SystemZISelLowering.cpp revision 360784
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SystemZTargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SystemZISelLowering.h"
14#include "SystemZCallingConv.h"
15#include "SystemZConstantPoolValue.h"
16#include "SystemZMachineFunctionInfo.h"
17#include "SystemZTargetMachine.h"
18#include "llvm/CodeGen/CallingConvLower.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22#include "llvm/IR/IntrinsicInst.h"
23#include "llvm/IR/Intrinsics.h"
24#include "llvm/IR/IntrinsicsS390.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/KnownBits.h"
27#include <cctype>
28
29using namespace llvm;
30
31#define DEBUG_TYPE "systemz-lower"
32
33namespace {
34// Represents information about a comparison.
35struct Comparison {
36  Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37    : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38      Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39
40  // The operands to the comparison.
41  SDValue Op0, Op1;
42
43  // Chain if this is a strict floating-point comparison.
44  SDValue Chain;
45
46  // The opcode that should be used to compare Op0 and Op1.
47  unsigned Opcode;
48
49  // A SystemZICMP value.  Only used for integer comparisons.
50  unsigned ICmpType;
51
52  // The mask of CC values that Opcode can produce.
53  unsigned CCValid;
54
55  // The mask of CC values for which the original condition is true.
56  unsigned CCMask;
57};
58} // end anonymous namespace
59
60// Classify VT as either 32 or 64 bit.
61static bool is32Bit(EVT VT) {
62  switch (VT.getSimpleVT().SimpleTy) {
63  case MVT::i32:
64    return true;
65  case MVT::i64:
66    return false;
67  default:
68    llvm_unreachable("Unsupported type");
69  }
70}
71
72// Return a version of MachineOperand that can be safely used before the
73// final use.
74static MachineOperand earlyUseOperand(MachineOperand Op) {
75  if (Op.isReg())
76    Op.setIsKill(false);
77  return Op;
78}
79
80SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                             const SystemZSubtarget &STI)
82    : TargetLowering(TM), Subtarget(STI) {
83  MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84
85  // Set up the register classes.
86  if (Subtarget.hasHighWord())
87    addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88  else
89    addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90  addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91  if (Subtarget.hasVector()) {
92    addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
93    addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
94  } else {
95    addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
96    addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
97  }
98  if (Subtarget.hasVectorEnhancements1())
99    addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
100  else
101    addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
102
103  if (Subtarget.hasVector()) {
104    addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
105    addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
106    addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
107    addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
108    addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
109    addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
110  }
111
112  // Compute derived properties from the register classes
113  computeRegisterProperties(Subtarget.getRegisterInfo());
114
115  // Set up special registers.
116  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
117
118  // TODO: It may be better to default to latency-oriented scheduling, however
119  // LLVM's current latency-oriented scheduler can't handle physreg definitions
120  // such as SystemZ has with CC, so set this to the register-pressure
121  // scheduler, because it can.
122  setSchedulingPreference(Sched::RegPressure);
123
124  setBooleanContents(ZeroOrOneBooleanContent);
125  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
126
127  // Instructions are strings of 2-byte aligned 2-byte values.
128  setMinFunctionAlignment(Align(2));
129  // For performance reasons we prefer 16-byte alignment.
130  setPrefFunctionAlignment(Align(16));
131
132  // Handle operations that are handled in a similar way for all types.
133  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
134       I <= MVT::LAST_FP_VALUETYPE;
135       ++I) {
136    MVT VT = MVT::SimpleValueType(I);
137    if (isTypeLegal(VT)) {
138      // Lower SET_CC into an IPM-based sequence.
139      setOperationAction(ISD::SETCC, VT, Custom);
140      setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
141      setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
142
143      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
144      setOperationAction(ISD::SELECT, VT, Expand);
145
146      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
147      setOperationAction(ISD::SELECT_CC, VT, Custom);
148      setOperationAction(ISD::BR_CC,     VT, Custom);
149    }
150  }
151
152  // Expand jump table branches as address arithmetic followed by an
153  // indirect jump.
154  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
155
156  // Expand BRCOND into a BR_CC (see above).
157  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
158
159  // Handle integer types.
160  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
161       I <= MVT::LAST_INTEGER_VALUETYPE;
162       ++I) {
163    MVT VT = MVT::SimpleValueType(I);
164    if (isTypeLegal(VT)) {
165      // Expand individual DIV and REMs into DIVREMs.
166      setOperationAction(ISD::SDIV, VT, Expand);
167      setOperationAction(ISD::UDIV, VT, Expand);
168      setOperationAction(ISD::SREM, VT, Expand);
169      setOperationAction(ISD::UREM, VT, Expand);
170      setOperationAction(ISD::SDIVREM, VT, Custom);
171      setOperationAction(ISD::UDIVREM, VT, Custom);
172
173      // Support addition/subtraction with overflow.
174      setOperationAction(ISD::SADDO, VT, Custom);
175      setOperationAction(ISD::SSUBO, VT, Custom);
176
177      // Support addition/subtraction with carry.
178      setOperationAction(ISD::UADDO, VT, Custom);
179      setOperationAction(ISD::USUBO, VT, Custom);
180
181      // Support carry in as value rather than glue.
182      setOperationAction(ISD::ADDCARRY, VT, Custom);
183      setOperationAction(ISD::SUBCARRY, VT, Custom);
184
185      // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
186      // stores, putting a serialization instruction after the stores.
187      setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
188      setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
189
190      // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
191      // available, or if the operand is constant.
192      setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
193
194      // Use POPCNT on z196 and above.
195      if (Subtarget.hasPopulationCount())
196        setOperationAction(ISD::CTPOP, VT, Custom);
197      else
198        setOperationAction(ISD::CTPOP, VT, Expand);
199
200      // No special instructions for these.
201      setOperationAction(ISD::CTTZ,            VT, Expand);
202      setOperationAction(ISD::ROTR,            VT, Expand);
203
204      // Use *MUL_LOHI where possible instead of MULH*.
205      setOperationAction(ISD::MULHS, VT, Expand);
206      setOperationAction(ISD::MULHU, VT, Expand);
207      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
208      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
209
210      // Only z196 and above have native support for conversions to unsigned.
211      // On z10, promoting to i64 doesn't generate an inexact condition for
212      // values that are outside the i32 range but in the i64 range, so use
213      // the default expansion.
214      if (!Subtarget.hasFPExtension())
215        setOperationAction(ISD::FP_TO_UINT, VT, Expand);
216
217      // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
218      // default to Expand, so need to be modified to Legal where appropriate.
219      setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
220      if (Subtarget.hasFPExtension())
221        setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
222
223      // And similarly for STRICT_[SU]INT_TO_FP.
224      setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
225      if (Subtarget.hasFPExtension())
226        setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
227    }
228  }
229
230  // Type legalization will convert 8- and 16-bit atomic operations into
231  // forms that operate on i32s (but still keeping the original memory VT).
232  // Lower them into full i32 operations.
233  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
234  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
235  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
236  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
237  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
238  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
239  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
240  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
241  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
242  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
243  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
244
245  // Even though i128 is not a legal type, we still need to custom lower
246  // the atomic operations in order to exploit SystemZ instructions.
247  setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
248  setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
249
250  // We can use the CC result of compare-and-swap to implement
251  // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
252  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
253  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
254  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
255
256  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
257
258  // Traps are legal, as we will convert them to "j .+2".
259  setOperationAction(ISD::TRAP, MVT::Other, Legal);
260
261  // z10 has instructions for signed but not unsigned FP conversion.
262  // Handle unsigned 32-bit types as signed 64-bit types.
263  if (!Subtarget.hasFPExtension()) {
264    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
265    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
266    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
267    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
268  }
269
270  // We have native support for a 64-bit CTLZ, via FLOGR.
271  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
272  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
273  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
274
275  // On z15 we have native support for a 64-bit CTPOP.
276  if (Subtarget.hasMiscellaneousExtensions3()) {
277    setOperationAction(ISD::CTPOP, MVT::i32, Promote);
278    setOperationAction(ISD::CTPOP, MVT::i64, Legal);
279  }
280
281  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
282  setOperationAction(ISD::OR, MVT::i64, Custom);
283
284  // FIXME: Can we support these natively?
285  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
286  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
287  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
288
289  // We have native instructions for i8, i16 and i32 extensions, but not i1.
290  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
291  for (MVT VT : MVT::integer_valuetypes()) {
292    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
293    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
294    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
295  }
296
297  // Handle the various types of symbolic address.
298  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
299  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
300  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
301  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
302  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
303
304  // We need to handle dynamic allocations specially because of the
305  // 160-byte area at the bottom of the stack.
306  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
307  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
308
309  // Use custom expanders so that we can force the function to use
310  // a frame pointer.
311  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
312  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
313
314  // Handle prefetches with PFD or PFDRL.
315  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
316
317  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
318    // Assume by default that all vector operations need to be expanded.
319    for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
320      if (getOperationAction(Opcode, VT) == Legal)
321        setOperationAction(Opcode, VT, Expand);
322
323    // Likewise all truncating stores and extending loads.
324    for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
325      setTruncStoreAction(VT, InnerVT, Expand);
326      setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
327      setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
328      setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
329    }
330
331    if (isTypeLegal(VT)) {
332      // These operations are legal for anything that can be stored in a
333      // vector register, even if there is no native support for the format
334      // as such.  In particular, we can do these for v4f32 even though there
335      // are no specific instructions for that format.
336      setOperationAction(ISD::LOAD, VT, Legal);
337      setOperationAction(ISD::STORE, VT, Legal);
338      setOperationAction(ISD::VSELECT, VT, Legal);
339      setOperationAction(ISD::BITCAST, VT, Legal);
340      setOperationAction(ISD::UNDEF, VT, Legal);
341
342      // Likewise, except that we need to replace the nodes with something
343      // more specific.
344      setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
345      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
346    }
347  }
348
349  // Handle integer vector types.
350  for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
351    if (isTypeLegal(VT)) {
352      // These operations have direct equivalents.
353      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
354      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
355      setOperationAction(ISD::ADD, VT, Legal);
356      setOperationAction(ISD::SUB, VT, Legal);
357      if (VT != MVT::v2i64)
358        setOperationAction(ISD::MUL, VT, Legal);
359      setOperationAction(ISD::AND, VT, Legal);
360      setOperationAction(ISD::OR, VT, Legal);
361      setOperationAction(ISD::XOR, VT, Legal);
362      if (Subtarget.hasVectorEnhancements1())
363        setOperationAction(ISD::CTPOP, VT, Legal);
364      else
365        setOperationAction(ISD::CTPOP, VT, Custom);
366      setOperationAction(ISD::CTTZ, VT, Legal);
367      setOperationAction(ISD::CTLZ, VT, Legal);
368
369      // Convert a GPR scalar to a vector by inserting it into element 0.
370      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
371
372      // Use a series of unpacks for extensions.
373      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
374      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
375
376      // Detect shifts by a scalar amount and convert them into
377      // V*_BY_SCALAR.
378      setOperationAction(ISD::SHL, VT, Custom);
379      setOperationAction(ISD::SRA, VT, Custom);
380      setOperationAction(ISD::SRL, VT, Custom);
381
382      // At present ROTL isn't matched by DAGCombiner.  ROTR should be
383      // converted into ROTL.
384      setOperationAction(ISD::ROTL, VT, Expand);
385      setOperationAction(ISD::ROTR, VT, Expand);
386
387      // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
388      // and inverting the result as necessary.
389      setOperationAction(ISD::SETCC, VT, Custom);
390      setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
391      if (Subtarget.hasVectorEnhancements1())
392        setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
393    }
394  }
395
396  if (Subtarget.hasVector()) {
397    // There should be no need to check for float types other than v2f64
398    // since <2 x f32> isn't a legal type.
399    setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
400    setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
401    setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
402    setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
403    setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
404    setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
405    setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
406    setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
407
408    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
409    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
410    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
411    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
412    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
413    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
414    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
415    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
416  }
417
418  if (Subtarget.hasVectorEnhancements2()) {
419    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
420    setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
421    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
422    setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
423    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
424    setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
425    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
426    setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
427
428    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
429    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
430    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
431    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
432    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
433    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
434    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
435    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
436  }
437
438  // Handle floating-point types.
439  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
440       I <= MVT::LAST_FP_VALUETYPE;
441       ++I) {
442    MVT VT = MVT::SimpleValueType(I);
443    if (isTypeLegal(VT)) {
444      // We can use FI for FRINT.
445      setOperationAction(ISD::FRINT, VT, Legal);
446
447      // We can use the extended form of FI for other rounding operations.
448      if (Subtarget.hasFPExtension()) {
449        setOperationAction(ISD::FNEARBYINT, VT, Legal);
450        setOperationAction(ISD::FFLOOR, VT, Legal);
451        setOperationAction(ISD::FCEIL, VT, Legal);
452        setOperationAction(ISD::FTRUNC, VT, Legal);
453        setOperationAction(ISD::FROUND, VT, Legal);
454      }
455
456      // No special instructions for these.
457      setOperationAction(ISD::FSIN, VT, Expand);
458      setOperationAction(ISD::FCOS, VT, Expand);
459      setOperationAction(ISD::FSINCOS, VT, Expand);
460      setOperationAction(ISD::FREM, VT, Expand);
461      setOperationAction(ISD::FPOW, VT, Expand);
462
463      // Handle constrained floating-point operations.
464      setOperationAction(ISD::STRICT_FADD, VT, Legal);
465      setOperationAction(ISD::STRICT_FSUB, VT, Legal);
466      setOperationAction(ISD::STRICT_FMUL, VT, Legal);
467      setOperationAction(ISD::STRICT_FDIV, VT, Legal);
468      setOperationAction(ISD::STRICT_FMA, VT, Legal);
469      setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
470      setOperationAction(ISD::STRICT_FRINT, VT, Legal);
471      setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
472      setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
473      if (Subtarget.hasFPExtension()) {
474        setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
475        setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
476        setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
477        setOperationAction(ISD::STRICT_FROUND, VT, Legal);
478        setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
479      }
480    }
481  }
482
483  // Handle floating-point vector types.
484  if (Subtarget.hasVector()) {
485    // Scalar-to-vector conversion is just a subreg.
486    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
487    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
488
489    // Some insertions and extractions can be done directly but others
490    // need to go via integers.
491    setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
492    setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
493    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
494    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
495
496    // These operations have direct equivalents.
497    setOperationAction(ISD::FADD, MVT::v2f64, Legal);
498    setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
499    setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
500    setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
501    setOperationAction(ISD::FMA, MVT::v2f64, Legal);
502    setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
503    setOperationAction(ISD::FABS, MVT::v2f64, Legal);
504    setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
505    setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
506    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
507    setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
508    setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
509    setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
510    setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
511
512    // Handle constrained floating-point operations.
513    setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
514    setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
515    setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
516    setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
517    setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
518    setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
519    setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
520    setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
521    setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
522    setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
523    setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
524    setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
525  }
526
527  // The vector enhancements facility 1 has instructions for these.
528  if (Subtarget.hasVectorEnhancements1()) {
529    setOperationAction(ISD::FADD, MVT::v4f32, Legal);
530    setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
531    setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
532    setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
533    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
534    setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
535    setOperationAction(ISD::FABS, MVT::v4f32, Legal);
536    setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
537    setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
538    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
539    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
540    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
541    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
542    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
543
544    setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
545    setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
546    setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
547    setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
548
549    setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
550    setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
551    setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
552    setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
553
554    setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
555    setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
556    setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
557    setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
558
559    setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
560    setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
561    setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
562    setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
563
564    setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
565    setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
566    setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
567    setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
568
569    // Handle constrained floating-point operations.
570    setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
571    setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
572    setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
573    setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
574    setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
575    setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
576    setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
577    setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
578    setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
579    setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
580    setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
581    setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
582    for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
583                     MVT::v4f32, MVT::v2f64 }) {
584      setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
585      setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
586      setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
587      setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
588    }
589  }
590
591  // We only have fused f128 multiply-addition on vector registers.
592  if (!Subtarget.hasVectorEnhancements1()) {
593    setOperationAction(ISD::FMA, MVT::f128, Expand);
594    setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
595  }
596
597  // We don't have a copysign instruction on vector registers.
598  if (Subtarget.hasVectorEnhancements1())
599    setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
600
601  // Needed so that we don't try to implement f128 constant loads using
602  // a load-and-extend of a f80 constant (in cases where the constant
603  // would fit in an f80).
604  for (MVT VT : MVT::fp_valuetypes())
605    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
606
607  // We don't have extending load instruction on vector registers.
608  if (Subtarget.hasVectorEnhancements1()) {
609    setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
610    setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
611  }
612
613  // Floating-point truncation and stores need to be done separately.
614  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
615  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
616  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
617
618  // We have 64-bit FPR<->GPR moves, but need special handling for
619  // 32-bit forms.
620  if (!Subtarget.hasVector()) {
621    setOperationAction(ISD::BITCAST, MVT::i32, Custom);
622    setOperationAction(ISD::BITCAST, MVT::f32, Custom);
623  }
624
625  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
626  // structure, but VAEND is a no-op.
627  setOperationAction(ISD::VASTART, MVT::Other, Custom);
628  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
629  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
630
631  // Codes for which we want to perform some z-specific combinations.
632  setTargetDAGCombine(ISD::ZERO_EXTEND);
633  setTargetDAGCombine(ISD::SIGN_EXTEND);
634  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
635  setTargetDAGCombine(ISD::LOAD);
636  setTargetDAGCombine(ISD::STORE);
637  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
638  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
639  setTargetDAGCombine(ISD::FP_ROUND);
640  setTargetDAGCombine(ISD::STRICT_FP_ROUND);
641  setTargetDAGCombine(ISD::FP_EXTEND);
642  setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
643  setTargetDAGCombine(ISD::BSWAP);
644  setTargetDAGCombine(ISD::SDIV);
645  setTargetDAGCombine(ISD::UDIV);
646  setTargetDAGCombine(ISD::SREM);
647  setTargetDAGCombine(ISD::UREM);
648
649  // Handle intrinsics.
650  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
651  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
652
653  // We want to use MVC in preference to even a single load/store pair.
654  MaxStoresPerMemcpy = 0;
655  MaxStoresPerMemcpyOptSize = 0;
656
657  // The main memset sequence is a byte store followed by an MVC.
658  // Two STC or MV..I stores win over that, but the kind of fused stores
659  // generated by target-independent code don't when the byte value is
660  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
661  // than "STC;MVC".  Handle the choice in target-specific code instead.
662  MaxStoresPerMemset = 0;
663  MaxStoresPerMemsetOptSize = 0;
664
665  // Default to having -disable-strictnode-mutation on
666  IsStrictFPEnabled = true;
667}
668
669EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
670                                              LLVMContext &, EVT VT) const {
671  if (!VT.isVector())
672    return MVT::i32;
673  return VT.changeVectorElementTypeToInteger();
674}
675
676bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
677    const MachineFunction &MF, EVT VT) const {
678  VT = VT.getScalarType();
679
680  if (!VT.isSimple())
681    return false;
682
683  switch (VT.getSimpleVT().SimpleTy) {
684  case MVT::f32:
685  case MVT::f64:
686    return true;
687  case MVT::f128:
688    return Subtarget.hasVectorEnhancements1();
689  default:
690    break;
691  }
692
693  return false;
694}
695
696// Return true if the constant can be generated with a vector instruction,
697// such as VGM, VGMB or VREPI.
698bool SystemZVectorConstantInfo::isVectorConstantLegal(
699    const SystemZSubtarget &Subtarget) {
700  const SystemZInstrInfo *TII =
701      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
702  if (!Subtarget.hasVector() ||
703      (isFP128 && !Subtarget.hasVectorEnhancements1()))
704    return false;
705
706  // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
707  // preferred way of creating all-zero and all-one vectors so give it
708  // priority over other methods below.
709  unsigned Mask = 0;
710  unsigned I = 0;
711  for (; I < SystemZ::VectorBytes; ++I) {
712    uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
713    if (Byte == 0xff)
714      Mask |= 1ULL << I;
715    else if (Byte != 0)
716      break;
717  }
718  if (I == SystemZ::VectorBytes) {
719    Opcode = SystemZISD::BYTE_MASK;
720    OpVals.push_back(Mask);
721    VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
722    return true;
723  }
724
725  if (SplatBitSize > 64)
726    return false;
727
728  auto tryValue = [&](uint64_t Value) -> bool {
729    // Try VECTOR REPLICATE IMMEDIATE
730    int64_t SignedValue = SignExtend64(Value, SplatBitSize);
731    if (isInt<16>(SignedValue)) {
732      OpVals.push_back(((unsigned) SignedValue));
733      Opcode = SystemZISD::REPLICATE;
734      VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
735                               SystemZ::VectorBits / SplatBitSize);
736      return true;
737    }
738    // Try VECTOR GENERATE MASK
739    unsigned Start, End;
740    if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
741      // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
742      // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
743      // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
744      OpVals.push_back(Start - (64 - SplatBitSize));
745      OpVals.push_back(End - (64 - SplatBitSize));
746      Opcode = SystemZISD::ROTATE_MASK;
747      VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
748                               SystemZ::VectorBits / SplatBitSize);
749      return true;
750    }
751    return false;
752  };
753
754  // First try assuming that any undefined bits above the highest set bit
755  // and below the lowest set bit are 1s.  This increases the likelihood of
756  // being able to use a sign-extended element value in VECTOR REPLICATE
757  // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
758  uint64_t SplatBitsZ = SplatBits.getZExtValue();
759  uint64_t SplatUndefZ = SplatUndef.getZExtValue();
760  uint64_t Lower =
761      (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
762  uint64_t Upper =
763      (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
764  if (tryValue(SplatBitsZ | Upper | Lower))
765    return true;
766
767  // Now try assuming that any undefined bits between the first and
768  // last defined set bits are set.  This increases the chances of
769  // using a non-wraparound mask.
770  uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
771  return tryValue(SplatBitsZ | Middle);
772}
773
774SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
775  IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
776  isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
777
778  // Find the smallest splat.
779  SplatBits = FPImm.bitcastToAPInt();
780  unsigned Width = SplatBits.getBitWidth();
781  while (Width > 8) {
782    unsigned HalfSize = Width / 2;
783    APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
784    APInt LowValue = SplatBits.trunc(HalfSize);
785
786    // If the two halves do not match, stop here.
787    if (HighValue != LowValue || 8 > HalfSize)
788      break;
789
790    SplatBits = HighValue;
791    Width = HalfSize;
792  }
793  SplatUndef = 0;
794  SplatBitSize = Width;
795}
796
797SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
798  assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
799  bool HasAnyUndefs;
800
801  // Get IntBits by finding the 128 bit splat.
802  BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
803                       true);
804
805  // Get SplatBits by finding the 8 bit or greater splat.
806  BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
807                       true);
808}
809
810bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
811                                         bool ForCodeSize) const {
812  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
813  if (Imm.isZero() || Imm.isNegZero())
814    return true;
815
816  return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
817}
818
819bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
820  // We can use CGFI or CLGFI.
821  return isInt<32>(Imm) || isUInt<32>(Imm);
822}
823
824bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
825  // We can use ALGFI or SLGFI.
826  return isUInt<32>(Imm) || isUInt<32>(-Imm);
827}
828
829bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
830    EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
831  // Unaligned accesses should never be slower than the expanded version.
832  // We check specifically for aligned accesses in the few cases where
833  // they are required.
834  if (Fast)
835    *Fast = true;
836  return true;
837}
838
839// Information about the addressing mode for a memory access.
840struct AddressingMode {
841  // True if a long displacement is supported.
842  bool LongDisplacement;
843
844  // True if use of index register is supported.
845  bool IndexReg;
846
847  AddressingMode(bool LongDispl, bool IdxReg) :
848    LongDisplacement(LongDispl), IndexReg(IdxReg) {}
849};
850
851// Return the desired addressing mode for a Load which has only one use (in
852// the same block) which is a Store.
853static AddressingMode getLoadStoreAddrMode(bool HasVector,
854                                          Type *Ty) {
855  // With vector support a Load->Store combination may be combined to either
856  // an MVC or vector operations and it seems to work best to allow the
857  // vector addressing mode.
858  if (HasVector)
859    return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
860
861  // Otherwise only the MVC case is special.
862  bool MVC = Ty->isIntegerTy(8);
863  return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
864}
865
866// Return the addressing mode which seems most desirable given an LLVM
867// Instruction pointer.
868static AddressingMode
869supportedAddressingMode(Instruction *I, bool HasVector) {
870  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
871    switch (II->getIntrinsicID()) {
872    default: break;
873    case Intrinsic::memset:
874    case Intrinsic::memmove:
875    case Intrinsic::memcpy:
876      return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
877    }
878  }
879
880  if (isa<LoadInst>(I) && I->hasOneUse()) {
881    auto *SingleUser = cast<Instruction>(*I->user_begin());
882    if (SingleUser->getParent() == I->getParent()) {
883      if (isa<ICmpInst>(SingleUser)) {
884        if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
885          if (C->getBitWidth() <= 64 &&
886              (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
887            // Comparison of memory with 16 bit signed / unsigned immediate
888            return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
889      } else if (isa<StoreInst>(SingleUser))
890        // Load->Store
891        return getLoadStoreAddrMode(HasVector, I->getType());
892    }
893  } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
894    if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
895      if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
896        // Load->Store
897        return getLoadStoreAddrMode(HasVector, LoadI->getType());
898  }
899
900  if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
901
902    // * Use LDE instead of LE/LEY for z13 to avoid partial register
903    //   dependencies (LDE only supports small offsets).
904    // * Utilize the vector registers to hold floating point
905    //   values (vector load / store instructions only support small
906    //   offsets).
907
908    Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
909                         I->getOperand(0)->getType());
910    bool IsFPAccess = MemAccessTy->isFloatingPointTy();
911    bool IsVectorAccess = MemAccessTy->isVectorTy();
912
913    // A store of an extracted vector element will be combined into a VSTE type
914    // instruction.
915    if (!IsVectorAccess && isa<StoreInst>(I)) {
916      Value *DataOp = I->getOperand(0);
917      if (isa<ExtractElementInst>(DataOp))
918        IsVectorAccess = true;
919    }
920
921    // A load which gets inserted into a vector element will be combined into a
922    // VLE type instruction.
923    if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
924      User *LoadUser = *I->user_begin();
925      if (isa<InsertElementInst>(LoadUser))
926        IsVectorAccess = true;
927    }
928
929    if (IsFPAccess || IsVectorAccess)
930      return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
931  }
932
933  return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
934}
935
936bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
937       const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
938  // Punt on globals for now, although they can be used in limited
939  // RELATIVE LONG cases.
940  if (AM.BaseGV)
941    return false;
942
943  // Require a 20-bit signed offset.
944  if (!isInt<20>(AM.BaseOffs))
945    return false;
946
947  AddressingMode SupportedAM(true, true);
948  if (I != nullptr)
949    SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
950
951  if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
952    return false;
953
954  if (!SupportedAM.IndexReg)
955    // No indexing allowed.
956    return AM.Scale == 0;
957  else
958    // Indexing is OK but no scale factor can be applied.
959    return AM.Scale == 0 || AM.Scale == 1;
960}
961
962bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
963  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
964    return false;
965  unsigned FromBits = FromType->getPrimitiveSizeInBits();
966  unsigned ToBits = ToType->getPrimitiveSizeInBits();
967  return FromBits > ToBits;
968}
969
970bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
971  if (!FromVT.isInteger() || !ToVT.isInteger())
972    return false;
973  unsigned FromBits = FromVT.getSizeInBits();
974  unsigned ToBits = ToVT.getSizeInBits();
975  return FromBits > ToBits;
976}
977
978//===----------------------------------------------------------------------===//
979// Inline asm support
980//===----------------------------------------------------------------------===//
981
982TargetLowering::ConstraintType
983SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
984  if (Constraint.size() == 1) {
985    switch (Constraint[0]) {
986    case 'a': // Address register
987    case 'd': // Data register (equivalent to 'r')
988    case 'f': // Floating-point register
989    case 'h': // High-part register
990    case 'r': // General-purpose register
991    case 'v': // Vector register
992      return C_RegisterClass;
993
994    case 'Q': // Memory with base and unsigned 12-bit displacement
995    case 'R': // Likewise, plus an index
996    case 'S': // Memory with base and signed 20-bit displacement
997    case 'T': // Likewise, plus an index
998    case 'm': // Equivalent to 'T'.
999      return C_Memory;
1000
1001    case 'I': // Unsigned 8-bit constant
1002    case 'J': // Unsigned 12-bit constant
1003    case 'K': // Signed 16-bit constant
1004    case 'L': // Signed 20-bit displacement (on all targets we support)
1005    case 'M': // 0x7fffffff
1006      return C_Immediate;
1007
1008    default:
1009      break;
1010    }
1011  }
1012  return TargetLowering::getConstraintType(Constraint);
1013}
1014
1015TargetLowering::ConstraintWeight SystemZTargetLowering::
1016getSingleConstraintMatchWeight(AsmOperandInfo &info,
1017                               const char *constraint) const {
1018  ConstraintWeight weight = CW_Invalid;
1019  Value *CallOperandVal = info.CallOperandVal;
1020  // If we don't have a value, we can't do a match,
1021  // but allow it at the lowest weight.
1022  if (!CallOperandVal)
1023    return CW_Default;
1024  Type *type = CallOperandVal->getType();
1025  // Look at the constraint type.
1026  switch (*constraint) {
1027  default:
1028    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1029    break;
1030
1031  case 'a': // Address register
1032  case 'd': // Data register (equivalent to 'r')
1033  case 'h': // High-part register
1034  case 'r': // General-purpose register
1035    if (CallOperandVal->getType()->isIntegerTy())
1036      weight = CW_Register;
1037    break;
1038
1039  case 'f': // Floating-point register
1040    if (type->isFloatingPointTy())
1041      weight = CW_Register;
1042    break;
1043
1044  case 'v': // Vector register
1045    if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1046        Subtarget.hasVector())
1047      weight = CW_Register;
1048    break;
1049
1050  case 'I': // Unsigned 8-bit constant
1051    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1052      if (isUInt<8>(C->getZExtValue()))
1053        weight = CW_Constant;
1054    break;
1055
1056  case 'J': // Unsigned 12-bit constant
1057    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1058      if (isUInt<12>(C->getZExtValue()))
1059        weight = CW_Constant;
1060    break;
1061
1062  case 'K': // Signed 16-bit constant
1063    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1064      if (isInt<16>(C->getSExtValue()))
1065        weight = CW_Constant;
1066    break;
1067
1068  case 'L': // Signed 20-bit displacement (on all targets we support)
1069    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1070      if (isInt<20>(C->getSExtValue()))
1071        weight = CW_Constant;
1072    break;
1073
1074  case 'M': // 0x7fffffff
1075    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1076      if (C->getZExtValue() == 0x7fffffff)
1077        weight = CW_Constant;
1078    break;
1079  }
1080  return weight;
1081}
1082
1083// Parse a "{tNNN}" register constraint for which the register type "t"
1084// has already been verified.  MC is the class associated with "t" and
1085// Map maps 0-based register numbers to LLVM register numbers.
1086static std::pair<unsigned, const TargetRegisterClass *>
1087parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1088                    const unsigned *Map, unsigned Size) {
1089  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1090  if (isdigit(Constraint[2])) {
1091    unsigned Index;
1092    bool Failed =
1093        Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1094    if (!Failed && Index < Size && Map[Index])
1095      return std::make_pair(Map[Index], RC);
1096  }
1097  return std::make_pair(0U, nullptr);
1098}
1099
1100std::pair<unsigned, const TargetRegisterClass *>
1101SystemZTargetLowering::getRegForInlineAsmConstraint(
1102    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1103  if (Constraint.size() == 1) {
1104    // GCC Constraint Letters
1105    switch (Constraint[0]) {
1106    default: break;
1107    case 'd': // Data register (equivalent to 'r')
1108    case 'r': // General-purpose register
1109      if (VT == MVT::i64)
1110        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1111      else if (VT == MVT::i128)
1112        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1113      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1114
1115    case 'a': // Address register
1116      if (VT == MVT::i64)
1117        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1118      else if (VT == MVT::i128)
1119        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1120      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1121
1122    case 'h': // High-part register (an LLVM extension)
1123      return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1124
1125    case 'f': // Floating-point register
1126      if (VT == MVT::f64)
1127        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1128      else if (VT == MVT::f128)
1129        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1130      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1131
1132    case 'v': // Vector register
1133      if (Subtarget.hasVector()) {
1134        if (VT == MVT::f32)
1135          return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1136        if (VT == MVT::f64)
1137          return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1138        return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1139      }
1140      break;
1141    }
1142  }
1143  if (Constraint.size() > 0 && Constraint[0] == '{') {
1144    // We need to override the default register parsing for GPRs and FPRs
1145    // because the interpretation depends on VT.  The internal names of
1146    // the registers are also different from the external names
1147    // (F0D and F0S instead of F0, etc.).
