
556  def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
557  def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8,  v128b, v128b, 0>;
558  def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
559  def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
560  def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;
561
562  // Maximum.
563  def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
564  def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
565  def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
566  def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
567  def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;
568
569  // Maximum logical.
570  def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
571  def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
572  def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
573  def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
574  def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
575
576  // Minimum.
577  def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
578  def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
579  def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
580  def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
581  def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;
582
583  // Minimum logical.
584  def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
585  def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
586  def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
587  def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
588  def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
589
590  // Multiply and add low.
591  def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
592  def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
593  def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
594  def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;
595
596  // Multiply and add high.
597  def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
598  def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
599  def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
600  def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;
601
602  // Multiply and add logical high.
603  def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
604  def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
605  def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
606  def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;
607
608  // Multiply and add even.
609  def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
610  def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
611  def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
612  def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;
613
614  // Multiply and add logical even.
615  def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
616  def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
617  def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
618  def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;
619
620  // Multiply and add odd.
621  def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
622  def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
623  def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
624  def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;
625
626  // Multiply and add logical odd.
627  def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
628  def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
629  def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
630  def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
631
632  // Multiply high.
633  def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
634  def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
635  def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
636  def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;
637
638  // Multiply logical high.
639  def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
640  def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
641  def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
642  def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;
643
644  // Multiply low.
645  def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
646  def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
647  def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
648  def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;
649
650  // Multiply even.
651  def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
652  def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
653  def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
654  def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;
655
656  // Multiply logical even.
657  def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
658  def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
659  def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
660  def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;
661
662  // Multiply odd.
663  def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
664  def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
665  def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
666  def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;
667
668  // Multiply logical odd.
669  def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
670  def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
671  def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
672  def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
673
674  // Multiply sum logical.
675  let Predicates = [FeatureVectorEnhancements1] in {
676    def VMSL  : QuaternaryVRRdGeneric<"vmsl", 0xE7B8>;
677    def VMSLG : QuaternaryVRRd<"vmslg", 0xE7B8, int_s390_vmslg,
678                               v128q, v128g, v128g, v128q, 3>;
679  }
680
681  // Nand.
682  let Predicates = [FeatureVectorEnhancements1] in
683    def VNN : BinaryVRRc<"vnn", 0xE76E, null_frag, v128any, v128any>;
684
685  // Nor.
686  def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
687  def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;
688
689  // Or.
690  def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;
691
692  // Or with complement.
693  let Predicates = [FeatureVectorEnhancements1] in
694    def VOC : BinaryVRRc<"voc", 0xE76F, null_frag, v128any, v128any>;
695
696  // Population count.
697  def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
698  def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
699  let Predicates = [FeatureVectorEnhancements1] in {
700    def VPOPCTB : UnaryVRRa<"vpopctb", 0xE750, ctpop, v128b, v128b, 0>;
701    def VPOPCTH : UnaryVRRa<"vpopcth", 0xE750, ctpop, v128h, v128h, 1>;
702    def VPOPCTF : UnaryVRRa<"vpopctf", 0xE750, ctpop, v128f, v128f, 2>;
703    def VPOPCTG : UnaryVRRa<"vpopctg", 0xE750, ctpop, v128g, v128g, 3>;
704  }
705
706  // Element rotate left logical (with vector shift amount).
707  def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
708  def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
709                           v128b, v128b, 0>;
710  def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
711                           v128h, v128h, 1>;
712  def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
713                           v128f, v128f, 2>;
714  def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
715                           v128g, v128g, 3>;
716
717  // Element rotate left logical (with scalar shift amount).
718  def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
719  def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
720  def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
721  def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
722  def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;
723
724  // Element rotate and insert under mask.
725  def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
726  def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
727  def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
728  def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
729  def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;
730
731  // Element shift left (with vector shift amount).
732  def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
733  def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
734  def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
735  def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
736  def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;
737
738  // Element shift left (with scalar shift amount).
739  def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
740  def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
741  def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
742  def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
743  def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;
744
745  // Element shift right arithmetic (with vector shift amount).
746  def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
747  def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
748  def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
749  def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
750  def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;
751
752  // Element shift right arithmetic (with scalar shift amount).
753  def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
754  def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
755  def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
756  def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
757  def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;
758
759  // Element shift right logical (with vector shift amount).
760  def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
761  def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
762  def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
763  def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
764  def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;
765
766  // Element shift right logical (with scalar shift amount).
767  def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
768  def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
769  def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
770  def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
771  def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;
772
773  // Shift left.
774  def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;
775
776  // Shift left by byte.
777  def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;
778
779  // Shift left double by byte.
780  def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
781  def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z),
782            (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;
783
784  // Shift left double by bit.
785  let Predicates = [FeatureVectorEnhancements2] in
786    def VSLD : TernaryVRId<"vsld", 0xE786, int_s390_vsld, v128b, v128b, 0>;
787
788  // Shift right arithmetic.
789  def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;
790
791  // Shift right arithmetic by byte.
792  def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;
793
794  // Shift right logical.
795  def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;
796
797  // Shift right logical by byte.
798  def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;
799
800  // Shift right double by bit.
801  let Predicates = [FeatureVectorEnhancements2] in
802    def VSRD : TernaryVRId<"vsrd", 0xE787, int_s390_vsrd, v128b, v128b, 0>;
803
804  // Subtract.
805  def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
806  def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
807  def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
808  def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
809  def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
810  def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;
811
812  // Subtract compute borrow indication.
813  def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
814  def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
815  def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
816  def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
817  def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
818  def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;
819
820  // Subtract with borrow indication.
821  def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
822  def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;
823
824  // Subtract with borrow compute borrow indication.
825  def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
826  def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
827                            v128q, v128q, 4>;
828
829  // Sum across doubleword.
830  def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
831  def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
832  def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;
833
834  // Sum across quadword.
835  def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
836  def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
837  def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;
838
839  // Sum across word.
840  def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
841  def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
842  def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
843}
844
845// Instantiate the bitwise ops for type TYPE.
