SystemZInstrVector.td revision 327952
1//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Move instructions
12//===----------------------------------------------------------------------===//
13
14let Predicates = [FeatureVector] in {
15  // Register move.
16  def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
17  def VLR32 : UnaryAliasVRR<null_frag, v32sb, v32sb>;
18  def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;
19
20  // Load GR from VR element.
21  def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
22  def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
23  def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
24  def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
25  def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;
26
27  // Load VR element from GR.
28  def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
29  def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
30                          v128b, v128b, GR32, 0>;
31  def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
32                          v128h, v128h, GR32, 1>;
33  def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
34                          v128f, v128f, GR32, 2>;
35  def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
36                          v128g, v128g, GR64, 3>;
37
38  // Load VR from GRs disjoint.
39  def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
40  def VLVGP32 : BinaryAliasVRRf<GR32>;
41}
42
43// Extractions always assign to the full GR64, even if the element would
44// fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
45// subreg of the result.
46class VectorExtractSubreg<ValueType type, Instruction insn>
47  : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
48        (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;
49
50def : VectorExtractSubreg<v16i8, VLGVB>;
51def : VectorExtractSubreg<v8i16, VLGVH>;
52def : VectorExtractSubreg<v4i32, VLGVF>;
53
54//===----------------------------------------------------------------------===//
55// Immediate instructions
56//===----------------------------------------------------------------------===//
57
58let Predicates = [FeatureVector] in {
59  let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
60
61    // Generate byte mask.
62    def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
63    def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
64    def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>;
65
66    // Generate mask.
67    def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
68    def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
69    def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
70    def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
71    def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;
72
73    // Replicate immediate.
74    def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
75    def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>;
76    def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>;
77    def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>;
78    def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>;
79  }
80
81  // Load element immediate.
82  //
83  // We want these instructions to be used ahead of VLVG* where possible.
84  // However, VLVG* takes a variable BD-format index whereas VLEI takes
85  // a plain immediate index.  This means that VLVG* has an extra "base"
86  // register operand and is 3 units more complex.  Bumping the complexity
87  // of the VLEI* instructions by 4 means that they are strictly better
88  // than VLVG* in cases where both forms match.
89  let AddedComplexity = 4 in {
90    def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
91                            v128b, v128b, imm32sx16trunc, imm32zx4>;
92    def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
93                            v128h, v128h, imm32sx16trunc, imm32zx3>;
94    def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
95                            v128f, v128f, imm32sx16, imm32zx2>;
96    def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
97                            v128g, v128g, imm64sx16, imm32zx1>;
98  }
99}
100
101//===----------------------------------------------------------------------===//
102// Loads
103//===----------------------------------------------------------------------===//
104
105let Predicates = [FeatureVector] in {
106  // Load.
107  def VL : UnaryVRX<"vl", 0xE706, null_frag, v128any, 16>;
108
109  // Load to block boundary.  The number of loaded bytes is only known
110  // at run time.  The instruction is really polymorphic, but v128b matches
111  // the return type of the associated intrinsic.
112  def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;
113
114  // Load count to block boundary.
115  let Defs = [CC] in
116    def LCBB : InstRXE<0xE727, (outs GR32:$R1),
117                               (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
118                       "lcbb\t$R1, $XBD2, $M3",
119                       [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
120                                                      imm32zx4:$M3))]>;
121
122  // Load with length.  The number of loaded bytes is only known at run time.
123  def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;
124
125  // Load multiple.
126  def VLM : LoadMultipleVRSa<"vlm", 0xE736>;
127
128  // Load and replicate
129  def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
130  def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
131  def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
132  def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
133  def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
134  def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
135            (VLREPF bdxaddr12only:$addr)>;
136  def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
137            (VLREPG bdxaddr12only:$addr)>;
138
139  // Use VLREP to load subvectors.  These patterns use "12pair" because
140  // LEY and LDY offer full 20-bit displacement fields.  It's often better
141  // to use those instructions rather than force a 20-bit displacement
142  // into a GPR temporary.
143  let mayLoad = 1 in {
144    def VL32 : UnaryAliasVRX<load, v32sb, bdxaddr12pair>;
145    def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
146  }
147
148  // Load logical element and zero.
149  def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
150  def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
151  def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
152  def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
153  def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
154  def : Pat<(v4f32 (z_vllezf32 bdxaddr12only:$addr)),
155            (VLLEZF bdxaddr12only:$addr)>;
156  def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)),
157            (VLLEZG bdxaddr12only:$addr)>;
158  let Predicates = [FeatureVectorEnhancements1] in {
159    def VLLEZLF : UnaryVRX<"vllezlf", 0xE704, z_vllezli32, v128f, 4, 6>;
160    def : Pat<(v4f32 (z_vllezlf32 bdxaddr12only:$addr)),
161              (VLLEZLF bdxaddr12only:$addr)>;
162  }
163
164  // Load element.
165  def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
166  def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
167  def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
168  def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
169  def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
170            (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
171  def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
172            (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
173
174  // Gather element.
175  def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
176  def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
177}
178
179let Predicates = [FeatureVectorPackedDecimal] in {
180  // Load rightmost with length.  The number of loaded bytes is only known
181  // at run time.
182  def VLRL : BinaryVSI<"vlrl", 0xE635, int_s390_vlrl, 0>;
183  def VLRLR : BinaryVRSd<"vlrlr", 0xE637, int_s390_vlrl, 0>;
184}
185
186// Use replicating loads if we're inserting a single element into an
187// undefined vector.  This avoids a false dependency on the previous
188// register contents.
189multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
190                             SDPatternOperator load, ValueType scalartype> {
191  def : Pat<(vectype (z_vector_insert
192                      (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
193            (vlrep bdxaddr12only:$addr)>;
194  def : Pat<(vectype (scalar_to_vector
195                      (scalartype (load bdxaddr12only:$addr)))),
196            (vlrep bdxaddr12only:$addr)>;
197}
198defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
199defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
200defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
201defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
202defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
203defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;
204
205//===----------------------------------------------------------------------===//
206// Stores
207//===----------------------------------------------------------------------===//
208
209let Predicates = [FeatureVector] in {
210  // Store.
211  def VST : StoreVRX<"vst", 0xE70E, null_frag, v128any, 16>;
212
213  // Store with length.  The number of stored bytes is only known at run time.
214  def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;
215
216  // Store multiple.
217  def VSTM : StoreMultipleVRSa<"vstm", 0xE73E>;
218
219  // Store element.
220  def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
221  def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
222  def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
223  def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
224  def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
225                       imm32zx2:$index),
226            (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
227  def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
228                       imm32zx1:$index),
229            (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
230
231  // Use VSTE to store subvectors.  These patterns use "12pair" because
232  // STEY and STDY offer full 20-bit displacement fields.  It's often better
233  // to use those instructions rather than force a 20-bit displacement
234  // into a GPR temporary.
235  let mayStore = 1 in {
236    def VST32 : StoreAliasVRX<store, v32sb, bdxaddr12pair>;
237    def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
238  }
239
240  // Scatter element.