1148    if (Constraint[1] == 'r') {
1149      if (VT == MVT::i32)
1150        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1151                                   SystemZMC::GR32Regs, 16);
1152      if (VT == MVT::i128)
1153        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1154                                   SystemZMC::GR128Regs, 16);
1155      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1156                                 SystemZMC::GR64Regs, 16);
1157    }
1158    if (Constraint[1] == 'f') {
1159      if (VT == MVT::f32)
1160        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1161                                   SystemZMC::FP32Regs, 16);
1162      if (VT == MVT::f128)
1163        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1164                                   SystemZMC::FP128Regs, 16);
1165      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1166                                 SystemZMC::FP64Regs, 16);
1167    }
1168    if (Constraint[1] == 'v') {
1169      if (VT == MVT::f32)
1170        return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1171                                   SystemZMC::VR32Regs, 32);
1172      if (VT == MVT::f64)
1173        return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1174                                   SystemZMC::VR64Regs, 32);
1175      return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1176                                 SystemZMC::VR128Regs, 32);
1177    }
1178  }
1179  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1180}
1181
1182void SystemZTargetLowering::
1183LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1184                             std::vector<SDValue> &Ops,
1185                             SelectionDAG &DAG) const {
1186  // Only support length 1 constraints for now.
1187  if (Constraint.length() == 1) {
1188    switch (Constraint[0]) {
1189    case 'I': // Unsigned 8-bit constant
1190      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1191        if (isUInt<8>(C->getZExtValue()))
1192          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1193                                              Op.getValueType()));
1194      return;
1195
1196    case 'J': // Unsigned 12-bit constant
1197      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1198        if (isUInt<12>(C->getZExtValue()))
1199          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1200                                              Op.getValueType()));
1201      return;
1202
1203    case 'K': // Signed 16-bit constant
1204      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1205        if (isInt<16>(C->getSExtValue()))
1206          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1207                                              Op.getValueType()));
1208      return;
1209
1210    case 'L': // Signed 20-bit displacement (on all targets we support)
1211      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1212        if (isInt<20>(C->getSExtValue()))
1213          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1214                                              Op.getValueType()));
1215      return;
1216
1217    case 'M': // 0x7fffffff
1218      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1219        if (C->getZExtValue() == 0x7fffffff)
1220          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1221                                              Op.getValueType()));
1222      return;
1223    }
1224  }
1225  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1226}
1227
1228//===----------------------------------------------------------------------===//
1229// Calling conventions
1230//===----------------------------------------------------------------------===//
1231
1232#include "SystemZGenCallingConv.inc"
1233
1234const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1235  CallingConv::ID) const {
1236  static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1237                                           SystemZ::R14D, 0 };
1238  return ScratchRegs;
1239}
1240
1241bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1242                                                     Type *ToType) const {
1243  return isTruncateFree(FromType, ToType);
1244}
1245
1246bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1247  return CI->isTailCall();
1248}
1249
1250// We do not yet support 128-bit single-element vector types.  If the user
1251// attempts to use such types as function argument or return type, prefer
1252// to error out instead of emitting code violating the ABI.
1253static void VerifyVectorType(MVT VT, EVT ArgVT) {
1254  if (ArgVT.isVector() && !VT.isVector())
1255    report_fatal_error("Unsupported vector argument or return type");
1256}
1257
1258static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1259  for (unsigned i = 0; i < Ins.size(); ++i)
1260    VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1261}
1262
1263static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1264  for (unsigned i = 0; i < Outs.size(); ++i)
1265    VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1266}
1267
1268// Value is a value that has been passed to us in the location described by VA
1269// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1270// any loads onto Chain.
1271static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1272                                   CCValAssign &VA, SDValue Chain,
1273                                   SDValue Value) {
1274  // If the argument has been promoted from a smaller type, insert an
1275  // assertion to capture this.
1276  if (VA.getLocInfo() == CCValAssign::SExt)
1277    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1278                        DAG.getValueType(VA.getValVT()));
1279  else if (VA.getLocInfo() == CCValAssign::ZExt)
1280    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1281                        DAG.getValueType(VA.getValVT()));
1282
1283  if (VA.isExtInLoc())
1284    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1285  else if (VA.getLocInfo() == CCValAssign::BCvt) {
1286    // If this is a short vector argument loaded from the stack,
1287    // extend from i64 to full vector size and then bitcast.
1288    assert(VA.getLocVT() == MVT::i64);
1289    assert(VA.getValVT().isVector());
1290    Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1291    Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1292  } else
1293    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1294  return Value;
1295}
1296
1297// Value is a value of type VA.getValVT() that we need to copy into
1298// the location described by VA.  Return a copy of Value converted to
1299// VA.getValVT().  The caller is responsible for handling indirect values.
1300static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1301                                   CCValAssign &VA, SDValue Value) {
1302  switch (VA.getLocInfo()) {
1303  case CCValAssign::SExt:
1304    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1305  case CCValAssign::ZExt:
1306    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1307  case CCValAssign::AExt:
1308    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1309  case CCValAssign::BCvt:
1310    // If this is a short vector argument to be stored to the stack,
1311    // bitcast to v2i64 and then extract first element.
1312    assert(VA.getLocVT() == MVT::i64);
1313    assert(VA.getValVT().isVector());
1314    Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1315    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1316                       DAG.getConstant(0, DL, MVT::i32));
1317  case CCValAssign::Full:
1318    return Value;
1319  default:
1320    llvm_unreachable("Unhandled getLocInfo()");
1321  }
1322}
1323
1324SDValue SystemZTargetLowering::LowerFormalArguments(
1325    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1326    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1327    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1328  MachineFunction &MF = DAG.getMachineFunction();
1329  MachineFrameInfo &MFI = MF.getFrameInfo();
1330  MachineRegisterInfo &MRI = MF.getRegInfo();
1331  SystemZMachineFunctionInfo *FuncInfo =
1332      MF.getInfo<SystemZMachineFunctionInfo>();
1333  auto *TFL =
1334      static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1335  EVT PtrVT = getPointerTy(DAG.getDataLayout());
1336
1337  // Detect unsupported vector argument types.
1338  if (Subtarget.hasVector())
1339    VerifyVectorTypes(Ins);
1340
1341  // Assign locations to all of the incoming arguments.
1342  SmallVector<CCValAssign, 16> ArgLocs;
1343  SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1344  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1345
1346  unsigned NumFixedGPRs = 0;
1347  unsigned NumFixedFPRs = 0;
1348  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1349    SDValue ArgValue;
1350    CCValAssign &VA = ArgLocs[I];
1351    EVT LocVT = VA.getLocVT();
1352    if (VA.isRegLoc()) {
1353      // Arguments passed in registers
1354      const TargetRegisterClass *RC;
1355      switch (LocVT.getSimpleVT().SimpleTy) {
1356      default:
1357        // Integers smaller than i64 should be promoted to i64.
1358        llvm_unreachable("Unexpected argument type");
1359      case MVT::i32:
1360        NumFixedGPRs += 1;
1361        RC = &SystemZ::GR32BitRegClass;
1362        break;
1363      case MVT::i64:
1364        NumFixedGPRs += 1;
1365        RC = &SystemZ::GR64BitRegClass;
1366        break;
1367      case MVT::f32:
1368        NumFixedFPRs += 1;
1369        RC = &SystemZ::FP32BitRegClass;
1370        break;
1371      case MVT::f64:
1372        NumFixedFPRs += 1;
1373        RC = &SystemZ::FP64BitRegClass;
1374        break;
1375      case MVT::v16i8:
1376      case MVT::v8i16:
1377      case MVT::v4i32:
1378      case MVT::v2i64:
1379      case MVT::v4f32:
1380      case MVT::v2f64:
1381        RC = &SystemZ::VR128BitRegClass;
1382        break;
1383      }
1384
1385      Register VReg = MRI.createVirtualRegister(RC);
1386      MRI.addLiveIn(VA.getLocReg(), VReg);
1387      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1388    } else {
1389      assert(VA.isMemLoc() && "Argument not register or memory");
1390
1391      // Create the frame index object for this incoming parameter.
1392      int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1393                                     VA.getLocMemOffset(), true);
1394
1395      // Create the SelectionDAG nodes corresponding to a load
1396      // from this parameter.  Unpromoted ints and floats are
1397      // passed as right-justified 8-byte values.
1398      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1399      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1400        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1401                          DAG.getIntPtrConstant(4, DL));
1402      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1403                             MachinePointerInfo::getFixedStack(MF, FI));
1404    }
1405
1406    // Convert the value of the argument register into the value that's
1407    // being passed.
1408    if (VA.getLocInfo() == CCValAssign::Indirect) {
1409      InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1410                                   MachinePointerInfo()));
1411      // If the original argument was split (e.g. i128), we need
1412      // to load all parts of it here (using the same address).
1413      unsigned ArgIndex = Ins[I].OrigArgIndex;
1414      assert (Ins[I].PartOffset == 0);
1415      while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1416        CCValAssign &PartVA = ArgLocs[I + 1];
1417        unsigned PartOffset = Ins[I + 1].PartOffset;
1418        SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1419                                      DAG.getIntPtrConstant(PartOffset, DL));
1420        InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1421                                     MachinePointerInfo()));
1422        ++I;
1423      }
1424    } else
1425      InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1426  }
1427
1428  if (IsVarArg) {
1429    // Save the number of non-varargs registers for later use by va_start, etc.
1430    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1431    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1432
1433    // Likewise the address (in the form of a frame index) of where the
1434    // first stack vararg would be.  The 1-byte size here is arbitrary.
1435    int64_t StackSize = CCInfo.getNextStackOffset();
1436    FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1437
1438    // ...and a similar frame index for the caller-allocated save area
1439    // that will be used to store the incoming registers.
1440    int64_t RegSaveOffset = -SystemZMC::CallFrameSize;
1441    unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1442    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1443
1444    // Store the FPR varargs in the reserved frame slots.  (We store the
1445    // GPRs as part of the prologue.)
1446    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1447      SDValue MemOps[SystemZ::NumArgFPRs];
1448      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1449        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1450        int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1451        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1452        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1453                                     &SystemZ::FP64BitRegClass);
1454        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1455        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1456                                 MachinePointerInfo::getFixedStack(MF, FI));
1457      }
1458      // Join the stores, which are independent of one another.
1459      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1460                          makeArrayRef(&MemOps[NumFixedFPRs],
1461                                       SystemZ::NumArgFPRs-NumFixedFPRs));
1462    }
1463  }
1464
1465  return Chain;
1466}
1467
1468static bool canUseSiblingCall(const CCState &ArgCCInfo,
1469                              SmallVectorImpl<CCValAssign> &ArgLocs,
1470                              SmallVectorImpl<ISD::OutputArg> &Outs) {
1471  // Punt if there are any indirect or stack arguments, or if the call
1472  // needs the callee-saved argument register R6, or if the call uses
1473  // the callee-saved register arguments SwiftSelf and SwiftError.
1474  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1475    CCValAssign &VA = ArgLocs[I];
1476    if (VA.getLocInfo() == CCValAssign::Indirect)
1477      return false;
1478    if (!VA.isRegLoc())
1479      return false;
1480    Register Reg = VA.getLocReg();
1481    if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1482      return false;
1483    if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1484      return false;
1485  }
1486  return true;
1487}
1488
1489SDValue
1490SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1491                                 SmallVectorImpl<SDValue> &InVals) const {
1492  SelectionDAG &DAG = CLI.DAG;
1493  SDLoc &DL = CLI.DL;
1494  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1495  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1496  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1497  SDValue Chain = CLI.Chain;
1498  SDValue Callee = CLI.Callee;
1499  bool &IsTailCall = CLI.IsTailCall;
1500  CallingConv::ID CallConv = CLI.CallConv;
1501  bool IsVarArg = CLI.IsVarArg;
1502  MachineFunction &MF = DAG.getMachineFunction();
1503  EVT PtrVT = getPointerTy(MF.getDataLayout());
1504
1505  // Detect unsupported vector argument and return types.
1506  if (Subtarget.hasVector()) {
1507    VerifyVectorTypes(Outs);
1508    VerifyVectorTypes(Ins);
1509  }
1510
1511  // Analyze the operands of the call, assigning locations to each operand.
1512  SmallVector<CCValAssign, 16> ArgLocs;
1513  SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1514  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1515
1516  // We don't support GuaranteedTailCallOpt, only automatically-detected
1517  // sibling calls.
1518  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1519    IsTailCall = false;
1520
1521  // Get a count of how many bytes are to be pushed on the stack.
1522  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1523
1524  // Mark the start of the call.
1525  if (!IsTailCall)
1526    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1527
1528  // Copy argument values to their designated locations.
1529  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1530  SmallVector<SDValue, 8> MemOpChains;
1531  SDValue StackPtr;
1532  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1533    CCValAssign &VA = ArgLocs[I];
1534    SDValue ArgValue = OutVals[I];
1535
1536    if (VA.getLocInfo() == CCValAssign::Indirect) {
1537      // Store the argument in a stack slot and pass its address.
1538      SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1539      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1540      MemOpChains.push_back(
1541          DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1542                       MachinePointerInfo::getFixedStack(MF, FI)));
1543      // If the original argument was split (e.g. i128), we need
1544      // to store all parts of it here (and pass just one address).
1545      unsigned ArgIndex = Outs[I].OrigArgIndex;
1546      assert (Outs[I].PartOffset == 0);
1547      while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1548        SDValue PartValue = OutVals[I + 1];
1549        unsigned PartOffset = Outs[I + 1].PartOffset;
1550        SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1551                                      DAG.getIntPtrConstant(PartOffset, DL));
1552        MemOpChains.push_back(
1553            DAG.getStore(Chain, DL, PartValue, Address,
1554                         MachinePointerInfo::getFixedStack(MF, FI)));
1555        ++I;
1556      }
1557      ArgValue = SpillSlot;
1558    } else
1559      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1560
1561    if (VA.isRegLoc())
1562      // Queue up the argument copies and emit them at the end.
1563      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1564    else {
1565      assert(VA.isMemLoc() && "Argument not register or memory");
1566
1567      // Work out the address of the stack slot.  Unpromoted ints and
1568      // floats are passed as right-justified 8-byte values.
1569      if (!StackPtr.getNode())
1570        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1571      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1572      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1573        Offset += 4;
1574      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1575                                    DAG.getIntPtrConstant(Offset, DL));
1576
1577      // Emit the store.
1578      MemOpChains.push_back(
1579          DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1580    }
1581  }
1582
1583  // Join the stores, which are independent of one another.
1584  if (!MemOpChains.empty())
1585    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1586
1587  // Accept direct calls by converting symbolic call addresses to the
1588  // associated Target* opcodes.  Force %r1 to be used for indirect
1589  // tail calls.
1590  SDValue Glue;
1591  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1592    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1593    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1594  } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1595    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1596    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1597  } else if (IsTailCall) {
1598    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1599    Glue = Chain.getValue(1);
1600    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1601  }
1602
1603  // Build a sequence of copy-to-reg nodes, chained and glued together.
1604  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1605    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1606                             RegsToPass[I].second, Glue);
1607    Glue = Chain.getValue(1);
1608  }
1609
1610  // The first call operand is the chain and the second is the target address.
1611  SmallVector<SDValue, 8> Ops;
1612  Ops.push_back(Chain);
1613  Ops.push_back(Callee);
1614
1615  // Add argument registers to the end of the list so that they are
1616  // known live into the call.
1617  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1618    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1619                                  RegsToPass[I].second.getValueType()));
1620
1621  // Add a register mask operand representing the call-preserved registers.
1622  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1623  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1624  assert(Mask && "Missing call preserved mask for calling convention");
1625  Ops.push_back(DAG.getRegisterMask(Mask));
1626
1627  // Glue the call to the argument copies, if any.
1628  if (Glue.getNode())
1629    Ops.push_back(Glue);
1630
1631  // Emit the call.
1632  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1633  if (IsTailCall)
1634    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1635  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1636  Glue = Chain.getValue(1);
1637
1638  // Mark the end of the call, which is glued to the call itself.
1639  Chain = DAG.getCALLSEQ_END(Chain,
1640                             DAG.getConstant(NumBytes, DL, PtrVT, true),
1641                             DAG.getConstant(0, DL, PtrVT, true),
1642                             Glue, DL);
1643  Glue = Chain.getValue(1);
1644
1645  // Assign locations to each value returned by this call.
1646  SmallVector<CCValAssign, 16> RetLocs;
1647  CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1648  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1649
1650  // Copy all of the result registers out of their specified physreg.
1651  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1652    CCValAssign &VA = RetLocs[I];
1653
1654    // Copy the value out, gluing the copy to the end of the call sequence.
1655    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1656                                          VA.getLocVT(), Glue);
1657    Chain = RetValue.getValue(1);
1658    Glue = RetValue.getValue(2);
1659
1660    // Convert the value of the return register into the value that's
1661    // being returned.
1662    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1663  }
1664
1665  return Chain;
1666}
1667
1668bool SystemZTargetLowering::
1669CanLowerReturn(CallingConv::ID CallConv,
1670               MachineFunction &MF, bool isVarArg,
1671               const SmallVectorImpl<ISD::OutputArg> &Outs,
1672               LLVMContext &Context) const {
1673  // Detect unsupported vector return types.
1674  if (Subtarget.hasVector())
1675    VerifyVectorTypes(Outs);
1676
1677  // Special case that we cannot easily detect in RetCC_SystemZ since
1678  // i128 is not a legal type.
1679  for (auto &Out : Outs)
1680    if (Out.ArgVT == MVT::i128)
1681      return false;
1682
1683  SmallVector<CCValAssign, 16> RetLocs;
1684  CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1685  return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1686}
1687
1688SDValue
1689SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1690                                   bool IsVarArg,
1691                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1692                                   const SmallVectorImpl<SDValue> &OutVals,
1693                                   const SDLoc &DL, SelectionDAG &DAG) const {
1694  MachineFunction &MF = DAG.getMachineFunction();
1695
1696  // Detect unsupported vector return types.
1697  if (Subtarget.hasVector())
1698    VerifyVectorTypes(Outs);
1699
1700  // Assign locations to each returned value.
1701  SmallVector<CCValAssign, 16> RetLocs;
1702  CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1703  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1704
1705  // Quick exit for void returns
1706  if (RetLocs.empty())
1707    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1708
1709  if (CallConv == CallingConv::GHC)
1710    report_fatal_error("GHC functions return void only");
1711
1712  // Copy the result values into the output registers.
1713  SDValue Glue;
1714  SmallVector<SDValue, 4> RetOps;
1715  RetOps.push_back(Chain);
1716  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1717    CCValAssign &VA = RetLocs[I];
1718    SDValue RetValue = OutVals[I];
1719
1720    // Make the return register live on exit.
1721    assert(VA.isRegLoc() && "Can only return in registers!");
1722
1723    // Promote the value as required.
1724    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1725
1726    // Chain and glue the copies together.
1727    Register Reg = VA.getLocReg();
1728    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1729    Glue = Chain.getValue(1);
1730    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1731  }
1732
1733  // Update chain and glue.
1734  RetOps[0] = Chain;
1735  if (Glue.getNode())
1736    RetOps.push_back(Glue);
1737
1738  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1739}
1740
1741// Return true if Op is an intrinsic node with chain that returns the CC value
1742// as its only (other) argument.  Provide the associated SystemZISD opcode and
1743// the mask of valid CC values if so.
1744static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1745                                      unsigned &CCValid) {
1746  unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1747  switch (Id) {
1748  case Intrinsic::s390_tbegin:
1749    Opcode = SystemZISD::TBEGIN;
1750    CCValid = SystemZ::CCMASK_TBEGIN;
1751    return true;
1752
1753  case Intrinsic::s390_tbegin_nofloat:
1754    Opcode = SystemZISD::TBEGIN_NOFLOAT;
1755    CCValid = SystemZ::CCMASK_TBEGIN;
1756    return true;
1757
1758  case Intrinsic::s390_tend:
1759    Opcode = SystemZISD::TEND;
1760    CCValid = SystemZ::CCMASK_TEND;
1761    return true;
1762
1763  default:
1764    return false;
1765  }
1766}
1767
1768// Return true if Op is an intrinsic node without chain that returns the
1769// CC value as its final argument.  Provide the associated SystemZISD
1770// opcode and the mask of valid CC values if so.
1771static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1772  unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1773  switch (Id) {
1774  case Intrinsic::s390_vpkshs:
1775  case Intrinsic::s390_vpksfs:
1776  case Intrinsic::s390_vpksgs:
1777    Opcode = SystemZISD::PACKS_CC;
1778    CCValid = SystemZ::CCMASK_VCMP;
1779    return true;
1780
1781  case Intrinsic::s390_vpklshs:
1782  case Intrinsic::s390_vpklsfs:
1783  case Intrinsic::s390_vpklsgs:
1784    Opcode = SystemZISD::PACKLS_CC;
1785    CCValid = SystemZ::CCMASK_VCMP;
1786    return true;
1787
1788  case Intrinsic::s390_vceqbs:
1789  case Intrinsic::s390_vceqhs:
1790  case Intrinsic::s390_vceqfs:
1791  case Intrinsic::s390_vceqgs:
1792    Opcode = SystemZISD::VICMPES;
1793    CCValid = SystemZ::CCMASK_VCMP;
1794    return true;
1795
1796  case Intrinsic::s390_vchbs:
1797  case Intrinsic::s390_vchhs:
1798  case Intrinsic::s390_vchfs:
1799  case Intrinsic::s390_vchgs:
1800    Opcode = SystemZISD::VICMPHS;
1801    CCValid = SystemZ::CCMASK_VCMP;
1802    return true;
1803
1804  case Intrinsic::s390_vchlbs:
1805  case Intrinsic::s390_vchlhs:
1806  case Intrinsic::s390_vchlfs:
1807  case Intrinsic::s390_vchlgs:
1808    Opcode = SystemZISD::VICMPHLS;
1809    CCValid = SystemZ::CCMASK_VCMP;
1810    return true;
1811
1812  case Intrinsic::s390_vtm:
1813    Opcode = SystemZISD::VTM;
1814    CCValid = SystemZ::CCMASK_VCMP;
1815    return true;
1816
1817  case Intrinsic::s390_vfaebs:
1818  case Intrinsic::s390_vfaehs:
1819  case Intrinsic::s390_vfaefs:
1820    Opcode = SystemZISD::VFAE_CC;
1821    CCValid = SystemZ::CCMASK_ANY;
1822    return true;
1823
1824  case Intrinsic::s390_vfaezbs:
1825  case Intrinsic::s390_vfaezhs:
1826  case Intrinsic::s390_vfaezfs:
1827    Opcode = SystemZISD::VFAEZ_CC;
1828    CCValid = SystemZ::CCMASK_ANY;
1829    return true;
1830
1831  case Intrinsic::s390_vfeebs:
1832  case Intrinsic::s390_vfeehs:
1833  case Intrinsic::s390_vfeefs:
1834    Opcode = SystemZISD::VFEE_CC;
1835    CCValid = SystemZ::CCMASK_ANY;
1836    return true;
1837
1838  case Intrinsic::s390_vfeezbs:
1839  case Intrinsic::s390_vfeezhs:
1840  case Intrinsic::s390_vfeezfs:
1841    Opcode = SystemZISD::VFEEZ_CC;
1842    CCValid = SystemZ::CCMASK_ANY;
1843    return true;
1844
1845  case Intrinsic::s390_vfenebs:
1846  case Intrinsic::s390_vfenehs:
1847  case Intrinsic::s390_vfenefs:
1848    Opcode = SystemZISD::VFENE_CC;
1849    CCValid = SystemZ::CCMASK_ANY;
1850    return true;
1851
1852  case Intrinsic::s390_vfenezbs:
1853  case Intrinsic::s390_vfenezhs:
1854  case Intrinsic::s390_vfenezfs:
1855    Opcode = SystemZISD::VFENEZ_CC;
1856    CCValid = SystemZ::CCMASK_ANY;
1857    return true;
1858
1859  case Intrinsic::s390_vistrbs:
1860  case Intrinsic::s390_vistrhs:
1861  case Intrinsic::s390_vistrfs:
1862    Opcode = SystemZISD::VISTR_CC;
1863    CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1864    return true;
1865
1866  case Intrinsic::s390_vstrcbs:
1867  case Intrinsic::s390_vstrchs:
1868  case Intrinsic::s390_vstrcfs:
1869    Opcode = SystemZISD::VSTRC_CC;
1870    CCValid = SystemZ::CCMASK_ANY;
1871    return true;
1872
1873  case Intrinsic::s390_vstrczbs:
1874  case Intrinsic::s390_vstrczhs:
1875  case Intrinsic::s390_vstrczfs:
1876    Opcode = SystemZISD::VSTRCZ_CC;
1877    CCValid = SystemZ::CCMASK_ANY;
1878    return true;
1879
1880  case Intrinsic::s390_vstrsb:
1881  case Intrinsic::s390_vstrsh:
1882  case Intrinsic::s390_vstrsf:
1883    Opcode = SystemZISD::VSTRS_CC;
1884    CCValid = SystemZ::CCMASK_ANY;
1885    return true;
1886
1887  case Intrinsic::s390_vstrszb:
1888  case Intrinsic::s390_vstrszh:
1889  case Intrinsic::s390_vstrszf:
1890    Opcode = SystemZISD::VSTRSZ_CC;
1891    CCValid = SystemZ::CCMASK_ANY;
1892    return true;
1893
1894  case Intrinsic::s390_vfcedbs:
1895  case Intrinsic::s390_vfcesbs:
1896    Opcode = SystemZISD::VFCMPES;
1897    CCValid = SystemZ::CCMASK_VCMP;
1898    return true;
1899
1900  case Intrinsic::s390_vfchdbs:
1901  case Intrinsic::s390_vfchsbs:
1902    Opcode = SystemZISD::VFCMPHS;
1903    CCValid = SystemZ::CCMASK_VCMP;
1904    return true;
1905
1906  case Intrinsic::s390_vfchedbs:
1907  case Intrinsic::s390_vfchesbs:
1908    Opcode = SystemZISD::VFCMPHES;
1909    CCValid = SystemZ::CCMASK_VCMP;
1910    return true;
1911
1912  case Intrinsic::s390_vftcidb:
1913  case Intrinsic::s390_vftcisb:
1914    Opcode = SystemZISD::VFTCI;
1915    CCValid = SystemZ::CCMASK_VCMP;
1916    return true;
1917
1918  case Intrinsic::s390_tdc:
1919    Opcode = SystemZISD::TDC;
1920    CCValid = SystemZ::CCMASK_TDC;
1921    return true;
1922
1923  default:
1924    return false;
1925  }
1926}
1927
1928// Emit an intrinsic with chain and an explicit CC register result.
1929static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1930                                           unsigned Opcode) {
1931  // Copy all operands except the intrinsic ID.
1932  unsigned NumOps = Op.getNumOperands();
1933  SmallVector<SDValue, 6> Ops;
1934  Ops.reserve(NumOps - 1);
1935  Ops.push_back(Op.getOperand(0));
1936  for (unsigned I = 2; I < NumOps; ++I)
1937    Ops.push_back(Op.getOperand(I));
1938
1939  assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1940  SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1941  SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1942  SDValue OldChain = SDValue(Op.getNode(), 1);
1943  SDValue NewChain = SDValue(Intr.getNode(), 1);
1944  DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1945  return Intr.getNode();
1946}
1947
1948// Emit an intrinsic with an explicit CC register result.
1949static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1950                                   unsigned Opcode) {
1951  // Copy all operands except the intrinsic ID.
1952  unsigned NumOps = Op.getNumOperands();
1953  SmallVector<SDValue, 6> Ops;
1954  Ops.reserve(NumOps - 1);
1955  for (unsigned I = 1; I < NumOps; ++I)
1956    Ops.push_back(Op.getOperand(I));
1957
1958  SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1959  return Intr.getNode();
1960}
1961
1962// CC is a comparison that will be implemented using an integer or
1963// floating-point comparison.  Return the condition code mask for
1964// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1965// unsigned comparisons and clear for signed ones.  In the floating-point
1966// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1967static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1968#define CONV(X) \
1969  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1970  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1971  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1972
1973  switch (CC) {
1974  default:
1975    llvm_unreachable("Invalid integer condition!");
1976
1977  CONV(EQ);
1978  CONV(NE);
1979  CONV(GT);
1980  CONV(GE);
1981  CONV(LT);
1982  CONV(LE);
1983
1984  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1985  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1986  }
1987#undef CONV
1988}
1989
1990// If C can be converted to a comparison against zero, adjust the operands
1991// as necessary.
1992static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1993  if (C.ICmpType == SystemZICMP::UnsignedOnly)
1994    return;
1995
1996  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1997  if (!ConstOp1)
1998    return;
1999
2000  int64_t Value = ConstOp1->getSExtValue();
2001  if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2002      (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2003      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2004      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2005    C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2006    C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2007  }
2008}
2009
2010// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2011// adjust the operands as necessary.
2012static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2013                             Comparison &C) {
2014  // For us to make any changes, it must a comparison between a single-use
2015  // load and a constant.
2016  if (!C.Op0.hasOneUse() ||
2017      C.Op0.getOpcode() != ISD::LOAD ||
2018      C.Op1.getOpcode() != ISD::Constant)
2019    return;
2020
2021  // We must have an 8- or 16-bit load.
2022  auto *Load = cast<LoadSDNode>(C.Op0);
2023  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
2024  if (NumBits != 8 && NumBits != 16)
2025    return;
2026
2027  // The load must be an extending one and the constant must be within the
2028  // range of the unextended value.
2029  auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2030  uint64_t Value = ConstOp1->getZExtValue();
2031  uint64_t Mask = (1 << NumBits) - 1;
2032  if (Load->getExtensionType() == ISD::SEXTLOAD) {
2033    // Make sure that ConstOp1 is in range of C.Op0.
2034    int64_t SignedValue = ConstOp1->getSExtValue();
2035    if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2036      return;
2037    if (C.ICmpType != SystemZICMP::SignedOnly) {
2038      // Unsigned comparison between two sign-extended values is equivalent
2039      // to unsigned comparison between two zero-extended values.
2040      Value &= Mask;
2041    } else if (NumBits == 8) {
2042      // Try to treat the comparison as unsigned, so that we can use CLI.
2043      // Adjust CCMask and Value as necessary.
2044      if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2045        // Test whether the high bit of the byte is set.
2046        Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2047      else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2048        // Test whether the high bit of the byte is clear.
2049        Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2050      else
2051        // No instruction exists for this combination.
2052        return;
2053      C.ICmpType = SystemZICMP::UnsignedOnly;
2054    }
2055  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2056    if (Value > Mask)
2057      return;
2058    // If the constant is in range, we can use any comparison.
2059    C.ICmpType = SystemZICMP::Any;
2060  } else
2061    return;
2062
2063  // Make sure that the first operand is an i32 of the right extension type.
2064  ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2065                              ISD::SEXTLOAD :
2066                              ISD::ZEXTLOAD);
2067  if (C.Op0.getValueType() != MVT::i32 ||
2068      Load->getExtensionType() != ExtType) {
2069    C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2070                           Load->getBasePtr(), Load->getPointerInfo(),
2071                           Load->getMemoryVT(), Load->getAlignment(),
2072                           Load->getMemOperand()->getFlags());
2073    // Update the chain uses.
2074    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2075  }
2076
2077  // Make sure that the second operand is an i32 with the right value.
2078  if (C.Op1.getValueType() != MVT::i32 ||
2079      Value != ConstOp1->getZExtValue())
2080    C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2081}
2082
2083// Return true if Op is either an unextended load, or a load suitable
2084// for integer register-memory comparisons of type ICmpType.