846multiclass BitwiseVectorOps<ValueType type> {
847  let Predicates = [FeatureVector] in {
848    def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
849    def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
850              (VNC VR128:$x, VR128:$y)>;
851    def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
852    def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
853    def : Pat<(type (or (and VR128:$x, VR128:$z),
854                        (and VR128:$y, (z_vnot VR128:$z)))),
855              (VSEL VR128:$x, VR128:$y, VR128:$z)>;
856    def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
857              (VNO VR128:$x, VR128:$y)>;
858    def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
859  }
860  let Predicates = [FeatureVectorEnhancements1] in {
861    def : Pat<(type (z_vnot (xor VR128:$x, VR128:$y))),
862              (VNX VR128:$x, VR128:$y)>;
863    def : Pat<(type (z_vnot (and VR128:$x, VR128:$y))),
864              (VNN VR128:$x, VR128:$y)>;
865    def : Pat<(type (or VR128:$x, (z_vnot VR128:$y))),
866              (VOC VR128:$x, VR128:$y)>;
867  }
868}
869
870defm : BitwiseVectorOps<v16i8>;
871defm : BitwiseVectorOps<v8i16>;
872defm : BitwiseVectorOps<v4i32>;
873defm : BitwiseVectorOps<v2i64>;
874
875// Instantiate additional patterns for absolute-related expressions on
876// type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
877// instruction.
878multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
879                                    Instruction lp, int shift> {
880  let Predicates = [FeatureVector] in {
881    def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
882                             (z_vneg VR128:$x), VR128:$x)),
883              (lc (lp VR128:$x))>;
884    def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
885                             VR128:$x, (z_vneg VR128:$x))),
886              (lc (lp VR128:$x))>;
887    def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
888                             VR128:$x, (z_vneg VR128:$x))),
889              (lc (lp VR128:$x))>;
890    def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
891                             (z_vneg VR128:$x), VR128:$x)),
892              (lc (lp VR128:$x))>;
893    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
894                             (z_vneg VR128:$x)),
895                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
896                             VR128:$x))),
897              (lp VR128:$x)>;
898    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
899                             VR128:$x),
900                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
901                             (z_vneg VR128:$x)))),
902              (lc (lp VR128:$x))>;
903  }
904}
905
906defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
907defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
908defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
909defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;
910
911// Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
912// signed or unsigned "set if greater than" comparison instruction and
913// MIN and MAX are the associated minimum and maximum instructions.
914multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
915                                  Instruction min, Instruction max> {
916  let Predicates = [FeatureVector] in {
917    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
918              (max VR128:$x, VR128:$y)>;
919    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
920              (min VR128:$x, VR128:$y)>;
921    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
922                             VR128:$x, VR128:$y)),
923              (min VR128:$x, VR128:$y)>;
924    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
925                             VR128:$y, VR128:$x)),
926              (max VR128:$x, VR128:$y)>;
927  }
928}
929
930// Signed min/max.
931defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
932defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
933defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
934defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;
935
936// Unsigned min/max.
937defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
938defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
939defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
940defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;
941
942//===----------------------------------------------------------------------===//
943// Integer comparison
944//===----------------------------------------------------------------------===//
945
946let Predicates = [FeatureVector] in {
947  // Element compare.
948  let Defs = [CC] in {
949    def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
950    def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
951    def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
952    def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
953    def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
954  }
955
956  // Element compare logical.
957  let Defs = [CC] in {
958    def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
959    def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
960    def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
961    def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
962    def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
963  }
964
965  // Compare equal.
966  def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
967  defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
968                               v128b, v128b, 0>;
969  defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
970                               v128h, v128h, 1>;
971  defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
972                               v128f, v128f, 2>;
973  defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
974                               v128g, v128g, 3>;
975
976  // Compare high.
977  def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
978  defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
979                              v128b, v128b, 0>;
980  defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
981                              v128h, v128h, 1>;
982  defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
983                              v128f, v128f, 2>;
984  defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
985                              v128g, v128g, 3>;
986
987  // Compare high logical.
988  def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
989  defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
990                               v128b, v128b, 0>;
991  defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
992                               v128h, v128h, 1>;
993  defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
994                               v128f, v128f, 2>;
995  defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
996                               v128g, v128g, 3>;
997
998  // Test under mask.
999  let Defs = [CC] in
1000    def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004// Floating-point arithmetic
1005//===----------------------------------------------------------------------===//
1006
1007// See comments in SystemZInstrFP.td for the suppression flags and
1008// rounding modes.
1009multiclass VectorRounding<Instruction insn, TypedReg tr> {
1010  def : FPConversion<insn, any_frint,      tr, tr, 0, 0>;
1011  def : FPConversion<insn, any_fnearbyint, tr, tr, 4, 0>;
1012  def : FPConversion<insn, any_ffloor,     tr, tr, 4, 7>;
1013  def : FPConversion<insn, any_fceil,      tr, tr, 4, 6>;
1014  def : FPConversion<insn, any_ftrunc,     tr, tr, 4, 5>;
1015  def : FPConversion<insn, any_fround,     tr, tr, 4, 1>;
1016}
1017
1018let Predicates = [FeatureVector] in {
1019  // Add.
1020  let Uses = [FPC], mayRaiseFPException = 1 in {
1021    def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
1022    def VFADB : BinaryVRRc<"vfadb", 0xE7E3, any_fadd, v128db, v128db, 3, 0>;
1023    def WFADB : BinaryVRRc<"wfadb", 0xE7E3, any_fadd, v64db, v64db, 3, 8>;
1024    let Predicates = [FeatureVectorEnhancements1] in {
1025      def VFASB : BinaryVRRc<"vfasb", 0xE7E3, any_fadd, v128sb, v128sb, 2, 0>;
1026      def WFASB : BinaryVRRc<"wfasb", 0xE7E3, any_fadd, v32sb, v32sb, 2, 8>;
1027      def WFAXB : BinaryVRRc<"wfaxb", 0xE7E3, any_fadd, v128xb, v128xb, 4, 8>;
1028    }
1029  }
1030
1031  // Convert from fixed.
1032  let Uses = [FPC], mayRaiseFPException = 1 in {
1033    def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
1034    def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
1035    def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
1036  }
1037  def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>;
1038  let Predicates = [FeatureVectorEnhancements2] in {
1039    let Uses = [FPC], mayRaiseFPException = 1 in {
1040      let isAsmParserOnly = 1 in
1041        def VCFPS  : TernaryVRRaFloatGeneric<"vcfps", 0xE7C3>;
1042      def VCEFB : TernaryVRRa<"vcefb", 0xE7C3, null_frag, v128sb, v128g, 2, 0>;
1043      def WCEFB : TernaryVRRa<"wcefb", 0xE7C3, null_frag, v32sb, v32f, 2, 8>;
1044    }
1045    def : FPConversion<VCEFB, sint_to_fp, v128sb, v128f, 0, 0>;
1046  }
1047
1048  // Convert from logical.