241  def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
242  def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
243}
244
245let Predicates = [FeatureVectorPackedDecimal] in {
246  // Store rightmost with length.  The number of stored bytes is only known
247  // at run time.
248  def VSTRL : StoreLengthVSI<"vstrl", 0xE63D, int_s390_vstrl, 0>;
249  def VSTRLR : StoreLengthVRSd<"vstrlr", 0xE63F, int_s390_vstrl, 0>;
250}
251
252//===----------------------------------------------------------------------===//
253// Selects and permutes
254//===----------------------------------------------------------------------===//
255
256let Predicates = [FeatureVector] in {
257  // Merge high.
258  def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
259  def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
260  def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
261  def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
262  def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
263  def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
264  def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
265
266  // Merge low.
267  def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
268  def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
269  def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
270  def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
271  def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
272  def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
273  def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
274
275  // Permute.
276  def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
277
278  // Permute doubleword immediate.
279  def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;
280
281  // Bit Permute.
282  let Predicates = [FeatureVectorEnhancements1] in
283    def VBPERM : BinaryVRRc<"vbperm", 0xE785, int_s390_vbperm, v128g, v128b>;
284
285  // Replicate.
286  def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
287  def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
288  def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
289  def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
290  def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
291  def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)),
292            (VREPF VR128:$vec, imm32zx16:$index)>;
293  def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)),
294            (VREPG VR128:$vec, imm32zx16:$index)>;
295
296  // Select.
297  def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
298}
299
300//===----------------------------------------------------------------------===//
301// Widening and narrowing
302//===----------------------------------------------------------------------===//
303
304let Predicates = [FeatureVector] in {
305  // Pack
306  def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
307  def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
308  def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
309  def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;
310
311  // Pack saturate.
312  def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
313  defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
314                               v128b, v128h, 1>;
315  defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
316                               v128h, v128f, 2>;
317  defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
318                               v128f, v128g, 3>;
319
320  // Pack saturate logical.
321  def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
322  defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
323                                v128b, v128h, 1>;
324  defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
325                                v128h, v128f, 2>;
326  defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
327                                v128f, v128g, 3>;
328
329  // Sign-extend to doubleword.
330  def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
331  def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
332  def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
333  def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
334  def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
335  def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
336  def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;
337
338  // Unpack high.
339  def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
340  def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
341  def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
342  def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;
343
344  // Unpack logical high.
345  def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
346  def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
347  def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
348  def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;
349
350  // Unpack low.
351  def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
352  def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
353  def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
354  def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;
355
356  // Unpack logical low.
357  def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
358  def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
359  def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
360  def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
361}
362
363//===----------------------------------------------------------------------===//
364// Instantiating generic operations for specific types.
365//===----------------------------------------------------------------------===//
366
367multiclass GenericVectorOps<ValueType type, ValueType inttype> {
368  let Predicates = [FeatureVector] in {
369    def : Pat<(type (load bdxaddr12only:$addr)),
370              (VL bdxaddr12only:$addr)>;
371    def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
372              (VST VR128:$src, bdxaddr12only:$addr)>;
373    def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
374              (VSEL VR128:$y, VR128:$z, VR128:$x)>;
375    def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
376              (VSEL VR128:$z, VR128:$y, VR128:$x)>;
377  }
378}
379
380defm : GenericVectorOps<v16i8, v16i8>;
381defm : GenericVectorOps<v8i16, v8i16>;
382defm : GenericVectorOps<v4i32, v4i32>;
383defm : GenericVectorOps<v2i64, v2i64>;
384defm : GenericVectorOps<v4f32, v4i32>;
385defm : GenericVectorOps<v2f64, v2i64>;
386
387//===----------------------------------------------------------------------===//
388// Integer arithmetic
389//===----------------------------------------------------------------------===//
390
391let Predicates = [FeatureVector] in {
392  // Add.
393  def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
394  def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
395  def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
396  def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
397  def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
398  def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;
399
400  // Add compute carry.
401  def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
402  def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
403  def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
404  def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
405  def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
406  def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;
407
408  // Add with carry.
409  def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
410  def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;
411
412  // Add with carry compute carry.
413  def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
414  def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;
415
416  // And.
417  def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;
418
419  // And with complement.
420  def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;
421
422  // Average.
423  def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
424  def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
425  def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
426  def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
427  def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;
428
429  // Average logical.
430  def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
431  def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
432  def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
433  def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
434  def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
435
436  // Checksum.
437  def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;
438
439  // Count leading zeros.
440  def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
441  def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
442  def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
443  def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
444  def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;
445
446  // Count trailing zeros.
447  def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
448  def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
449  def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
450  def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
451  def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;
452
453  // Not exclusive or.
454  let Predicates = [FeatureVectorEnhancements1] in
455    def VNX : BinaryVRRc<"vnx", 0xE76C, null_frag, v128any, v128any>;
456
457  // Exclusive or.
458  def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
459
460  // Galois field multiply sum.
461  def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
462  def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
463  def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
464  def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
465  def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;
466
467  // Galois field multiply sum and accumulate.
468  def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
469  def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
470  def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
471  def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
472  def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;
473
474  // Load complement.
475  def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
476  def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
477  def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
478  def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
479  def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;
480
481  // Load positive.
482  def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
483  def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8,  v128b, v128b, 0>;
484  def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
485  def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
486  def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;
487
488  // Maximum.
489  def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
490  def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
491  def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
492  def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
493  def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;
494
495  // Maximum logical.
496  def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
497  def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
498  def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
499  def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
500  def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
501
502  // Minimum.
503  def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
504  def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
505  def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
506  def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
507  def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;
508
509  // Minimum logical.
510  def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
511  def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
512  def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
513  def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
514  def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
515
516  // Multiply and add low.
517  def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
518  def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
519  def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
520  def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;
521
522  // Multiply and add high.
523  def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
524  def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
525  def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
526  def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;
527
528  // Multiply and add logical high.
529  def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
530  def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
531  def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
532  def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;
533
534  // Multiply and add even.
535  def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
536  def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
537  def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
538  def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;
539
540  // Multiply and add logical even.
541  def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
542  def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
543  def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
544  def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;
545
546  // Multiply and add odd.
547  def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
548  def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
549  def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
550  def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;
551
552  // Multiply and add logical odd.
553  def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
554  def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
555  def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
556  def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
557
558  // Multiply high.
559  def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
560  def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
561  def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
562  def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;
563
564  // Multiply logical high.
565  def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
566  def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
567  def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
568  def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;
569
570  // Multiply low.
571  def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
572  def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
573  def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
574  def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;
575
576  // Multiply even.
577  def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
578  def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
579  def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
580  def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;
581
582  // Multiply logical even.
583  def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
584  def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
585  def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
586  def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;
587
588  // Multiply odd.
589  def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
590  def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
591  def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
592  def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;
593
594  // Multiply logical odd.
595  def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
596  def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
597  def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
598  def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
599
600  // Multiply sum logical.