2085static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2086  auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2087  if (Load) {
2088    // There are no instructions to compare a register with a memory byte.
2089    if (Load->getMemoryVT() == MVT::i8)
2090      return false;
2091    // Otherwise decide on extension type.
2092    switch (Load->getExtensionType()) {
2093    case ISD::NON_EXTLOAD:
2094      return true;
2095    case ISD::SEXTLOAD:
2096      return ICmpType != SystemZICMP::UnsignedOnly;
2097    case ISD::ZEXTLOAD:
2098      return ICmpType != SystemZICMP::SignedOnly;
2099    default:
2100      break;
2101    }
2102  }
2103  return false;
2104}
2105
2106// Return true if it is better to swap the operands of C.
2107static bool shouldSwapCmpOperands(const Comparison &C) {
2108  // Leave f128 comparisons alone, since they have no memory forms.
2109  if (C.Op0.getValueType() == MVT::f128)
2110    return false;
2111
2112  // Always keep a floating-point constant second, since comparisons with
2113  // zero can use LOAD TEST and comparisons with other constants make a
2114  // natural memory operand.
2115  if (isa<ConstantFPSDNode>(C.Op1))
2116    return false;
2117
2118  // Never swap comparisons with zero since there are many ways to optimize
2119  // those later.
2120  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2121  if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2122    return false;
2123
2124  // Also keep natural memory operands second if the loaded value is
2125  // only used here.  Several comparisons have memory forms.
2126  if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2127    return false;
2128
2129  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2130  // In that case we generally prefer the memory to be second.
2131  if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2132    // The only exceptions are when the second operand is a constant and
2133    // we can use things like CHHSI.
2134    if (!ConstOp1)
2135      return true;
2136    // The unsigned memory-immediate instructions can handle 16-bit
2137    // unsigned integers.
2138    if (C.ICmpType != SystemZICMP::SignedOnly &&
2139        isUInt<16>(ConstOp1->getZExtValue()))
2140      return false;
2141    // The signed memory-immediate instructions can handle 16-bit
2142    // signed integers.
2143    if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2144        isInt<16>(ConstOp1->getSExtValue()))
2145      return false;
2146    return true;
2147  }
2148
2149  // Try to promote the use of CGFR and CLGFR.
2150  unsigned Opcode0 = C.Op0.getOpcode();
2151  if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2152    return true;
2153  if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2154    return true;
2155  if (C.ICmpType != SystemZICMP::SignedOnly &&
2156      Opcode0 == ISD::AND &&
2157      C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2158      cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2159    return true;
2160
2161  return false;
2162}
2163
2164// Return a version of comparison CC mask CCMask in which the LT and GT
2165// actions are swapped.
2166static unsigned reverseCCMask(unsigned CCMask) {
2167  return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2168          (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2169          (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2170          (CCMask & SystemZ::CCMASK_CMP_UO));
2171}
2172
2173// Check whether C tests for equality between X and Y and whether X - Y
2174// or Y - X is also computed.  In that case it's better to compare the
2175// result of the subtraction against zero.
2176static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2177                                 Comparison &C) {
2178  if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2179      C.CCMask == SystemZ::CCMASK_CMP_NE) {
2180    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2181      SDNode *N = *I;
2182      if (N->getOpcode() == ISD::SUB &&
2183          ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2184           (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2185        C.Op0 = SDValue(N, 0);
2186        C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2187        return;
2188      }
2189    }
2190  }
2191}
2192
2193// Check whether C compares a floating-point value with zero and if that
2194// floating-point value is also negated.  In this case we can use the
2195// negation to set CC, so avoiding separate LOAD AND TEST and
2196// LOAD (NEGATIVE/COMPLEMENT) instructions.
2197static void adjustForFNeg(Comparison &C) {
2198  // This optimization is invalid for strict comparisons, since FNEG
2199  // does not raise any exceptions.
2200  if (C.Chain)
2201    return;
2202  auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2203  if (C1 && C1->isZero()) {
2204    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2205      SDNode *N = *I;
2206      if (N->getOpcode() == ISD::FNEG) {
2207        C.Op0 = SDValue(N, 0);
2208        C.CCMask = reverseCCMask(C.CCMask);
2209        return;
2210      }
2211    }
2212  }
2213}
2214
2215// Check whether C compares (shl X, 32) with 0 and whether X is
2216// also sign-extended.  In that case it is better to test the result
2217// of the sign extension using LTGFR.
2218//
2219// This case is important because InstCombine transforms a comparison
2220// with (sext (trunc X)) into a comparison with (shl X, 32).
2221static void adjustForLTGFR(Comparison &C) {
2222  // Check for a comparison between (shl X, 32) and 0.
2223  if (C.Op0.getOpcode() == ISD::SHL &&
2224      C.Op0.getValueType() == MVT::i64 &&
2225      C.Op1.getOpcode() == ISD::Constant &&
2226      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2227    auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2228    if (C1 && C1->getZExtValue() == 32) {
2229      SDValue ShlOp0 = C.Op0.getOperand(0);
2230      // See whether X has any SIGN_EXTEND_INREG uses.
2231      for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2232        SDNode *N = *I;
2233        if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2234            cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2235          C.Op0 = SDValue(N, 0);
2236          return;
2237        }
2238      }
2239    }
2240  }
2241}
2242
2243// If C compares the truncation of an extending load, try to compare
2244// the untruncated value instead.  This exposes more opportunities to
2245// reuse CC.
2246static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2247                               Comparison &C) {
2248  if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2249      C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2250      C.Op1.getOpcode() == ISD::Constant &&
2251      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2252    auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2253    if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2254      unsigned Type = L->getExtensionType();
2255      if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2256          (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2257        C.Op0 = C.Op0.getOperand(0);
2258        C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2259      }
2260    }
2261  }
2262}
2263
2264// Return true if shift operation N has an in-range constant shift value.
2265// Store it in ShiftVal if so.
2266static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2267  auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2268  if (!Shift)
2269    return false;
2270
2271  uint64_t Amount = Shift->getZExtValue();
2272  if (Amount >= N.getValueSizeInBits())
2273    return false;
2274
2275  ShiftVal = Amount;
2276  return true;
2277}
2278
2279// Check whether an AND with Mask is suitable for a TEST UNDER MASK
2280// instruction and whether the CC value is descriptive enough to handle
2281// a comparison of type Opcode between the AND result and CmpVal.
2282// CCMask says which comparison result is being tested and BitSize is
2283// the number of bits in the operands.  If TEST UNDER MASK can be used,
2284// return the corresponding CC mask, otherwise return 0.
2285static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2286                                     uint64_t Mask, uint64_t CmpVal,
2287                                     unsigned ICmpType) {
2288  assert(Mask != 0 && "ANDs with zero should have been removed by now");
2289
2290  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2291  if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2292      !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2293    return 0;
2294
2295  // Work out the masks for the lowest and highest bits.
2296  unsigned HighShift = 63 - countLeadingZeros(Mask);
2297  uint64_t High = uint64_t(1) << HighShift;
2298  uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2299
2300  // Signed ordered comparisons are effectively unsigned if the sign
2301  // bit is dropped.
2302  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2303
2304  // Check for equality comparisons with 0, or the equivalent.
2305  if (CmpVal == 0) {
2306    if (CCMask == SystemZ::CCMASK_CMP_EQ)
2307      return SystemZ::CCMASK_TM_ALL_0;
2308    if (CCMask == SystemZ::CCMASK_CMP_NE)
2309      return SystemZ::CCMASK_TM_SOME_1;
2310  }
2311  if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2312    if (CCMask == SystemZ::CCMASK_CMP_LT)
2313      return SystemZ::CCMASK_TM_ALL_0;
2314    if (CCMask == SystemZ::CCMASK_CMP_GE)
2315      return SystemZ::CCMASK_TM_SOME_1;
2316  }
2317  if (EffectivelyUnsigned && CmpVal < Low) {
2318    if (CCMask == SystemZ::CCMASK_CMP_LE)
2319      return SystemZ::CCMASK_TM_ALL_0;
2320    if (CCMask == SystemZ::CCMASK_CMP_GT)
2321      return SystemZ::CCMASK_TM_SOME_1;
2322  }
2323
2324  // Check for equality comparisons with the mask, or the equivalent.
2325  if (CmpVal == Mask) {
2326    if (CCMask == SystemZ::CCMASK_CMP_EQ)
2327      return SystemZ::CCMASK_TM_ALL_1;
2328    if (CCMask == SystemZ::CCMASK_CMP_NE)
2329      return SystemZ::CCMASK_TM_SOME_0;
2330  }
2331  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2332    if (CCMask == SystemZ::CCMASK_CMP_GT)
2333      return SystemZ::CCMASK_TM_ALL_1;
2334    if (CCMask == SystemZ::CCMASK_CMP_LE)
2335      return SystemZ::CCMASK_TM_SOME_0;
2336  }
2337  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2338    if (CCMask == SystemZ::CCMASK_CMP_GE)
2339      return SystemZ::CCMASK_TM_ALL_1;
2340    if (CCMask == SystemZ::CCMASK_CMP_LT)
2341      return SystemZ::CCMASK_TM_SOME_0;
2342  }
2343
2344  // Check for ordered comparisons with the top bit.
2345  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2346    if (CCMask == SystemZ::CCMASK_CMP_LE)
2347      return SystemZ::CCMASK_TM_MSB_0;
2348    if (CCMask == SystemZ::CCMASK_CMP_GT)
2349      return SystemZ::CCMASK_TM_MSB_1;
2350  }
2351  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2352    if (CCMask == SystemZ::CCMASK_CMP_LT)
2353      return SystemZ::CCMASK_TM_MSB_0;
2354    if (CCMask == SystemZ::CCMASK_CMP_GE)
2355      return SystemZ::CCMASK_TM_MSB_1;
2356  }
2357
2358  // If there are just two bits, we can do equality checks for Low and High
2359  // as well.
2360  if (Mask == Low + High) {
2361    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2362      return SystemZ::CCMASK_TM_MIXED_MSB_0;
2363    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2364      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2365    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2366      return SystemZ::CCMASK_TM_MIXED_MSB_1;
2367    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2368      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2369  }
2370
2371  // Looks like we've exhausted our options.
2372  return 0;
2373}
2374
2375// See whether C can be implemented as a TEST UNDER MASK instruction.
2376// Update the arguments with the TM version if so.
2377static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2378                                   Comparison &C) {
2379  // Check that we have a comparison with a constant.
2380  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2381  if (!ConstOp1)
2382    return;
2383  uint64_t CmpVal = ConstOp1->getZExtValue();
2384
2385  // Check whether the nonconstant input is an AND with a constant mask.
2386  Comparison NewC(C);
2387  uint64_t MaskVal;
2388  ConstantSDNode *Mask = nullptr;
2389  if (C.Op0.getOpcode() == ISD::AND) {
2390    NewC.Op0 = C.Op0.getOperand(0);
2391    NewC.Op1 = C.Op0.getOperand(1);
2392    Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2393    if (!Mask)
2394      return;
2395    MaskVal = Mask->getZExtValue();
2396  } else {
2397    // There is no instruction to compare with a 64-bit immediate
2398    // so use TMHH instead if possible.  We need an unsigned ordered
2399    // comparison with an i64 immediate.
2400    if (NewC.Op0.getValueType() != MVT::i64 ||
2401        NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2402        NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2403        NewC.ICmpType == SystemZICMP::SignedOnly)
2404      return;
2405    // Convert LE and GT comparisons into LT and GE.
2406    if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2407        NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2408      if (CmpVal == uint64_t(-1))
2409        return;
2410      CmpVal += 1;
2411      NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2412    }
2413    // If the low N bits of Op1 are zero than the low N bits of Op0 can
2414    // be masked off without changing the result.
2415    MaskVal = -(CmpVal & -CmpVal);
2416    NewC.ICmpType = SystemZICMP::UnsignedOnly;
2417  }
2418  if (!MaskVal)
2419    return;
2420
2421  // Check whether the combination of mask, comparison value and comparison
2422  // type are suitable.
2423  unsigned BitSize = NewC.Op0.getValueSizeInBits();
2424  unsigned NewCCMask, ShiftVal;
2425  if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2426      NewC.Op0.getOpcode() == ISD::SHL &&
2427      isSimpleShift(NewC.Op0, ShiftVal) &&
2428      (MaskVal >> ShiftVal != 0) &&
2429      ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2430      (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2431                                        MaskVal >> ShiftVal,
2432                                        CmpVal >> ShiftVal,
2433                                        SystemZICMP::Any))) {
2434    NewC.Op0 = NewC.Op0.getOperand(0);
2435    MaskVal >>= ShiftVal;
2436  } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2437             NewC.Op0.getOpcode() == ISD::SRL &&
2438             isSimpleShift(NewC.Op0, ShiftVal) &&
2439             (MaskVal << ShiftVal != 0) &&
2440             ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2441             (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2442                                               MaskVal << ShiftVal,
2443                                               CmpVal << ShiftVal,
2444                                               SystemZICMP::UnsignedOnly))) {
2445    NewC.Op0 = NewC.Op0.getOperand(0);
2446    MaskVal <<= ShiftVal;
2447  } else {
2448    NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2449                                     NewC.ICmpType);
2450    if (!NewCCMask)
2451      return;
2452  }
2453
2454  // Go ahead and make the change.
2455  C.Opcode = SystemZISD::TM;
2456  C.Op0 = NewC.Op0;
2457  if (Mask && Mask->getZExtValue() == MaskVal)
2458    C.Op1 = SDValue(Mask, 0);
2459  else
2460    C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2461  C.CCValid = SystemZ::CCMASK_TM;
2462  C.CCMask = NewCCMask;
2463}
2464
2465// See whether the comparison argument contains a redundant AND
2466// and remove it if so.  This sometimes happens due to the generic
2467// BRCOND expansion.
2468static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2469                                  Comparison &C) {
2470  if (C.Op0.getOpcode() != ISD::AND)
2471    return;
2472  auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2473  if (!Mask)
2474    return;
2475  KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2476  if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2477    return;
2478
2479  C.Op0 = C.Op0.getOperand(0);
2480}
2481
2482// Return a Comparison that tests the condition-code result of intrinsic
2483// node Call against constant integer CC using comparison code Cond.
2484// Opcode is the opcode of the SystemZISD operation for the intrinsic
2485// and CCValid is the set of possible condition-code results.
2486static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2487                                  SDValue Call, unsigned CCValid, uint64_t CC,
2488                                  ISD::CondCode Cond) {
2489  Comparison C(Call, SDValue(), SDValue());
2490  C.Opcode = Opcode;
2491  C.CCValid = CCValid;
2492  if (Cond == ISD::SETEQ)
2493    // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2494    C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2495  else if (Cond == ISD::SETNE)
2496    // ...and the inverse of that.
2497    C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2498  else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2499    // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2500    // always true for CC>3.
2501    C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2502  else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2503    // ...and the inverse of that.
2504    C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2505  else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2506    // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2507    // always true for CC>3.
2508    C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2509  else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2510    // ...and the inverse of that.
2511    C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2512  else
2513    llvm_unreachable("Unexpected integer comparison type");
2514  C.CCMask &= CCValid;
2515  return C;
2516}
2517
2518// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2519static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2520                         ISD::CondCode Cond, const SDLoc &DL,
2521                         SDValue Chain = SDValue(),
2522                         bool IsSignaling = false) {
2523  if (CmpOp1.getOpcode() == ISD::Constant) {
2524    assert(!Chain);
2525    uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2526    unsigned Opcode, CCValid;
2527    if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2528        CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2529        isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2530      return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2531    if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2532        CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2533        isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2534      return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2535  }
2536  Comparison C(CmpOp0, CmpOp1, Chain);
2537  C.CCMask = CCMaskForCondCode(Cond);
2538  if (C.Op0.getValueType().isFloatingPoint()) {
2539    C.CCValid = SystemZ::CCMASK_FCMP;
2540    if (!C.Chain)
2541      C.Opcode = SystemZISD::FCMP;
2542    else if (!IsSignaling)
2543      C.Opcode = SystemZISD::STRICT_FCMP;
2544    else
2545      C.Opcode = SystemZISD::STRICT_FCMPS;
2546    adjustForFNeg(C);
2547  } else {
2548    assert(!C.Chain);
2549    C.CCValid = SystemZ::CCMASK_ICMP;
2550    C.Opcode = SystemZISD::ICMP;
2551    // Choose the type of comparison.  Equality and inequality tests can
2552    // use either signed or unsigned comparisons.  The choice also doesn't
2553    // matter if both sign bits are known to be clear.  In those cases we
2554    // want to give the main isel code the freedom to choose whichever
2555    // form fits best.
2556    if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2557        C.CCMask == SystemZ::CCMASK_CMP_NE ||
2558        (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2559      C.ICmpType = SystemZICMP::Any;
2560    else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2561      C.ICmpType = SystemZICMP::UnsignedOnly;
2562    else
2563      C.ICmpType = SystemZICMP::SignedOnly;
2564    C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2565    adjustForRedundantAnd(DAG, DL, C);
2566    adjustZeroCmp(DAG, DL, C);
2567    adjustSubwordCmp(DAG, DL, C);
2568    adjustForSubtraction(DAG, DL, C);
2569    adjustForLTGFR(C);
2570    adjustICmpTruncate(DAG, DL, C);
2571  }
2572
2573  if (shouldSwapCmpOperands(C)) {
2574    std::swap(C.Op0, C.Op1);
2575    C.CCMask = reverseCCMask(C.CCMask);
2576  }
2577
2578  adjustForTestUnderMask(DAG, DL, C);
2579  return C;
2580}
2581
2582// Emit the comparison instruction described by C.
2583static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2584  if (!C.Op1.getNode()) {
2585    SDNode *Node;
2586    switch (C.Op0.getOpcode()) {
2587    case ISD::INTRINSIC_W_CHAIN:
2588      Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2589      return SDValue(Node, 0);
2590    case ISD::INTRINSIC_WO_CHAIN:
2591      Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2592      return SDValue(Node, Node->getNumValues() - 1);
2593    default:
2594      llvm_unreachable("Invalid comparison operands");
2595    }
2596  }
2597  if (C.Opcode == SystemZISD::ICMP)
2598    return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2599                       DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2600  if (C.Opcode == SystemZISD::TM) {
2601    bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2602                         bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2603    return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2604                       DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2605  }
2606  if (C.Chain) {
2607    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2608    return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2609  }
2610  return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2611}
2612
2613// Implement a 32-bit *MUL_LOHI operation by extending both operands to
2614// 64 bits.  Extend is the extension type to use.  Store the high part
2615// in Hi and the low part in Lo.
2616static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2617                            SDValue Op0, SDValue Op1, SDValue &Hi,
2618                            SDValue &Lo) {
2619  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2620  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2621  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2622  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2623                   DAG.getConstant(32, DL, MVT::i64));
2624  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2625  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2626}
2627
2628// Lower a binary operation that produces two VT results, one in each
2629// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2630// and Opcode performs the GR128 operation.  Store the even register result
2631// in Even and the odd register result in Odd.
2632static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2633                             unsigned Opcode, SDValue Op0, SDValue Op1,
2634                             SDValue &Even, SDValue &Odd) {
2635  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2636  bool Is32Bit = is32Bit(VT);
2637  Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2638  Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2639}
2640
2641// Return an i32 value that is 1 if the CC value produced by CCReg is
2642// in the mask CCMask and 0 otherwise.  CC is known to have a value
2643// in CCValid, so other values can be ignored.
2644static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2645                         unsigned CCValid, unsigned CCMask) {
2646  SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2647                   DAG.getConstant(0, DL, MVT::i32),
2648                   DAG.getTargetConstant(CCValid, DL, MVT::i32),
2649                   DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2650  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2651}
2652
2653// Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2654// be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2655// for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2656// floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2657// floating-point comparisons.
2658enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2659static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2660  switch (CC) {
2661  case ISD::SETOEQ:
2662  case ISD::SETEQ:
2663    switch (Mode) {
2664    case CmpMode::Int:         return SystemZISD::VICMPE;
2665    case CmpMode::FP:          return SystemZISD::VFCMPE;
2666    case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2667    case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2668    }
2669    llvm_unreachable("Bad mode");
2670
2671  case ISD::SETOGE:
2672  case ISD::SETGE:
2673    switch (Mode) {
2674    case CmpMode::Int:         return 0;
2675    case CmpMode::FP:          return SystemZISD::VFCMPHE;
2676    case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2677    case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2678    }
2679    llvm_unreachable("Bad mode");
2680
2681  case ISD::SETOGT:
2682  case ISD::SETGT:
2683    switch (Mode) {
2684    case CmpMode::Int:         return SystemZISD::VICMPH;
2685    case CmpMode::FP:          return SystemZISD::VFCMPH;
2686    case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2687    case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2688    }
2689    llvm_unreachable("Bad mode");
2690
2691  case ISD::SETUGT:
2692    switch (Mode) {
2693    case CmpMode::Int:         return SystemZISD::VICMPHL;
2694    case CmpMode::FP:          return 0;
2695    case CmpMode::StrictFP:    return 0;
2696    case CmpMode::SignalingFP: return 0;
2697    }
2698    llvm_unreachable("Bad mode");
2699
2700  default:
2701    return 0;
2702  }
2703}
2704
2705// Return the SystemZISD vector comparison operation for CC or its inverse,
2706// or 0 if neither can be done directly.  Indicate in Invert whether the
2707// result is for the inverse of CC.  Mode is as above.
2708static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2709                                            bool &Invert) {
2710  if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2711    Invert = false;
2712    return Opcode;
2713  }
2714
2715  CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2716  if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2717    Invert = true;
2718    return Opcode;
2719  }
2720
2721  return 0;
2722}
2723
2724// Return a v2f64 that contains the extended form of elements Start and Start+1
2725// of v4f32 value Op.  If Chain is nonnull, return the strict form.
2726static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2727                                  SDValue Op, SDValue Chain) {
2728  int Mask[] = { Start, -1, Start + 1, -1 };
2729  Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2730  if (Chain) {
2731    SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2732    return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2733  }
2734  return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2735}
2736
2737// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2738// producing a result of type VT.  If Chain is nonnull, return the strict form.
2739SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2740                                            const SDLoc &DL, EVT VT,
2741                                            SDValue CmpOp0,
2742                                            SDValue CmpOp1,
2743                                            SDValue Chain) const {
2744  // There is no hardware support for v4f32 (unless we have the vector
2745  // enhancements facility 1), so extend the vector into two v2f64s
2746  // and compare those.
2747  if (CmpOp0.getValueType() == MVT::v4f32 &&
2748      !Subtarget.hasVectorEnhancements1()) {
2749    SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2750    SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2751    SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2752    SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2753    if (Chain) {
2754      SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2755      SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2756      SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2757      SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2758      SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2759                            H1.getValue(1), L1.getValue(1),
2760                            HRes.getValue(1), LRes.getValue(1) };
2761      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2762      SDValue Ops[2] = { Res, NewChain };
2763      return DAG.getMergeValues(Ops, DL);
2764    }
2765    SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2766    SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2767    return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2768  }
2769  if (Chain) {
2770    SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2771    return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2772  }
2773  return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2774}
2775
2776// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2777// an integer mask of type VT.  If Chain is nonnull, we have a strict
2778// floating-point comparison.  If in addition IsSignaling is true, we have
2779// a strict signaling floating-point comparison.
2780SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2781                                                const SDLoc &DL, EVT VT,
2782                                                ISD::CondCode CC,
2783                                                SDValue CmpOp0,
2784                                                SDValue CmpOp1,
2785                                                SDValue Chain,
2786                                                bool IsSignaling) const {
2787  bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2788  assert (!Chain || IsFP);
2789  assert (!IsSignaling || Chain);
2790  CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2791                 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2792  bool Invert = false;
2793  SDValue Cmp;
2794  switch (CC) {
2795    // Handle tests for order using (or (ogt y x) (oge x y)).
2796  case ISD::SETUO:
2797    Invert = true;
2798    LLVM_FALLTHROUGH;
2799  case ISD::SETO: {
2800    assert(IsFP && "Unexpected integer comparison");
2801    SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2802                              DL, VT, CmpOp1, CmpOp0, Chain);
2803    SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2804                              DL, VT, CmpOp0, CmpOp1, Chain);
2805    Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2806    if (Chain)
2807      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2808                          LT.getValue(1), GE.getValue(1));
2809    break;
2810  }
2811
2812    // Handle <> tests using (or (ogt y x) (ogt x y)).
2813  case ISD::SETUEQ:
2814    Invert = true;
2815    LLVM_FALLTHROUGH;
2816  case ISD::SETONE: {
2817    assert(IsFP && "Unexpected integer comparison");
2818    SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2819                              DL, VT, CmpOp1, CmpOp0, Chain);
2820    SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2821                              DL, VT, CmpOp0, CmpOp1, Chain);
2822    Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2823    if (Chain)
2824      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2825                          LT.getValue(1), GT.getValue(1));
2826    break;
2827  }
2828
2829    // Otherwise a single comparison is enough.  It doesn't really
2830    // matter whether we try the inversion or the swap first, since
2831    // there are no cases where both work.
2832  default:
2833    if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2834      Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2835    else {
2836      CC = ISD::getSetCCSwappedOperands(CC);
2837      if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2838        Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2839      else
2840        llvm_unreachable("Unhandled comparison");
2841    }
2842    if (Chain)
2843      Chain = Cmp.getValue(1);
2844    break;
2845  }
2846  if (Invert) {
2847    SDValue Mask =
2848      DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2849    Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2850  }
2851  if (Chain && Chain.getNode() != Cmp.getNode()) {
2852    SDValue Ops[2] = { Cmp, Chain };
2853    Cmp = DAG.getMergeValues(Ops, DL);
2854  }
2855  return Cmp;
2856}
2857
2858SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2859                                          SelectionDAG &DAG) const {
2860  SDValue CmpOp0   = Op.getOperand(0);
2861  SDValue CmpOp1   = Op.getOperand(1);
2862  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2863  SDLoc DL(Op);
2864  EVT VT = Op.getValueType();
2865  if (VT.isVector())
2866    return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2867
2868  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2869  SDValue CCReg = emitCmp(DAG, DL, C);
2870  return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2871}
2872
2873SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2874                                                  SelectionDAG &DAG,
2875                                                  bool IsSignaling) const {
2876  SDValue Chain    = Op.getOperand(0);
2877  SDValue CmpOp0   = Op.getOperand(1);
2878  SDValue CmpOp1   = Op.getOperand(2);
2879  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2880  SDLoc DL(Op);
2881  EVT VT = Op.getNode()->getValueType(0);
2882  if (VT.isVector()) {
2883    SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2884                                   Chain, IsSignaling);
2885    return Res.getValue(Op.getResNo());
2886  }
2887
2888  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2889  SDValue CCReg = emitCmp(DAG, DL, C);
2890  CCReg->setFlags(Op->getFlags());
2891  SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2892  SDValue Ops[2] = { Result, CCReg.getValue(1) };
2893  return DAG.getMergeValues(Ops, DL);
2894}
2895
2896SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2897  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2898  SDValue CmpOp0   = Op.getOperand(2);
2899  SDValue CmpOp1   = Op.getOperand(3);
2900  SDValue Dest     = Op.getOperand(4);
2901  SDLoc DL(Op);
2902
2903  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2904  SDValue CCReg = emitCmp(DAG, DL, C);
2905  return DAG.getNode(
2906      SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2907      DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2908      DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2909}
2910
2911// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2912// allowing Pos and Neg to be wider than CmpOp.
2913static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2914  return (Neg.getOpcode() == ISD::SUB &&
2915          Neg.getOperand(0).getOpcode() == ISD::Constant &&
2916          cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2917          Neg.getOperand(1) == Pos &&
2918          (Pos == CmpOp ||
2919           (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2920            Pos.getOperand(0) == CmpOp)));
2921}
2922
2923// Return the absolute or negative absolute of Op; IsNegative decides which.
2924static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2925                           bool IsNegative) {
2926  Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2927  if (IsNegative)
2928    Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2929                     DAG.getConstant(0, DL, Op.getValueType()), Op);
2930  return Op;
2931}
2932
2933SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2934                                              SelectionDAG &DAG) const {
2935  SDValue CmpOp0   = Op.getOperand(0);
2936  SDValue CmpOp1   = Op.getOperand(1);
2937  SDValue TrueOp   = Op.getOperand(2);
2938  SDValue FalseOp  = Op.getOperand(3);
2939  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2940  SDLoc DL(Op);
2941
2942  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2943
2944  // Check for absolute and negative-absolute selections, including those
2945  // where the comparison value is sign-extended (for LPGFR and LNGFR).
2946  // This check supplements the one in DAGCombiner.
2947  if (C.Opcode == SystemZISD::ICMP &&
2948      C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2949      C.CCMask != SystemZ::CCMASK_CMP_NE &&
2950      C.Op1.getOpcode() == ISD::Constant &&
2951      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2952    if (isAbsolute(C.Op0, TrueOp, FalseOp))
2953      return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2954    if (isAbsolute(C.Op0, FalseOp, TrueOp))
2955      return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2956  }
2957
2958  SDValue CCReg = emitCmp(DAG, DL, C);
2959  SDValue Ops[] = {TrueOp, FalseOp,
2960                   DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2961                   DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2962
2963  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2964}
2965
2966SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2967                                                  SelectionDAG &DAG) const {
2968  SDLoc DL(Node);
2969  const GlobalValue *GV = Node->getGlobal();
2970  int64_t Offset = Node->getOffset();
2971  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2972  CodeModel::Model CM = DAG.getTarget().getCodeModel();
2973
2974  SDValue Result;
2975  if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2976    if (isInt<32>(Offset)) {
2977      // Assign anchors at 1<<12 byte boundaries.
2978      uint64_t Anchor = Offset & ~uint64_t(0xfff);
2979      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2980      Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2981
2982      // The offset can be folded into the address if it is aligned to a
2983      // halfword.
2984      Offset -= Anchor;
2985      if (Offset != 0 && (Offset & 1) == 0) {
2986        SDValue Full =
2987          DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2988        Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2989        Offset = 0;
2990      }
2991    } else {
2992      // Conservatively load a constant offset greater than 32 bits into a
2993      // register below.
2994      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
2995      Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2996    }
2997  } else {
2998    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2999    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3000    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3001                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3002  }
3003
3004  // If there was a non-zero offset that we didn't fold, create an explicit
3005  // addition for it.
3006  if (Offset != 0)
3007    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3008                         DAG.getConstant(Offset, DL, PtrVT));
3009
3010  return Result;
3011}
3012
3013SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3014                                                 SelectionDAG &DAG,
3015                                                 unsigned Opcode,
3016                                                 SDValue GOTOffset) const {
3017  SDLoc DL(Node);
3018  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3019  SDValue Chain = DAG.getEntryNode();
3020  SDValue Glue;
3021
3022  if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3023      CallingConv::GHC)
3024    report_fatal_error("In GHC calling convention TLS is not supported");
3025
3026  // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3027  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3028  Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3029  Glue = Chain.getValue(1);
3030  Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3031  Glue = Chain.getValue(1);
3032
3033  // The first call operand is the chain and the second is the TLS symbol.
3034  SmallVector<SDValue, 8> Ops;
3035  Ops.push_back(Chain);
3036  Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3037                                           Node->getValueType(0),
3038                                           0, 0));
3039
3040  // Add argument registers to the end of the list so that they are
3041  // known live into the call.
3042  Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3043  Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3044
3045  // Add a register mask operand representing the call-preserved registers.
3046  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3047  const uint32_t *Mask =
3048      TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3049  assert(Mask && "Missing call preserved mask for calling convention");
3050  Ops.push_back(DAG.getRegisterMask(Mask));
3051
3052  // Glue the call to the argument copies.
3053  Ops.push_back(Glue);
3054
3055  // Emit the call.
3056  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3057  Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3058  Glue = Chain.getValue(1);
3059
3060  // Copy the return value from %r2.
3061  return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3062}
3063
3064SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3065                                                  SelectionDAG &DAG) const {
3066  SDValue Chain = DAG.getEntryNode();
3067  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3068
3069  // The high part of the thread pointer is in access register 0.
3070  SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3071  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3072
3073  // The low part of the thread pointer is in access register 1.
3074  SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3075  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3076
3077  // Merge them into a single 64-bit address.