1049  let Uses = [FPC], mayRaiseFPException = 1 in {
1050    def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
1051    def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
1052    def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
1053  }
1054  def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>;
1055  let Predicates = [FeatureVectorEnhancements2] in {
1056    let Uses = [FPC], mayRaiseFPException = 1 in {
1057      let isAsmParserOnly = 1 in
1058        def VCFPL  : TernaryVRRaFloatGeneric<"vcfpl", 0xE7C1>;
1059      def VCELFB : TernaryVRRa<"vcelfb", 0xE7C1, null_frag, v128sb, v128g, 2, 0>;
1060      def WCELFB : TernaryVRRa<"wcelfb", 0xE7C1, null_frag, v32sb, v32f, 2, 8>;
1061    }
1062    def : FPConversion<VCELFB, uint_to_fp, v128sb, v128f, 0, 0>;
1063  }
1064
1065  // Convert to fixed.
1066  let Uses = [FPC], mayRaiseFPException = 1 in {
1067    def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
1068    def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
1069    def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
1070  }
1071  // Rounding mode should agree with SystemZInstrFP.td.
1072  def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>;
1073  let Predicates = [FeatureVectorEnhancements2] in {
1074    let Uses = [FPC], mayRaiseFPException = 1 in {
1075      let isAsmParserOnly = 1 in
1076        def VCSFP  : TernaryVRRaFloatGeneric<"vcsfp", 0xE7C2>;
1077      def VCFEB : TernaryVRRa<"vcfeb", 0xE7C2, null_frag, v128sb, v128g, 2, 0>;
1078      def WCFEB : TernaryVRRa<"wcfeb", 0xE7C2, null_frag, v32sb, v32f, 2, 8>;
1079    }
1080    // Rounding mode should agree with SystemZInstrFP.td.
1081    def : FPConversion<VCFEB, fp_to_sint, v128f, v128sb, 0, 5>;
1082  }
1083
1084  // Convert to logical.
1085  let Uses = [FPC], mayRaiseFPException = 1 in {
1086    def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
1087    def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
1088    def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
1089  }
1090  // Rounding mode should agree with SystemZInstrFP.td.
1091  def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>;
1092  let Predicates = [FeatureVectorEnhancements2] in {
1093    let Uses = [FPC], mayRaiseFPException = 1 in {
1094      let isAsmParserOnly = 1 in
1095        def VCLFP  : TernaryVRRaFloatGeneric<"vclfp", 0xE7C0>;
1096      def VCLFEB : TernaryVRRa<"vclfeb", 0xE7C0, null_frag, v128sb, v128g, 2, 0>;
1097      def WCLFEB : TernaryVRRa<"wclfeb", 0xE7C0, null_frag, v32sb, v32f, 2, 8>;
1098    }
1099    // Rounding mode should agree with SystemZInstrFP.td.
1100    def : FPConversion<VCLFEB, fp_to_uint, v128f, v128sb, 0, 5>;
1101  }
1102
1103  // Divide.
1104  let Uses = [FPC], mayRaiseFPException = 1 in {
1105    def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
1106    def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, any_fdiv, v128db, v128db, 3, 0>;
1107    def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, any_fdiv, v64db, v64db, 3, 8>;
1108    let Predicates = [FeatureVectorEnhancements1] in {
1109      def VFDSB : BinaryVRRc<"vfdsb", 0xE7E5, any_fdiv, v128sb, v128sb, 2, 0>;
1110      def WFDSB : BinaryVRRc<"wfdsb", 0xE7E5, any_fdiv, v32sb, v32sb, 2, 8>;
1111      def WFDXB : BinaryVRRc<"wfdxb", 0xE7E5, any_fdiv, v128xb, v128xb, 4, 8>;
1112    }
1113  }
1114
1115  // Load FP integer.
1116  let Uses = [FPC], mayRaiseFPException = 1 in {
1117    def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
1118    def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
1119    def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
1120  }
1121  defm : VectorRounding<VFIDB, v128db>;
1122  defm : VectorRounding<WFIDB, v64db>;
1123  let Predicates = [FeatureVectorEnhancements1] in {
1124    let Uses = [FPC], mayRaiseFPException = 1 in {
1125      def VFISB : TernaryVRRa<"vfisb", 0xE7C7, int_s390_vfisb, v128sb, v128sb, 2, 0>;
1126      def WFISB : TernaryVRRa<"wfisb", 0xE7C7, null_frag, v32sb, v32sb, 2, 8>;
1127      def WFIXB : TernaryVRRa<"wfixb", 0xE7C7, null_frag, v128xb, v128xb, 4, 8>;
1128    }
1129    defm : VectorRounding<VFISB, v128sb>;
1130    defm : VectorRounding<WFISB, v32sb>;
1131    defm : VectorRounding<WFIXB, v128xb>;
1132  }
1133
1134  // Load lengthened.
1135  let Uses = [FPC], mayRaiseFPException = 1 in {
1136    def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
1137    def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128sb, 2, 0>;
1138    def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, any_fpextend, v64db, v32sb, 2, 8>;
1139  }
1140  let Predicates = [FeatureVectorEnhancements1] in {
1141    let Uses = [FPC], mayRaiseFPException = 1 in {
1142      let isAsmParserOnly = 1 in {
1143        def VFLL  : UnaryVRRaFloatGeneric<"vfll", 0xE7C4>;
1144        def VFLLS : UnaryVRRa<"vflls", 0xE7C4, null_frag, v128db, v128sb, 2, 0>;
1145        def WFLLS : UnaryVRRa<"wflls", 0xE7C4, null_frag, v64db, v32sb, 2, 8>;
1146      }
1147      def WFLLD : UnaryVRRa<"wflld", 0xE7C4, any_fpextend, v128xb, v64db, 3, 8>;
1148    }
1149    def : Pat<(f128 (any_fpextend (f32 VR32:$src))),
1150              (WFLLD (WLDEB VR32:$src))>;
1151  }
1152
1153  // Load rounded.