601  let Predicates = [FeatureVectorEnhancements1] in {
602    def VMSL  : QuaternaryVRRdGeneric<"vmsl", 0xE7B8>;
603    def VMSLG : QuaternaryVRRd<"vmslg", 0xE7B8, int_s390_vmslg,
604                               v128q, v128g, v128g, v128q, 3>;
605  }
606
607  // Nand.
608  let Predicates = [FeatureVectorEnhancements1] in
609    def VNN : BinaryVRRc<"vnn", 0xE76E, null_frag, v128any, v128any>;
610
611  // Nor.
612  def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
613  def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;
614
615  // Or.
616  def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;
617
618  // Or with complement.
619  let Predicates = [FeatureVectorEnhancements1] in
620    def VOC : BinaryVRRc<"voc", 0xE76F, null_frag, v128any, v128any>;
621
622  // Population count.
623  def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
624  def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
625  let Predicates = [FeatureVectorEnhancements1] in {
626    def VPOPCTB : UnaryVRRa<"vpopctb", 0xE750, ctpop, v128b, v128b, 0>;
627    def VPOPCTH : UnaryVRRa<"vpopcth", 0xE750, ctpop, v128h, v128h, 1>;
628    def VPOPCTF : UnaryVRRa<"vpopctf", 0xE750, ctpop, v128f, v128f, 2>;
629    def VPOPCTG : UnaryVRRa<"vpopctg", 0xE750, ctpop, v128g, v128g, 3>;
630  }
631
632  // Element rotate left logical (with vector shift amount).
633  def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
634  def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
635                           v128b, v128b, 0>;
636  def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
637                           v128h, v128h, 1>;
638  def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
639                           v128f, v128f, 2>;
640  def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
641                           v128g, v128g, 3>;
642
643  // Element rotate left logical (with scalar shift amount).
644  def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
645  def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
646  def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
647  def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
648  def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;
649
650  // Element rotate and insert under mask.
651  def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
652  def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
653  def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
654  def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
655  def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;
656
657  // Element shift left (with vector shift amount).
658  def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
659  def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
660  def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
661  def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
662  def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;
663
664  // Element shift left (with scalar shift amount).
665  def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
666  def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
667  def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
668  def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
669  def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;
670
671  // Element shift right arithmetic (with vector shift amount).
672  def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
673  def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
674  def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
675  def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
676  def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;
677
678  // Element shift right arithmetic (with scalar shift amount).
679  def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
680  def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
681  def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
682  def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
683  def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;
684
685  // Element shift right logical (with vector shift amount).
686  def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
687  def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
688  def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
689  def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
690  def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;
691
692  // Element shift right logical (with scalar shift amount).
693  def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
694  def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
695  def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
696  def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
697  def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;
698
699  // Shift left.
700  def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;
701
702  // Shift left by byte.
703  def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;
704
705  // Shift left double by byte.
706  def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
707  def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z),
708            (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;
709
710  // Shift right arithmetic.
711  def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;
712
713  // Shift right arithmetic by byte.
714  def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;
715
716  // Shift right logical.
717  def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;
718
719  // Shift right logical by byte.
720  def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;
721
722  // Subtract.
723  def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
724  def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
725  def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
726  def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
727  def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
728  def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;
729
730  // Subtract compute borrow indication.
731  def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
732  def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
733  def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
734  def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
735  def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
736  def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;
737
738  // Subtract with borrow indication.
739  def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
740  def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;
741
742  // Subtract with borrow compute borrow indication.
743  def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
744  def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
745                            v128q, v128q, 4>;
746
747  // Sum across doubleword.
748  def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
749  def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
750  def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;
751
752  // Sum across quadword.
753  def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
754  def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
755  def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;
756
757  // Sum across word.
758  def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
759  def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
760  def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
761}
762
763// Instantiate the bitwise ops for type TYPE.
764multiclass BitwiseVectorOps<ValueType type> {
765  let Predicates = [FeatureVector] in {
766    def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
767    def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
768              (VNC VR128:$x, VR128:$y)>;
769    def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
770    def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
771    def : Pat<(type (or (and VR128:$x, VR128:$z),
772                        (and VR128:$y, (z_vnot VR128:$z)))),
773              (VSEL VR128:$x, VR128:$y, VR128:$z)>;
774    def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
775              (VNO VR128:$x, VR128:$y)>;
776    def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
777  }
778  let Predicates = [FeatureVectorEnhancements1] in {
779    def : Pat<(type (z_vnot (xor VR128:$x, VR128:$y))),
780              (VNX VR128:$x, VR128:$y)>;
781    def : Pat<(type (z_vnot (and VR128:$x, VR128:$y))),
782              (VNN VR128:$x, VR128:$y)>;
783    def : Pat<(type (or VR128:$x, (z_vnot VR128:$y))),
784              (VOC VR128:$x, VR128:$y)>;
785  }
786}
787
788defm : BitwiseVectorOps<v16i8>;
789defm : BitwiseVectorOps<v8i16>;
790defm : BitwiseVectorOps<v4i32>;
791defm : BitwiseVectorOps<v2i64>;
792
793// Instantiate additional patterns for absolute-related expressions on
794// type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
795// instruction.
796multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
797                                    Instruction lp, int shift> {
798  let Predicates = [FeatureVector] in {
799    def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
800                             (z_vneg VR128:$x), VR128:$x)),
801              (lc (lp VR128:$x))>;
802    def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
803                             VR128:$x, (z_vneg VR128:$x))),
804              (lc (lp VR128:$x))>;
805    def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
806                             VR128:$x, (z_vneg VR128:$x))),
807              (lc (lp VR128:$x))>;
808    def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
809                             (z_vneg VR128:$x), VR128:$x)),
810              (lc (lp VR128:$x))>;
811    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
812                             (z_vneg VR128:$x)),
813                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
814                             VR128:$x))),
815              (lp VR128:$x)>;
816    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
817                             VR128:$x),
818                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
819                             (z_vneg VR128:$x)))),
820              (lc (lp VR128:$x))>;
821  }
822}
823
824defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
825defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
826defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
827defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;
828
829// Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
830// signed or unsigned "set if greater than" comparison instruction and
831// MIN and MAX are the associated minimum and maximum instructions.
832multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
833                                  Instruction min, Instruction max> {
834  let Predicates = [FeatureVector] in {
835    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
836              (max VR128:$x, VR128:$y)>;
837    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
838              (min VR128:$x, VR128:$y)>;
839    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
840                             VR128:$x, VR128:$y)),
841              (min VR128:$x, VR128:$y)>;
842    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
843                             VR128:$y, VR128:$x)),
844              (max VR128:$x, VR128:$y)>;
845  }
846}
847
848// Signed min/max.
849defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
850defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
851defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
852defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;
853
854// Unsigned min/max.
855defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
856defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
857defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
858defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;
859
860//===----------------------------------------------------------------------===//
861// Integer comparison
862//===----------------------------------------------------------------------===//
863
864let Predicates = [FeatureVector] in {
865  // Element compare.