3078  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3079                                    DAG.getConstant(32, DL, PtrVT));
3080  return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3081}
3082
3083SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3084                                                     SelectionDAG &DAG) const {
3085  if (DAG.getTarget().useEmulatedTLS())
3086    return LowerToTLSEmulatedModel(Node, DAG);
3087  SDLoc DL(Node);
3088  const GlobalValue *GV = Node->getGlobal();
3089  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3090  TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3091
3092  if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3093      CallingConv::GHC)
3094    report_fatal_error("In GHC calling convention TLS is not supported");
3095
3096  SDValue TP = lowerThreadPointer(DL, DAG);
3097
3098  // Get the offset of GA from the thread pointer, based on the TLS model.
3099  SDValue Offset;
3100  switch (model) {
3101    case TLSModel::GeneralDynamic: {
3102      // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3103      SystemZConstantPoolValue *CPV =
3104        SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3105
3106      Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3107      Offset = DAG.getLoad(
3108          PtrVT, DL, DAG.getEntryNode(), Offset,
3109          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3110
3111      // Call __tls_get_offset to retrieve the offset.
3112      Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3113      break;
3114    }
3115
3116    case TLSModel::LocalDynamic: {
3117      // Load the GOT offset of the module ID.
3118      SystemZConstantPoolValue *CPV =
3119        SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3120
3121      Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3122      Offset = DAG.getLoad(
3123          PtrVT, DL, DAG.getEntryNode(), Offset,
3124          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3125
3126      // Call __tls_get_offset to retrieve the module base offset.
3127      Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3128
3129      // Note: The SystemZLDCleanupPass will remove redundant computations
3130      // of the module base offset.  Count total number of local-dynamic
3131      // accesses to trigger execution of that pass.
3132      SystemZMachineFunctionInfo* MFI =
3133        DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3134      MFI->incNumLocalDynamicTLSAccesses();
3135
3136      // Add the per-symbol offset.
3137      CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3138
3139      SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
3140      DTPOffset = DAG.getLoad(
3141          PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3142          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3143
3144      Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3145      break;
3146    }
3147
3148    case TLSModel::InitialExec: {
3149      // Load the offset from the GOT.
3150      Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3151                                          SystemZII::MO_INDNTPOFF);
3152      Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3153      Offset =
3154          DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3155                      MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3156      break;
3157    }
3158
3159    case TLSModel::LocalExec: {
3160      // Force the offset into the constant pool and load it from there.
3161      SystemZConstantPoolValue *CPV =
3162        SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3163
3164      Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3165      Offset = DAG.getLoad(
3166          PtrVT, DL, DAG.getEntryNode(), Offset,
3167          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3168      break;
3169    }
3170  }
3171
3172  // Add the base and offset together.
3173  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3174}
3175
3176SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3177                                                 SelectionDAG &DAG) const {
3178  SDLoc DL(Node);
3179  const BlockAddress *BA = Node->getBlockAddress();
3180  int64_t Offset = Node->getOffset();
3181  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3182
3183  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3184  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3185  return Result;
3186}
3187
3188SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3189                                              SelectionDAG &DAG) const {
3190  SDLoc DL(JT);
3191  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3192  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3193
3194  // Use LARL to load the address of the table.
3195  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3196}
3197
3198SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3199                                                 SelectionDAG &DAG) const {
3200  SDLoc DL(CP);
3201  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3202
3203  SDValue Result;
3204  if (CP->isMachineConstantPoolEntry())
3205    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3206                                       CP->getAlignment());
3207  else
3208    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3209                                       CP->getAlignment(), CP->getOffset());
3210
3211  // Use LARL to load the address of the constant pool entry.
3212  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3213}
3214
3215SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3216                                              SelectionDAG &DAG) const {
3217  MachineFunction &MF = DAG.getMachineFunction();
3218  MachineFrameInfo &MFI = MF.getFrameInfo();
3219  MFI.setFrameAddressIsTaken(true);
3220
3221  SDLoc DL(Op);
3222  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3223  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3224
3225  // By definition, the frame address is the address of the back chain.
3226  auto *TFL =
3227      static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3228  int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3229  SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3230
3231  // FIXME The frontend should detect this case.
3232  if (Depth > 0) {
3233    report_fatal_error("Unsupported stack frame traversal count");
3234  }
3235
3236  return BackChain;
3237}
3238
3239SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3240                                               SelectionDAG &DAG) const {
3241  MachineFunction &MF = DAG.getMachineFunction();
3242  MachineFrameInfo &MFI = MF.getFrameInfo();
3243  MFI.setReturnAddressIsTaken(true);
3244
3245  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3246    return SDValue();
3247
3248  SDLoc DL(Op);
3249  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3250  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3251
3252  // FIXME The frontend should detect this case.
3253  if (Depth > 0) {
3254    report_fatal_error("Unsupported stack frame traversal count");
3255  }
3256
3257  // Return R14D, which has the return address. Mark it an implicit live-in.
3258  unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3259  return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3260}
3261
3262SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3263                                            SelectionDAG &DAG) const {
3264  SDLoc DL(Op);
3265  SDValue In = Op.getOperand(0);
3266  EVT InVT = In.getValueType();
3267  EVT ResVT = Op.getValueType();
3268
3269  // Convert loads directly.  This is normally done by DAGCombiner,
3270  // but we need this case for bitcasts that are created during lowering
3271  // and which are then lowered themselves.
3272  if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3273    if (ISD::isNormalLoad(LoadN)) {
3274      SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3275                                    LoadN->getBasePtr(), LoadN->getMemOperand());
3276      // Update the chain uses.
3277      DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3278      return NewLoad;
3279    }
3280
3281  if (InVT == MVT::i32 && ResVT == MVT::f32) {
3282    SDValue In64;
3283    if (Subtarget.hasHighWord()) {
3284      SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3285                                       MVT::i64);
3286      In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3287                                       MVT::i64, SDValue(U64, 0), In);
3288    } else {
3289      In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3290      In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3291                         DAG.getConstant(32, DL, MVT::i64));
3292    }
3293    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3294    return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3295                                      DL, MVT::f32, Out64);
3296  }
3297  if (InVT == MVT::f32 && ResVT == MVT::i32) {
3298    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3299    SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3300                                             MVT::f64, SDValue(U64, 0), In);
3301    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3302    if (Subtarget.hasHighWord())
3303      return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3304                                        MVT::i32, Out64);
3305    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3306                                DAG.getConstant(32, DL, MVT::i64));
3307    return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3308  }
3309  llvm_unreachable("Unexpected bitcast combination");
3310}
3311
3312SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3313                                            SelectionDAG &DAG) const {
3314  MachineFunction &MF = DAG.getMachineFunction();
3315  SystemZMachineFunctionInfo *FuncInfo =
3316    MF.getInfo<SystemZMachineFunctionInfo>();
3317  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3318
3319  SDValue Chain   = Op.getOperand(0);
3320  SDValue Addr    = Op.getOperand(1);
3321  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3322  SDLoc DL(Op);
3323
3324  // The initial values of each field.
3325  const unsigned NumFields = 4;
3326  SDValue Fields[NumFields] = {
3327    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3328    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3329    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3330    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3331  };
3332
3333  // Store each field into its respective slot.
3334  SDValue MemOps[NumFields];
3335  unsigned Offset = 0;
3336  for (unsigned I = 0; I < NumFields; ++I) {
3337    SDValue FieldAddr = Addr;
3338    if (Offset != 0)
3339      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3340                              DAG.getIntPtrConstant(Offset, DL));
3341    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3342                             MachinePointerInfo(SV, Offset));
3343    Offset += 8;
3344  }
3345  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3346}
3347
3348SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3349                                           SelectionDAG &DAG) const {
3350  SDValue Chain      = Op.getOperand(0);
3351  SDValue DstPtr     = Op.getOperand(1);
3352  SDValue SrcPtr     = Op.getOperand(2);
3353  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3354  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3355  SDLoc DL(Op);
3356
3357  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3358                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
3359                       /*isTailCall*/false,
3360                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
3361}
3362
3363SDValue SystemZTargetLowering::
3364lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3365  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3366  MachineFunction &MF = DAG.getMachineFunction();
3367  bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3368  bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3369
3370  SDValue Chain = Op.getOperand(0);
3371  SDValue Size  = Op.getOperand(1);
3372  SDValue Align = Op.getOperand(2);
3373  SDLoc DL(Op);
3374
3375  // If user has set the no alignment function attribute, ignore
3376  // alloca alignments.
3377  uint64_t AlignVal = (RealignOpt ?
3378                       dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3379
3380  uint64_t StackAlign = TFI->getStackAlignment();
3381  uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3382  uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3383
3384  unsigned SPReg = getStackPointerRegisterToSaveRestore();
3385  SDValue NeededSpace = Size;
3386
3387  // Get a reference to the stack pointer.
3388  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3389
3390  // If we need a backchain, save it now.
3391  SDValue Backchain;
3392  if (StoreBackchain)
3393    Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3394
3395  // Add extra space for alignment if needed.
3396  if (ExtraAlignSpace)
3397    NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3398                              DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3399
3400  // Get the new stack pointer value.
3401  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3402
3403  // Copy the new stack pointer back.
3404  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3405
3406  // The allocated data lives above the 160 bytes allocated for the standard
3407  // frame, plus any outgoing stack arguments.  We don't know how much that
3408  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3409  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3410  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3411
3412  // Dynamically realign if needed.
3413  if (RequiredAlign > StackAlign) {
3414    Result =
3415      DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3416                  DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3417    Result =
3418      DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3419                  DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3420  }
3421
3422  if (StoreBackchain)
3423    Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3424
3425  SDValue Ops[2] = { Result, Chain };
3426  return DAG.getMergeValues(Ops, DL);
3427}
3428
3429SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3430    SDValue Op, SelectionDAG &DAG) const {
3431  SDLoc DL(Op);
3432
3433  return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3434}
3435
3436SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3437                                              SelectionDAG &DAG) const {
3438  EVT VT = Op.getValueType();
3439  SDLoc DL(Op);
3440  SDValue Ops[2];
3441  if (is32Bit(VT))
3442    // Just do a normal 64-bit multiplication and extract the results.
3443    // We define this so that it can be used for constant division.
3444    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3445                    Op.getOperand(1), Ops[1], Ops[0]);
3446  else if (Subtarget.hasMiscellaneousExtensions2())
3447    // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3448    // the high result in the even register.  ISD::SMUL_LOHI is defined to
3449    // return the low half first, so the results are in reverse order.
3450    lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3451                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3452  else {
3453    // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3454    //
3455    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3456    //
3457    // but using the fact that the upper halves are either all zeros
3458    // or all ones:
3459    //
3460    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3461    //
3462    // and grouping the right terms together since they are quicker than the
3463    // multiplication:
3464    //
3465    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3466    SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3467    SDValue LL = Op.getOperand(0);
3468    SDValue RL = Op.getOperand(1);
3469    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3470    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3471    // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3472    // the high result in the even register.  ISD::SMUL_LOHI is defined to
3473    // return the low half first, so the results are in reverse order.
3474    lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3475                     LL, RL, Ops[1], Ops[0]);
3476    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3477    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3478    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3479    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3480  }
3481  return DAG.getMergeValues(Ops, DL);
3482}
3483
3484SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3485                                              SelectionDAG &DAG) const {
3486  EVT VT = Op.getValueType();
3487  SDLoc DL(Op);
3488  SDValue Ops[2];
3489  if (is32Bit(VT))
3490    // Just do a normal 64-bit multiplication and extract the results.
3491    // We define this so that it can be used for constant division.
3492    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3493                    Op.getOperand(1), Ops[1], Ops[0]);
3494  else
3495    // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3496    // the high result in the even register.  ISD::UMUL_LOHI is defined to
3497    // return the low half first, so the results are in reverse order.
3498    lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3499                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3500  return DAG.getMergeValues(Ops, DL);
3501}
3502
3503SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3504                                            SelectionDAG &DAG) const {
3505  SDValue Op0 = Op.getOperand(0);
3506  SDValue Op1 = Op.getOperand(1);
3507  EVT VT = Op.getValueType();
3508  SDLoc DL(Op);
3509
3510  // We use DSGF for 32-bit division.  This means the first operand must
3511  // always be 64-bit, and the second operand should be 32-bit whenever
3512  // that is possible, to improve performance.
3513  if (is32Bit(VT))
3514    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3515  else if (DAG.ComputeNumSignBits(Op1) > 32)
3516    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3517
3518  // DSG(F) returns the remainder in the even register and the
3519  // quotient in the odd register.
3520  SDValue Ops[2];
3521  lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3522  return DAG.getMergeValues(Ops, DL);
3523}
3524
3525SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3526                                            SelectionDAG &DAG) const {
3527  EVT VT = Op.getValueType();
3528  SDLoc DL(Op);
3529
3530  // DL(G) returns the remainder in the even register and the
3531  // quotient in the odd register.
3532  SDValue Ops[2];
3533  lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3534                   Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3535  return DAG.getMergeValues(Ops, DL);
3536}
3537
3538SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3539  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3540
3541  // Get the known-zero masks for each operand.
3542  SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3543  KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3544                        DAG.computeKnownBits(Ops[1])};
3545
3546  // See if the upper 32 bits of one operand and the lower 32 bits of the
3547  // other are known zero.  They are the low and high operands respectively.
3548  uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3549                       Known[1].Zero.getZExtValue() };
3550  unsigned High, Low;
3551  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3552    High = 1, Low = 0;
3553  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3554    High = 0, Low = 1;
3555  else
3556    return Op;
3557
3558  SDValue LowOp = Ops[Low];
3559  SDValue HighOp = Ops[High];
3560
3561  // If the high part is a constant, we're better off using IILH.
3562  if (HighOp.getOpcode() == ISD::Constant)
3563    return Op;
3564
3565  // If the low part is a constant that is outside the range of LHI,
3566  // then we're better off using IILF.
3567  if (LowOp.getOpcode() == ISD::Constant) {
3568    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3569    if (!isInt<16>(Value))
3570      return Op;
3571  }
3572
3573  // Check whether the high part is an AND that doesn't change the
3574  // high 32 bits and just masks out low bits.  We can skip it if so.
3575  if (HighOp.getOpcode() == ISD::AND &&
3576      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3577    SDValue HighOp0 = HighOp.getOperand(0);
3578    uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3579    if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3580      HighOp = HighOp0;
3581  }
3582
3583  // Take advantage of the fact that all GR32 operations only change the
3584  // low 32 bits by truncating Low to an i32 and inserting it directly
3585  // using a subreg.  The interesting cases are those where the truncation
3586  // can be folded.
3587  SDLoc DL(Op);
3588  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3589  return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3590                                   MVT::i64, HighOp, Low32);
3591}
3592
3593// Lower SADDO/SSUBO/UADDO/USUBO nodes.
3594SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3595                                          SelectionDAG &DAG) const {
3596  SDNode *N = Op.getNode();
3597  SDValue LHS = N->getOperand(0);
3598  SDValue RHS = N->getOperand(1);
3599  SDLoc DL(N);
3600  unsigned BaseOp = 0;
3601  unsigned CCValid = 0;
3602  unsigned CCMask = 0;
3603
3604  switch (Op.getOpcode()) {
3605  default: llvm_unreachable("Unknown instruction!");
3606  case ISD::SADDO:
3607    BaseOp = SystemZISD::SADDO;
3608    CCValid = SystemZ::CCMASK_ARITH;
3609    CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3610    break;
3611  case ISD::SSUBO:
3612    BaseOp = SystemZISD::SSUBO;
3613    CCValid = SystemZ::CCMASK_ARITH;
3614    CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3615    break;
3616  case ISD::UADDO:
3617    BaseOp = SystemZISD::UADDO;
3618    CCValid = SystemZ::CCMASK_LOGICAL;
3619    CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3620    break;
3621  case ISD::USUBO:
3622    BaseOp = SystemZISD::USUBO;
3623    CCValid = SystemZ::CCMASK_LOGICAL;
3624    CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3625    break;
3626  }
3627
3628  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3629  SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3630
3631  SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3632  if (N->getValueType(1) == MVT::i1)
3633    SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3634
3635  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3636}
3637
3638static bool isAddCarryChain(SDValue Carry) {
3639  while (Carry.getOpcode() == ISD::ADDCARRY)
3640    Carry = Carry.getOperand(2);
3641  return Carry.getOpcode() == ISD::UADDO;
3642}
3643
3644static bool isSubBorrowChain(SDValue Carry) {
3645  while (Carry.getOpcode() == ISD::SUBCARRY)
3646    Carry = Carry.getOperand(2);
3647  return Carry.getOpcode() == ISD::USUBO;
3648}
3649
3650// Lower ADDCARRY/SUBCARRY nodes.
3651SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3652                                                SelectionDAG &DAG) const {
3653
3654  SDNode *N = Op.getNode();
3655  MVT VT = N->getSimpleValueType(0);
3656
3657  // Let legalize expand this if it isn't a legal type yet.
3658  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3659    return SDValue();
3660
3661  SDValue LHS = N->getOperand(0);
3662  SDValue RHS = N->getOperand(1);
3663  SDValue Carry = Op.getOperand(2);
3664  SDLoc DL(N);
3665  unsigned BaseOp = 0;
3666  unsigned CCValid = 0;
3667  unsigned CCMask = 0;
3668
3669  switch (Op.getOpcode()) {
3670  default: llvm_unreachable("Unknown instruction!");
3671  case ISD::ADDCARRY:
3672    if (!isAddCarryChain(Carry))
3673      return SDValue();
3674
3675    BaseOp = SystemZISD::ADDCARRY;
3676    CCValid = SystemZ::CCMASK_LOGICAL;
3677    CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3678    break;
3679  case ISD::SUBCARRY:
3680    if (!isSubBorrowChain(Carry))
3681      return SDValue();
3682
3683    BaseOp = SystemZISD::SUBCARRY;
3684    CCValid = SystemZ::CCMASK_LOGICAL;
3685    CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3686    break;
3687  }
3688
3689  // Set the condition code from the carry flag.
3690  Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3691                      DAG.getConstant(CCValid, DL, MVT::i32),
3692                      DAG.getConstant(CCMask, DL, MVT::i32));
3693
3694  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3695  SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3696
3697  SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3698  if (N->getValueType(1) == MVT::i1)
3699    SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3700
3701  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3702}
3703
3704SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3705                                          SelectionDAG &DAG) const {
3706  EVT VT = Op.getValueType();
3707  SDLoc DL(Op);
3708  Op = Op.getOperand(0);
3709
3710  // Handle vector types via VPOPCT.
3711  if (VT.isVector()) {
3712    Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3713    Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3714    switch (VT.getScalarSizeInBits()) {
3715    case 8:
3716      break;
3717    case 16: {
3718      Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3719      SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3720      SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3721      Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3722      Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3723      break;
3724    }
3725    case 32: {
3726      SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3727                                            DAG.getConstant(0, DL, MVT::i32));
3728      Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3729      break;
3730    }
3731    case 64: {
3732      SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3733                                            DAG.getConstant(0, DL, MVT::i32));
3734      Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3735      Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3736      break;
3737    }
3738    default:
3739      llvm_unreachable("Unexpected type");
3740    }
3741    return Op;
3742  }
3743
3744  // Get the known-zero mask for the operand.
3745  KnownBits Known = DAG.computeKnownBits(Op);
3746  unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3747  if (NumSignificantBits == 0)
3748    return DAG.getConstant(0, DL, VT);
3749
3750  // Skip known-zero high parts of the operand.
3751  int64_t OrigBitSize = VT.getSizeInBits();
3752  int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3753  BitSize = std::min(BitSize, OrigBitSize);
3754
3755  // The POPCNT instruction counts the number of bits in each byte.
3756  Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3757  Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3758  Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3759
3760  // Add up per-byte counts in a binary tree.  All bits of Op at
3761  // position larger than BitSize remain zero throughout.
3762  for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3763    SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3764    if (BitSize != OrigBitSize)
3765      Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3766                        DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3767    Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3768  }
3769
3770  // Extract overall result from high byte.
3771  if (BitSize > 8)
3772    Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3773                     DAG.getConstant(BitSize - 8, DL, VT));
3774
3775  return Op;
3776}
3777
3778SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3779                                                 SelectionDAG &DAG) const {
3780  SDLoc DL(Op);
3781  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3782    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3783  SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3784    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3785
3786  // The only fence that needs an instruction is a sequentially-consistent
3787  // cross-thread fence.
3788  if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3789      FenceSSID == SyncScope::System) {
3790    return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3791                                      Op.getOperand(0)),
3792                   0);
3793  }
3794
3795  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3796  return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3797}
3798
3799// Op is an atomic load.  Lower it into a normal volatile load.
3800SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3801                                                SelectionDAG &DAG) const {
3802  auto *Node = cast<AtomicSDNode>(Op.getNode());
3803  return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3804                        Node->getChain(), Node->getBasePtr(),
3805                        Node->getMemoryVT(), Node->getMemOperand());
3806}
3807
3808// Op is an atomic store.  Lower it into a normal volatile store.
3809SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3810                                                 SelectionDAG &DAG) const {
3811  auto *Node = cast<AtomicSDNode>(Op.getNode());
3812  SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3813                                    Node->getBasePtr(), Node->getMemoryVT(),
3814                                    Node->getMemOperand());
3815  // We have to enforce sequential consistency by performing a
3816  // serialization operation after the store.
3817  if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3818    Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3819                                       MVT::Other, Chain), 0);
3820  return Chain;
3821}
3822
3823// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3824// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3825SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3826                                                   SelectionDAG &DAG,
3827                                                   unsigned Opcode) const {
3828  auto *Node = cast<AtomicSDNode>(Op.getNode());
3829
3830  // 32-bit operations need no code outside the main loop.
3831  EVT NarrowVT = Node->getMemoryVT();
3832  EVT WideVT = MVT::i32;
3833  if (NarrowVT == WideVT)
3834    return Op;
3835
3836  int64_t BitSize = NarrowVT.getSizeInBits();
3837  SDValue ChainIn = Node->getChain();
3838  SDValue Addr = Node->getBasePtr();
3839  SDValue Src2 = Node->getVal();
3840  MachineMemOperand *MMO = Node->getMemOperand();
3841  SDLoc DL(Node);
3842  EVT PtrVT = Addr.getValueType();
3843
3844  // Convert atomic subtracts of constants into additions.
3845  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3846    if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3847      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3848      Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3849    }
3850
3851  // Get the address of the containing word.
3852  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3853                                    DAG.getConstant(-4, DL, PtrVT));
3854
3855  // Get the number of bits that the word must be rotated left in order
3856  // to bring the field to the top bits of a GR32.
3857  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3858                                 DAG.getConstant(3, DL, PtrVT));
3859  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3860
3861  // Get the complementing shift amount, for rotating a field in the top
3862  // bits back to its proper position.
3863  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3864                                    DAG.getConstant(0, DL, WideVT), BitShift);
3865
3866  // Extend the source operand to 32 bits and prepare it for the inner loop.
3867  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3868  // operations require the source to be shifted in advance.  (This shift
3869  // can be folded if the source is constant.)  For AND and NAND, the lower
3870  // bits must be set, while for other opcodes they should be left clear.
3871  if (Opcode != SystemZISD::ATOMIC_SWAPW)
3872    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3873                       DAG.getConstant(32 - BitSize, DL, WideVT));
3874  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3875      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3876    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3877                       DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3878
3879  // Construct the ATOMIC_LOADW_* node.
3880  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3881  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3882                    DAG.getConstant(BitSize, DL, WideVT) };
3883  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3884                                             NarrowVT, MMO);
3885
3886  // Rotate the result of the final CS so that the field is in the lower
3887  // bits of a GR32, then truncate it.
3888  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3889                                    DAG.getConstant(BitSize, DL, WideVT));
3890  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3891
3892  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3893  return DAG.getMergeValues(RetOps, DL);
3894}
3895
3896// Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3897// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3898// operations into additions.
3899SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3900                                                    SelectionDAG &DAG) const {
3901  auto *Node = cast<AtomicSDNode>(Op.getNode());
3902  EVT MemVT = Node->getMemoryVT();
3903  if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3904    // A full-width operation.
3905    assert(Op.getValueType() == MemVT && "Mismatched VTs");
3906    SDValue Src2 = Node->getVal();
3907    SDValue NegSrc2;
3908    SDLoc DL(Src2);
3909
3910    if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3911      // Use an addition if the operand is constant and either LAA(G) is
3912      // available or the negative value is in the range of A(G)FHI.
3913      int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3914      if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3915        NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3916    } else if (Subtarget.hasInterlockedAccess1())
3917      // Use LAA(G) if available.
3918      NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3919                            Src2);
3920
3921    if (NegSrc2.getNode())
3922      return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3923                           Node->getChain(), Node->getBasePtr(), NegSrc2,
3924                           Node->getMemOperand());
3925
3926    // Use the node as-is.
3927    return Op;
3928  }
3929
3930  return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3931}
3932
3933// Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3934SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3935                                                    SelectionDAG &DAG) const {
3936  auto *Node = cast<AtomicSDNode>(Op.getNode());
3937  SDValue ChainIn = Node->getOperand(0);
3938  SDValue Addr = Node->getOperand(1);
3939  SDValue CmpVal = Node->getOperand(2);
3940  SDValue SwapVal = Node->getOperand(3);
3941  MachineMemOperand *MMO = Node->getMemOperand();
3942  SDLoc DL(Node);
3943
3944  // We have native support for 32-bit and 64-bit compare and swap, but we
3945  // still need to expand extracting the "success" result from the CC.
3946  EVT NarrowVT = Node->getMemoryVT();
3947  EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3948  if (NarrowVT == WideVT) {
3949    SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3950    SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3951    SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3952                                               DL, Tys, Ops, NarrowVT, MMO);
3953    SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3954                                SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3955
3956    DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3957    DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3958    DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3959    return SDValue();
3960  }
3961
3962  // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3963  // via a fullword ATOMIC_CMP_SWAPW operation.
3964  int64_t BitSize = NarrowVT.getSizeInBits();
3965  EVT PtrVT = Addr.getValueType();
3966
3967  // Get the address of the containing word.
3968  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3969                                    DAG.getConstant(-4, DL, PtrVT));
3970
3971  // Get the number of bits that the word must be rotated left in order
3972  // to bring the field to the top bits of a GR32.
3973  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3974                                 DAG.getConstant(3, DL, PtrVT));
3975  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3976
3977  // Get the complementing shift amount, for rotating a field in the top
3978  // bits back to its proper position.
3979  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3980                                    DAG.getConstant(0, DL, WideVT), BitShift);
3981
3982  // Construct the ATOMIC_CMP_SWAPW node.
3983  SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3984  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3985                    NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3986  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3987                                             VTList, Ops, NarrowVT, MMO);
3988  SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3989                              SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3990
3991  DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3992  DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3993  DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3994  return SDValue();
3995}
3996
3997MachineMemOperand::Flags
3998SystemZTargetLowering::getMMOFlags(const Instruction &I) const {
3999  // Because of how we convert atomic_load and atomic_store to normal loads and
4000  // stores in the DAG, we need to ensure that the MMOs are marked volatile
4001  // since DAGCombine hasn't been updated to account for atomic, but non
4002  // volatile loads.  (See D57601)
4003  if (auto *SI = dyn_cast<StoreInst>(&I))
4004    if (SI->isAtomic())
4005      return MachineMemOperand::MOVolatile;
4006  if (auto *LI = dyn_cast<LoadInst>(&I))
4007    if (LI->isAtomic())
4008      return MachineMemOperand::MOVolatile;
4009  if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4010    if (AI->isAtomic())
4011      return MachineMemOperand::MOVolatile;
4012  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4013    if (AI->isAtomic())
4014      return MachineMemOperand::MOVolatile;
4015  return MachineMemOperand::MONone;
4016}
4017
4018SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4019                                              SelectionDAG &DAG) const {
4020  MachineFunction &MF = DAG.getMachineFunction();
4021  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4022  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4023    report_fatal_error("Variable-sized stack allocations are not supported "
4024                       "in GHC calling convention");
4025  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4026                            SystemZ::R15D, Op.getValueType());
4027}
4028
4029SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4030                                                 SelectionDAG &DAG) const {
4031  MachineFunction &MF = DAG.getMachineFunction();
4032  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4033  bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4034
4035  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4036    report_fatal_error("Variable-sized stack allocations are not supported "
4037                       "in GHC calling convention");
4038
4039  SDValue Chain = Op.getOperand(0);
4040  SDValue NewSP = Op.getOperand(1);
4041  SDValue Backchain;
4042  SDLoc DL(Op);
4043
4044  if (StoreBackchain) {
4045    SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4046    Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4047  }
4048
4049  Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4050
4051  if (StoreBackchain)
4052    Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4053
4054  return Chain;
4055}
4056
4057SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4058                                             SelectionDAG &DAG) const {
4059  bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4060  if (!IsData)
4061    // Just preserve the chain.
4062    return Op.getOperand(0);
4063
4064  SDLoc DL(Op);
4065  bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4066  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4067  auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4068  SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4069                   Op.getOperand(1)};
4070  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4071                                 Node->getVTList(), Ops,
4072                                 Node->getMemoryVT(), Node->getMemOperand());
4073}
4074
4075// Convert condition code in CCReg to an i32 value.
4076static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4077  SDLoc DL(CCReg);
4078  SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4079  return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4080                     DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4081}
4082
4083SDValue
4084SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4085                                              SelectionDAG &DAG) const {
4086  unsigned Opcode, CCValid;
4087  if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4088    assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4089    SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4090    SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4091    DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4092    return SDValue();
4093  }
4094
4095  return SDValue();
4096}
4097
4098SDValue
4099SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4100                                               SelectionDAG &DAG) const {
4101  unsigned Opcode, CCValid;
4102  if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4103    SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4104    if (Op->getNumValues() == 1)
4105      return getCCResult(DAG, SDValue(Node, 0));
4106    assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4107    return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4108                       SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4109  }
4110
4111  unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4112  switch (Id) {
4113  case Intrinsic::thread_pointer:
4114    return lowerThreadPointer(SDLoc(Op), DAG);
4115
4116  case Intrinsic::s390_vpdi:
4117    return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4118                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4119
4120  case Intrinsic::s390_vperm:
4121    return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4122                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4123
4124  case Intrinsic::s390_vuphb:
4125  case Intrinsic::s390_vuphh:
4126  case Intrinsic::s390_vuphf:
4127    return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4128                       Op.getOperand(1));
4129
4130  case Intrinsic::s390_vuplhb:
4131  case Intrinsic::s390_vuplhh:
4132  case Intrinsic::s390_vuplhf:
4133    return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4134                       Op.getOperand(1));
4135
4136  case Intrinsic::s390_vuplb:
4137  case Intrinsic::s390_vuplhw:
4138  case Intrinsic::s390_vuplf:
4139    return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4140                       Op.getOperand(1));
4141
4142  case Intrinsic::s390_vupllb:
4143  case Intrinsic::s390_vupllh:
4144  case Intrinsic::s390_vupllf:
4145    return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4146                       Op.getOperand(1));
4147
4148  case Intrinsic::s390_vsumb:
4149  case Intrinsic::s390_vsumh:
4150  case Intrinsic::s390_vsumgh:
4151  case Intrinsic::s390_vsumgf:
4152  case Intrinsic::s390_vsumqf:
4153  case Intrinsic::s390_vsumqg:
4154    return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4155                       Op.getOperand(1), Op.getOperand(2));
4156  }
4157
4158  return SDValue();
4159}
4160
4161namespace {
4162// Says that SystemZISD operation Opcode can be used to perform the equivalent
4163// of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4164// Operand is the constant third operand, otherwise it is the number of
4165// bytes in each element of the result.