1154  let Uses = [FPC], mayRaiseFPException = 1 in {
1155    def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
1156    def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
1157    def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
1158  }
1159  def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
1160  def : FPConversion<WLEDB, any_fpround, v32sb, v64db, 0, 0>;
1161  let Predicates = [FeatureVectorEnhancements1] in {
1162    let Uses = [FPC], mayRaiseFPException = 1 in {
1163      let isAsmParserOnly = 1 in {
1164        def VFLR  : TernaryVRRaFloatGeneric<"vflr", 0xE7C5>;
1165        def VFLRD : TernaryVRRa<"vflrd", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
1166        def WFLRD : TernaryVRRa<"wflrd", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
1167      }
1168      def WFLRX : TernaryVRRa<"wflrx", 0xE7C5, null_frag, v64db, v128xb, 4, 8>;
1169    }
1170    def : FPConversion<WFLRX, any_fpround, v64db, v128xb, 0, 0>;
1171    def : Pat<(f32 (any_fpround (f128 VR128:$src))),
1172              (WLEDB (WFLRX VR128:$src, 0, 3), 0, 0)>;
1173  }
1174
1175  // Maximum.
1176  multiclass VectorMax<Instruction insn, TypedReg tr> {
1177    def : FPMinMax<insn, any_fmaxnum, tr, 4>;
1178    def : FPMinMax<insn, fmaximum, tr, 1>;
1179  }
1180  let Predicates = [FeatureVectorEnhancements1] in {
1181    let Uses = [FPC], mayRaiseFPException = 1 in {
1182      def VFMAX   : TernaryVRRcFloatGeneric<"vfmax", 0xE7EF>;
1183      def VFMAXDB : TernaryVRRcFloat<"vfmaxdb", 0xE7EF, int_s390_vfmaxdb,
1184                                     v128db, v128db, 3, 0>;
1185      def WFMAXDB : TernaryVRRcFloat<"wfmaxdb", 0xE7EF, null_frag,
1186                                     v64db, v64db, 3, 8>;
1187      def VFMAXSB : TernaryVRRcFloat<"vfmaxsb", 0xE7EF, int_s390_vfmaxsb,
1188                                     v128sb, v128sb, 2, 0>;
1189      def WFMAXSB : TernaryVRRcFloat<"wfmaxsb", 0xE7EF, null_frag,
1190                                     v32sb, v32sb, 2, 8>;
1191      def WFMAXXB : TernaryVRRcFloat<"wfmaxxb", 0xE7EF, null_frag,
1192                                     v128xb, v128xb, 4, 8>;
1193    }
1194    defm : VectorMax<VFMAXDB, v128db>;
1195    defm : VectorMax<WFMAXDB, v64db>;
1196    defm : VectorMax<VFMAXSB, v128sb>;
1197    defm : VectorMax<WFMAXSB, v32sb>;
1198    defm : VectorMax<WFMAXXB, v128xb>;
1199  }
1200
1201  // Minimum.
1202  multiclass VectorMin<Instruction insn, TypedReg tr> {
1203    def : FPMinMax<insn, any_fminnum, tr, 4>;
1204    def : FPMinMax<insn, fminimum, tr, 1>;
1205  }
1206  let Predicates = [FeatureVectorEnhancements1] in {
1207    let Uses = [FPC], mayRaiseFPException = 1 in {
1208      def VFMIN   : TernaryVRRcFloatGeneric<"vfmin", 0xE7EE>;
1209      def VFMINDB : TernaryVRRcFloat<"vfmindb", 0xE7EE, int_s390_vfmindb,
1210                                     v128db, v128db, 3, 0>;
1211      def WFMINDB : TernaryVRRcFloat<"wfmindb", 0xE7EE, null_frag,
1212                                     v64db, v64db, 3, 8>;
1213      def VFMINSB : TernaryVRRcFloat<"vfminsb", 0xE7EE, int_s390_vfminsb,
1214                                     v128sb, v128sb, 2, 0>;
1215      def WFMINSB : TernaryVRRcFloat<"wfminsb", 0xE7EE, null_frag,
1216                                     v32sb, v32sb, 2, 8>;
1217      def WFMINXB : TernaryVRRcFloat<"wfminxb", 0xE7EE, null_frag,
1218                                     v128xb, v128xb, 4, 8>;
1219    }
1220    defm : VectorMin<VFMINDB, v128db>;
1221    defm : VectorMin<WFMINDB, v64db>;
1222    defm : VectorMin<VFMINSB, v128sb>;
1223    defm : VectorMin<WFMINSB, v32sb>;
1224    defm : VectorMin<WFMINXB, v128xb>;
1225  }
1226
1227  // Multiply.
1228  let Uses = [FPC], mayRaiseFPException = 1 in {
1229    def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
1230    def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, any_fmul, v128db, v128db, 3, 0>;
1231    def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, any_fmul, v64db, v64db, 3, 8>;
1232    let Predicates = [FeatureVectorEnhancements1] in {
1233      def VFMSB : BinaryVRRc<"vfmsb", 0xE7E7, any_fmul, v128sb, v128sb, 2, 0>;
1234      def WFMSB : BinaryVRRc<"wfmsb", 0xE7E7, any_fmul, v32sb, v32sb, 2, 8>;
1235      def WFMXB : BinaryVRRc<"wfmxb", 0xE7E7, any_fmul, v128xb, v128xb, 4, 8>;
1236    }
1237  }
1238
1239  // Multiply and add.
1240  let Uses = [FPC], mayRaiseFPException = 1 in {
1241    def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
1242    def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, any_fma, v128db, v128db, 0, 3>;
1243    def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, any_fma, v64db, v64db, 8, 3>;
1244    let Predicates = [FeatureVectorEnhancements1] in {
1245      def VFMASB : TernaryVRRe<"vfmasb", 0xE78F, any_fma, v128sb, v128sb, 0, 2>;
1246      def WFMASB : TernaryVRRe<"wfmasb", 0xE78F, any_fma, v32sb, v32sb, 8, 2>;
1247      def WFMAXB : TernaryVRRe<"wfmaxb", 0xE78F, any_fma, v128xb, v128xb, 8, 4>;
1248    }
1249  }
1250
1251  // Multiply and subtract.
1252  let Uses = [FPC], mayRaiseFPException = 1 in {
1253    def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
1254    def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, any_fms, v128db, v128db, 0, 3>;
1255    def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, any_fms, v64db, v64db, 8, 3>;
1256    let Predicates = [FeatureVectorEnhancements1] in {
1257      def VFMSSB : TernaryVRRe<"vfmssb", 0xE78E, any_fms, v128sb, v128sb, 0, 2>;
1258      def WFMSSB : TernaryVRRe<"wfmssb", 0xE78E, any_fms, v32sb, v32sb, 8, 2>;
1259      def WFMSXB : TernaryVRRe<"wfmsxb", 0xE78E, any_fms, v128xb, v128xb, 8, 4>;
1260    }
1261  }
1262
1263  // Negative multiply and add.