866  let Defs = [CC] in {
867    def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
868    def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
869    def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
870    def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
871    def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
872  }
873
874  // Element compare logical.
875  let Defs = [CC] in {
876    def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
877    def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
878    def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
879    def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
880    def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
881  }
882
883  // Compare equal.
884  def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
885  defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
886                               v128b, v128b, 0>;
887  defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
888                               v128h, v128h, 1>;
889  defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
890                               v128f, v128f, 2>;
891  defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
892                               v128g, v128g, 3>;
893
894  // Compare high.
895  def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
896  defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
897                              v128b, v128b, 0>;
898  defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
899                              v128h, v128h, 1>;
900  defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
901                              v128f, v128f, 2>;
902  defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
903                              v128g, v128g, 3>;
904
905  // Compare high logical.
906  def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
907  defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
908                               v128b, v128b, 0>;
909  defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
910                               v128h, v128h, 1>;
911  defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
912                               v128f, v128f, 2>;
913  defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
914                               v128g, v128g, 3>;
915
916  // Test under mask.
917  let Defs = [CC] in
918    def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
919}
920
921//===----------------------------------------------------------------------===//
922// Floating-point arithmetic
923//===----------------------------------------------------------------------===//
924
925// See comments in SystemZInstrFP.td for the suppression flags and
926// rounding modes.
927multiclass VectorRounding<Instruction insn, TypedReg tr> {
928  def : FPConversion<insn, frint,      tr, tr, 0, 0>;
929  def : FPConversion<insn, fnearbyint, tr, tr, 4, 0>;
930  def : FPConversion<insn, ffloor,     tr, tr, 4, 7>;
931  def : FPConversion<insn, fceil,      tr, tr, 4, 6>;
932  def : FPConversion<insn, ftrunc,     tr, tr, 4, 5>;
933  def : FPConversion<insn, fround,     tr, tr, 4, 1>;
934}
935
936let Predicates = [FeatureVector] in {
937  // Add.
938  def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
939  def VFADB : BinaryVRRc<"vfadb", 0xE7E3, fadd, v128db, v128db, 3, 0>;
940  def WFADB : BinaryVRRc<"wfadb", 0xE7E3, fadd, v64db, v64db, 3, 8>;
941  let Predicates = [FeatureVectorEnhancements1] in {
942    def VFASB : BinaryVRRc<"vfasb", 0xE7E3, fadd, v128sb, v128sb, 2, 0>;
943    def WFASB : BinaryVRRc<"wfasb", 0xE7E3, fadd, v32sb, v32sb, 2, 8>;
944    def WFAXB : BinaryVRRc<"wfaxb", 0xE7E3, fadd, v128xb, v128xb, 4, 8>;
945  }
946
947  // Convert from fixed 64-bit.
948  def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
949  def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
950  def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
951  def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>;
952
953  // Convert from logical 64-bit.
954  def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
955  def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
956  def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
957  def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>;
958
959  // Convert to fixed 64-bit.
960  def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
961  def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
962  def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
963  // Rounding mode should agree with SystemZInstrFP.td.
964  def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>;
965
966  // Convert to logical 64-bit.
967  def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
968  def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
969  def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
970  // Rounding mode should agree with SystemZInstrFP.td.
971  def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>;
972
973  // Divide.
974  def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
975  def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, fdiv, v128db, v128db, 3, 0>;
976  def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, fdiv, v64db, v64db, 3, 8>;
977  let Predicates = [FeatureVectorEnhancements1] in {
978    def VFDSB : BinaryVRRc<"vfdsb", 0xE7E5, fdiv, v128sb, v128sb, 2, 0>;
979    def WFDSB : BinaryVRRc<"wfdsb", 0xE7E5, fdiv, v32sb, v32sb, 2, 8>;
980    def WFDXB : BinaryVRRc<"wfdxb", 0xE7E5, fdiv, v128xb, v128xb, 4, 8>;
981  }
982
983  // Load FP integer.
984  def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
985  def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
986  def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
987  defm : VectorRounding<VFIDB, v128db>;
988  defm : VectorRounding<WFIDB, v64db>;
989  let Predicates = [FeatureVectorEnhancements1] in {
990    def VFISB : TernaryVRRa<"vfisb", 0xE7C7, int_s390_vfisb, v128sb, v128sb, 2, 0>;
991    def WFISB : TernaryVRRa<"wfisb", 0xE7C7, null_frag, v32sb, v32sb, 2, 8>;
992    def WFIXB : TernaryVRRa<"wfixb", 0xE7C7, null_frag, v128xb, v128xb, 4, 8>;
993    defm : VectorRounding<VFISB, v128sb>;
994    defm : VectorRounding<WFISB, v32sb>;
995    defm : VectorRounding<WFIXB, v128xb>;
996  }
997
998  // Load lengthened.
999  def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
1000  def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128sb, 2, 0>;
1001  def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, fpextend, v64db, v32sb, 2, 8>;
1002  let Predicates = [FeatureVectorEnhancements1] in {
1003    let isAsmParserOnly = 1 in {
1004      def VFLL  : UnaryVRRaFloatGeneric<"vfll", 0xE7C4>;
1005      def VFLLS : UnaryVRRa<"vflls", 0xE7C4, null_frag, v128db, v128sb, 2, 0>;
1006      def WFLLS : UnaryVRRa<"wflls", 0xE7C4, null_frag, v64db, v32sb, 2, 8>;
1007    }
1008    def WFLLD : UnaryVRRa<"wflld", 0xE7C4, fpextend, v128xb, v64db, 3, 8>;
1009    def : Pat<(f128 (fpextend (f32 VR32:$src))),
1010              (WFLLD (WLDEB VR32:$src))>;
1011  }
1012
1013  // Load rounded.
1014  def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
1015  def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
1016  def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
1017  def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
1018  def : FPConversion<WLEDB, fpround, v32sb, v64db, 0, 0>;
1019  let Predicates = [FeatureVectorEnhancements1] in {
1020    let isAsmParserOnly = 1 in {
1021      def VFLR  : TernaryVRRaFloatGeneric<"vflr", 0xE7C5>;
1022      def VFLRD : TernaryVRRa<"vflrd", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
1023      def WFLRD : TernaryVRRa<"wflrd", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
1024    }
1025    def WFLRX : TernaryVRRa<"wflrx", 0xE7C5, null_frag, v64db, v128xb, 4, 8>;
1026    def : FPConversion<WFLRX, fpround, v64db, v128xb, 0, 0>;
1027    def : Pat<(f32 (fpround (f128 VR128:$src))),
1028              (WLEDB (WFLRX VR128:$src, 0, 3), 0, 0)>;
1029  }
1030
1031  // Maximum.