4166struct Permute {
4167  unsigned Opcode;
4168  unsigned Operand;
4169  unsigned char Bytes[SystemZ::VectorBytes];
4170};
4171}
4172
4173static const Permute PermuteForms[] = {
4174  // VMRHG
4175  { SystemZISD::MERGE_HIGH, 8,
4176    { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4177  // VMRHF
4178  { SystemZISD::MERGE_HIGH, 4,
4179    { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4180  // VMRHH
4181  { SystemZISD::MERGE_HIGH, 2,
4182    { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4183  // VMRHB
4184  { SystemZISD::MERGE_HIGH, 1,
4185    { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4186  // VMRLG
4187  { SystemZISD::MERGE_LOW, 8,
4188    { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4189  // VMRLF
4190  { SystemZISD::MERGE_LOW, 4,
4191    { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4192  // VMRLH
4193  { SystemZISD::MERGE_LOW, 2,
4194    { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4195  // VMRLB
4196  { SystemZISD::MERGE_LOW, 1,
4197    { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4198  // VPKG
4199  { SystemZISD::PACK, 4,
4200    { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4201  // VPKF
4202  { SystemZISD::PACK, 2,
4203    { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4204  // VPKH
4205  { SystemZISD::PACK, 1,
4206    { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4207  // VPDI V1, V2, 4  (low half of V1, high half of V2)
4208  { SystemZISD::PERMUTE_DWORDS, 4,
4209    { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4210  // VPDI V1, V2, 1  (high half of V1, low half of V2)
4211  { SystemZISD::PERMUTE_DWORDS, 1,
4212    { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4213};
4214
4215// Called after matching a vector shuffle against a particular pattern.
4216// Both the original shuffle and the pattern have two vector operands.
4217// OpNos[0] is the operand of the original shuffle that should be used for
4218// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4219// OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4220// set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4221// for operands 0 and 1 of the pattern.
4222static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4223  if (OpNos[0] < 0) {
4224    if (OpNos[1] < 0)
4225      return false;
4226    OpNo0 = OpNo1 = OpNos[1];
4227  } else if (OpNos[1] < 0) {
4228    OpNo0 = OpNo1 = OpNos[0];
4229  } else {
4230    OpNo0 = OpNos[0];
4231    OpNo1 = OpNos[1];
4232  }
4233  return true;
4234}
4235
4236// Bytes is a VPERM-like permute vector, except that -1 is used for
4237// undefined bytes.  Return true if the VPERM can be implemented using P.
4238// When returning true set OpNo0 to the VPERM operand that should be
4239// used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4240//
4241// For example, if swapping the VPERM operands allows P to match, OpNo0
4242// will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4243// operand, but rewriting it to use two duplicated operands allows it to
4244// match P, then OpNo0 and OpNo1 will be the same.
4245static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4246                         unsigned &OpNo0, unsigned &OpNo1) {
4247  int OpNos[] = { -1, -1 };
4248  for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4249    int Elt = Bytes[I];
4250    if (Elt >= 0) {
4251      // Make sure that the two permute vectors use the same suboperand
4252      // byte number.  Only the operand numbers (the high bits) are
4253      // allowed to differ.
4254      if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4255        return false;
4256      int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4257      int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4258      // Make sure that the operand mappings are consistent with previous
4259      // elements.
4260      if (OpNos[ModelOpNo] == 1 - RealOpNo)
4261        return false;
4262      OpNos[ModelOpNo] = RealOpNo;
4263    }
4264  }
4265  return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4266}
4267
4268// As above, but search for a matching permute.
4269static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4270                                   unsigned &OpNo0, unsigned &OpNo1) {
4271  for (auto &P : PermuteForms)
4272    if (matchPermute(Bytes, P, OpNo0, OpNo1))
4273      return &P;
4274  return nullptr;
4275}
4276
4277// Bytes is a VPERM-like permute vector, except that -1 is used for
4278// undefined bytes.  This permute is an operand of an outer permute.
4279// See whether redistributing the -1 bytes gives a shuffle that can be
4280// implemented using P.  If so, set Transform to a VPERM-like permute vector
4281// that, when applied to the result of P, gives the original permute in Bytes.
4282static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4283                               const Permute &P,
4284                               SmallVectorImpl<int> &Transform) {
4285  unsigned To = 0;
4286  for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4287    int Elt = Bytes[From];
4288    if (Elt < 0)
4289      // Byte number From of the result is undefined.
4290      Transform[From] = -1;
4291    else {
4292      while (P.Bytes[To] != Elt) {
4293        To += 1;
4294        if (To == SystemZ::VectorBytes)
4295          return false;
4296      }
4297      Transform[From] = To;
4298    }
4299  }
4300  return true;
4301}
4302
4303// As above, but search for a matching permute.
4304static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4305                                         SmallVectorImpl<int> &Transform) {
4306  for (auto &P : PermuteForms)
4307    if (matchDoublePermute(Bytes, P, Transform))
4308      return &P;
4309  return nullptr;
4310}
4311
4312// Convert the mask of the given shuffle op into a byte-level mask,
4313// as if it had type vNi8.
4314static bool getVPermMask(SDValue ShuffleOp,
4315                         SmallVectorImpl<int> &Bytes) {
4316  EVT VT = ShuffleOp.getValueType();
4317  unsigned NumElements = VT.getVectorNumElements();
4318  unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4319
4320  if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4321    Bytes.resize(NumElements * BytesPerElement, -1);
4322    for (unsigned I = 0; I < NumElements; ++I) {
4323      int Index = VSN->getMaskElt(I);
4324      if (Index >= 0)
4325        for (unsigned J = 0; J < BytesPerElement; ++J)
4326          Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4327    }
4328    return true;
4329  }
4330  if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4331      isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4332    unsigned Index = ShuffleOp.getConstantOperandVal(1);
4333    Bytes.resize(NumElements * BytesPerElement, -1);
4334    for (unsigned I = 0; I < NumElements; ++I)
4335      for (unsigned J = 0; J < BytesPerElement; ++J)
4336        Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4337    return true;
4338  }
4339  return false;
4340}
4341
4342// Bytes is a VPERM-like permute vector, except that -1 is used for
4343// undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4344// the result come from a contiguous sequence of bytes from one input.
4345// Set Base to the selector for the first byte if so.
4346static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4347                            unsigned BytesPerElement, int &Base) {
4348  Base = -1;
4349  for (unsigned I = 0; I < BytesPerElement; ++I) {
4350    if (Bytes[Start + I] >= 0) {
4351      unsigned Elem = Bytes[Start + I];
4352      if (Base < 0) {
4353        Base = Elem - I;
4354        // Make sure the bytes would come from one input operand.
4355        if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4356          return false;
4357      } else if (unsigned(Base) != Elem - I)
4358        return false;
4359    }
4360  }
4361  return true;
4362}
4363
4364// Bytes is a VPERM-like permute vector, except that -1 is used for
4365// undefined bytes.  Return true if it can be performed using VSLDI.
4366// When returning true, set StartIndex to the shift amount and OpNo0
4367// and OpNo1 to the VPERM operands that should be used as the first
4368// and second shift operand respectively.
4369static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4370                               unsigned &StartIndex, unsigned &OpNo0,
4371                               unsigned &OpNo1) {
4372  int OpNos[] = { -1, -1 };
4373  int Shift = -1;
4374  for (unsigned I = 0; I < 16; ++I) {
4375    int Index = Bytes[I];
4376    if (Index >= 0) {
4377      int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4378      int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4379      int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4380      if (Shift < 0)
4381        Shift = ExpectedShift;
4382      else if (Shift != ExpectedShift)
4383        return false;
4384      // Make sure that the operand mappings are consistent with previous
4385      // elements.
4386      if (OpNos[ModelOpNo] == 1 - RealOpNo)
4387        return false;
4388      OpNos[ModelOpNo] = RealOpNo;
4389    }
4390  }
4391  StartIndex = Shift;
4392  return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4393}
4394
4395// Create a node that performs P on operands Op0 and Op1, casting the
4396// operands to the appropriate type.  The type of the result is determined by P.
4397static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4398                              const Permute &P, SDValue Op0, SDValue Op1) {
4399  // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4400  // elements of a PACK are twice as wide as the outputs.
4401  unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4402                      P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4403                      P.Operand);
4404  // Cast both operands to the appropriate type.
4405  MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4406                              SystemZ::VectorBytes / InBytes);
4407  Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4408  Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4409  SDValue Op;
4410  if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4411    SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4412    Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4413  } else if (P.Opcode == SystemZISD::PACK) {
4414    MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4415                                 SystemZ::VectorBytes / P.Operand);
4416    Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4417  } else {
4418    Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4419  }
4420  return Op;
4421}
4422
4423// Bytes is a VPERM-like permute vector, except that -1 is used for
4424// undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4425// VSLDI or VPERM.
4426static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4427                                     SDValue *Ops,
4428                                     const SmallVectorImpl<int> &Bytes) {
4429  for (unsigned I = 0; I < 2; ++I)
4430    Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4431
4432  // First see whether VSLDI can be used.
4433  unsigned StartIndex, OpNo0, OpNo1;
4434  if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4435    return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4436                       Ops[OpNo1],
4437                       DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4438
4439  // Fall back on VPERM.  Construct an SDNode for the permute vector.
4440  SDValue IndexNodes[SystemZ::VectorBytes];
4441  for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4442    if (Bytes[I] >= 0)
4443      IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4444    else
4445      IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4446  SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4447  return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4448}
4449
4450namespace {
4451// Describes a general N-operand vector shuffle.
4452struct GeneralShuffle {
4453  GeneralShuffle(EVT vt) : VT(vt) {}
4454  void addUndef();
4455  bool add(SDValue, unsigned);
4456  SDValue getNode(SelectionDAG &, const SDLoc &);
4457
4458  // The operands of the shuffle.
4459  SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4460
4461  // Index I is -1 if byte I of the result is undefined.  Otherwise the
4462  // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4463  // Bytes[I] / SystemZ::VectorBytes.
4464  SmallVector<int, SystemZ::VectorBytes> Bytes;
4465
4466  // The type of the shuffle result.
4467  EVT VT;
4468};
4469}
4470
4471// Add an extra undefined element to the shuffle.
4472void GeneralShuffle::addUndef() {
4473  unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4474  for (unsigned I = 0; I < BytesPerElement; ++I)
4475    Bytes.push_back(-1);
4476}
4477
4478// Add an extra element to the shuffle, taking it from element Elem of Op.
4479// A null Op indicates a vector input whose value will be calculated later;
4480// there is at most one such input per shuffle and it always has the same
4481// type as the result. Aborts and returns false if the source vector elements
4482// of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4483// LLVM they become implicitly extended, but this is rare and not optimized.
4484bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4485  unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4486
4487  // The source vector can have wider elements than the result,
4488  // either through an explicit TRUNCATE or because of type legalization.
4489  // We want the least significant part.
4490  EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4491  unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4492
4493  // Return false if the source elements are smaller than their destination
4494  // elements.
4495  if (FromBytesPerElement < BytesPerElement)
4496    return false;
4497
4498  unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4499                   (FromBytesPerElement - BytesPerElement));
4500
4501  // Look through things like shuffles and bitcasts.
4502  while (Op.getNode()) {
4503    if (Op.getOpcode() == ISD::BITCAST)
4504      Op = Op.getOperand(0);
4505    else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4506      // See whether the bytes we need come from a contiguous part of one
4507      // operand.
4508      SmallVector<int, SystemZ::VectorBytes> OpBytes;
4509      if (!getVPermMask(Op, OpBytes))
4510        break;
4511      int NewByte;
4512      if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4513        break;
4514      if (NewByte < 0) {
4515        addUndef();
4516        return true;
4517      }
4518      Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4519      Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4520    } else if (Op.isUndef()) {
4521      addUndef();
4522      return true;
4523    } else
4524      break;
4525  }
4526
4527  // Make sure that the source of the extraction is in Ops.
4528  unsigned OpNo = 0;
4529  for (; OpNo < Ops.size(); ++OpNo)
4530    if (Ops[OpNo] == Op)
4531      break;
4532  if (OpNo == Ops.size())
4533    Ops.push_back(Op);
4534
4535  // Add the element to Bytes.
4536  unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4537  for (unsigned I = 0; I < BytesPerElement; ++I)
4538    Bytes.push_back(Base + I);
4539
4540  return true;
4541}
4542
4543// Return SDNodes for the completed shuffle.
4544SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4545  assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4546
4547  if (Ops.size() == 0)
4548    return DAG.getUNDEF(VT);
4549
4550  // Make sure that there are at least two shuffle operands.
4551  if (Ops.size() == 1)
4552    Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4553
4554  // Create a tree of shuffles, deferring root node until after the loop.
4555  // Try to redistribute the undefined elements of non-root nodes so that
4556  // the non-root shuffles match something like a pack or merge, then adjust
4557  // the parent node's permute vector to compensate for the new order.
4558  // Among other things, this copes with vectors like <2 x i16> that were
4559  // padded with undefined elements during type legalization.
4560  //
4561  // In the best case this redistribution will lead to the whole tree
4562  // using packs and merges.  It should rarely be a loss in other cases.
4563  unsigned Stride = 1;
4564  for (; Stride * 2 < Ops.size(); Stride *= 2) {
4565    for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4566      SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4567
4568      // Create a mask for just these two operands.
4569      SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4570      for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4571        unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4572        unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4573        if (OpNo == I)
4574          NewBytes[J] = Byte;
4575        else if (OpNo == I + Stride)
4576          NewBytes[J] = SystemZ::VectorBytes + Byte;
4577        else
4578          NewBytes[J] = -1;
4579      }
4580      // See if it would be better to reorganize NewMask to avoid using VPERM.
4581      SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4582      if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4583        Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4584        // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4585        for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4586          if (NewBytes[J] >= 0) {
4587            assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4588                   "Invalid double permute");
4589            Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4590          } else
4591            assert(NewBytesMap[J] < 0 && "Invalid double permute");
4592        }
4593      } else {
4594        // Just use NewBytes on the operands.
4595        Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4596        for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4597          if (NewBytes[J] >= 0)
4598            Bytes[J] = I * SystemZ::VectorBytes + J;
4599      }
4600    }
4601  }
4602
4603  // Now we just have 2 inputs.  Put the second operand in Ops[1].
4604  if (Stride > 1) {
4605    Ops[1] = Ops[Stride];
4606    for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4607      if (Bytes[I] >= int(SystemZ::VectorBytes))
4608        Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4609  }
4610
4611  // Look for an instruction that can do the permute without resorting
4612  // to VPERM.
4613  unsigned OpNo0, OpNo1;
4614  SDValue Op;
4615  if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4616    Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4617  else
4618    Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4619  return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4620}
4621
4622// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4623static bool isScalarToVector(SDValue Op) {
4624  for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4625    if (!Op.getOperand(I).isUndef())
4626      return false;
4627  return true;
4628}
4629
4630// Return a vector of type VT that contains Value in the first element.
4631// The other elements don't matter.
4632static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4633                                   SDValue Value) {
4634  // If we have a constant, replicate it to all elements and let the
4635  // BUILD_VECTOR lowering take care of it.
4636  if (Value.getOpcode() == ISD::Constant ||
4637      Value.getOpcode() == ISD::ConstantFP) {
4638    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4639    return DAG.getBuildVector(VT, DL, Ops);
4640  }
4641  if (Value.isUndef())
4642    return DAG.getUNDEF(VT);
4643  return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4644}
4645
4646// Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4647// element 1.  Used for cases in which replication is cheap.
4648static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4649                                 SDValue Op0, SDValue Op1) {
4650  if (Op0.isUndef()) {
4651    if (Op1.isUndef())
4652      return DAG.getUNDEF(VT);
4653    return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4654  }
4655  if (Op1.isUndef())
4656    return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4657  return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4658                     buildScalarToVector(DAG, DL, VT, Op0),
4659                     buildScalarToVector(DAG, DL, VT, Op1));
4660}
4661
4662// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4663// vector for them.
4664static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4665                          SDValue Op1) {
4666  if (Op0.isUndef() && Op1.isUndef())
4667    return DAG.getUNDEF(MVT::v2i64);
4668  // If one of the two inputs is undefined then replicate the other one,
4669  // in order to avoid using another register unnecessarily.
4670  if (Op0.isUndef())
4671    Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4672  else if (Op1.isUndef())
4673    Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4674  else {
4675    Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4676    Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4677  }
4678  return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4679}
4680
4681// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4682// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4683// the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4684// would benefit from this representation and return it if so.
4685static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4686                                     BuildVectorSDNode *BVN) {
4687  EVT VT = BVN->getValueType(0);
4688  unsigned NumElements = VT.getVectorNumElements();
4689
4690  // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4691  // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4692  // need a BUILD_VECTOR, add an additional placeholder operand for that
4693  // BUILD_VECTOR and store its operands in ResidueOps.
4694  GeneralShuffle GS(VT);
4695  SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4696  bool FoundOne = false;
4697  for (unsigned I = 0; I < NumElements; ++I) {
4698    SDValue Op = BVN->getOperand(I);
4699    if (Op.getOpcode() == ISD::TRUNCATE)
4700      Op = Op.getOperand(0);
4701    if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4702        Op.getOperand(1).getOpcode() == ISD::Constant) {
4703      unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4704      if (!GS.add(Op.getOperand(0), Elem))
4705        return SDValue();
4706      FoundOne = true;
4707    } else if (Op.isUndef()) {
4708      GS.addUndef();
4709    } else {
4710      if (!GS.add(SDValue(), ResidueOps.size()))
4711        return SDValue();
4712      ResidueOps.push_back(BVN->getOperand(I));
4713    }
4714  }
4715
4716  // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4717  if (!FoundOne)
4718    return SDValue();
4719
4720  // Create the BUILD_VECTOR for the remaining elements, if any.
4721  if (!ResidueOps.empty()) {
4722    while (ResidueOps.size() < NumElements)
4723      ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4724    for (auto &Op : GS.Ops) {
4725      if (!Op.getNode()) {
4726        Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4727        break;
4728      }
4729    }
4730  }
4731  return GS.getNode(DAG, SDLoc(BVN));
4732}
4733
4734bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4735  if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4736    return true;
4737  if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4738    return true;
4739  return false;
4740}
4741
4742// Combine GPR scalar values Elems into a vector of type VT.
4743SDValue
4744SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4745                                   SmallVectorImpl<SDValue> &Elems) const {
4746  // See whether there is a single replicated value.
4747  SDValue Single;
4748  unsigned int NumElements = Elems.size();
4749  unsigned int Count = 0;
4750  for (auto Elem : Elems) {
4751    if (!Elem.isUndef()) {
4752      if (!Single.getNode())
4753        Single = Elem;
4754      else if (Elem != Single) {
4755        Single = SDValue();
4756        break;
4757      }
4758      Count += 1;
4759    }
4760  }
4761  // There are three cases here:
4762  //
4763  // - if the only defined element is a loaded one, the best sequence
4764  //   is a replicating load.
4765  //
4766  // - otherwise, if the only defined element is an i64 value, we will
4767  //   end up with the same VLVGP sequence regardless of whether we short-cut
4768  //   for replication or fall through to the later code.
4769  //
4770  // - otherwise, if the only defined element is an i32 or smaller value,
4771  //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4772  //   This is only a win if the single defined element is used more than once.
4773  //   In other cases we're better off using a single VLVGx.
4774  if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4775    return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4776
4777  // If all elements are loads, use VLREP/VLEs (below).
4778  bool AllLoads = true;
4779  for (auto Elem : Elems)
4780    if (!isVectorElementLoad(Elem)) {
4781      AllLoads = false;
4782      break;
4783    }
4784
4785  // The best way of building a v2i64 from two i64s is to use VLVGP.
4786  if (VT == MVT::v2i64 && !AllLoads)
4787    return joinDwords(DAG, DL, Elems[0], Elems[1]);
4788
4789  // Use a 64-bit merge high to combine two doubles.
4790  if (VT == MVT::v2f64 && !AllLoads)
4791    return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4792
4793  // Build v4f32 values directly from the FPRs:
4794  //
4795  //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4796  //         V              V         VMRHF
4797  //      <ABxx>         <CDxx>
4798  //                V                 VMRHG
4799  //              <ABCD>
4800  if (VT == MVT::v4f32 && !AllLoads) {
4801    SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4802    SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4803    // Avoid unnecessary undefs by reusing the other operand.
4804    if (Op01.isUndef())
4805      Op01 = Op23;
4806    else if (Op23.isUndef())
4807      Op23 = Op01;
4808    // Merging identical replications is a no-op.
4809    if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4810      return Op01;
4811    Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4812    Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4813    SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4814                             DL, MVT::v2i64, Op01, Op23);
4815    return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4816  }
4817
4818  // Collect the constant terms.
4819  SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4820  SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4821
4822  unsigned NumConstants = 0;
4823  for (unsigned I = 0; I < NumElements; ++I) {
4824    SDValue Elem = Elems[I];
4825    if (Elem.getOpcode() == ISD::Constant ||
4826        Elem.getOpcode() == ISD::ConstantFP) {
4827      NumConstants += 1;
4828      Constants[I] = Elem;
4829      Done[I] = true;
4830    }
4831  }
4832  // If there was at least one constant, fill in the other elements of
4833  // Constants with undefs to get a full vector constant and use that
4834  // as the starting point.
4835  SDValue Result;
4836  SDValue ReplicatedVal;
4837  if (NumConstants > 0) {
4838    for (unsigned I = 0; I < NumElements; ++I)
4839      if (!Constants[I].getNode())
4840        Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4841    Result = DAG.getBuildVector(VT, DL, Constants);
4842  } else {
4843    // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4844    // avoid a false dependency on any previous contents of the vector
4845    // register.
4846
4847    // Use a VLREP if at least one element is a load. Make sure to replicate
4848    // the load with the most elements having its value.
4849    std::map<const SDNode*, unsigned> UseCounts;
4850    SDNode *LoadMaxUses = nullptr;
4851    for (unsigned I = 0; I < NumElements; ++I)
4852      if (isVectorElementLoad(Elems[I])) {
4853        SDNode *Ld = Elems[I].getNode();
4854        UseCounts[Ld]++;
4855        if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4856          LoadMaxUses = Ld;
4857      }
4858    if (LoadMaxUses != nullptr) {
4859      ReplicatedVal = SDValue(LoadMaxUses, 0);
4860      Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4861    } else {
4862      // Try to use VLVGP.
4863      unsigned I1 = NumElements / 2 - 1;
4864      unsigned I2 = NumElements - 1;
4865      bool Def1 = !Elems[I1].isUndef();
4866      bool Def2 = !Elems[I2].isUndef();
4867      if (Def1 || Def2) {
4868        SDValue Elem1 = Elems[Def1 ? I1 : I2];
4869        SDValue Elem2 = Elems[Def2 ? I2 : I1];
4870        Result = DAG.getNode(ISD::BITCAST, DL, VT,
4871                             joinDwords(DAG, DL, Elem1, Elem2));
4872        Done[I1] = true;
4873        Done[I2] = true;
4874      } else
4875        Result = DAG.getUNDEF(VT);
4876    }
4877  }
4878
4879  // Use VLVGx to insert the other elements.
4880  for (unsigned I = 0; I < NumElements; ++I)
4881    if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4882      Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4883                           DAG.getConstant(I, DL, MVT::i32));
4884  return Result;
4885}
4886
4887SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4888                                                 SelectionDAG &DAG) const {
4889  auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4890  SDLoc DL(Op);
4891  EVT VT = Op.getValueType();
4892
4893  if (BVN->isConstant()) {
4894    if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4895      return Op;
4896
4897    // Fall back to loading it from memory.
4898    return SDValue();
4899  }
4900
4901  // See if we should use shuffles to construct the vector from other vectors.
4902  if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4903    return Res;
4904
4905  // Detect SCALAR_TO_VECTOR conversions.
4906  if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4907    return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4908
4909  // Otherwise use buildVector to build the vector up from GPRs.
4910  unsigned NumElements = Op.getNumOperands();
4911  SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4912  for (unsigned I = 0; I < NumElements; ++I)
4913    Ops[I] = Op.getOperand(I);
4914  return buildVector(DAG, DL, VT, Ops);
4915}
4916
4917SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4918                                                   SelectionDAG &DAG) const {
4919  auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4920  SDLoc DL(Op);
4921  EVT VT = Op.getValueType();
4922  unsigned NumElements = VT.getVectorNumElements();
4923
4924  if (VSN->isSplat()) {
4925    SDValue Op0 = Op.getOperand(0);
4926    unsigned Index = VSN->getSplatIndex();
4927    assert(Index < VT.getVectorNumElements() &&
4928           "Splat index should be defined and in first operand");
4929    // See whether the value we're splatting is directly available as a scalar.
4930    if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4931        Op0.getOpcode() == ISD::BUILD_VECTOR)
4932      return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4933    // Otherwise keep it as a vector-to-vector operation.
4934    return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4935                       DAG.getTargetConstant(Index, DL, MVT::i32));
4936  }
4937
4938  GeneralShuffle GS(VT);
4939  for (unsigned I = 0; I < NumElements; ++I) {
4940    int Elt = VSN->getMaskElt(I);
4941    if (Elt < 0)
4942      GS.addUndef();
4943    else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4944                     unsigned(Elt) % NumElements))
4945      return SDValue();
4946  }
4947  return GS.getNode(DAG, SDLoc(VSN));
4948}
4949
4950SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4951                                                     SelectionDAG &DAG) const {
4952  SDLoc DL(Op);
4953  // Just insert the scalar into element 0 of an undefined vector.
4954  return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4955                     Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4956                     Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4957}
4958
4959SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4960                                                      SelectionDAG &DAG) const {
4961  // Handle insertions of floating-point values.
4962  SDLoc DL(Op);
4963  SDValue Op0 = Op.getOperand(0);
4964  SDValue Op1 = Op.getOperand(1);
4965  SDValue Op2 = Op.getOperand(2);
4966  EVT VT = Op.getValueType();
4967
4968  // Insertions into constant indices of a v2f64 can be done using VPDI.
4969  // However, if the inserted value is a bitcast or a constant then it's
4970  // better to use GPRs, as below.
4971  if (VT == MVT::v2f64 &&
4972      Op1.getOpcode() != ISD::BITCAST &&
4973      Op1.getOpcode() != ISD::ConstantFP &&
4974      Op2.getOpcode() == ISD::Constant) {
4975    uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4976    unsigned Mask = VT.getVectorNumElements() - 1;
4977    if (Index <= Mask)
4978      return Op;
4979  }
4980
4981  // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4982  MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4983  MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4984  SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4985                            DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4986                            DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4987  return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4988}
4989
4990SDValue
4991SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4992                                               SelectionDAG &DAG) const {
4993  // Handle extractions of floating-point values.
4994  SDLoc DL(Op);
4995  SDValue Op0 = Op.getOperand(0);
4996  SDValue Op1 = Op.getOperand(1);
4997  EVT VT = Op.getValueType();
4998  EVT VecVT = Op0.getValueType();
4999
5000  // Extractions of constant indices can be done directly.
5001  if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5002    uint64_t Index = CIndexN->getZExtValue();
5003    unsigned Mask = VecVT.getVectorNumElements() - 1;
5004    if (Index <= Mask)
5005      return Op;
5006  }
5007
5008  // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5009  MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5010  MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5011  SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5012                            DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5013  return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5014}
5015
5016SDValue
5017SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
5018                                              unsigned UnpackHigh) const {
5019  SDValue PackedOp = Op.getOperand(0);
5020  EVT OutVT = Op.getValueType();
5021  EVT InVT = PackedOp.getValueType();
5022  unsigned ToBits = OutVT.getScalarSizeInBits();
5023  unsigned FromBits = InVT.getScalarSizeInBits();
5024  do {
5025    FromBits *= 2;
5026    EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5027                                 SystemZ::VectorBits / FromBits);
5028    PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
5029  } while (FromBits != ToBits);
5030  return PackedOp;
5031}
5032
5033SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5034                                          unsigned ByScalar) const {
5035  // Look for cases where a vector shift can use the *_BY_SCALAR form.
5036  SDValue Op0 = Op.getOperand(0);
5037  SDValue Op1 = Op.getOperand(1);
5038  SDLoc DL(Op);
5039  EVT VT = Op.getValueType();
5040  unsigned ElemBitSize = VT.getScalarSizeInBits();
5041
5042  // See whether the shift vector is a splat represented as BUILD_VECTOR.
5043  if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5044    APInt SplatBits, SplatUndef;
5045    unsigned SplatBitSize;
5046    bool HasAnyUndefs;
5047    // Check for constant splats.  Use ElemBitSize as the minimum element
5048    // width and reject splats that need wider elements.
5049    if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5050                             ElemBitSize, true) &&
5051        SplatBitSize == ElemBitSize) {
5052      SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5053                                      DL, MVT::i32);
5054      return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5055    }
5056    // Check for variable splats.
5057    BitVector UndefElements;
5058    SDValue Splat = BVN->getSplatValue(&UndefElements);
5059    if (Splat) {
5060      // Since i32 is the smallest legal type, we either need a no-op
5061      // or a truncation.
5062      SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5063      return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5064    }
5065  }
5066
5067  // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5068  // and the shift amount is directly available in a GPR.
5069  if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5070    if (VSN->isSplat()) {
5071      SDValue VSNOp0 = VSN->getOperand(0);
5072      unsigned Index = VSN->getSplatIndex();
5073      assert(Index < VT.getVectorNumElements() &&
5074             "Splat index should be defined and in first operand");
5075      if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5076          VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5077        // Since i32 is the smallest legal type, we either need a no-op
5078        // or a truncation.
5079        SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5080                                    VSNOp0.getOperand(Index));
5081        return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5082      }
5083    }
5084  }
5085
5086  // Otherwise just treat the current form as legal.
5087  return Op;
5088}
5089
5090SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5091                                              SelectionDAG &DAG) const {
5092  switch (Op.getOpcode()) {
5093  case ISD::FRAMEADDR:
5094    return lowerFRAMEADDR(Op, DAG);
5095  case ISD::RETURNADDR:
5096    return lowerRETURNADDR(Op, DAG);
5097  case ISD::BR_CC:
5098    return lowerBR_CC(Op, DAG);
5099  case ISD::SELECT_CC:
5100    return lowerSELECT_CC(Op, DAG);
5101  case ISD::SETCC:
5102    return lowerSETCC(Op, DAG);
5103  case ISD::STRICT_FSETCC:
5104    return lowerSTRICT_FSETCC(Op, DAG, false);
5105  case ISD::STRICT_FSETCCS:
5106    return lowerSTRICT_FSETCC(Op, DAG, true);
5107  case ISD::GlobalAddress:
5108    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5109  case ISD::GlobalTLSAddress:
5110    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5111  case ISD::BlockAddress:
5112    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5113  case ISD::JumpTable:
5114    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5115  case ISD::ConstantPool:
5116    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5117  case ISD::BITCAST:
5118    return lowerBITCAST(Op, DAG);
5119  case ISD::VASTART:
5120    return lowerVASTART(Op, DAG);
5121  case ISD::VACOPY:
5122    return lowerVACOPY(Op, DAG);
5123  case ISD::DYNAMIC_STACKALLOC:
5124    return lowerDYNAMIC_STACKALLOC(Op, DAG);
5125  case ISD::GET_DYNAMIC_AREA_OFFSET:
5126    return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5127  case ISD::SMUL_LOHI:
5128    return lowerSMUL_LOHI(Op, DAG);
5129  case ISD::UMUL_LOHI:
5130    return lowerUMUL_LOHI(Op, DAG);
5131  case ISD::SDIVREM:
5132    return lowerSDIVREM(Op, DAG);
5133  case ISD::UDIVREM:
5134    return lowerUDIVREM(Op, DAG);
5135  case ISD::SADDO:
5136  case ISD::SSUBO:
5137  case ISD::UADDO:
5138  case ISD::USUBO:
5139    return lowerXALUO(Op, DAG);
5140  case ISD::ADDCARRY:
5141  case ISD::SUBCARRY:
5142    return lowerADDSUBCARRY(Op, DAG);
5143  case ISD::OR:
5144    return lowerOR(Op, DAG);
5145  case ISD::CTPOP:
5146    return lowerCTPOP(Op, DAG);
5147  case ISD::ATOMIC_FENCE:
5148    return lowerATOMIC_FENCE(Op, DAG);
5149  case ISD::ATOMIC_SWAP:
5150    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5151  case ISD::ATOMIC_STORE:
5152    return lowerATOMIC_STORE(Op, DAG);
5153  case ISD::ATOMIC_LOAD:
5154    return lowerATOMIC_LOAD(Op, DAG);
5155  case ISD::ATOMIC_LOAD_ADD:
5156    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5157  case ISD::ATOMIC_LOAD_SUB:
5158    return lowerATOMIC_LOAD_SUB(Op, DAG);
5159  case ISD::ATOMIC_LOAD_AND:
5160    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5161  case ISD::ATOMIC_LOAD_OR:
5162    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5163  case ISD::ATOMIC_LOAD_XOR:
5164    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5165  case ISD::ATOMIC_LOAD_NAND:
5166    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5167  case ISD::ATOMIC_LOAD_MIN:
5168    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5169  case ISD::ATOMIC_LOAD_MAX:
5170    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5171  case ISD::ATOMIC_LOAD_UMIN:
5172    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5173  case ISD::ATOMIC_LOAD_UMAX:
5174    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5175  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5176    return lowerATOMIC_CMP_SWAP(Op, DAG);
5177  case ISD::STACKSAVE:
5178    return lowerSTACKSAVE(Op, DAG);
5179  case ISD::STACKRESTORE:
5180    return lowerSTACKRESTORE(Op, DAG);
5181  case ISD::PREFETCH:
5182    return lowerPREFETCH(Op, DAG);
5183  case ISD::INTRINSIC_W_CHAIN:
5184    return lowerINTRINSIC_W_CHAIN(Op, DAG);
5185  case ISD::INTRINSIC_WO_CHAIN:
5186    return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5187  case ISD::BUILD_VECTOR:
5188    return lowerBUILD_VECTOR(Op, DAG);
5189  case ISD::VECTOR_SHUFFLE:
5190    return lowerVECTOR_SHUFFLE(Op, DAG);
5191  case ISD::SCALAR_TO_VECTOR:
5192    return lowerSCALAR_TO_VECTOR(Op, DAG);
5193  case ISD::INSERT_VECTOR_ELT:
5194    return lowerINSERT_VECTOR_ELT(Op, DAG);
5195  case ISD::EXTRACT_VECTOR_ELT:
5196    return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5197  case ISD::SIGN_EXTEND_VECTOR_INREG:
5198    return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5199  case ISD::ZERO_EXTEND_VECTOR_INREG:
5200    return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5201  case ISD::SHL:
5202    return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5203  case ISD::SRL:
5204    return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5205  case ISD::SRA:
5206    return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5207  default:
5208    llvm_unreachable("Unexpected node to lower");
5209  }
5210}
5211
5212// Lower operations with invalid operand or result types (currently used
5213// only for 128-bit integer types).