1264  let Uses = [FPC], mayRaiseFPException = 1,
1265      Predicates = [FeatureVectorEnhancements1] in {
1266    def VFNMA   : TernaryVRReFloatGeneric<"vfnma", 0xE79F>;
1267    def VFNMADB : TernaryVRRe<"vfnmadb", 0xE79F, any_fnma, v128db, v128db, 0, 3>;
1268    def WFNMADB : TernaryVRRe<"wfnmadb", 0xE79F, any_fnma, v64db, v64db, 8, 3>;
1269    def VFNMASB : TernaryVRRe<"vfnmasb", 0xE79F, any_fnma, v128sb, v128sb, 0, 2>;
1270    def WFNMASB : TernaryVRRe<"wfnmasb", 0xE79F, any_fnma, v32sb, v32sb, 8, 2>;
1271    def WFNMAXB : TernaryVRRe<"wfnmaxb", 0xE79F, any_fnma, v128xb, v128xb, 8, 4>;
1272  }
1273
1274  // Negative multiply and subtract.
1275  let Uses = [FPC], mayRaiseFPException = 1,
1276      Predicates = [FeatureVectorEnhancements1] in {
1277    def VFNMS   : TernaryVRReFloatGeneric<"vfnms", 0xE79E>;
1278    def VFNMSDB : TernaryVRRe<"vfnmsdb", 0xE79E, any_fnms, v128db, v128db, 0, 3>;
1279    def WFNMSDB : TernaryVRRe<"wfnmsdb", 0xE79E, any_fnms, v64db, v64db, 8, 3>;
1280    def VFNMSSB : TernaryVRRe<"vfnmssb", 0xE79E, any_fnms, v128sb, v128sb, 0, 2>;
1281    def WFNMSSB : TernaryVRRe<"wfnmssb", 0xE79E, any_fnms, v32sb, v32sb, 8, 2>;
1282    def WFNMSXB : TernaryVRRe<"wfnmsxb", 0xE79E, any_fnms, v128xb, v128xb, 8, 4>;
1283  }
1284
1285  // Perform sign operation.
1286  def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
1287  def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
1288  def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
1289  let Predicates = [FeatureVectorEnhancements1] in {
1290    def VFPSOSB : BinaryVRRa<"vfpsosb", 0xE7CC, null_frag, v128sb, v128sb, 2, 0>;
1291    def WFPSOSB : BinaryVRRa<"wfpsosb", 0xE7CC, null_frag, v32sb, v32sb, 2, 8>;
1292    def WFPSOXB : BinaryVRRa<"wfpsoxb", 0xE7CC, null_frag, v128xb, v128xb, 4, 8>;
1293  }
1294
1295  // Load complement.
1296  def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
1297  def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
1298  let Predicates = [FeatureVectorEnhancements1] in {
1299    def VFLCSB : UnaryVRRa<"vflcsb", 0xE7CC, fneg, v128sb, v128sb, 2, 0, 0>;
1300    def WFLCSB : UnaryVRRa<"wflcsb", 0xE7CC, fneg, v32sb, v32sb, 2, 8, 0>;
1301    def WFLCXB : UnaryVRRa<"wflcxb", 0xE7CC, fneg, v128xb, v128xb, 4, 8, 0>;
1302  }
1303
1304  // Load negative.
1305  def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
1306  def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
1307  let Predicates = [FeatureVectorEnhancements1] in {
1308    def VFLNSB : UnaryVRRa<"vflnsb", 0xE7CC, fnabs, v128sb, v128sb, 2, 0, 1>;
1309    def WFLNSB : UnaryVRRa<"wflnsb", 0xE7CC, fnabs, v32sb, v32sb, 2, 8, 1>;
1310    def WFLNXB : UnaryVRRa<"wflnxb", 0xE7CC, fnabs, v128xb, v128xb, 4, 8, 1>;
1311  }
1312
1313  // Load positive.
1314  def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
1315  def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
1316  let Predicates = [FeatureVectorEnhancements1] in {
1317    def VFLPSB : UnaryVRRa<"vflpsb", 0xE7CC, fabs, v128sb, v128sb, 2, 0, 2>;
1318    def WFLPSB : UnaryVRRa<"wflpsb", 0xE7CC, fabs, v32sb, v32sb, 2, 8, 2>;
1319    def WFLPXB : UnaryVRRa<"wflpxb", 0xE7CC, fabs, v128xb, v128xb, 4, 8, 2>;
1320  }
1321
1322  // Square root.
1323  let Uses = [FPC], mayRaiseFPException = 1 in {
1324    def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
1325    def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, any_fsqrt, v128db, v128db, 3, 0>;
1326    def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, any_fsqrt, v64db, v64db, 3, 8>;
1327    let Predicates = [FeatureVectorEnhancements1] in {
1328      def VFSQSB : UnaryVRRa<"vfsqsb", 0xE7CE, any_fsqrt, v128sb, v128sb, 2, 0>;
1329      def WFSQSB : UnaryVRRa<"wfsqsb", 0xE7CE, any_fsqrt, v32sb, v32sb, 2, 8>;
1330      def WFSQXB : UnaryVRRa<"wfsqxb", 0xE7CE, any_fsqrt, v128xb, v128xb, 4, 8>;
1331    }
1332  }
1333
1334  // Subtract.
1335  let Uses = [FPC], mayRaiseFPException = 1 in {
1336    def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
1337    def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, any_fsub, v128db, v128db, 3, 0>;
1338    def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, any_fsub, v64db, v64db, 3, 8>;
1339    let Predicates = [FeatureVectorEnhancements1] in {
1340      def VFSSB : BinaryVRRc<"vfssb", 0xE7E2, any_fsub, v128sb, v128sb, 2, 0>;
1341      def WFSSB : BinaryVRRc<"wfssb", 0xE7E2, any_fsub, v32sb, v32sb, 2, 8>;
1342      def WFSXB : BinaryVRRc<"wfsxb", 0xE7E2, any_fsub, v128xb, v128xb, 4, 8>;
1343    }
1344  }
1345
1346  // Test data class immediate.