1032  multiclass VectorMax<Instruction insn, TypedReg tr> {
1033    def : FPMinMax<insn, fmaxnum, tr, 4>;
1034    def : FPMinMax<insn, fmaxnan, tr, 1>;
1035  }
1036  let Predicates = [FeatureVectorEnhancements1] in {
1037    def VFMAX   : TernaryVRRcFloatGeneric<"vfmax", 0xE7EF>;
1038    def VFMAXDB : TernaryVRRcFloat<"vfmaxdb", 0xE7EF, int_s390_vfmaxdb,
1039                                   v128db, v128db, 3, 0>;
1040    def WFMAXDB : TernaryVRRcFloat<"wfmaxdb", 0xE7EF, null_frag,
1041                                   v64db, v64db, 3, 8>;
1042    def VFMAXSB : TernaryVRRcFloat<"vfmaxsb", 0xE7EF, int_s390_vfmaxsb,
1043                                   v128sb, v128sb, 2, 0>;
1044    def WFMAXSB : TernaryVRRcFloat<"wfmaxsb", 0xE7EF, null_frag,
1045                                   v32sb, v32sb, 2, 8>;
1046    def WFMAXXB : TernaryVRRcFloat<"wfmaxxb", 0xE7EF, null_frag,
1047                                   v128xb, v128xb, 4, 8>;
1048    defm : VectorMax<VFMAXDB, v128db>;
1049    defm : VectorMax<WFMAXDB, v64db>;
1050    defm : VectorMax<VFMAXSB, v128sb>;
1051    defm : VectorMax<WFMAXSB, v32sb>;
1052    defm : VectorMax<WFMAXXB, v128xb>;
1053  }
1054
1055  // Minimum.
1056  multiclass VectorMin<Instruction insn, TypedReg tr> {
1057    def : FPMinMax<insn, fminnum, tr, 4>;
1058    def : FPMinMax<insn, fminnan, tr, 1>;
1059  }
1060  let Predicates = [FeatureVectorEnhancements1] in {
1061    def VFMIN   : TernaryVRRcFloatGeneric<"vfmin", 0xE7EE>;
1062    def VFMINDB : TernaryVRRcFloat<"vfmindb", 0xE7EE, int_s390_vfmindb,
1063                                   v128db, v128db, 3, 0>;
1064    def WFMINDB : TernaryVRRcFloat<"wfmindb", 0xE7EE, null_frag,
1065                                   v64db, v64db, 3, 8>;
1066    def VFMINSB : TernaryVRRcFloat<"vfminsb", 0xE7EE, int_s390_vfminsb,
1067                                   v128sb, v128sb, 2, 0>;
1068    def WFMINSB : TernaryVRRcFloat<"wfminsb", 0xE7EE, null_frag,
1069                                   v32sb, v32sb, 2, 8>;
1070    def WFMINXB : TernaryVRRcFloat<"wfminxb", 0xE7EE, null_frag,
1071                                   v128xb, v128xb, 4, 8>;
1072    defm : VectorMin<VFMINDB, v128db>;
1073    defm : VectorMin<WFMINDB, v64db>;
1074    defm : VectorMin<VFMINSB, v128sb>;
1075    defm : VectorMin<WFMINSB, v32sb>;
1076    defm : VectorMin<WFMINXB, v128xb>;
1077  }
1078
1079  // Multiply.
1080  def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
1081  def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>;
1082  def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, fmul, v64db, v64db, 3, 8>;
1083  let Predicates = [FeatureVectorEnhancements1] in {
1084    def VFMSB : BinaryVRRc<"vfmsb", 0xE7E7, fmul, v128sb, v128sb, 2, 0>;
1085    def WFMSB : BinaryVRRc<"wfmsb", 0xE7E7, fmul, v32sb, v32sb, 2, 8>;
1086    def WFMXB : BinaryVRRc<"wfmxb", 0xE7E7, fmul, v128xb, v128xb, 4, 8>;
1087  }
1088
1089  // Multiply and add.
1090  def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
1091  def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, fma, v128db, v128db, 0, 3>;
1092  def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, fma, v64db, v64db, 8, 3>;
1093  let Predicates = [FeatureVectorEnhancements1] in {
1094    def VFMASB : TernaryVRRe<"vfmasb", 0xE78F, fma, v128sb, v128sb, 0, 2>;
1095    def WFMASB : TernaryVRRe<"wfmasb", 0xE78F, fma, v32sb, v32sb, 8, 2>;
1096    def WFMAXB : TernaryVRRe<"wfmaxb", 0xE78F, fma, v128xb, v128xb, 8, 4>;
1097  }
1098
1099  // Multiply and subtract.
1100  def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
1101  def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, fms, v128db, v128db, 0, 3>;
1102  def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, fms, v64db, v64db, 8, 3>;
1103  let Predicates = [FeatureVectorEnhancements1] in {
1104    def VFMSSB : TernaryVRRe<"vfmssb", 0xE78E, fms, v128sb, v128sb, 0, 2>;
1105    def WFMSSB : TernaryVRRe<"wfmssb", 0xE78E, fms, v32sb, v32sb, 8, 2>;
1106    def WFMSXB : TernaryVRRe<"wfmsxb", 0xE78E, fms, v128xb, v128xb, 8, 4>;
1107  }
1108
1109  // Negative multiply and add.
1110  let Predicates = [FeatureVectorEnhancements1] in {
1111    def VFNMA   : TernaryVRReFloatGeneric<"vfnma", 0xE79F>;
1112    def VFNMADB : TernaryVRRe<"vfnmadb", 0xE79F, fnma, v128db, v128db, 0, 3>;
1113    def WFNMADB : TernaryVRRe<"wfnmadb", 0xE79F, fnma, v64db, v64db, 8, 3>;
1114    def VFNMASB : TernaryVRRe<"vfnmasb", 0xE79F, fnma, v128sb, v128sb, 0, 2>;
1115    def WFNMASB : TernaryVRRe<"wfnmasb", 0xE79F, fnma, v32sb, v32sb, 8, 2>;
1116    def WFNMAXB : TernaryVRRe<"wfnmaxb", 0xE79F, fnma, v128xb, v128xb, 8, 4>;
1117  }
1118
1119  // Negative multiply and subtract.
1120  let Predicates = [FeatureVectorEnhancements1] in {
1121    def VFNMS   : TernaryVRReFloatGeneric<"vfnms", 0xE79E>;
1122    def VFNMSDB : TernaryVRRe<"vfnmsdb", 0xE79E, fnms, v128db, v128db, 0, 3>;
1123    def WFNMSDB : TernaryVRRe<"wfnmsdb", 0xE79E, fnms, v64db, v64db, 8, 3>;
1124    def VFNMSSB : TernaryVRRe<"vfnmssb", 0xE79E, fnms, v128sb, v128sb, 0, 2>;
1125    def WFNMSSB : TernaryVRRe<"wfnmssb", 0xE79E, fnms, v32sb, v32sb, 8, 2>;
1126    def WFNMSXB : TernaryVRRe<"wfnmsxb", 0xE79E, fnms, v128xb, v128xb, 8, 4>;
1127  }
1128
1129  // Perform sign operation.