5214
5215static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5216  SDLoc DL(In);
5217  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5218                           DAG.getIntPtrConstant(0, DL));
5219  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5220                           DAG.getIntPtrConstant(1, DL));
5221  SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5222                                    MVT::Untyped, Hi, Lo);
5223  return SDValue(Pair, 0);
5224}
5225
5226static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5227  SDLoc DL(In);
5228  SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5229                                          DL, MVT::i64, In);
5230  SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5231                                          DL, MVT::i64, In);
5232  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5233}
5234
5235void
5236SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5237                                             SmallVectorImpl<SDValue> &Results,
5238                                             SelectionDAG &DAG) const {
5239  switch (N->getOpcode()) {
5240  case ISD::ATOMIC_LOAD: {
5241    SDLoc DL(N);
5242    SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5243    SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5244    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5245    SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5246                                          DL, Tys, Ops, MVT::i128, MMO);
5247    Results.push_back(lowerGR128ToI128(DAG, Res));
5248    Results.push_back(Res.getValue(1));
5249    break;
5250  }
5251  case ISD::ATOMIC_STORE: {
5252    SDLoc DL(N);
5253    SDVTList Tys = DAG.getVTList(MVT::Other);
5254    SDValue Ops[] = { N->getOperand(0),
5255                      lowerI128ToGR128(DAG, N->getOperand(2)),
5256                      N->getOperand(1) };
5257    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5258    SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5259                                          DL, Tys, Ops, MVT::i128, MMO);
5260    // We have to enforce sequential consistency by performing a
5261    // serialization operation after the store.
5262    if (cast<AtomicSDNode>(N)->getOrdering() ==
5263        AtomicOrdering::SequentiallyConsistent)
5264      Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5265                                       MVT::Other, Res), 0);
5266    Results.push_back(Res);
5267    break;
5268  }
5269  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5270    SDLoc DL(N);
5271    SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5272    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5273                      lowerI128ToGR128(DAG, N->getOperand(2)),
5274                      lowerI128ToGR128(DAG, N->getOperand(3)) };
5275    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5276    SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5277                                          DL, Tys, Ops, MVT::i128, MMO);
5278    SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5279                                SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5280    Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5281    Results.push_back(lowerGR128ToI128(DAG, Res));
5282    Results.push_back(Success);
5283    Results.push_back(Res.getValue(2));
5284    break;
5285  }
5286  default:
5287    llvm_unreachable("Unexpected node to lower");
5288  }
5289}
5290
5291void
5292SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5293                                          SmallVectorImpl<SDValue> &Results,
5294                                          SelectionDAG &DAG) const {
5295  return LowerOperationWrapper(N, Results, DAG);
5296}
5297
5298const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5299#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5300  switch ((SystemZISD::NodeType)Opcode) {
5301    case SystemZISD::FIRST_NUMBER: break;
5302    OPCODE(RET_FLAG);
5303    OPCODE(CALL);
5304    OPCODE(SIBCALL);
5305    OPCODE(TLS_GDCALL);
5306    OPCODE(TLS_LDCALL);
5307    OPCODE(PCREL_WRAPPER);
5308    OPCODE(PCREL_OFFSET);
5309    OPCODE(IABS);
5310    OPCODE(ICMP);
5311    OPCODE(FCMP);
5312    OPCODE(STRICT_FCMP);
5313    OPCODE(STRICT_FCMPS);
5314    OPCODE(TM);
5315    OPCODE(BR_CCMASK);
5316    OPCODE(SELECT_CCMASK);
5317    OPCODE(ADJDYNALLOC);
5318    OPCODE(POPCNT);
5319    OPCODE(SMUL_LOHI);
5320    OPCODE(UMUL_LOHI);
5321    OPCODE(SDIVREM);
5322    OPCODE(UDIVREM);
5323    OPCODE(SADDO);
5324    OPCODE(SSUBO);
5325    OPCODE(UADDO);
5326    OPCODE(USUBO);
5327    OPCODE(ADDCARRY);
5328    OPCODE(SUBCARRY);
5329    OPCODE(GET_CCMASK);
5330    OPCODE(MVC);
5331    OPCODE(MVC_LOOP);
5332    OPCODE(NC);
5333    OPCODE(NC_LOOP);
5334    OPCODE(OC);
5335    OPCODE(OC_LOOP);
5336    OPCODE(XC);
5337    OPCODE(XC_LOOP);
5338    OPCODE(CLC);
5339    OPCODE(CLC_LOOP);
5340    OPCODE(STPCPY);
5341    OPCODE(STRCMP);
5342    OPCODE(SEARCH_STRING);
5343    OPCODE(IPM);
5344    OPCODE(MEMBARRIER);
5345    OPCODE(TBEGIN);
5346    OPCODE(TBEGIN_NOFLOAT);
5347    OPCODE(TEND);
5348    OPCODE(BYTE_MASK);
5349    OPCODE(ROTATE_MASK);
5350    OPCODE(REPLICATE);
5351    OPCODE(JOIN_DWORDS);
5352    OPCODE(SPLAT);
5353    OPCODE(MERGE_HIGH);
5354    OPCODE(MERGE_LOW);
5355    OPCODE(SHL_DOUBLE);
5356    OPCODE(PERMUTE_DWORDS);
5357    OPCODE(PERMUTE);
5358    OPCODE(PACK);
5359    OPCODE(PACKS_CC);
5360    OPCODE(PACKLS_CC);
5361    OPCODE(UNPACK_HIGH);
5362    OPCODE(UNPACKL_HIGH);
5363    OPCODE(UNPACK_LOW);
5364    OPCODE(UNPACKL_LOW);
5365    OPCODE(VSHL_BY_SCALAR);
5366    OPCODE(VSRL_BY_SCALAR);
5367    OPCODE(VSRA_BY_SCALAR);
5368    OPCODE(VSUM);
5369    OPCODE(VICMPE);
5370    OPCODE(VICMPH);
5371    OPCODE(VICMPHL);
5372    OPCODE(VICMPES);
5373    OPCODE(VICMPHS);
5374    OPCODE(VICMPHLS);
5375    OPCODE(VFCMPE);
5376    OPCODE(STRICT_VFCMPE);
5377    OPCODE(STRICT_VFCMPES);
5378    OPCODE(VFCMPH);
5379    OPCODE(STRICT_VFCMPH);
5380    OPCODE(STRICT_VFCMPHS);
5381    OPCODE(VFCMPHE);
5382    OPCODE(STRICT_VFCMPHE);
5383    OPCODE(STRICT_VFCMPHES);
5384    OPCODE(VFCMPES);
5385    OPCODE(VFCMPHS);
5386    OPCODE(VFCMPHES);
5387    OPCODE(VFTCI);
5388    OPCODE(VEXTEND);
5389    OPCODE(STRICT_VEXTEND);
5390    OPCODE(VROUND);
5391    OPCODE(STRICT_VROUND);
5392    OPCODE(VTM);
5393    OPCODE(VFAE_CC);
5394    OPCODE(VFAEZ_CC);
5395    OPCODE(VFEE_CC);
5396    OPCODE(VFEEZ_CC);
5397    OPCODE(VFENE_CC);
5398    OPCODE(VFENEZ_CC);
5399    OPCODE(VISTR_CC);
5400    OPCODE(VSTRC_CC);
5401    OPCODE(VSTRCZ_CC);
5402    OPCODE(VSTRS_CC);
5403    OPCODE(VSTRSZ_CC);
5404    OPCODE(TDC);
5405    OPCODE(ATOMIC_SWAPW);
5406    OPCODE(ATOMIC_LOADW_ADD);
5407    OPCODE(ATOMIC_LOADW_SUB);
5408    OPCODE(ATOMIC_LOADW_AND);
5409    OPCODE(ATOMIC_LOADW_OR);
5410    OPCODE(ATOMIC_LOADW_XOR);
5411    OPCODE(ATOMIC_LOADW_NAND);
5412    OPCODE(ATOMIC_LOADW_MIN);
5413    OPCODE(ATOMIC_LOADW_MAX);
5414    OPCODE(ATOMIC_LOADW_UMIN);
5415    OPCODE(ATOMIC_LOADW_UMAX);
5416    OPCODE(ATOMIC_CMP_SWAPW);
5417    OPCODE(ATOMIC_CMP_SWAP);
5418    OPCODE(ATOMIC_LOAD_128);
5419    OPCODE(ATOMIC_STORE_128);
5420    OPCODE(ATOMIC_CMP_SWAP_128);
5421    OPCODE(LRV);
5422    OPCODE(STRV);
5423    OPCODE(VLER);
5424    OPCODE(VSTER);
5425    OPCODE(PREFETCH);
5426  }
5427  return nullptr;
5428#undef OPCODE
5429}
5430
5431// Return true if VT is a vector whose elements are a whole number of bytes
5432// in width. Also check for presence of vector support.
5433bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5434  if (!Subtarget.hasVector())
5435    return false;
5436
5437  return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5438}
5439
5440// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5441// producing a result of type ResVT.  Op is a possibly bitcast version
5442// of the input vector and Index is the index (based on type VecVT) that
5443// should be extracted.  Return the new extraction if a simplification
5444// was possible or if Force is true.
5445SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5446                                              EVT VecVT, SDValue Op,
5447                                              unsigned Index,
5448                                              DAGCombinerInfo &DCI,
5449                                              bool Force) const {
5450  SelectionDAG &DAG = DCI.DAG;
5451
5452  // The number of bytes being extracted.
5453  unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5454
5455  for (;;) {
5456    unsigned Opcode = Op.getOpcode();
5457    if (Opcode == ISD::BITCAST)
5458      // Look through bitcasts.
5459      Op = Op.getOperand(0);
5460    else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5461             canTreatAsByteVector(Op.getValueType())) {
5462      // Get a VPERM-like permute mask and see whether the bytes covered
5463      // by the extracted element are a contiguous sequence from one
5464      // source operand.
5465      SmallVector<int, SystemZ::VectorBytes> Bytes;
5466      if (!getVPermMask(Op, Bytes))
5467        break;
5468      int First;
5469      if (!getShuffleInput(Bytes, Index * BytesPerElement,
5470                           BytesPerElement, First))
5471        break;
5472      if (First < 0)
5473        return DAG.getUNDEF(ResVT);
5474      // Make sure the contiguous sequence starts at a multiple of the
5475      // original element size.
5476      unsigned Byte = unsigned(First) % Bytes.size();
5477      if (Byte % BytesPerElement != 0)
5478        break;
5479      // We can get the extracted value directly from an input.
5480      Index = Byte / BytesPerElement;
5481      Op = Op.getOperand(unsigned(First) / Bytes.size());
5482      Force = true;
5483    } else if (Opcode == ISD::BUILD_VECTOR &&
5484               canTreatAsByteVector(Op.getValueType())) {
5485      // We can only optimize this case if the BUILD_VECTOR elements are
5486      // at least as wide as the extracted value.
5487      EVT OpVT = Op.getValueType();
5488      unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5489      if (OpBytesPerElement < BytesPerElement)
5490        break;
5491      // Make sure that the least-significant bit of the extracted value
5492      // is the least significant bit of an input.
5493      unsigned End = (Index + 1) * BytesPerElement;
5494      if (End % OpBytesPerElement != 0)
5495        break;
5496      // We're extracting the low part of one operand of the BUILD_VECTOR.
5497      Op = Op.getOperand(End / OpBytesPerElement - 1);
5498      if (!Op.getValueType().isInteger()) {
5499        EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5500        Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5501        DCI.AddToWorklist(Op.getNode());
5502      }
5503      EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5504      Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5505      if (VT != ResVT) {
5506        DCI.AddToWorklist(Op.getNode());
5507        Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5508      }
5509      return Op;
5510    } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5511                Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5512                Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5513               canTreatAsByteVector(Op.getValueType()) &&
5514               canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5515      // Make sure that only the unextended bits are significant.
5516      EVT ExtVT = Op.getValueType();
5517      EVT OpVT = Op.getOperand(0).getValueType();
5518      unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5519      unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5520      unsigned Byte = Index * BytesPerElement;
5521      unsigned SubByte = Byte % ExtBytesPerElement;
5522      unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5523      if (SubByte < MinSubByte ||
5524          SubByte + BytesPerElement > ExtBytesPerElement)
5525        break;
5526      // Get the byte offset of the unextended element
5527      Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5528      // ...then add the byte offset relative to that element.
5529      Byte += SubByte - MinSubByte;
5530      if (Byte % BytesPerElement != 0)
5531        break;
5532      Op = Op.getOperand(0);
5533      Index = Byte / BytesPerElement;
5534      Force = true;
5535    } else
5536      break;
5537  }
5538  if (Force) {
5539    if (Op.getValueType() != VecVT) {
5540      Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5541      DCI.AddToWorklist(Op.getNode());
5542    }
5543    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5544                       DAG.getConstant(Index, DL, MVT::i32));
5545  }
5546  return SDValue();
5547}
5548
5549// Optimize vector operations in scalar value Op on the basis that Op
5550// is truncated to TruncVT.
5551SDValue SystemZTargetLowering::combineTruncateExtract(
5552    const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5553  // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5554  // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5555  // of type TruncVT.
5556  if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5557      TruncVT.getSizeInBits() % 8 == 0) {
5558    SDValue Vec = Op.getOperand(0);
5559    EVT VecVT = Vec.getValueType();
5560    if (canTreatAsByteVector(VecVT)) {
5561      if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5562        unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5563        unsigned TruncBytes = TruncVT.getStoreSize();
5564        if (BytesPerElement % TruncBytes == 0) {
5565          // Calculate the value of Y' in the above description.  We are
5566          // splitting the original elements into Scale equal-sized pieces
5567          // and for truncation purposes want the last (least-significant)
5568          // of these pieces for IndexN.  This is easiest to do by calculating
5569          // the start index of the following element and then subtracting 1.
5570          unsigned Scale = BytesPerElement / TruncBytes;
5571          unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5572
5573          // Defer the creation of the bitcast from X to combineExtract,
5574          // which might be able to optimize the extraction.
5575          VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5576                                   VecVT.getStoreSize() / TruncBytes);
5577          EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5578          return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5579        }
5580      }
5581    }
5582  }
5583  return SDValue();
5584}
5585
5586SDValue SystemZTargetLowering::combineZERO_EXTEND(
5587    SDNode *N, DAGCombinerInfo &DCI) const {
5588  // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5589  SelectionDAG &DAG = DCI.DAG;
5590  SDValue N0 = N->getOperand(0);
5591  EVT VT = N->getValueType(0);
5592  if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5593    auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5594    auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5595    if (TrueOp && FalseOp) {
5596      SDLoc DL(N0);
5597      SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5598                        DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5599                        N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5600      SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5601      // If N0 has multiple uses, change other uses as well.
5602      if (!N0.hasOneUse()) {
5603        SDValue TruncSelect =
5604          DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5605        DCI.CombineTo(N0.getNode(), TruncSelect);
5606      }
5607      return NewSelect;
5608    }
5609  }
5610  return SDValue();
5611}
5612
5613SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5614    SDNode *N, DAGCombinerInfo &DCI) const {
5615  // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5616  // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5617  // into (select_cc LHS, RHS, -1, 0, COND)
5618  SelectionDAG &DAG = DCI.DAG;
5619  SDValue N0 = N->getOperand(0);
5620  EVT VT = N->getValueType(0);
5621  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5622  if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5623    N0 = N0.getOperand(0);
5624  if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5625    SDLoc DL(N0);
5626    SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5627                      DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5628                      N0.getOperand(2) };
5629    return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5630  }
5631  return SDValue();
5632}
5633
5634SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5635    SDNode *N, DAGCombinerInfo &DCI) const {
5636  // Convert (sext (ashr (shl X, C1), C2)) to
5637  // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5638  // cheap as narrower ones.
5639  SelectionDAG &DAG = DCI.DAG;
5640  SDValue N0 = N->getOperand(0);
5641  EVT VT = N->getValueType(0);
5642  if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5643    auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5644    SDValue Inner = N0.getOperand(0);
5645    if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5646      if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5647        unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5648        unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5649        unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5650        EVT ShiftVT = N0.getOperand(1).getValueType();
5651        SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5652                                  Inner.getOperand(0));
5653        SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5654                                  DAG.getConstant(NewShlAmt, SDLoc(Inner),
5655                                                  ShiftVT));
5656        return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5657                           DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5658      }
5659    }
5660  }
5661  return SDValue();
5662}
5663
5664SDValue SystemZTargetLowering::combineMERGE(
5665    SDNode *N, DAGCombinerInfo &DCI) const {
5666  SelectionDAG &DAG = DCI.DAG;
5667  unsigned Opcode = N->getOpcode();
5668  SDValue Op0 = N->getOperand(0);
5669  SDValue Op1 = N->getOperand(1);
5670  if (Op0.getOpcode() == ISD::BITCAST)
5671    Op0 = Op0.getOperand(0);
5672  if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5673    // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5674    // for v4f32.
5675    if (Op1 == N->getOperand(0))
5676      return Op1;
5677    // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5678    EVT VT = Op1.getValueType();
5679    unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5680    if (ElemBytes <= 4) {
5681      Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5682                SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5683      EVT InVT = VT.changeVectorElementTypeToInteger();
5684      EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5685                                   SystemZ::VectorBytes / ElemBytes / 2);
5686      if (VT != InVT) {
5687        Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5688        DCI.AddToWorklist(Op1.getNode());
5689      }
5690      SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5691      DCI.AddToWorklist(Op.getNode());
5692      return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5693    }
5694  }
5695  return SDValue();
5696}
5697
5698SDValue SystemZTargetLowering::combineLOAD(
5699    SDNode *N, DAGCombinerInfo &DCI) const {
5700  SelectionDAG &DAG = DCI.DAG;
5701  EVT LdVT = N->getValueType(0);
5702  if (LdVT.isVector() || LdVT.isInteger())
5703    return SDValue();
5704  // Transform a scalar load that is REPLICATEd as well as having other
5705  // use(s) to the form where the other use(s) use the first element of the
5706  // REPLICATE instead of the load. Otherwise instruction selection will not
5707  // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5708  // point loads.
5709
5710  SDValue Replicate;
5711  SmallVector<SDNode*, 8> OtherUses;
5712  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5713       UI != UE; ++UI) {
5714    if (UI->getOpcode() == SystemZISD::REPLICATE) {
5715      if (Replicate)
5716        return SDValue(); // Should never happen
5717      Replicate = SDValue(*UI, 0);
5718    }
5719    else if (UI.getUse().getResNo() == 0)
5720      OtherUses.push_back(*UI);
5721  }
5722  if (!Replicate || OtherUses.empty())
5723    return SDValue();
5724
5725  SDLoc DL(N);
5726  SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5727                              Replicate, DAG.getConstant(0, DL, MVT::i32));
5728  // Update uses of the loaded Value while preserving old chains.
5729  for (SDNode *U : OtherUses) {
5730    SmallVector<SDValue, 8> Ops;
5731    for (SDValue Op : U->ops())
5732      Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5733    DAG.UpdateNodeOperands(U, Ops);
5734  }
5735  return SDValue(N, 0);
5736}
5737
5738bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5739  if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5740    return true;
5741  if (Subtarget.hasVectorEnhancements2())
5742    if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5743      return true;
5744  return false;
5745}
5746
5747static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5748  if (!VT.isVector() || !VT.isSimple() ||
5749      VT.getSizeInBits() != 128 ||
5750      VT.getScalarSizeInBits() % 8 != 0)
5751    return false;
5752
5753  unsigned NumElts = VT.getVectorNumElements();
5754  for (unsigned i = 0; i < NumElts; ++i) {
5755    if (M[i] < 0) continue; // ignore UNDEF indices
5756    if ((unsigned) M[i] != NumElts - 1 - i)
5757      return false;
5758  }
5759
5760  return true;
5761}
5762
5763SDValue SystemZTargetLowering::combineSTORE(
5764    SDNode *N, DAGCombinerInfo &DCI) const {
5765  SelectionDAG &DAG = DCI.DAG;
5766  auto *SN = cast<StoreSDNode>(N);
5767  auto &Op1 = N->getOperand(1);
5768  EVT MemVT = SN->getMemoryVT();
5769  // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5770  // for the extraction to be done on a vMiN value, so that we can use VSTE.
5771  // If X has wider elements then convert it to:
5772  // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5773  if (MemVT.isInteger() && SN->isTruncatingStore()) {
5774    if (SDValue Value =
5775            combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5776      DCI.AddToWorklist(Value.getNode());
5777
5778      // Rewrite the store with the new form of stored value.
5779      return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5780                               SN->getBasePtr(), SN->getMemoryVT(),
5781                               SN->getMemOperand());
5782    }
5783  }
5784  // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5785  if (!SN->isTruncatingStore() &&
5786      Op1.getOpcode() == ISD::BSWAP &&
5787      Op1.getNode()->hasOneUse() &&
5788      canLoadStoreByteSwapped(Op1.getValueType())) {
5789
5790      SDValue BSwapOp = Op1.getOperand(0);
5791
5792      if (BSwapOp.getValueType() == MVT::i16)
5793        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5794
5795      SDValue Ops[] = {
5796        N->getOperand(0), BSwapOp, N->getOperand(2)
5797      };
5798
5799      return
5800        DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5801                                Ops, MemVT, SN->getMemOperand());
5802    }
5803  // Combine STORE (element-swap) into VSTER
5804  if (!SN->isTruncatingStore() &&
5805      Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5806      Op1.getNode()->hasOneUse() &&
5807      Subtarget.hasVectorEnhancements2()) {
5808    ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5809    ArrayRef<int> ShuffleMask = SVN->getMask();
5810    if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5811      SDValue Ops[] = {
5812        N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5813      };
5814
5815      return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5816                                     DAG.getVTList(MVT::Other),
5817                                     Ops, MemVT, SN->getMemOperand());
5818    }
5819  }
5820
5821  return SDValue();
5822}
5823
5824SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5825    SDNode *N, DAGCombinerInfo &DCI) const {
5826  SelectionDAG &DAG = DCI.DAG;
5827  // Combine element-swap (LOAD) into VLER
5828  if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5829      N->getOperand(0).hasOneUse() &&
5830      Subtarget.hasVectorEnhancements2()) {
5831    ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5832    ArrayRef<int> ShuffleMask = SVN->getMask();
5833    if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5834      SDValue Load = N->getOperand(0);
5835      LoadSDNode *LD = cast<LoadSDNode>(Load);
5836
5837      // Create the element-swapping load.
5838      SDValue Ops[] = {
5839        LD->getChain(),    // Chain
5840        LD->getBasePtr()   // Ptr
5841      };
5842      SDValue ESLoad =
5843        DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5844                                DAG.getVTList(LD->getValueType(0), MVT::Other),
5845                                Ops, LD->getMemoryVT(), LD->getMemOperand());
5846
5847      // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
5848      // by the load dead.
5849      DCI.CombineTo(N, ESLoad);
5850
5851      // Next, combine the load away, we give it a bogus result value but a real
5852      // chain result.  The result value is dead because the shuffle is dead.
5853      DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5854
5855      // Return N so it doesn't get rechecked!
5856      return SDValue(N, 0);
5857    }
5858  }
5859
5860  return SDValue();
5861}
5862
5863SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5864    SDNode *N, DAGCombinerInfo &DCI) const {
5865  SelectionDAG &DAG = DCI.DAG;
5866
5867  if (!Subtarget.hasVector())
5868    return SDValue();
5869
5870  // Look through bitcasts that retain the number of vector elements.
5871  SDValue Op = N->getOperand(0);
5872  if (Op.getOpcode() == ISD::BITCAST &&
5873      Op.getValueType().isVector() &&
5874      Op.getOperand(0).getValueType().isVector() &&
5875      Op.getValueType().getVectorNumElements() ==
5876      Op.getOperand(0).getValueType().getVectorNumElements())
5877    Op = Op.getOperand(0);
5878
5879  // Pull BSWAP out of a vector extraction.
5880  if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5881    EVT VecVT = Op.getValueType();
5882    EVT EltVT = VecVT.getVectorElementType();
5883    Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5884                     Op.getOperand(0), N->getOperand(1));
5885    DCI.AddToWorklist(Op.getNode());
5886    Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5887    if (EltVT != N->getValueType(0)) {
5888      DCI.AddToWorklist(Op.getNode());
5889      Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5890    }
5891    return Op;
5892  }
5893
5894  // Try to simplify a vector extraction.
5895  if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5896    SDValue Op0 = N->getOperand(0);
5897    EVT VecVT = Op0.getValueType();
5898    return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5899                          IndexN->getZExtValue(), DCI, false);
5900  }
5901  return SDValue();
5902}
5903
5904SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5905    SDNode *N, DAGCombinerInfo &DCI) const {
5906  SelectionDAG &DAG = DCI.DAG;
5907  // (join_dwords X, X) == (replicate X)
5908  if (N->getOperand(0) == N->getOperand(1))
5909    return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5910                       N->getOperand(0));
5911  return SDValue();
5912}
5913
5914static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
5915  SDValue Chain1 = N1->getOperand(0);
5916  SDValue Chain2 = N2->getOperand(0);
5917
5918  // Trivial case: both nodes take the same chain.
5919  if (Chain1 == Chain2)
5920    return Chain1;
5921
5922  // FIXME - we could handle more complex cases via TokenFactor,
5923  // assuming we can verify that this would not create a cycle.
5924  return SDValue();
5925}
5926
5927SDValue SystemZTargetLowering::combineFP_ROUND(
5928    SDNode *N, DAGCombinerInfo &DCI) const {
5929
5930  if (!Subtarget.hasVector())
5931    return SDValue();
5932
5933  // (fpround (extract_vector_elt X 0))
5934  // (fpround (extract_vector_elt X 1)) ->
5935  // (extract_vector_elt (VROUND X) 0)
5936  // (extract_vector_elt (VROUND X) 2)
5937  //
5938  // This is a special case since the target doesn't really support v2f32s.
5939  unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
5940  SelectionDAG &DAG = DCI.DAG;
5941  SDValue Op0 = N->getOperand(OpNo);
5942  if (N->getValueType(0) == MVT::f32 &&
5943      Op0.hasOneUse() &&
5944      Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5945      Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5946      Op0.getOperand(1).getOpcode() == ISD::Constant &&
5947      cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5948    SDValue Vec = Op0.getOperand(0);
5949    for (auto *U : Vec->uses()) {
5950      if (U != Op0.getNode() &&
5951          U->hasOneUse() &&
5952          U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5953          U->getOperand(0) == Vec &&
5954          U->getOperand(1).getOpcode() == ISD::Constant &&
5955          cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5956        SDValue OtherRound = SDValue(*U->use_begin(), 0);
5957        if (OtherRound.getOpcode() == N->getOpcode() &&
5958            OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
5959            OtherRound.getValueType() == MVT::f32) {
5960          SDValue VRound, Chain;
5961          if (N->isStrictFPOpcode()) {
5962            Chain = MergeInputChains(N, OtherRound.getNode());
5963            if (!Chain)
5964              continue;
5965            VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
5966                                 {MVT::v4f32, MVT::Other}, {Chain, Vec});
5967            Chain = VRound.getValue(1);
5968          } else
5969            VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5970                                 MVT::v4f32, Vec);
5971          DCI.AddToWorklist(VRound.getNode());
5972          SDValue Extract1 =
5973            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5974                        VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5975          DCI.AddToWorklist(Extract1.getNode());
5976          DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5977          if (Chain)
5978            DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
5979          SDValue Extract0 =
5980            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5981                        VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5982          if (Chain)
5983            return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
5984                               N->getVTList(), Extract0, Chain);
5985          return Extract0;
5986        }
5987      }
5988    }
5989  }
5990  return SDValue();
5991}
5992
5993SDValue SystemZTargetLowering::combineFP_EXTEND(
5994    SDNode *N, DAGCombinerInfo &DCI) const {
5995
5996  if (!Subtarget.hasVector())
5997    return SDValue();
5998
5999  // (fpextend (extract_vector_elt X 0))
6000  // (fpextend (extract_vector_elt X 2)) ->
6001  // (extract_vector_elt (VEXTEND X) 0)
6002  // (extract_vector_elt (VEXTEND X) 1)
6003  //
6004  // This is a special case since the target doesn't really support v2f32s.
6005  unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6006  SelectionDAG &DAG = DCI.DAG;
6007  SDValue Op0 = N->getOperand(OpNo);
6008  if (N->getValueType(0) == MVT::f64 &&
6009      Op0.hasOneUse() &&
6010      Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6011      Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6012      Op0.getOperand(1).getOpcode() == ISD::Constant &&
6013      cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6014    SDValue Vec = Op0.getOperand(0);
6015    for (auto *U : Vec->uses()) {
6016      if (U != Op0.getNode() &&
6017          U->hasOneUse() &&
6018          U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6019          U->getOperand(0) == Vec &&
6020          U->getOperand(1).getOpcode() == ISD::Constant &&
6021          cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6022        SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6023        if (OtherExtend.getOpcode() == N->getOpcode() &&
6024            OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6025            OtherExtend.getValueType() == MVT::f64) {
6026          SDValue VExtend, Chain;
6027          if (N->isStrictFPOpcode()) {
6028            Chain = MergeInputChains(N, OtherExtend.getNode());
6029            if (!Chain)
6030              continue;
6031            VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6032                                  {MVT::v2f64, MVT::Other}, {Chain, Vec});
6033            Chain = VExtend.getValue(1);
6034          } else
6035            VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6036                                  MVT::v2f64, Vec);
6037          DCI.AddToWorklist(VExtend.getNode());
6038          SDValue Extract1 =
6039            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6040                        VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6041          DCI.AddToWorklist(Extract1.getNode());
6042          DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6043          if (Chain)
6044            DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6045          SDValue Extract0 =
6046            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6047                        VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6048          if (Chain)
6049            return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6050                               N->getVTList(), Extract0, Chain);
6051          return Extract0;
6052        }
6053      }
6054    }
6055  }
6056  return SDValue();
6057}
6058
6059SDValue SystemZTargetLowering::combineBSWAP(
6060    SDNode *N, DAGCombinerInfo &DCI) const {
6061  SelectionDAG &DAG = DCI.DAG;
6062  // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6063  if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6064      N->getOperand(0).hasOneUse() &&
6065      canLoadStoreByteSwapped(N->getValueType(0))) {
6066      SDValue Load = N->getOperand(0);
6067      LoadSDNode *LD = cast<LoadSDNode>(Load);
6068
6069      // Create the byte-swapping load.