1347  let Defs = [CC] in {
1348    def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
1349    def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
1350    def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
1351    let Predicates = [FeatureVectorEnhancements1] in {
1352      def VFTCISB : BinaryVRIe<"vftcisb", 0xE74A, z_vftci, v128f, v128sb, 2, 0>;
1353      def WFTCISB : BinaryVRIe<"wftcisb", 0xE74A, null_frag, v32f, v32sb, 2, 8>;
1354      def WFTCIXB : BinaryVRIe<"wftcixb", 0xE74A, null_frag, v128q, v128xb, 4, 8>;
1355    }
1356  }
1357}
1358
1359//===----------------------------------------------------------------------===//
1360// Floating-point comparison
1361//===----------------------------------------------------------------------===//
1362
1363let Predicates = [FeatureVector] in {
1364  // Compare scalar.
1365  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
1366    def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
1367    def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>;
1368    let Predicates = [FeatureVectorEnhancements1] in {
1369      def WFCSB : CompareVRRa<"wfcsb", 0xE7CB, z_fcmp, v32sb, 2>;
1370      def WFCXB : CompareVRRa<"wfcxb", 0xE7CB, z_fcmp, v128xb, 4>;
1371    }
1372  }
1373
1374  // Compare and signal scalar.
1375  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
1376    def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
1377    def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>;
1378    let Predicates = [FeatureVectorEnhancements1] in {
1379      def WFKSB : CompareVRRa<"wfksb", 0xE7CA, null_frag, v32sb, 2>;
1380      def WFKXB : CompareVRRa<"wfkxb", 0xE7CA, null_frag, v128xb, 4>;
1381    }
1382  }
1383
1384  // Compare equal.
1385  let Uses = [FPC], mayRaiseFPException = 1 in {
1386    def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
1387    defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes,
1388                                  v128g, v128db, 3, 0>;
1389    defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
1390                                  v64g, v64db, 3, 8>;
1391    let Predicates = [FeatureVectorEnhancements1] in {
1392      defm VFCESB : BinaryVRRcSPair<"vfcesb", 0xE7E8, z_vfcmpe, z_vfcmpes,
1393                                    v128f, v128sb, 2, 0>;
1394      defm WFCESB : BinaryVRRcSPair<"wfcesb", 0xE7E8, null_frag, null_frag,
1395                                    v32f, v32sb, 2, 8>;
1396      defm WFCEXB : BinaryVRRcSPair<"wfcexb", 0xE7E8, null_frag, null_frag,
1397                                    v128q, v128xb, 4, 8>;
1398    }
1399  }
1400
1401  // Compare and signal equal.
1402  let Uses = [FPC], mayRaiseFPException = 1,
1403      Predicates = [FeatureVectorEnhancements1] in {
1404    defm VFKEDB : BinaryVRRcSPair<"vfkedb", 0xE7E8, null_frag, null_frag,
1405                                  v128g, v128db, 3, 4>;
1406    defm WFKEDB : BinaryVRRcSPair<"wfkedb", 0xE7E8, null_frag, null_frag,
1407                                  v64g, v64db, 3, 12>;
1408    defm VFKESB : BinaryVRRcSPair<"vfkesb", 0xE7E8, null_frag, null_frag,
1409                                  v128f, v128sb, 2, 4>;
1410    defm WFKESB : BinaryVRRcSPair<"wfkesb", 0xE7E8, null_frag, null_frag,
1411                                  v32f, v32sb, 2, 12>;
1412    defm WFKEXB : BinaryVRRcSPair<"wfkexb", 0xE7E8, null_frag, null_frag,
1413                                  v128q, v128xb, 4, 12>;
1414  }
1415
1416  // Compare high.
1417  let Uses = [FPC], mayRaiseFPException = 1 in {
1418    def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
1419    defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs,
1420                                  v128g, v128db, 3, 0>;
1421    defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
1422                                  v64g, v64db, 3, 8>;
1423    let Predicates = [FeatureVectorEnhancements1] in {
1424      defm VFCHSB : BinaryVRRcSPair<"vfchsb", 0xE7EB, z_vfcmph, z_vfcmphs,
1425                                    v128f, v128sb, 2, 0>;
1426      defm WFCHSB : BinaryVRRcSPair<"wfchsb", 0xE7EB, null_frag, null_frag,
1427                                    v32f, v32sb, 2, 8>;
1428      defm WFCHXB : BinaryVRRcSPair<"wfchxb", 0xE7EB, null_frag, null_frag,
1429                                    v128q, v128xb, 4, 8>;
1430    }
1431  }
1432
1433  // Compare and signal high.
1434  let Uses = [FPC], mayRaiseFPException = 1,
1435      Predicates = [FeatureVectorEnhancements1] in {
1436    defm VFKHDB : BinaryVRRcSPair<"vfkhdb", 0xE7EB, null_frag, null_frag,
1437                                  v128g, v128db, 3, 4>;
1438    defm WFKHDB : BinaryVRRcSPair<"wfkhdb", 0xE7EB, null_frag, null_frag,
1439                                  v64g, v64db, 3, 12>;
1440    defm VFKHSB : BinaryVRRcSPair<"vfkhsb", 0xE7EB, null_frag, null_frag,
1441                                  v128f, v128sb, 2, 4>;
1442    defm WFKHSB : BinaryVRRcSPair<"wfkhsb", 0xE7EB, null_frag, null_frag,
1443                                  v32f, v32sb, 2, 12>;
1444    defm WFKHXB : BinaryVRRcSPair<"wfkhxb", 0xE7EB, null_frag, null_frag,
1445                                  v128q, v128xb, 4, 12>;
1446  }
1447
1448  // Compare high or equal.
1449  let Uses = [FPC], mayRaiseFPException = 1 in {
1450    def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
1451    defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes,
1452                                   v128g, v128db, 3, 0>;
1453    defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
1454                                   v64g, v64db, 3, 8>;
1455    let Predicates = [FeatureVectorEnhancements1] in {
1456      defm VFCHESB : BinaryVRRcSPair<"vfchesb", 0xE7EA, z_vfcmphe, z_vfcmphes,
1457                                     v128f, v128sb, 2, 0>;
1458      defm WFCHESB : BinaryVRRcSPair<"wfchesb", 0xE7EA, null_frag, null_frag,
1459                                     v32f, v32sb, 2, 8>;
1460      defm WFCHEXB : BinaryVRRcSPair<"wfchexb", 0xE7EA, null_frag, null_frag,
1461                                     v128q, v128xb, 4, 8>;
1462    }
1463  }
1464
1465  // Compare and signal high or equal.