1130  def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
1131  def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
1132  def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
1133  let Predicates = [FeatureVectorEnhancements1] in {
1134    def VFPSOSB : BinaryVRRa<"vfpsosb", 0xE7CC, null_frag, v128sb, v128sb, 2, 0>;
1135    def WFPSOSB : BinaryVRRa<"wfpsosb", 0xE7CC, null_frag, v32sb, v32sb, 2, 8>;
1136    def WFPSOXB : BinaryVRRa<"wfpsoxb", 0xE7CC, null_frag, v128xb, v128xb, 4, 8>;
1137  }
1138
1139  // Load complement.
1140  def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
1141  def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
1142  let Predicates = [FeatureVectorEnhancements1] in {
1143    def VFLCSB : UnaryVRRa<"vflcsb", 0xE7CC, fneg, v128sb, v128sb, 2, 0, 0>;
1144    def WFLCSB : UnaryVRRa<"wflcsb", 0xE7CC, fneg, v32sb, v32sb, 2, 8, 0>;
1145    def WFLCXB : UnaryVRRa<"wflcxb", 0xE7CC, fneg, v128xb, v128xb, 4, 8, 0>;
1146  }
1147
1148  // Load negative.
1149  def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
1150  def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
1151  let Predicates = [FeatureVectorEnhancements1] in {
1152    def VFLNSB : UnaryVRRa<"vflnsb", 0xE7CC, fnabs, v128sb, v128sb, 2, 0, 1>;
1153    def WFLNSB : UnaryVRRa<"wflnsb", 0xE7CC, fnabs, v32sb, v32sb, 2, 8, 1>;
1154    def WFLNXB : UnaryVRRa<"wflnxb", 0xE7CC, fnabs, v128xb, v128xb, 4, 8, 1>;
1155  }
1156
1157  // Load positive.
1158  def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
1159  def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
1160  let Predicates = [FeatureVectorEnhancements1] in {
1161    def VFLPSB : UnaryVRRa<"vflpsb", 0xE7CC, fabs, v128sb, v128sb, 2, 0, 2>;
1162    def WFLPSB : UnaryVRRa<"wflpsb", 0xE7CC, fabs, v32sb, v32sb, 2, 8, 2>;
1163    def WFLPXB : UnaryVRRa<"wflpxb", 0xE7CC, fabs, v128xb, v128xb, 4, 8, 2>;
1164  }
1165
1166  // Square root.
1167  def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
1168  def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, fsqrt, v128db, v128db, 3, 0>;
1169  def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, fsqrt, v64db, v64db, 3, 8>;
1170  let Predicates = [FeatureVectorEnhancements1] in {
1171    def VFSQSB : UnaryVRRa<"vfsqsb", 0xE7CE, fsqrt, v128sb, v128sb, 2, 0>;
1172    def WFSQSB : UnaryVRRa<"wfsqsb", 0xE7CE, fsqrt, v32sb, v32sb, 2, 8>;
1173    def WFSQXB : UnaryVRRa<"wfsqxb", 0xE7CE, fsqrt, v128xb, v128xb, 4, 8>;
1174  }
1175
1176  // Subtract.
1177  def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
1178  def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, fsub, v128db, v128db, 3, 0>;
1179  def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, fsub, v64db, v64db, 3, 8>;
1180  let Predicates = [FeatureVectorEnhancements1] in {
1181    def VFSSB : BinaryVRRc<"vfssb", 0xE7E2, fsub, v128sb, v128sb, 2, 0>;
1182    def WFSSB : BinaryVRRc<"wfssb", 0xE7E2, fsub, v32sb, v32sb, 2, 8>;
1183    def WFSXB : BinaryVRRc<"wfsxb", 0xE7E2, fsub, v128xb, v128xb, 4, 8>;
1184  }
1185
1186  // Test data class immediate.
1187  let Defs = [CC] in {
1188    def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
1189    def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
1190    def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
1191    let Predicates = [FeatureVectorEnhancements1] in {
1192      def VFTCISB : BinaryVRIe<"vftcisb", 0xE74A, z_vftci, v128f, v128sb, 2, 0>;
1193      def WFTCISB : BinaryVRIe<"wftcisb", 0xE74A, null_frag, v32f, v32sb, 2, 8>;
1194      def WFTCIXB : BinaryVRIe<"wftcixb", 0xE74A, null_frag, v128q, v128xb, 4, 8>;
1195    }
1196  }
1197}
1198
1199//===----------------------------------------------------------------------===//
1200// Floating-point comparison
1201//===----------------------------------------------------------------------===//
1202
1203let Predicates = [FeatureVector] in {
1204  // Compare scalar.
1205  let Defs = [CC] in {
1206    def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
1207    def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>;
1208    let Predicates = [FeatureVectorEnhancements1] in {
1209      def WFCSB : CompareVRRa<"wfcsb", 0xE7CB, z_fcmp, v32sb, 2>;
1210      def WFCXB : CompareVRRa<"wfcxb", 0xE7CB, z_fcmp, v128xb, 4>;
1211    }
1212  }
1213
1214  // Compare and signal scalar.
1215  let Defs = [CC] in {
1216    def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
1217    def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>;
1218    let Predicates = [FeatureVectorEnhancements1] in {
1219      def WFKSB : CompareVRRa<"wfksb", 0xE7CA, null_frag, v32sb, 2>;
1220      def WFKXB : CompareVRRa<"wfkxb", 0xE7CA, null_frag, v128xb, 4>;
1221    }
1222  }
1223
1224  // Compare equal.
1225  def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
1226  defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes,
1227                                v128g, v128db, 3, 0>;
1228  defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
1229                                v64g, v64db, 3, 8>;
1230  let Predicates = [FeatureVectorEnhancements1] in {
1231    defm VFCESB : BinaryVRRcSPair<"vfcesb", 0xE7E8, z_vfcmpe, z_vfcmpes,
1232                                  v128f, v128sb, 2, 0>;
1233    defm WFCESB : BinaryVRRcSPair<"wfcesb", 0xE7E8, null_frag, null_frag,
1234                                  v32f, v32sb, 2, 8>;
1235    defm WFCEXB : BinaryVRRcSPair<"wfcexb", 0xE7E8, null_frag, null_frag,
1236                                  v128q, v128xb, 4, 8>;
1237  }
1238
1239  // Compare and signal equal.
1240  let Predicates = [FeatureVectorEnhancements1] in {
1241    defm VFKEDB : BinaryVRRcSPair<"vfkedb", 0xE7E8, null_frag, null_frag,
1242                                  v128g, v128db, 3, 4>;
1243    defm WFKEDB : BinaryVRRcSPair<"wfkedb", 0xE7E8, null_frag, null_frag,
1244                                  v64g, v64db, 3, 12>;
1245    defm VFKESB : BinaryVRRcSPair<"vfkesb", 0xE7E8, null_frag, null_frag,
1246                                  v128f, v128sb, 2, 4>;
1247    defm WFKESB : BinaryVRRcSPair<"wfkesb", 0xE7E8, null_frag, null_frag,
1248                                  v32f, v32sb, 2, 12>;
1249    defm WFKEXB : BinaryVRRcSPair<"wfkexb", 0xE7E8, null_frag, null_frag,
1250                                  v128q, v128xb, 4, 12>;
1251  }
1252
1253  // Compare high.