6070      SDValue Ops[] = {
6071        LD->getChain(),    // Chain
6072        LD->getBasePtr()   // Ptr
6073      };
6074      EVT LoadVT = N->getValueType(0);
6075      if (LoadVT == MVT::i16)
6076        LoadVT = MVT::i32;
6077      SDValue BSLoad =
6078        DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6079                                DAG.getVTList(LoadVT, MVT::Other),
6080                                Ops, LD->getMemoryVT(), LD->getMemOperand());
6081
6082      // If this is an i16 load, insert the truncate.
6083      SDValue ResVal = BSLoad;
6084      if (N->getValueType(0) == MVT::i16)
6085        ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6086
6087      // First, combine the bswap away.  This makes the value produced by the
6088      // load dead.
6089      DCI.CombineTo(N, ResVal);
6090
6091      // Next, combine the load away, we give it a bogus result value but a real
6092      // chain result.  The result value is dead because the bswap is dead.
6093      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6094
6095      // Return N so it doesn't get rechecked!
6096      return SDValue(N, 0);
6097    }
6098
6099  // Look through bitcasts that retain the number of vector elements.
6100  SDValue Op = N->getOperand(0);
6101  if (Op.getOpcode() == ISD::BITCAST &&
6102      Op.getValueType().isVector() &&
6103      Op.getOperand(0).getValueType().isVector() &&
6104      Op.getValueType().getVectorNumElements() ==
6105      Op.getOperand(0).getValueType().getVectorNumElements())
6106    Op = Op.getOperand(0);
6107
6108  // Push BSWAP into a vector insertion if at least one side then simplifies.
6109  if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6110    SDValue Vec = Op.getOperand(0);
6111    SDValue Elt = Op.getOperand(1);
6112    SDValue Idx = Op.getOperand(2);
6113
6114    if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6115        Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6116        DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6117        Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6118        (canLoadStoreByteSwapped(N->getValueType(0)) &&
6119         ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6120      EVT VecVT = N->getValueType(0);
6121      EVT EltVT = N->getValueType(0).getVectorElementType();
6122      if (VecVT != Vec.getValueType()) {
6123        Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6124        DCI.AddToWorklist(Vec.getNode());
6125      }
6126      if (EltVT != Elt.getValueType()) {
6127        Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6128        DCI.AddToWorklist(Elt.getNode());
6129      }
6130      Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6131      DCI.AddToWorklist(Vec.getNode());
6132      Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6133      DCI.AddToWorklist(Elt.getNode());
6134      return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6135                         Vec, Elt, Idx);
6136    }
6137  }
6138
6139  // Push BSWAP into a vector shuffle if at least one side then simplifies.
6140  ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6141  if (SV && Op.hasOneUse()) {
6142    SDValue Op0 = Op.getOperand(0);
6143    SDValue Op1 = Op.getOperand(1);
6144
6145    if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6146        Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6147        DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6148        Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6149      EVT VecVT = N->getValueType(0);
6150      if (VecVT != Op0.getValueType()) {
6151        Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6152        DCI.AddToWorklist(Op0.getNode());
6153      }
6154      if (VecVT != Op1.getValueType()) {
6155        Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6156        DCI.AddToWorklist(Op1.getNode());
6157      }
6158      Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6159      DCI.AddToWorklist(Op0.getNode());
6160      Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6161      DCI.AddToWorklist(Op1.getNode());
6162      return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6163    }
6164  }
6165
6166  return SDValue();
6167}
6168
6169static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6170  // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6171  // set by the CCReg instruction using the CCValid / CCMask masks,
6172  // If the CCReg instruction is itself a ICMP testing the condition
6173  // code set by some other instruction, see whether we can directly
6174  // use that condition code.
6175
6176  // Verify that we have an ICMP against some constant.
6177  if (CCValid != SystemZ::CCMASK_ICMP)
6178    return false;
6179  auto *ICmp = CCReg.getNode();
6180  if (ICmp->getOpcode() != SystemZISD::ICMP)
6181    return false;
6182  auto *CompareLHS = ICmp->getOperand(0).getNode();
6183  auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6184  if (!CompareRHS)
6185    return false;
6186
6187  // Optimize the case where CompareLHS is a SELECT_CCMASK.
6188  if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6189    // Verify that we have an appropriate mask for a EQ or NE comparison.
6190    bool Invert = false;
6191    if (CCMask == SystemZ::CCMASK_CMP_NE)
6192      Invert = !Invert;
6193    else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6194      return false;
6195
6196    // Verify that the ICMP compares against one of select values.
6197    auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6198    if (!TrueVal)
6199      return false;
6200    auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6201    if (!FalseVal)
6202      return false;
6203    if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6204      Invert = !Invert;
6205    else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6206      return false;
6207
6208    // Compute the effective CC mask for the new branch or select.
6209    auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6210    auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6211    if (!NewCCValid || !NewCCMask)
6212      return false;
6213    CCValid = NewCCValid->getZExtValue();
6214    CCMask = NewCCMask->getZExtValue();
6215    if (Invert)
6216      CCMask ^= CCValid;
6217
6218    // Return the updated CCReg link.
6219    CCReg = CompareLHS->getOperand(4);
6220    return true;
6221  }
6222
6223  // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6224  if (CompareLHS->getOpcode() == ISD::SRA) {
6225    auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6226    if (!SRACount || SRACount->getZExtValue() != 30)
6227      return false;
6228    auto *SHL = CompareLHS->getOperand(0).getNode();
6229    if (SHL->getOpcode() != ISD::SHL)
6230      return false;
6231    auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6232    if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6233      return false;
6234    auto *IPM = SHL->getOperand(0).getNode();
6235    if (IPM->getOpcode() != SystemZISD::IPM)
6236      return false;
6237
6238    // Avoid introducing CC spills (because SRA would clobber CC).
6239    if (!CompareLHS->hasOneUse())
6240      return false;
6241    // Verify that the ICMP compares against zero.
6242    if (CompareRHS->getZExtValue() != 0)
6243      return false;
6244
6245    // Compute the effective CC mask for the new branch or select.
6246    switch (CCMask) {
6247    case SystemZ::CCMASK_CMP_EQ: break;
6248    case SystemZ::CCMASK_CMP_NE: break;
6249    case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
6250    case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
6251    case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
6252    case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
6253    default: return false;
6254    }
6255
6256    // Return the updated CCReg link.
6257    CCReg = IPM->getOperand(0);
6258    return true;
6259  }
6260
6261  return false;
6262}
6263
6264SDValue SystemZTargetLowering::combineBR_CCMASK(
6265    SDNode *N, DAGCombinerInfo &DCI) const {
6266  SelectionDAG &DAG = DCI.DAG;
6267
6268  // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6269  auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6270  auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6271  if (!CCValid || !CCMask)
6272    return SDValue();
6273
6274  int CCValidVal = CCValid->getZExtValue();
6275  int CCMaskVal = CCMask->getZExtValue();
6276  SDValue Chain = N->getOperand(0);
6277  SDValue CCReg = N->getOperand(4);
6278
6279  if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6280    return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6281                       Chain,
6282                       DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6283                       DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6284                       N->getOperand(3), CCReg);
6285  return SDValue();
6286}
6287
6288SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6289    SDNode *N, DAGCombinerInfo &DCI) const {
6290  SelectionDAG &DAG = DCI.DAG;
6291
6292  // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6293  auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6294  auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6295  if (!CCValid || !CCMask)
6296    return SDValue();
6297
6298  int CCValidVal = CCValid->getZExtValue();
6299  int CCMaskVal = CCMask->getZExtValue();
6300  SDValue CCReg = N->getOperand(4);
6301
6302  if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6303    return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6304                       N->getOperand(0), N->getOperand(1),
6305                       DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6306                       DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6307                       CCReg);
6308  return SDValue();
6309}
6310
6311
6312SDValue SystemZTargetLowering::combineGET_CCMASK(
6313    SDNode *N, DAGCombinerInfo &DCI) const {
6314
6315  // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6316  auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6317  auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6318  if (!CCValid || !CCMask)
6319    return SDValue();
6320  int CCValidVal = CCValid->getZExtValue();
6321  int CCMaskVal = CCMask->getZExtValue();
6322
6323  SDValue Select = N->getOperand(0);
6324  if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6325    return SDValue();
6326
6327  auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6328  auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6329  if (!SelectCCValid || !SelectCCMask)
6330    return SDValue();
6331  int SelectCCValidVal = SelectCCValid->getZExtValue();
6332  int SelectCCMaskVal = SelectCCMask->getZExtValue();
6333
6334  auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6335  auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6336  if (!TrueVal || !FalseVal)
6337    return SDValue();
6338  if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6339    ;
6340  else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6341    SelectCCMaskVal ^= SelectCCValidVal;
6342  else
6343    return SDValue();
6344
6345  if (SelectCCValidVal & ~CCValidVal)
6346    return SDValue();
6347  if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6348    return SDValue();
6349
6350  return Select->getOperand(4);
6351}
6352
6353SDValue SystemZTargetLowering::combineIntDIVREM(
6354    SDNode *N, DAGCombinerInfo &DCI) const {
6355  SelectionDAG &DAG = DCI.DAG;
6356  EVT VT = N->getValueType(0);
6357  // In the case where the divisor is a vector of constants a cheaper
6358  // sequence of instructions can replace the divide. BuildSDIV is called to
6359  // do this during DAG combining, but it only succeeds when it can build a
6360  // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6361  // since it is not Legal but Custom it can only happen before
6362  // legalization. Therefore we must scalarize this early before Combine
6363  // 1. For widened vectors, this is already the result of type legalization.
6364  if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6365      DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6366    return DAG.UnrollVectorOp(N);
6367  return SDValue();
6368}
6369
6370SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6371  if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6372    return N->getOperand(0);
6373  return N;
6374}
6375
6376SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6377                                                 DAGCombinerInfo &DCI) const {
6378  switch(N->getOpcode()) {
6379  default: break;
6380  case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6381  case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6382  case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6383  case SystemZISD::MERGE_HIGH:
6384  case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6385  case ISD::LOAD:               return combineLOAD(N, DCI);
6386  case ISD::STORE:              return combineSTORE(N, DCI);
6387  case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6388  case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6389  case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6390  case ISD::STRICT_FP_ROUND:
6391  case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6392  case ISD::STRICT_FP_EXTEND:
6393  case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6394  case ISD::BSWAP:              return combineBSWAP(N, DCI);
6395  case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6396  case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6397  case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6398  case ISD::SDIV:
6399  case ISD::UDIV:
6400  case ISD::SREM:
6401  case ISD::UREM:               return combineIntDIVREM(N, DCI);
6402  }
6403
6404  return SDValue();
6405}
6406
6407// Return the demanded elements for the OpNo source operand of Op. DemandedElts
6408// are for Op.
6409static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6410                                    unsigned OpNo) {
6411  EVT VT = Op.getValueType();
6412  unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6413  APInt SrcDemE;
6414  unsigned Opcode = Op.getOpcode();
6415  if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6416    unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6417    switch (Id) {
6418    case Intrinsic::s390_vpksh:   // PACKS
6419    case Intrinsic::s390_vpksf:
6420    case Intrinsic::s390_vpksg:
6421    case Intrinsic::s390_vpkshs:  // PACKS_CC
6422    case Intrinsic::s390_vpksfs:
6423    case Intrinsic::s390_vpksgs:
6424    case Intrinsic::s390_vpklsh:  // PACKLS
6425    case Intrinsic::s390_vpklsf:
6426    case Intrinsic::s390_vpklsg:
6427    case Intrinsic::s390_vpklshs: // PACKLS_CC
6428    case Intrinsic::s390_vpklsfs:
6429    case Intrinsic::s390_vpklsgs:
6430      // VECTOR PACK truncates the elements of two source vectors into one.
6431      SrcDemE = DemandedElts;
6432      if (OpNo == 2)
6433        SrcDemE.lshrInPlace(NumElts / 2);
6434      SrcDemE = SrcDemE.trunc(NumElts / 2);
6435      break;
6436      // VECTOR UNPACK extends half the elements of the source vector.
6437    case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6438    case Intrinsic::s390_vuphh:
6439    case Intrinsic::s390_vuphf:
6440    case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6441    case Intrinsic::s390_vuplhh:
6442    case Intrinsic::s390_vuplhf:
6443      SrcDemE = APInt(NumElts * 2, 0);
6444      SrcDemE.insertBits(DemandedElts, 0);
6445      break;
6446    case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6447    case Intrinsic::s390_vuplhw:
6448    case Intrinsic::s390_vuplf:
6449    case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6450    case Intrinsic::s390_vupllh:
6451    case Intrinsic::s390_vupllf:
6452      SrcDemE = APInt(NumElts * 2, 0);
6453      SrcDemE.insertBits(DemandedElts, NumElts);
6454      break;
6455    case Intrinsic::s390_vpdi: {
6456      // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6457      SrcDemE = APInt(NumElts, 0);
6458      if (!DemandedElts[OpNo - 1])
6459        break;
6460      unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6461      unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6462      // Demand input element 0 or 1, given by the mask bit value.
6463      SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6464      break;
6465    }
6466    case Intrinsic::s390_vsldb: {
6467      // VECTOR SHIFT LEFT DOUBLE BY BYTE
6468      assert(VT == MVT::v16i8 && "Unexpected type.");
6469      unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6470      assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6471      unsigned NumSrc0Els = 16 - FirstIdx;
6472      SrcDemE = APInt(NumElts, 0);
6473      if (OpNo == 1) {
6474        APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6475        SrcDemE.insertBits(DemEls, FirstIdx);
6476      } else {
6477        APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6478        SrcDemE.insertBits(DemEls, 0);
6479      }
6480      break;
6481    }
6482    case Intrinsic::s390_vperm:
6483      SrcDemE = APInt(NumElts, 1);
6484      break;
6485    default:
6486      llvm_unreachable("Unhandled intrinsic.");
6487      break;
6488    }
6489  } else {
6490    switch (Opcode) {
6491    case SystemZISD::JOIN_DWORDS:
6492      // Scalar operand.
6493      SrcDemE = APInt(1, 1);
6494      break;
6495    case SystemZISD::SELECT_CCMASK:
6496      SrcDemE = DemandedElts;
6497      break;
6498    default:
6499      llvm_unreachable("Unhandled opcode.");
6500      break;
6501    }
6502  }
6503  return SrcDemE;
6504}
6505
6506static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6507                                  const APInt &DemandedElts,
6508                                  const SelectionDAG &DAG, unsigned Depth,
6509                                  unsigned OpNo) {
6510  APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6511  APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6512  KnownBits LHSKnown =
6513      DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6514  KnownBits RHSKnown =
6515      DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6516  Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6517  Known.One = LHSKnown.One & RHSKnown.One;
6518}
6519
6520void
6521SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6522                                                     KnownBits &Known,
6523                                                     const APInt &DemandedElts,
6524                                                     const SelectionDAG &DAG,
6525                                                     unsigned Depth) const {
6526  Known.resetAll();
6527
6528  // Intrinsic CC result is returned in the two low bits.
6529  unsigned tmp0, tmp1; // not used
6530  if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6531    Known.Zero.setBitsFrom(2);
6532    return;
6533  }
6534  EVT VT = Op.getValueType();
6535  if (Op.getResNo() != 0 || VT == MVT::Untyped)
6536    return;
6537  assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6538          "KnownBits does not match VT in bitwidth");
6539  assert ((!VT.isVector() ||
6540           (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6541          "DemandedElts does not match VT number of elements");
6542  unsigned BitWidth = Known.getBitWidth();
6543  unsigned Opcode = Op.getOpcode();
6544  if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6545    bool IsLogical = false;
6546    unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6547    switch (Id) {
6548    case Intrinsic::s390_vpksh:   // PACKS
6549    case Intrinsic::s390_vpksf:
6550    case Intrinsic::s390_vpksg:
6551    case Intrinsic::s390_vpkshs:  // PACKS_CC
6552    case Intrinsic::s390_vpksfs:
6553    case Intrinsic::s390_vpksgs:
6554    case Intrinsic::s390_vpklsh:  // PACKLS
6555    case Intrinsic::s390_vpklsf:
6556    case Intrinsic::s390_vpklsg:
6557    case Intrinsic::s390_vpklshs: // PACKLS_CC
6558    case Intrinsic::s390_vpklsfs:
6559    case Intrinsic::s390_vpklsgs:
6560    case Intrinsic::s390_vpdi:
6561    case Intrinsic::s390_vsldb:
6562    case Intrinsic::s390_vperm:
6563      computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6564      break;
6565    case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6566    case Intrinsic::s390_vuplhh:
6567    case Intrinsic::s390_vuplhf:
6568    case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6569    case Intrinsic::s390_vupllh:
6570    case Intrinsic::s390_vupllf:
6571      IsLogical = true;
6572      LLVM_FALLTHROUGH;
6573    case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6574    case Intrinsic::s390_vuphh:
6575    case Intrinsic::s390_vuphf:
6576    case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6577    case Intrinsic::s390_vuplhw:
6578    case Intrinsic::s390_vuplf: {
6579      SDValue SrcOp = Op.getOperand(1);
6580      APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6581      Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6582      if (IsLogical) {
6583        Known = Known.zext(BitWidth, true);
6584      } else
6585        Known = Known.sext(BitWidth);
6586      break;
6587    }
6588    default:
6589      break;
6590    }
6591  } else {
6592    switch (Opcode) {
6593    case SystemZISD::JOIN_DWORDS:
6594    case SystemZISD::SELECT_CCMASK:
6595      computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6596      break;
6597    case SystemZISD::REPLICATE: {
6598      SDValue SrcOp = Op.getOperand(0);
6599      Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6600      if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6601        Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6602      break;
6603    }
6604    default:
6605      break;
6606    }
6607  }
6608
6609  // Known has the width of the source operand(s). Adjust if needed to match
6610  // the passed bitwidth.
6611  if (Known.getBitWidth() != BitWidth)
6612    Known = Known.zextOrTrunc(BitWidth, false);
6613}
6614
6615static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6616                                        const SelectionDAG &DAG, unsigned Depth,
6617                                        unsigned OpNo) {
6618  APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6619  unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6620  if (LHS == 1) return 1; // Early out.
6621  APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6622  unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6623  if (RHS == 1) return 1; // Early out.
6624  unsigned Common = std::min(LHS, RHS);
6625  unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6626  EVT VT = Op.getValueType();
6627  unsigned VTBits = VT.getScalarSizeInBits();
6628  if (SrcBitWidth > VTBits) { // PACK
6629    unsigned SrcExtraBits = SrcBitWidth - VTBits;
6630    if (Common > SrcExtraBits)
6631      return (Common - SrcExtraBits);
6632    return 1;
6633  }
6634  assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6635  return Common;
6636}
6637
6638unsigned
6639SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6640    SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6641    unsigned Depth) const {
6642  if (Op.getResNo() != 0)
6643    return 1;
6644  unsigned Opcode = Op.getOpcode();
6645  if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6646    unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6647    switch (Id) {
6648    case Intrinsic::s390_vpksh:   // PACKS
6649    case Intrinsic::s390_vpksf:
6650    case Intrinsic::s390_vpksg:
6651    case Intrinsic::s390_vpkshs:  // PACKS_CC
6652    case Intrinsic::s390_vpksfs:
6653    case Intrinsic::s390_vpksgs:
6654    case Intrinsic::s390_vpklsh:  // PACKLS
6655    case Intrinsic::s390_vpklsf:
6656    case Intrinsic::s390_vpklsg:
6657    case Intrinsic::s390_vpklshs: // PACKLS_CC
6658    case Intrinsic::s390_vpklsfs:
6659    case Intrinsic::s390_vpklsgs:
6660    case Intrinsic::s390_vpdi:
6661    case Intrinsic::s390_vsldb:
6662    case Intrinsic::s390_vperm:
6663      return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6664    case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6665    case Intrinsic::s390_vuphh:
6666    case Intrinsic::s390_vuphf:
6667    case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6668    case Intrinsic::s390_vuplhw:
6669    case Intrinsic::s390_vuplf: {
6670      SDValue PackedOp = Op.getOperand(1);
6671      APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6672      unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6673      EVT VT = Op.getValueType();
6674      unsigned VTBits = VT.getScalarSizeInBits();
6675      Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6676      return Tmp;
6677    }
6678    default:
6679      break;
6680    }
6681  } else {
6682    switch (Opcode) {
6683    case SystemZISD::SELECT_CCMASK:
6684      return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6685    default:
6686      break;
6687    }
6688  }
6689
6690  return 1;
6691}
6692
6693//===----------------------------------------------------------------------===//
6694// Custom insertion
6695//===----------------------------------------------------------------------===//
6696
6697// Create a new basic block after MBB.
6698static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6699  MachineFunction &MF = *MBB->getParent();
6700  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6701  MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6702  return NewMBB;
6703}
6704
6705// Split MBB after MI and return the new block (the one that contains
6706// instructions after MI).
6707static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6708                                          MachineBasicBlock *MBB) {
6709  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6710  NewMBB->splice(NewMBB->begin(), MBB,
6711                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6712  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6713  return NewMBB;
6714}
6715
6716// Split MBB before MI and return the new block (the one that contains MI).
6717static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6718                                           MachineBasicBlock *MBB) {
6719  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6720  NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6721  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6722  return NewMBB;
6723}
6724
6725// Force base value Base into a register before MI.  Return the register.
6726static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6727                         const SystemZInstrInfo *TII) {
6728  if (Base.isReg())
6729    return Base.getReg();
6730
6731  MachineBasicBlock *MBB = MI.getParent();
6732  MachineFunction &MF = *MBB->getParent();
6733  MachineRegisterInfo &MRI = MF.getRegInfo();
6734
6735  Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6736  BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6737      .add(Base)
6738      .addImm(0)
6739      .addReg(0);
6740  return Reg;
6741}
6742
6743// The CC operand of MI might be missing a kill marker because there
6744// were multiple uses of CC, and ISel didn't know which to mark.
6745// Figure out whether MI should have had a kill marker.
6746static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6747  // Scan forward through BB for a use/def of CC.
6748  MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6749  for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6750    const MachineInstr& mi = *miI;
6751    if (mi.readsRegister(SystemZ::CC))
6752      return false;
6753    if (mi.definesRegister(SystemZ::CC))
6754      break; // Should have kill-flag - update below.
6755  }
6756
6757  // If we hit the end of the block, check whether CC is live into a
6758  // successor.
6759  if (miI == MBB->end()) {
6760    for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6761      if ((*SI)->isLiveIn(SystemZ::CC))
6762        return false;
6763  }
6764
6765  return true;
6766}
6767
6768// Return true if it is OK for this Select pseudo-opcode to be cascaded
6769// together with other Select pseudo-opcodes into a single basic-block with
6770// a conditional jump around it.
6771static bool isSelectPseudo(MachineInstr &MI) {
6772  switch (MI.getOpcode()) {
6773  case SystemZ::Select32:
6774  case SystemZ::Select64:
6775  case SystemZ::SelectF32:
6776  case SystemZ::SelectF64:
6777  case SystemZ::SelectF128:
6778  case SystemZ::SelectVR32:
6779  case SystemZ::SelectVR64:
6780  case SystemZ::SelectVR128:
6781    return true;
6782
6783  default:
6784    return false;
6785  }
6786}
6787
6788// Helper function, which inserts PHI functions into SinkMBB:
6789//   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6790// where %FalseValue(i) and %TrueValue(i) are taken from Selects.
6791static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
6792                                 MachineBasicBlock *TrueMBB,
6793                                 MachineBasicBlock *FalseMBB,
6794                                 MachineBasicBlock *SinkMBB) {
6795  MachineFunction *MF = TrueMBB->getParent();
6796  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6797
6798  MachineInstr *FirstMI = Selects.front();
6799  unsigned CCValid = FirstMI->getOperand(3).getImm();
6800  unsigned CCMask = FirstMI->getOperand(4).getImm();
6801
6802  MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6803
6804  // As we are creating the PHIs, we have to be careful if there is more than
6805  // one.  Later Selects may reference the results of earlier Selects, but later
6806  // PHIs have to reference the individual true/false inputs from earlier PHIs.
6807  // That also means that PHI construction must work forward from earlier to
6808  // later, and that the code must maintain a mapping from earlier PHI's
6809  // destination registers, and the registers that went into the PHI.
6810  DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6811
6812  for (auto MI : Selects) {
6813    Register DestReg = MI->getOperand(0).getReg();
6814    Register TrueReg = MI->getOperand(1).getReg();
6815    Register FalseReg = MI->getOperand(2).getReg();
6816
6817    // If this Select we are generating is the opposite condition from
6818    // the jump we generated, then we have to swap the operands for the
6819    // PHI that is going to be generated.
6820    if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
6821      std::swap(TrueReg, FalseReg);
6822
6823    if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6824      TrueReg = RegRewriteTable[TrueReg].first;
6825
6826    if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6827      FalseReg = RegRewriteTable[FalseReg].second;
6828
6829    DebugLoc DL = MI->getDebugLoc();
6830    BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6831      .addReg(TrueReg).addMBB(TrueMBB)
6832      .addReg(FalseReg).addMBB(FalseMBB);
6833
6834    // Add this PHI to the rewrite table.
6835    RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6836  }
6837
6838  MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6839}
6840
6841// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6842MachineBasicBlock *
6843SystemZTargetLowering::emitSelect(MachineInstr &MI,
6844                                  MachineBasicBlock *MBB) const {
6845  assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
6846  const SystemZInstrInfo *TII =
6847      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6848
6849  unsigned CCValid = MI.getOperand(3).getImm();
6850  unsigned CCMask = MI.getOperand(4).getImm();
6851
6852  // If we have a sequence of Select* pseudo instructions using the
6853  // same condition code value, we want to expand all of them into
6854  // a single pair of basic blocks using the same condition.
6855  SmallVector<MachineInstr*, 8> Selects;
6856  SmallVector<MachineInstr*, 8> DbgValues;
6857  Selects.push_back(&MI);
6858  unsigned Count = 0;
6859  for (MachineBasicBlock::iterator NextMIIt =
6860         std::next(MachineBasicBlock::iterator(MI));
6861       NextMIIt != MBB->end(); ++NextMIIt) {
6862    if (isSelectPseudo(*NextMIIt)) {
6863      assert(NextMIIt->getOperand(3).getImm() == CCValid &&
6864             "Bad CCValid operands since CC was not redefined.");
6865      if (NextMIIt->getOperand(4).getImm() == CCMask ||
6866          NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
6867        Selects.push_back(&*NextMIIt);
6868        continue;
6869      }
6870      break;
6871    }
6872    if (NextMIIt->definesRegister(SystemZ::CC) ||
6873        NextMIIt->usesCustomInsertionHook())
6874      break;
6875    bool User = false;
6876    for (auto SelMI : Selects)
6877      if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
6878        User = true;
6879        break;
6880      }
6881    if (NextMIIt->isDebugInstr()) {
6882      if (User) {
6883        assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
6884        DbgValues.push_back(&*NextMIIt);
6885      }
6886    }
6887    else if (User || ++Count > 20)
6888      break;
6889  }
6890
6891  MachineInstr *LastMI = Selects.back();
6892  bool CCKilled =
6893      (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
6894  MachineBasicBlock *StartMBB = MBB;
6895  MachineBasicBlock *JoinMBB  = splitBlockAfter(LastMI, MBB);
6896  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6897
6898  // Unless CC was killed in the last Select instruction, mark it as
6899  // live-in to both FalseMBB and JoinMBB.
6900  if (!CCKilled) {
6901    FalseMBB->addLiveIn(SystemZ::CC);
6902    JoinMBB->addLiveIn(SystemZ::CC);
6903  }
6904
6905  //  StartMBB:
6906  //   BRC CCMask, JoinMBB
6907  //   # fallthrough to FalseMBB
6908  MBB = StartMBB;
6909  BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
6910    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6911  MBB->addSuccessor(JoinMBB);
6912  MBB->addSuccessor(FalseMBB);
6913
6914  //  FalseMBB:
6915  //   # fallthrough to JoinMBB
6916  MBB = FalseMBB;
6917  MBB->addSuccessor(JoinMBB);
6918
6919  //  JoinMBB:
6920  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6921  //  ...
6922  MBB = JoinMBB;
6923  createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
6924  for (auto SelMI : Selects)
6925    SelMI->eraseFromParent();
6926
6927  MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
6928  for (auto DbgMI : DbgValues)
6929    MBB->splice(InsertPos, StartMBB, DbgMI);
6930
6931  return JoinMBB;
6932}
6933
6934// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6935// StoreOpcode is the store to use and Invert says whether the store should
6936// happen when the condition is false rather than true.  If a STORE ON
6937// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6938MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6939                                                        MachineBasicBlock *MBB,
6940                                                        unsigned StoreOpcode,
6941                                                        unsigned STOCOpcode,
6942                                                        bool Invert) const {
6943  const SystemZInstrInfo *TII =
6944      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6945
6946  Register SrcReg = MI.getOperand(0).getReg();
6947  MachineOperand Base = MI.getOperand(1);
6948  int64_t Disp = MI.getOperand(2).getImm();
6949  Register IndexReg = MI.getOperand(3).getReg();
6950  unsigned CCValid = MI.getOperand(4).getImm();
6951  unsigned CCMask = MI.getOperand(5).getImm();
6952  DebugLoc DL = MI.getDebugLoc();
6953
6954  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6955
6956  // Use STOCOpcode if possible.  We could use different store patterns in
6957  // order to avoid matching the index register, but the performance trade-offs
6958  // might be more complicated in that case.
6959  if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6960    if (Invert)
6961      CCMask ^= CCValid;
6962
6963    // ISel pattern matching also adds a load memory operand of the same
6964    // address, so take special care to find the storing memory operand.
6965    MachineMemOperand *MMO = nullptr;
6966    for (auto *I : MI.memoperands())
6967      if (I->isStore()) {
6968          MMO = I;
6969          break;
6970        }
6971
6972    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6973      .addReg(SrcReg)
6974      .add(Base)
6975      .addImm(Disp)
6976      .addImm(CCValid)
6977      .addImm(CCMask)
6978      .addMemOperand(MMO);
6979
6980    MI.eraseFromParent();
6981    return MBB;
6982  }
6983
6984  // Get the condition needed to branch around the store.
6985  if (!Invert)
6986    CCMask ^= CCValid;
6987
6988  MachineBasicBlock *StartMBB = MBB;
6989  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6990  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6991
6992  // Unless CC was killed in the CondStore instruction, mark it as
6993  // live-in to both FalseMBB and JoinMBB.
6994  if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6995    FalseMBB->addLiveIn(SystemZ::CC);
6996    JoinMBB->addLiveIn(SystemZ::CC);
6997  }
6998
6999  //  StartMBB:
7000  //   BRC CCMask, JoinMBB
7001  //   # fallthrough to FalseMBB
7002  MBB = StartMBB;
7003  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7004    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7005  MBB->addSuccessor(JoinMBB);
7006  MBB->addSuccessor(FalseMBB);
7007
7008  //  FalseMBB:
7009  //   store %SrcReg, %Disp(%Index,%Base)
7010  //   # fallthrough to JoinMBB
7011  MBB = FalseMBB;
7012  BuildMI(MBB, DL, TII->get(StoreOpcode))
7013      .addReg(SrcReg)
7014      .add(Base)
7015      .addImm(Disp)
7016      .addReg(IndexReg);
7017  MBB->addSuccessor(JoinMBB);
7018
7019  MI.eraseFromParent();
7020  return JoinMBB;
7021}
7022
7023// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7024// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7025// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7026// BitSize is the width of the field in bits, or 0 if this is a partword
7027// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7028// is one of the operands.  Invert says whether the field should be
7029// inverted after performing BinOpcode (e.g. for NAND).
7030MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7031    MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7032    unsigned BitSize, bool Invert) const {
7033  MachineFunction &MF = *MBB->getParent();
7034  const SystemZInstrInfo *TII =
7035      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7036  MachineRegisterInfo &MRI = MF.getRegInfo();
7037  bool IsSubWord = (BitSize < 32);
7038
7039  // Extract the operands.  Base can be a register or a frame index.
7040  // Src2 can be a register or immediate.
7041  Register Dest = MI.getOperand(0).getReg();
7042  MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7043  int64_t Disp = MI.getOperand(2).getImm();
7044  MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7045  Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7046  Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7047  DebugLoc DL = MI.getDebugLoc();
7048  if (IsSubWord)
7049    BitSize = MI.getOperand(6).getImm();
7050
7051  // Subword operations use 32-bit registers.