1466  let Uses = [FPC], mayRaiseFPException = 1,
1467      Predicates = [FeatureVectorEnhancements1] in {
1468    defm VFKHEDB : BinaryVRRcSPair<"vfkhedb", 0xE7EA, null_frag, null_frag,
1469                                   v128g, v128db, 3, 4>;
1470    defm WFKHEDB : BinaryVRRcSPair<"wfkhedb", 0xE7EA, null_frag, null_frag,
1471                                   v64g, v64db, 3, 12>;
1472    defm VFKHESB : BinaryVRRcSPair<"vfkhesb", 0xE7EA, null_frag, null_frag,
1473                                   v128f, v128sb, 2, 4>;
1474    defm WFKHESB : BinaryVRRcSPair<"wfkhesb", 0xE7EA, null_frag, null_frag,
1475                                   v32f, v32sb, 2, 12>;
1476    defm WFKHEXB : BinaryVRRcSPair<"wfkhexb", 0xE7EA, null_frag, null_frag,
1477                                   v128q, v128xb, 4, 12>;
1478  }
1479}
1480
1481//===----------------------------------------------------------------------===//
1482// Conversions
1483//===----------------------------------------------------------------------===//
1484
1485def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
1486def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
1487def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
1488def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
1489def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
1490def : Pat<(v16i8 (bitconvert (f128  VR128:$src))), (v16i8 VR128:$src)>;
1491
1492def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
1493def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
1494def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
1495def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
1496def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
1497def : Pat<(v8i16 (bitconvert (f128  VR128:$src))), (v8i16 VR128:$src)>;
1498
1499def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
1500def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
1501def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
1502def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
1503def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
1504def : Pat<(v4i32 (bitconvert (f128  VR128:$src))), (v4i32 VR128:$src)>;
1505
1506def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
1507def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
1508def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
1509def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
1510def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
1511def : Pat<(v2i64 (bitconvert (f128  VR128:$src))), (v2i64 VR128:$src)>;
1512
1513def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
1514def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
1515def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
1516def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
1517def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
1518def : Pat<(v4f32 (bitconvert (f128  VR128:$src))), (v4f32 VR128:$src)>;
1519
1520def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
1521def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
1522def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
1523def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
1524def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
1525def : Pat<(v2f64 (bitconvert (f128  VR128:$src))), (v2f64 VR128:$src)>;
1526
1527def : Pat<(f128  (bitconvert (v16i8 VR128:$src))), (f128  VR128:$src)>;
1528def : Pat<(f128  (bitconvert (v8i16 VR128:$src))), (f128  VR128:$src)>;
1529def : Pat<(f128  (bitconvert (v4i32 VR128:$src))), (f128  VR128:$src)>;
1530def : Pat<(f128  (bitconvert (v2i64 VR128:$src))), (f128  VR128:$src)>;
1531def : Pat<(f128  (bitconvert (v4f32 VR128:$src))), (f128  VR128:$src)>;
1532def : Pat<(f128  (bitconvert (v2f64 VR128:$src))), (f128  VR128:$src)>;
1533
1534//===----------------------------------------------------------------------===//
1535// Replicating scalars
1536//===----------------------------------------------------------------------===//
1537
1538// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
1539// INDEX is 8 minus the element size in bytes.
1540class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
1541  : Pat<(type (z_replicate GR32:$scalar)),
1542        (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;
1543
1544def : VectorReplicateScalar<v16i8, VREPB, 7>;
1545def : VectorReplicateScalar<v8i16, VREPH, 3>;
1546def : VectorReplicateScalar<v4i32, VREPF, 1>;
1547
1548// i64 replications are just a single isntruction.
1549def : Pat<(v2i64 (z_replicate GR64:$scalar)),
1550          (VLVGP GR64:$scalar, GR64:$scalar)>;
1551
1552//===----------------------------------------------------------------------===//
1553// Floating-point insertion and extraction
1554//===----------------------------------------------------------------------===//
1555
1556// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
1557// and VLGVF.
1558let Predicates = [FeatureVector] in {
1559  def LEFR : UnaryAliasVRS<VR32, GR32>;
1560  def LFER : UnaryAliasVRS<GR64, VR32>;
1561  def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
1562  def : Pat<(i32 (bitconvert (f32 VR32:$src))),
1563            (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
1564}
1565
1566// Floating-point values are stored in element 0 of the corresponding
1567// vector register.  Scalar to vector conversion is just a subreg and
1568// scalar replication can just replicate element 0 of the vector register.
1569multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
1570                            SubRegIndex subreg> {
1571  def : Pat<(vt (scalar_to_vector cls:$scalar)),
1572            (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
1573  def : Pat<(vt (z_replicate cls:$scalar)),
1574            (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
1575                                 subreg), 0)>;
1576}
1577defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_h32>;
1578defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_h64>;
1579
1580// Match v2f64 insertions.  The AddedComplexity counters the 3 added by
1581// TableGen for the base register operand in VLVG-based integer insertions
1582// and ensures that this version is strictly better.
1583let AddedComplexity = 4 in {
1584  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
1585            (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1586                                 subreg_h64), VR128:$vec, 1)>;
1587  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
1588            (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1589                                             subreg_h64), 0)>;
1590}
1591
1592// We extract floating-point element X by replicating (for elements other
1593// than 0) and then taking a high subreg.  The AddedComplexity counters the
1594// 3 added by TableGen for the base register operand in VLGV-based integer
1595// extractions and ensures that this version is strictly better.