1254  def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
1255  defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs,
1256                                v128g, v128db, 3, 0>;
1257  defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
1258                                v64g, v64db, 3, 8>;
1259  let Predicates = [FeatureVectorEnhancements1] in {
1260    defm VFCHSB : BinaryVRRcSPair<"vfchsb", 0xE7EB, z_vfcmph, z_vfcmphs,
1261                                  v128f, v128sb, 2, 0>;
1262    defm WFCHSB : BinaryVRRcSPair<"wfchsb", 0xE7EB, null_frag, null_frag,
1263                                  v32f, v32sb, 2, 8>;
1264    defm WFCHXB : BinaryVRRcSPair<"wfchxb", 0xE7EB, null_frag, null_frag,
1265                                  v128q, v128xb, 4, 8>;
1266  }
1267
1268  // Compare and signal high.
1269  let Predicates = [FeatureVectorEnhancements1] in {
1270    defm VFKHDB : BinaryVRRcSPair<"vfkhdb", 0xE7EB, null_frag, null_frag,
1271                                  v128g, v128db, 3, 4>;
1272    defm WFKHDB : BinaryVRRcSPair<"wfkhdb", 0xE7EB, null_frag, null_frag,
1273                                  v64g, v64db, 3, 12>;
1274    defm VFKHSB : BinaryVRRcSPair<"vfkhsb", 0xE7EB, null_frag, null_frag,
1275                                  v128f, v128sb, 2, 4>;
1276    defm WFKHSB : BinaryVRRcSPair<"wfkhsb", 0xE7EB, null_frag, null_frag,
1277                                  v32f, v32sb, 2, 12>;
1278    defm WFKHXB : BinaryVRRcSPair<"wfkhxb", 0xE7EB, null_frag, null_frag,
1279                                  v128q, v128xb, 4, 12>;
1280  }
1281
1282  // Compare high or equal.
1283  def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
1284  defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes,
1285                                 v128g, v128db, 3, 0>;
1286  defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
1287                                 v64g, v64db, 3, 8>;
1288  let Predicates = [FeatureVectorEnhancements1] in {
1289    defm VFCHESB : BinaryVRRcSPair<"vfchesb", 0xE7EA, z_vfcmphe, z_vfcmphes,
1290                                   v128f, v128sb, 2, 0>;
1291    defm WFCHESB : BinaryVRRcSPair<"wfchesb", 0xE7EA, null_frag, null_frag,
1292                                   v32f, v32sb, 2, 8>;
1293    defm WFCHEXB : BinaryVRRcSPair<"wfchexb", 0xE7EA, null_frag, null_frag,
1294                                   v128q, v128xb, 4, 8>;
1295  }
1296
1297  // Compare and signal high or equal.
1298  let Predicates = [FeatureVectorEnhancements1] in {
1299    defm VFKHEDB : BinaryVRRcSPair<"vfkhedb", 0xE7EA, null_frag, null_frag,
1300                                   v128g, v128db, 3, 4>;
1301    defm WFKHEDB : BinaryVRRcSPair<"wfkhedb", 0xE7EA, null_frag, null_frag,
1302                                   v64g, v64db, 3, 12>;
1303    defm VFKHESB : BinaryVRRcSPair<"vfkhesb", 0xE7EA, null_frag, null_frag,
1304                                   v128f, v128sb, 2, 4>;
1305    defm WFKHESB : BinaryVRRcSPair<"wfkhesb", 0xE7EA, null_frag, null_frag,
1306                                   v32f, v32sb, 2, 12>;
1307    defm WFKHEXB : BinaryVRRcSPair<"wfkhexb", 0xE7EA, null_frag, null_frag,
1308                                   v128q, v128xb, 4, 12>;
1309  }
1310}
1311
1312//===----------------------------------------------------------------------===//
1313// Conversions
1314//===----------------------------------------------------------------------===//
1315
1316def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
1317def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
1318def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
1319def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
1320def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
1321def : Pat<(v16i8 (bitconvert (f128  VR128:$src))), (v16i8 VR128:$src)>;
1322
1323def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
1324def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
1325def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
1326def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
1327def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
1328def : Pat<(v8i16 (bitconvert (f128  VR128:$src))), (v8i16 VR128:$src)>;
1329
1330def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
1331def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
1332def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
1333def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
1334def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
1335def : Pat<(v4i32 (bitconvert (f128  VR128:$src))), (v4i32 VR128:$src)>;
1336
1337def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
1338def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
1339def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
1340def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
1341def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
1342def : Pat<(v2i64 (bitconvert (f128  VR128:$src))), (v2i64 VR128:$src)>;
1343
1344def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
1345def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
1346def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
1347def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
1348def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
1349def : Pat<(v4f32 (bitconvert (f128  VR128:$src))), (v4f32 VR128:$src)>;
1350
1351def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
1352def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
1353def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
1354def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
1355def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
1356def : Pat<(v2f64 (bitconvert (f128  VR128:$src))), (v2f64 VR128:$src)>;
1357
1358def : Pat<(f128  (bitconvert (v16i8 VR128:$src))), (f128  VR128:$src)>;
1359def : Pat<(f128  (bitconvert (v8i16 VR128:$src))), (f128  VR128:$src)>;
1360def : Pat<(f128  (bitconvert (v4i32 VR128:$src))), (f128  VR128:$src)>;
1361def : Pat<(f128  (bitconvert (v2i64 VR128:$src))), (f128  VR128:$src)>;
1362def : Pat<(f128  (bitconvert (v4f32 VR128:$src))), (f128  VR128:$src)>;
1363def : Pat<(f128  (bitconvert (v2f64 VR128:$src))), (f128  VR128:$src)>;
1364
1365//===----------------------------------------------------------------------===//
1366// Replicating scalars
1367//===----------------------------------------------------------------------===//
1368
1369// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
1370// INDEX is 8 minus the element size in bytes.
1371class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
1372  : Pat<(type (z_replicate GR32:$scalar)),
1373        (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;
1374
1375def : VectorReplicateScalar<v16i8, VREPB, 7>;
1376def : VectorReplicateScalar<v8i16, VREPH, 3>;
1377def : VectorReplicateScalar<v4i32, VREPF, 1>;
1378
1379// i64 replications are just a single isntruction.
1380def : Pat<(v2i64 (z_replicate GR64:$scalar)),
1381          (VLVGP GR64:$scalar, GR64:$scalar)>;
1382
1383//===----------------------------------------------------------------------===//
1384// Floating-point insertion and extraction
1385//===----------------------------------------------------------------------===//
1386
1387// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
1388// and VLGVF.
1389let Predicates = [FeatureVector] in {
1390  def LEFR : UnaryAliasVRS<VR32, GR32>;
1391  def LFER : UnaryAliasVRS<GR64, VR32>;
1392  def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
1393  def : Pat<(i32 (bitconvert (f32 VR32:$src))),
1394            (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
1395}
1396
1397// Floating-point values are stored in element 0 of the corresponding
1398// vector register.  Scalar to vector conversion is just a subreg and
1399// scalar replication can just replicate element 0 of the vector register.
1400multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
1401                            SubRegIndex subreg> {
1402  def : Pat<(vt (scalar_to_vector cls:$scalar)),
1403            (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
1404  def : Pat<(vt (z_replicate cls:$scalar)),
1405            (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
1406                                 subreg), 0)>;
1407}
1408defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_r32>;
1409defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_r64>;
1410
1411// Match v2f64 insertions.  The AddedComplexity counters the 3 added by
1412// TableGen for the base register operand in VLVG-based integer insertions
1413// and ensures that this version is strictly better.
1414let AddedComplexity = 4 in {
1415  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
1416            (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1417                                 subreg_r64), VR128:$vec, 1)>;
1418  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
1419            (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1420                                             subreg_r64), 0)>;
1421}
1422
1423// We extract floating-point element X by replicating (for elements other
1424// than 0) and then taking a high subreg.  The AddedComplexity counters the
1425// 3 added by TableGen for the base register operand in VLGV-based integer
1426// extractions and ensures that this version is strictly better.
1427let AddedComplexity = 4 in {
1428  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
1429            (EXTRACT_SUBREG VR128:$vec, subreg_r32)>;
1430  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
1431            (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_r32)>;
1432
1433  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
1434            (EXTRACT_SUBREG VR128:$vec, subreg_r64)>;
1435  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
1436            (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_r64)>;
1437}
1438
1439//===----------------------------------------------------------------------===//
1440// Support for 128-bit floating-point values in vector registers
1441//===----------------------------------------------------------------------===//
1442
1443let Predicates = [FeatureVectorEnhancements1] in {
1444  def : Pat<(f128 (load bdxaddr12only:$addr)),
1445            (VL bdxaddr12only:$addr)>;
1446  def : Pat<(store (f128 VR128:$src), bdxaddr12only:$addr),
1447            (VST VR128:$src, bdxaddr12only:$addr)>;
1448
1449  def : Pat<(f128 fpimm0), (VZERO)>;
1450  def : Pat<(f128 fpimmneg0), (WFLNXB (VZERO))>;
1451}
1452
1453//===----------------------------------------------------------------------===//
1454// String instructions
1455//===----------------------------------------------------------------------===//
1456
1457let Predicates = [FeatureVector] in {
1458  defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
1459  defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
1460                                   z_vfae_cc, v128b, v128b, 0>;
1461  defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
1462                                   z_vfae_cc, v128h, v128h, 1>;
1463  defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
1464                                   z_vfae_cc, v128f, v128f, 2>;
1465  defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
1466                                    z_vfaez_cc, v128b, v128b, 0, 2>;
1467  defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
1468                                    z_vfaez_cc, v128h, v128h, 1, 2>;
1469  defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
1470                                    z_vfaez_cc, v128f, v128f, 2, 2>;
1471
1472  defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
1473  defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
1474                                    z_vfee_cc, v128b, v128b, 0>;
1475  defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
1476                                    z_vfee_cc, v128h, v128h, 1>;
1477  defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
1478                                    z_vfee_cc, v128f, v128f, 2>;
1479  defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
1480                                z_vfeez_cc, v128b, v128b, 0, 2>;
1481  defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
1482                                z_vfeez_cc, v128h, v128h, 1, 2>;
1483  defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
1484                                z_vfeez_cc, v128f, v128f, 2, 2>;
1485
1486  defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
1487  defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
1488                                     z_vfene_cc, v128b, v128b, 0>;
1489  defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
1490                                     z_vfene_cc, v128h, v128h, 1>;
1491  defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
1492                                     z_vfene_cc, v128f, v128f, 2>;
1493  defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
1494                                 z_vfenez_cc, v128b, v128b, 0, 2>;
1495  defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
1496                                 z_vfenez_cc, v128h, v128h, 1, 2>;
1497  defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
1498                                 z_vfenez_cc, v128f, v128f, 2, 2>;
1499
1500  defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
1501  defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
1502                                    z_vistr_cc, v128b, v128b, 0>;
1503  defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
1504                                    z_vistr_cc, v128h, v128h, 1>;
1505  defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
1506                                    z_vistr_cc, v128f, v128f, 2>;
1507
1508  defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
1509  defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
1510                                       z_vstrc_cc, v128b, v128b, 0>;
1511  defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
1512                                       z_vstrc_cc, v128h, v128h, 1>;
1513  defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
1514                                       z_vstrc_cc, v128f, v128f, 2>;
1515  defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
1516                                        z_vstrcz_cc, v128b, v128b, 0, 2>;
1517  defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
1518                                        z_vstrcz_cc, v128h, v128h, 1, 2>;
1519  defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
1520                                        z_vstrcz_cc, v128f, v128f, 2, 2>;
1521}
1522
1523//===----------------------------------------------------------------------===//
1524// Packed-decimal instructions
1525//===----------------------------------------------------------------------===//
1526
1527let Predicates = [FeatureVectorPackedDecimal] in {
1528  def VLIP : BinaryVRIh<"vlip", 0xE649>;
1529
1530  def VPKZ : BinaryVSI<"vpkz", 0xE634, null_frag, 0>;
1531  def VUPKZ : StoreLengthVSI<"vupkz", 0xE63C, null_frag, 0>;
1532
1533  let Defs = [CC] in {
1534    def VCVB : BinaryVRRi<"vcvb", 0xE650, GR32>;
1535    def VCVBG : BinaryVRRi<"vcvbg", 0xE652, GR64>;
1536    def VCVD : TernaryVRIi<"vcvd", 0xE658, GR32>;
1537    def VCVDG : TernaryVRIi<"vcvdg", 0xE65A, GR64>;
1538
1539    def VAP : QuaternaryVRIf<"vap", 0xE671>;
1540    def VSP : QuaternaryVRIf<"vsp", 0xE673>;
1541
1542    def VMP : QuaternaryVRIf<"vmp", 0xE678>;
1543    def VMSP : QuaternaryVRIf<"vmsp", 0xE679>;
1544
1545    def VDP : QuaternaryVRIf<"vdp", 0xE67A>;
1546    def VRP : QuaternaryVRIf<"vrp", 0xE67B>;
1547    def VSDP : QuaternaryVRIf<"vsdp", 0xE67E>;
1548
1549    def VSRP : QuaternaryVRIg<"vsrp", 0xE659>;
1550    def VPSOP : QuaternaryVRIg<"vpsop", 0xE65B>;
1551
1552    def VTP : TestVRRg<"vtp", 0xE65F>;
1553    def VCP : CompareVRRh<"vcp", 0xE677>;
1554  }
1555}
1556