1596let AddedComplexity = 4 in {
1597  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
1598            (EXTRACT_SUBREG VR128:$vec, subreg_h32)>;
1599  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
1600            (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_h32)>;
1601
1602  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
1603            (EXTRACT_SUBREG VR128:$vec, subreg_h64)>;
1604  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
1605            (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_h64)>;
1606}
1607
1608//===----------------------------------------------------------------------===//
1609// Support for 128-bit floating-point values in vector registers
1610//===----------------------------------------------------------------------===//
1611
1612let Predicates = [FeatureVectorEnhancements1] in {
1613  def : Pat<(f128 (load bdxaddr12only:$addr)),
1614            (VL bdxaddr12only:$addr)>;
1615  def : Pat<(store (f128 VR128:$src), bdxaddr12only:$addr),
1616            (VST VR128:$src, bdxaddr12only:$addr)>;
1617
1618  def : Pat<(f128 fpimm0), (VZERO)>;
1619  def : Pat<(f128 fpimmneg0), (WFLNXB (VZERO))>;
1620}
1621
1622//===----------------------------------------------------------------------===//
1623// String instructions
1624//===----------------------------------------------------------------------===//
1625
1626let Predicates = [FeatureVector] in {
1627  defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
1628  defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
1629                                   z_vfae_cc, v128b, v128b, 0>;
1630  defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
1631                                   z_vfae_cc, v128h, v128h, 1>;
1632  defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
1633                                   z_vfae_cc, v128f, v128f, 2>;
1634  defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
1635                                    z_vfaez_cc, v128b, v128b, 0, 2>;
1636  defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
1637                                    z_vfaez_cc, v128h, v128h, 1, 2>;
1638  defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
1639                                    z_vfaez_cc, v128f, v128f, 2, 2>;
1640
1641  defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
1642  defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
1643                                    z_vfee_cc, v128b, v128b, 0>;
1644  defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
1645                                    z_vfee_cc, v128h, v128h, 1>;
1646  defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
1647                                    z_vfee_cc, v128f, v128f, 2>;
1648  defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
1649                                z_vfeez_cc, v128b, v128b, 0, 2>;
1650  defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
1651                                z_vfeez_cc, v128h, v128h, 1, 2>;
1652  defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
1653                                z_vfeez_cc, v128f, v128f, 2, 2>;
1654
1655  defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
1656  defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
1657                                     z_vfene_cc, v128b, v128b, 0>;
1658  defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
1659                                     z_vfene_cc, v128h, v128h, 1>;
1660  defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
1661                                     z_vfene_cc, v128f, v128f, 2>;
1662  defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
1663                                 z_vfenez_cc, v128b, v128b, 0, 2>;
1664  defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
1665                                 z_vfenez_cc, v128h, v128h, 1, 2>;
1666  defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
1667                                 z_vfenez_cc, v128f, v128f, 2, 2>;
1668
1669  defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
1670  defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
1671                                    z_vistr_cc, v128b, v128b, 0>;
1672  defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
1673                                    z_vistr_cc, v128h, v128h, 1>;
1674  defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
1675                                    z_vistr_cc, v128f, v128f, 2>;
1676
1677  defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
1678  defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
1679                                       z_vstrc_cc, v128b, v128b, 0>;
1680  defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
1681                                       z_vstrc_cc, v128h, v128h, 1>;
1682  defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
1683                                       z_vstrc_cc, v128f, v128f, 2>;
1684  defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
1685                                        z_vstrcz_cc, v128b, v128b, 0, 2>;
1686  defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
1687                                        z_vstrcz_cc, v128h, v128h, 1, 2>;
1688  defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
1689                                        z_vstrcz_cc, v128f, v128f, 2, 2>;
1690}
1691
1692let Predicates = [FeatureVectorEnhancements2] in {
1693  defm VSTRS  : TernaryExtraVRRdGeneric<"vstrs", 0xE78B>;
1694  defm VSTRSB : TernaryExtraVRRd<"vstrsb", 0xE78B,
1695                                 z_vstrs_cc, v128b, v128b, 0>;
1696  defm VSTRSH : TernaryExtraVRRd<"vstrsh", 0xE78B,
1697                                 z_vstrs_cc, v128b, v128h, 1>;
1698  defm VSTRSF : TernaryExtraVRRd<"vstrsf", 0xE78B,
1699                                 z_vstrs_cc, v128b, v128f, 2>;
1700  let Defs = [CC] in {
1701    def VSTRSZB : TernaryVRRd<"vstrszb", 0xE78B,
1702                              z_vstrsz_cc, v128b, v128b, 0, 2>;
1703    def VSTRSZH : TernaryVRRd<"vstrszh", 0xE78B,
1704                              z_vstrsz_cc, v128b, v128h, 1, 2>;
1705    def VSTRSZF : TernaryVRRd<"vstrszf", 0xE78B,
1706                              z_vstrsz_cc, v128b, v128f, 2, 2>;
1707  }
1708}
1709
1710//===----------------------------------------------------------------------===//
1711// Packed-decimal instructions
1712//===----------------------------------------------------------------------===//
1713
1714let Predicates = [FeatureVectorPackedDecimal] in {
1715  def VLIP : BinaryVRIh<"vlip", 0xE649>;
1716
1717  def VPKZ : BinaryVSI<"vpkz", 0xE634, null_frag, 0>;
1718  def VUPKZ : StoreLengthVSI<"vupkz", 0xE63C, null_frag, 0>;
1719
1720  let Defs = [CC] in {
1721    let Predicates = [FeatureVectorPackedDecimalEnhancement] in {
1722      def VCVBOpt : TernaryVRRi<"vcvb", 0xE650, GR32>;
1723      def VCVBGOpt : TernaryVRRi<"vcvbg", 0xE652, GR64>;
1724    }
1725    def VCVB : BinaryVRRi<"vcvb", 0xE650, GR32>;
1726    def VCVBG : BinaryVRRi<"vcvbg", 0xE652, GR64>;
1727    def VCVD : TernaryVRIi<"vcvd", 0xE658, GR32>;
1728    def VCVDG : TernaryVRIi<"vcvdg", 0xE65A, GR64>;
1729
1730    def VAP : QuaternaryVRIf<"vap", 0xE671>;
1731    def VSP : QuaternaryVRIf<"vsp", 0xE673>;
1732
1733    def VMP : QuaternaryVRIf<"vmp", 0xE678>;
1734    def VMSP : QuaternaryVRIf<"vmsp", 0xE679>;
1735
1736    def VDP : QuaternaryVRIf<"vdp", 0xE67A>;
1737    def VRP : QuaternaryVRIf<"vrp", 0xE67B>;
1738    def VSDP : QuaternaryVRIf<"vsdp", 0xE67E>;
1739
1740    def VSRP : QuaternaryVRIg<"vsrp", 0xE659>;
1741    def VPSOP : QuaternaryVRIg<"vpsop", 0xE65B>;
1742
1743    def VTP : TestVRRg<"vtp", 0xE65F>;
1744    def VCP : CompareVRRh<"vcp", 0xE677>;
1745  }
1746}
1747