7052  const TargetRegisterClass *RC = (BitSize <= 32 ?
7053                                   &SystemZ::GR32BitRegClass :
7054                                   &SystemZ::GR64BitRegClass);
7055  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7056  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7057
7058  // Get the right opcodes for the displacement.
7059  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7060  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7061  assert(LOpcode && CSOpcode && "Displacement out of range");
7062
7063  // Create virtual registers for temporary results.
7064  Register OrigVal       = MRI.createVirtualRegister(RC);
7065  Register OldVal        = MRI.createVirtualRegister(RC);
7066  Register NewVal        = (BinOpcode || IsSubWord ?
7067                            MRI.createVirtualRegister(RC) : Src2.getReg());
7068  Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7069  Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7070
7071  // Insert a basic block for the main loop.
7072  MachineBasicBlock *StartMBB = MBB;
7073  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7074  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7075
7076  //  StartMBB:
7077  //   ...
7078  //   %OrigVal = L Disp(%Base)
7079  //   # fall through to LoopMMB
7080  MBB = StartMBB;
7081  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7082  MBB->addSuccessor(LoopMBB);
7083
7084  //  LoopMBB:
7085  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7086  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7087  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7088  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7089  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7090  //   JNE LoopMBB
7091  //   # fall through to DoneMMB
7092  MBB = LoopMBB;
7093  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7094    .addReg(OrigVal).addMBB(StartMBB)
7095    .addReg(Dest).addMBB(LoopMBB);
7096  if (IsSubWord)
7097    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7098      .addReg(OldVal).addReg(BitShift).addImm(0);
7099  if (Invert) {
7100    // Perform the operation normally and then invert every bit of the field.
7101    Register Tmp = MRI.createVirtualRegister(RC);
7102    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7103    if (BitSize <= 32)
7104      // XILF with the upper BitSize bits set.
7105      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7106        .addReg(Tmp).addImm(-1U << (32 - BitSize));
7107    else {
7108      // Use LCGR and add -1 to the result, which is more compact than
7109      // an XILF, XILH pair.
7110      Register Tmp2 = MRI.createVirtualRegister(RC);
7111      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7112      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7113        .addReg(Tmp2).addImm(-1);
7114    }
7115  } else if (BinOpcode)
7116    // A simply binary operation.
7117    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7118        .addReg(RotatedOldVal)
7119        .add(Src2);
7120  else if (IsSubWord)
7121    // Use RISBG to rotate Src2 into position and use it to replace the
7122    // field in RotatedOldVal.
7123    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7124      .addReg(RotatedOldVal).addReg(Src2.getReg())
7125      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7126  if (IsSubWord)
7127    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7128      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7129  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7130      .addReg(OldVal)
7131      .addReg(NewVal)
7132      .add(Base)
7133      .addImm(Disp);
7134  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7135    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7136  MBB->addSuccessor(LoopMBB);
7137  MBB->addSuccessor(DoneMBB);
7138
7139  MI.eraseFromParent();
7140  return DoneMBB;
7141}
7142
7143// Implement EmitInstrWithCustomInserter for pseudo
7144// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7145// instruction that should be used to compare the current field with the
7146// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7147// for when the current field should be kept.  BitSize is the width of
7148// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7149MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7150    MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7151    unsigned KeepOldMask, unsigned BitSize) const {
7152  MachineFunction &MF = *MBB->getParent();
7153  const SystemZInstrInfo *TII =
7154      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7155  MachineRegisterInfo &MRI = MF.getRegInfo();
7156  bool IsSubWord = (BitSize < 32);
7157
7158  // Extract the operands.  Base can be a register or a frame index.
7159  Register Dest = MI.getOperand(0).getReg();
7160  MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7161  int64_t Disp = MI.getOperand(2).getImm();
7162  Register Src2 = MI.getOperand(3).getReg();
7163  Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7164  Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7165  DebugLoc DL = MI.getDebugLoc();
7166  if (IsSubWord)
7167    BitSize = MI.getOperand(6).getImm();
7168
7169  // Subword operations use 32-bit registers.
7170  const TargetRegisterClass *RC = (BitSize <= 32 ?
7171                                   &SystemZ::GR32BitRegClass :
7172                                   &SystemZ::GR64BitRegClass);
7173  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7174  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7175
7176  // Get the right opcodes for the displacement.
7177  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7178  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7179  assert(LOpcode && CSOpcode && "Displacement out of range");
7180
7181  // Create virtual registers for temporary results.
7182  Register OrigVal       = MRI.createVirtualRegister(RC);
7183  Register OldVal        = MRI.createVirtualRegister(RC);
7184  Register NewVal        = MRI.createVirtualRegister(RC);
7185  Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7186  Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7187  Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7188
7189  // Insert 3 basic blocks for the loop.
7190  MachineBasicBlock *StartMBB  = MBB;
7191  MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
7192  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
7193  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
7194  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
7195
7196  //  StartMBB:
7197  //   ...
7198  //   %OrigVal     = L Disp(%Base)
7199  //   # fall through to LoopMMB
7200  MBB = StartMBB;
7201  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7202  MBB->addSuccessor(LoopMBB);
7203
7204  //  LoopMBB:
7205  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7206  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7207  //   CompareOpcode %RotatedOldVal, %Src2
7208  //   BRC KeepOldMask, UpdateMBB
7209  MBB = LoopMBB;
7210  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7211    .addReg(OrigVal).addMBB(StartMBB)
7212    .addReg(Dest).addMBB(UpdateMBB);
7213  if (IsSubWord)
7214    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7215      .addReg(OldVal).addReg(BitShift).addImm(0);
7216  BuildMI(MBB, DL, TII->get(CompareOpcode))
7217    .addReg(RotatedOldVal).addReg(Src2);
7218  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7219    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7220  MBB->addSuccessor(UpdateMBB);
7221  MBB->addSuccessor(UseAltMBB);
7222
7223  //  UseAltMBB:
7224  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7225  //   # fall through to UpdateMMB
7226  MBB = UseAltMBB;
7227  if (IsSubWord)
7228    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7229      .addReg(RotatedOldVal).addReg(Src2)
7230      .addImm(32).addImm(31 + BitSize).addImm(0);
7231  MBB->addSuccessor(UpdateMBB);
7232
7233  //  UpdateMBB:
7234  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7235  //                        [ %RotatedAltVal, UseAltMBB ]
7236  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7237  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7238  //   JNE LoopMBB
7239  //   # fall through to DoneMMB
7240  MBB = UpdateMBB;
7241  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7242    .addReg(RotatedOldVal).addMBB(LoopMBB)
7243    .addReg(RotatedAltVal).addMBB(UseAltMBB);
7244  if (IsSubWord)
7245    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7246      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7247  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7248      .addReg(OldVal)
7249      .addReg(NewVal)
7250      .add(Base)
7251      .addImm(Disp);
7252  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7253    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7254  MBB->addSuccessor(LoopMBB);
7255  MBB->addSuccessor(DoneMBB);
7256
7257  MI.eraseFromParent();
7258  return DoneMBB;
7259}
7260
7261// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7262// instruction MI.
7263MachineBasicBlock *
7264SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7265                                          MachineBasicBlock *MBB) const {
7266
7267  MachineFunction &MF = *MBB->getParent();
7268  const SystemZInstrInfo *TII =
7269      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7270  MachineRegisterInfo &MRI = MF.getRegInfo();
7271
7272  // Extract the operands.  Base can be a register or a frame index.
7273  Register Dest = MI.getOperand(0).getReg();
7274  MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7275  int64_t Disp = MI.getOperand(2).getImm();
7276  Register OrigCmpVal = MI.getOperand(3).getReg();
7277  Register OrigSwapVal = MI.getOperand(4).getReg();
7278  Register BitShift = MI.getOperand(5).getReg();
7279  Register NegBitShift = MI.getOperand(6).getReg();
7280  int64_t BitSize = MI.getOperand(7).getImm();
7281  DebugLoc DL = MI.getDebugLoc();
7282
7283  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7284
7285  // Get the right opcodes for the displacement.
7286  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7287  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7288  assert(LOpcode && CSOpcode && "Displacement out of range");
7289
7290  // Create virtual registers for temporary results.
7291  Register OrigOldVal = MRI.createVirtualRegister(RC);
7292  Register OldVal = MRI.createVirtualRegister(RC);
7293  Register CmpVal = MRI.createVirtualRegister(RC);
7294  Register SwapVal = MRI.createVirtualRegister(RC);
7295  Register StoreVal = MRI.createVirtualRegister(RC);
7296  Register RetryOldVal = MRI.createVirtualRegister(RC);
7297  Register RetryCmpVal = MRI.createVirtualRegister(RC);
7298  Register RetrySwapVal = MRI.createVirtualRegister(RC);
7299
7300  // Insert 2 basic blocks for the loop.
7301  MachineBasicBlock *StartMBB = MBB;
7302  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7303  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7304  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
7305
7306  //  StartMBB:
7307  //   ...
7308  //   %OrigOldVal     = L Disp(%Base)
7309  //   # fall through to LoopMMB
7310  MBB = StartMBB;
7311  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7312      .add(Base)
7313      .addImm(Disp)
7314      .addReg(0);
7315  MBB->addSuccessor(LoopMBB);
7316
7317  //  LoopMBB:
7318  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7319  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7320  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7321  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7322  //                      ^^ The low BitSize bits contain the field
7323  //                         of interest.
7324  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7325  //                      ^^ Replace the upper 32-BitSize bits of the
7326  //                         comparison value with those that we loaded,
7327  //                         so that we can use a full word comparison.
7328  //   CR %Dest, %RetryCmpVal
7329  //   JNE DoneMBB
7330  //   # Fall through to SetMBB
7331  MBB = LoopMBB;
7332  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7333    .addReg(OrigOldVal).addMBB(StartMBB)
7334    .addReg(RetryOldVal).addMBB(SetMBB);
7335  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7336    .addReg(OrigCmpVal).addMBB(StartMBB)
7337    .addReg(RetryCmpVal).addMBB(SetMBB);
7338  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7339    .addReg(OrigSwapVal).addMBB(StartMBB)
7340    .addReg(RetrySwapVal).addMBB(SetMBB);
7341  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7342    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7343  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7344    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7345  BuildMI(MBB, DL, TII->get(SystemZ::CR))
7346    .addReg(Dest).addReg(RetryCmpVal);
7347  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7348    .addImm(SystemZ::CCMASK_ICMP)
7349    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7350  MBB->addSuccessor(DoneMBB);
7351  MBB->addSuccessor(SetMBB);
7352
7353  //  SetMBB:
7354  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7355  //                      ^^ Replace the upper 32-BitSize bits of the new
7356  //                         value with those that we loaded.
7357  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7358  //                      ^^ Rotate the new field to its proper position.
7359  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7360  //   JNE LoopMBB
7361  //   # fall through to ExitMMB
7362  MBB = SetMBB;
7363  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7364    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7365  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7366    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7367  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7368      .addReg(OldVal)
7369      .addReg(StoreVal)
7370      .add(Base)
7371      .addImm(Disp);
7372  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7373    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7374  MBB->addSuccessor(LoopMBB);
7375  MBB->addSuccessor(DoneMBB);
7376
7377  // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7378  // to the block after the loop.  At this point, CC may have been defined
7379  // either by the CR in LoopMBB or by the CS in SetMBB.
7380  if (!MI.registerDefIsDead(SystemZ::CC))
7381    DoneMBB->addLiveIn(SystemZ::CC);
7382
7383  MI.eraseFromParent();
7384  return DoneMBB;
7385}
7386
7387// Emit a move from two GR64s to a GR128.
7388MachineBasicBlock *
7389SystemZTargetLowering::emitPair128(MachineInstr &MI,
7390                                   MachineBasicBlock *MBB) const {
7391  MachineFunction &MF = *MBB->getParent();
7392  const SystemZInstrInfo *TII =
7393      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7394  MachineRegisterInfo &MRI = MF.getRegInfo();
7395  DebugLoc DL = MI.getDebugLoc();
7396
7397  Register Dest = MI.getOperand(0).getReg();
7398  Register Hi = MI.getOperand(1).getReg();
7399  Register Lo = MI.getOperand(2).getReg();
7400  Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7401  Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7402
7403  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7404  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7405    .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7406  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7407    .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7408
7409  MI.eraseFromParent();
7410  return MBB;
7411}
7412
7413// Emit an extension from a GR64 to a GR128.  ClearEven is true
7414// if the high register of the GR128 value must be cleared or false if
7415// it's "don't care".
7416MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7417                                                     MachineBasicBlock *MBB,
7418                                                     bool ClearEven) const {
7419  MachineFunction &MF = *MBB->getParent();
7420  const SystemZInstrInfo *TII =
7421      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7422  MachineRegisterInfo &MRI = MF.getRegInfo();
7423  DebugLoc DL = MI.getDebugLoc();
7424
7425  Register Dest = MI.getOperand(0).getReg();
7426  Register Src = MI.getOperand(1).getReg();
7427  Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7428
7429  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7430  if (ClearEven) {
7431    Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7432    Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7433
7434    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7435      .addImm(0);
7436    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7437      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7438    In128 = NewIn128;
7439  }
7440  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7441    .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7442
7443  MI.eraseFromParent();
7444  return MBB;
7445}
7446
7447MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7448    MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7449  MachineFunction &MF = *MBB->getParent();
7450  const SystemZInstrInfo *TII =
7451      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7452  MachineRegisterInfo &MRI = MF.getRegInfo();
7453  DebugLoc DL = MI.getDebugLoc();
7454
7455  MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7456  uint64_t DestDisp = MI.getOperand(1).getImm();
7457  MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7458  uint64_t SrcDisp = MI.getOperand(3).getImm();
7459  uint64_t Length = MI.getOperand(4).getImm();
7460
7461  // When generating more than one CLC, all but the last will need to
7462  // branch to the end when a difference is found.
7463  MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7464                               splitBlockAfter(MI, MBB) : nullptr);
7465
7466  // Check for the loop form, in which operand 5 is the trip count.
7467  if (MI.getNumExplicitOperands() > 5) {
7468    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7469
7470    Register StartCountReg = MI.getOperand(5).getReg();
7471    Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7472    Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7473                              forceReg(MI, DestBase, TII));
7474
7475    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7476    Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7477    Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7478                            MRI.createVirtualRegister(RC));
7479    Register NextSrcReg  = MRI.createVirtualRegister(RC);
7480    Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7481                            MRI.createVirtualRegister(RC));
7482
7483    RC = &SystemZ::GR64BitRegClass;
7484    Register ThisCountReg = MRI.createVirtualRegister(RC);
7485    Register NextCountReg = MRI.createVirtualRegister(RC);
7486
7487    MachineBasicBlock *StartMBB = MBB;
7488    MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7489    MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7490    MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
7491
7492    //  StartMBB:
7493    //   # fall through to LoopMMB
7494    MBB->addSuccessor(LoopMBB);
7495
7496    //  LoopMBB:
7497    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7498    //                      [ %NextDestReg, NextMBB ]
7499    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7500    //                     [ %NextSrcReg, NextMBB ]
7501    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7502    //                       [ %NextCountReg, NextMBB ]
7503    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7504    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7505    //   ( JLH EndMBB )
7506    //
7507    // The prefetch is used only for MVC.  The JLH is used only for CLC.
7508    MBB = LoopMBB;
7509
7510    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7511      .addReg(StartDestReg).addMBB(StartMBB)
7512      .addReg(NextDestReg).addMBB(NextMBB);
7513    if (!HaveSingleBase)
7514      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7515        .addReg(StartSrcReg).addMBB(StartMBB)
7516        .addReg(NextSrcReg).addMBB(NextMBB);
7517    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7518      .addReg(StartCountReg).addMBB(StartMBB)
7519      .addReg(NextCountReg).addMBB(NextMBB);
7520    if (Opcode == SystemZ::MVC)
7521      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7522        .addImm(SystemZ::PFD_WRITE)
7523        .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7524    BuildMI(MBB, DL, TII->get(Opcode))
7525      .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7526      .addReg(ThisSrcReg).addImm(SrcDisp);
7527    if (EndMBB) {
7528      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7529        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7530        .addMBB(EndMBB);
7531      MBB->addSuccessor(EndMBB);
7532      MBB->addSuccessor(NextMBB);
7533    }
7534
7535    // NextMBB:
7536    //   %NextDestReg = LA 256(%ThisDestReg)
7537    //   %NextSrcReg = LA 256(%ThisSrcReg)
7538    //   %NextCountReg = AGHI %ThisCountReg, -1
7539    //   CGHI %NextCountReg, 0
7540    //   JLH LoopMBB
7541    //   # fall through to DoneMMB
7542    //
7543    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7544    MBB = NextMBB;
7545
7546    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7547      .addReg(ThisDestReg).addImm(256).addReg(0);
7548    if (!HaveSingleBase)
7549      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7550        .addReg(ThisSrcReg).addImm(256).addReg(0);
7551    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7552      .addReg(ThisCountReg).addImm(-1);
7553    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7554      .addReg(NextCountReg).addImm(0);
7555    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7556      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7557      .addMBB(LoopMBB);
7558    MBB->addSuccessor(LoopMBB);
7559    MBB->addSuccessor(DoneMBB);
7560
7561    DestBase = MachineOperand::CreateReg(NextDestReg, false);
7562    SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7563    Length &= 255;
7564    if (EndMBB && !Length)
7565      // If the loop handled the whole CLC range, DoneMBB will be empty with
7566      // CC live-through into EndMBB, so add it as live-in.
7567      DoneMBB->addLiveIn(SystemZ::CC);
7568    MBB = DoneMBB;
7569  }
7570  // Handle any remaining bytes with straight-line code.
7571  while (Length > 0) {
7572    uint64_t ThisLength = std::min(Length, uint64_t(256));
7573    // The previous iteration might have created out-of-range displacements.
7574    // Apply them using LAY if so.
7575    if (!isUInt<12>(DestDisp)) {
7576      Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7577      BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7578          .add(DestBase)
7579          .addImm(DestDisp)
7580          .addReg(0);
7581      DestBase = MachineOperand::CreateReg(Reg, false);
7582      DestDisp = 0;
7583    }
7584    if (!isUInt<12>(SrcDisp)) {
7585      Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7586      BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7587          .add(SrcBase)
7588          .addImm(SrcDisp)
7589          .addReg(0);
7590      SrcBase = MachineOperand::CreateReg(Reg, false);
7591      SrcDisp = 0;
7592    }
7593    BuildMI(*MBB, MI, DL, TII->get(Opcode))
7594        .add(DestBase)
7595        .addImm(DestDisp)
7596        .addImm(ThisLength)
7597        .add(SrcBase)
7598        .addImm(SrcDisp)
7599        .setMemRefs(MI.memoperands());
7600    DestDisp += ThisLength;
7601    SrcDisp += ThisLength;
7602    Length -= ThisLength;
7603    // If there's another CLC to go, branch to the end if a difference
7604    // was found.
7605    if (EndMBB && Length > 0) {
7606      MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7607      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7608        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7609        .addMBB(EndMBB);
7610      MBB->addSuccessor(EndMBB);
7611      MBB->addSuccessor(NextMBB);
7612      MBB = NextMBB;
7613    }
7614  }
7615  if (EndMBB) {
7616    MBB->addSuccessor(EndMBB);
7617    MBB = EndMBB;
7618    MBB->addLiveIn(SystemZ::CC);
7619  }
7620
7621  MI.eraseFromParent();
7622  return MBB;
7623}
7624
7625// Decompose string pseudo-instruction MI into a loop that continually performs
7626// Opcode until CC != 3.
7627MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7628    MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7629  MachineFunction &MF = *MBB->getParent();
7630  const SystemZInstrInfo *TII =
7631      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7632  MachineRegisterInfo &MRI = MF.getRegInfo();
7633  DebugLoc DL = MI.getDebugLoc();
7634
7635  uint64_t End1Reg = MI.getOperand(0).getReg();
7636  uint64_t Start1Reg = MI.getOperand(1).getReg();
7637  uint64_t Start2Reg = MI.getOperand(2).getReg();
7638  uint64_t CharReg = MI.getOperand(3).getReg();
7639
7640  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7641  uint64_t This1Reg = MRI.createVirtualRegister(RC);
7642  uint64_t This2Reg = MRI.createVirtualRegister(RC);
7643  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7644
7645  MachineBasicBlock *StartMBB = MBB;
7646  MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7647  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7648
7649  //  StartMBB:
7650  //   # fall through to LoopMMB
7651  MBB->addSuccessor(LoopMBB);
7652
7653  //  LoopMBB:
7654  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7655  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7656  //   R0L = %CharReg
7657  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7658  //   JO LoopMBB
7659  //   # fall through to DoneMMB
7660  //
7661  // The load of R0L can be hoisted by post-RA LICM.
7662  MBB = LoopMBB;
7663
7664  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7665    .addReg(Start1Reg).addMBB(StartMBB)
7666    .addReg(End1Reg).addMBB(LoopMBB);
7667  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7668    .addReg(Start2Reg).addMBB(StartMBB)
7669    .addReg(End2Reg).addMBB(LoopMBB);
7670  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7671  BuildMI(MBB, DL, TII->get(Opcode))
7672    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7673    .addReg(This1Reg).addReg(This2Reg);
7674  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7675    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7676  MBB->addSuccessor(LoopMBB);
7677  MBB->addSuccessor(DoneMBB);
7678
7679  DoneMBB->addLiveIn(SystemZ::CC);
7680
7681  MI.eraseFromParent();
7682  return DoneMBB;
7683}
7684
7685// Update TBEGIN instruction with final opcode and register clobbers.
7686MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7687    MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7688    bool NoFloat) const {
7689  MachineFunction &MF = *MBB->getParent();
7690  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7691  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7692
7693  // Update opcode.
7694  MI.setDesc(TII->get(Opcode));
7695
7696  // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7697  // Make sure to add the corresponding GRSM bits if they are missing.
7698  uint64_t Control = MI.getOperand(2).getImm();
7699  static const unsigned GPRControlBit[16] = {
7700    0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7701    0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7702  };
7703  Control |= GPRControlBit[15];
7704  if (TFI->hasFP(MF))
7705    Control |= GPRControlBit[11];
7706  MI.getOperand(2).setImm(Control);
7707
7708  // Add GPR clobbers.
7709  for (int I = 0; I < 16; I++) {
7710    if ((Control & GPRControlBit[I]) == 0) {
7711      unsigned Reg = SystemZMC::GR64Regs[I];
7712      MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7713    }
7714  }
7715
7716  // Add FPR/VR clobbers.
7717  if (!NoFloat && (Control & 4) != 0) {
7718    if (Subtarget.hasVector()) {
7719      for (int I = 0; I < 32; I++) {
7720        unsigned Reg = SystemZMC::VR128Regs[I];
7721        MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7722      }
7723    } else {
7724      for (int I = 0; I < 16; I++) {
7725        unsigned Reg = SystemZMC::FP64Regs[I];
7726        MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7727      }
7728    }
7729  }
7730
7731  return MBB;
7732}
7733
7734MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7735    MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7736  MachineFunction &MF = *MBB->getParent();
7737  MachineRegisterInfo *MRI = &MF.getRegInfo();
7738  const SystemZInstrInfo *TII =
7739      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7740  DebugLoc DL = MI.getDebugLoc();
7741
7742  Register SrcReg = MI.getOperand(0).getReg();
7743
7744  // Create new virtual register of the same class as source.
7745  const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7746  Register DstReg = MRI->createVirtualRegister(RC);
7747
7748  // Replace pseudo with a normal load-and-test that models the def as
7749  // well.
7750  BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7751    .addReg(SrcReg)
7752    .setMIFlags(MI.getFlags());
7753  MI.eraseFromParent();
7754
7755  return MBB;
7756}
7757
7758MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7759    MachineInstr &MI, MachineBasicBlock *MBB) const {
7760  switch (MI.getOpcode()) {
7761  case SystemZ::Select32:
7762  case SystemZ::Select64:
7763  case SystemZ::SelectF32:
7764  case SystemZ::SelectF64:
7765  case SystemZ::SelectF128:
7766  case SystemZ::SelectVR32:
7767  case SystemZ::SelectVR64:
7768  case SystemZ::SelectVR128:
7769    return emitSelect(MI, MBB);
7770
7771  case SystemZ::CondStore8Mux:
7772    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7773  case SystemZ::CondStore8MuxInv:
7774    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7775  case SystemZ::CondStore16Mux:
7776    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7777  case SystemZ::CondStore16MuxInv:
7778    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7779  case SystemZ::CondStore32Mux:
7780    return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7781  case SystemZ::CondStore32MuxInv:
7782    return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7783  case SystemZ::CondStore8:
7784    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7785  case SystemZ::CondStore8Inv:
7786    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7787  case SystemZ::CondStore16:
7788    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7789  case SystemZ::CondStore16Inv:
7790    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7791  case SystemZ::CondStore32:
7792    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7793  case SystemZ::CondStore32Inv:
7794    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7795  case SystemZ::CondStore64:
7796    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7797  case SystemZ::CondStore64Inv:
7798    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7799  case SystemZ::CondStoreF32:
7800    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7801  case SystemZ::CondStoreF32Inv:
7802    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7803  case SystemZ::CondStoreF64:
7804    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7805  case SystemZ::CondStoreF64Inv:
7806    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7807
7808  case SystemZ::PAIR128:
7809    return emitPair128(MI, MBB);
7810  case SystemZ::AEXT128:
7811    return emitExt128(MI, MBB, false);
7812  case SystemZ::ZEXT128:
7813    return emitExt128(MI, MBB, true);
7814
7815  case SystemZ::ATOMIC_SWAPW:
7816    return emitAtomicLoadBinary(MI, MBB, 0, 0);
7817  case SystemZ::ATOMIC_SWAP_32:
7818    return emitAtomicLoadBinary(MI, MBB, 0, 32);
7819  case SystemZ::ATOMIC_SWAP_64:
7820    return emitAtomicLoadBinary(MI, MBB, 0, 64);
7821
7822  case SystemZ::ATOMIC_LOADW_AR:
7823    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7824  case SystemZ::ATOMIC_LOADW_AFI:
7825    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7826  case SystemZ::ATOMIC_LOAD_AR:
7827    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7828  case SystemZ::ATOMIC_LOAD_AHI:
7829    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7830  case SystemZ::ATOMIC_LOAD_AFI:
7831    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7832  case SystemZ::ATOMIC_LOAD_AGR:
7833    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7834  case SystemZ::ATOMIC_LOAD_AGHI:
7835    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7836  case SystemZ::ATOMIC_LOAD_AGFI:
7837    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7838
7839  case SystemZ::ATOMIC_LOADW_SR:
7840    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7841  case SystemZ::ATOMIC_LOAD_SR:
7842    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7843  case SystemZ::ATOMIC_LOAD_SGR:
7844    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7845
7846  case SystemZ::ATOMIC_LOADW_NR:
7847    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7848  case SystemZ::ATOMIC_LOADW_NILH:
7849    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7850  case SystemZ::ATOMIC_LOAD_NR:
7851    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7852  case SystemZ::ATOMIC_LOAD_NILL:
7853    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7854  case SystemZ::ATOMIC_LOAD_NILH:
7855    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7856  case SystemZ::ATOMIC_LOAD_NILF:
7857    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7858  case SystemZ::ATOMIC_LOAD_NGR:
7859    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7860  case SystemZ::ATOMIC_LOAD_NILL64:
7861    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7862  case SystemZ::ATOMIC_LOAD_NILH64:
7863    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7864  case SystemZ::ATOMIC_LOAD_NIHL64:
7865    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7866  case SystemZ::ATOMIC_LOAD_NIHH64:
7867    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7868  case SystemZ::ATOMIC_LOAD_NILF64:
7869    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7870  case SystemZ::ATOMIC_LOAD_NIHF64:
7871    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7872
7873  case SystemZ::ATOMIC_LOADW_OR:
7874    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7875  case SystemZ::ATOMIC_LOADW_OILH:
7876    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7877  case SystemZ::ATOMIC_LOAD_OR:
7878    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7879  case SystemZ::ATOMIC_LOAD_OILL:
7880    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7881  case SystemZ::ATOMIC_LOAD_OILH:
7882    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7883  case SystemZ::ATOMIC_LOAD_OILF:
7884    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7885  case SystemZ::ATOMIC_LOAD_OGR:
7886    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7887  case SystemZ::ATOMIC_LOAD_OILL64:
7888    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7889  case SystemZ::ATOMIC_LOAD_OILH64:
7890    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7891  case SystemZ::ATOMIC_LOAD_OIHL64:
7892    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7893  case SystemZ::ATOMIC_LOAD_OIHH64:
7894    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7895  case SystemZ::ATOMIC_LOAD_OILF64:
7896    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7897  case SystemZ::ATOMIC_LOAD_OIHF64:
7898    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7899
7900  case SystemZ::ATOMIC_LOADW_XR:
7901    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7902  case SystemZ::ATOMIC_LOADW_XILF:
7903    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7904  case SystemZ::ATOMIC_LOAD_XR:
7905    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7906  case SystemZ::ATOMIC_LOAD_XILF:
7907    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7908  case SystemZ::ATOMIC_LOAD_XGR:
7909    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7910  case SystemZ::ATOMIC_LOAD_XILF64:
7911    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7912  case SystemZ::ATOMIC_LOAD_XIHF64:
7913    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7914
7915  case SystemZ::ATOMIC_LOADW_NRi:
7916    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7917  case SystemZ::ATOMIC_LOADW_NILHi:
7918    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7919  case SystemZ::ATOMIC_LOAD_NRi:
7920    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7921  case SystemZ::ATOMIC_LOAD_NILLi:
7922    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7923  case SystemZ::ATOMIC_LOAD_NILHi:
7924    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7925  case SystemZ::ATOMIC_LOAD_NILFi:
7926    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7927  case SystemZ::ATOMIC_LOAD_NGRi:
7928    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7929  case SystemZ::ATOMIC_LOAD_NILL64i:
7930    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7931  case SystemZ::ATOMIC_LOAD_NILH64i:
7932    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7933  case SystemZ::ATOMIC_LOAD_NIHL64i:
7934    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7935  case SystemZ::ATOMIC_LOAD_NIHH64i:
7936    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7937  case SystemZ::ATOMIC_LOAD_NILF64i:
7938    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7939  case SystemZ::ATOMIC_LOAD_NIHF64i:
7940    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7941
7942  case SystemZ::ATOMIC_LOADW_MIN:
7943    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7944                                SystemZ::CCMASK_CMP_LE, 0);
7945  case SystemZ::ATOMIC_LOAD_MIN_32:
7946    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7947                                SystemZ::CCMASK_CMP_LE, 32);
7948  case SystemZ::ATOMIC_LOAD_MIN_64:
7949    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7950                                SystemZ::CCMASK_CMP_LE, 64);
7951
7952  case SystemZ::ATOMIC_LOADW_MAX:
7953    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7954                                SystemZ::CCMASK_CMP_GE, 0);
7955  case SystemZ::ATOMIC_LOAD_MAX_32:
7956    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7957                                SystemZ::CCMASK_CMP_GE, 32);
7958  case SystemZ::ATOMIC_LOAD_MAX_64:
7959    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7960                                SystemZ::CCMASK_CMP_GE, 64);
7961
7962  case SystemZ::ATOMIC_LOADW_UMIN:
7963    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7964                                SystemZ::CCMASK_CMP_LE, 0);
7965  case SystemZ::ATOMIC_LOAD_UMIN_32:
7966    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7967                                SystemZ::CCMASK_CMP_LE, 32);
7968  case SystemZ::ATOMIC_LOAD_UMIN_64:
7969    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7970                                SystemZ::CCMASK_CMP_LE, 64);
7971
7972  case SystemZ::ATOMIC_LOADW_UMAX:
7973    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7974                                SystemZ::CCMASK_CMP_GE, 0);
7975  case SystemZ::ATOMIC_LOAD_UMAX_32:
7976    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7977                                SystemZ::CCMASK_CMP_GE, 32);
7978  case SystemZ::ATOMIC_LOAD_UMAX_64:
7979    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7980                                SystemZ::CCMASK_CMP_GE, 64);
7981
7982  case SystemZ::ATOMIC_CMP_SWAPW:
7983    return emitAtomicCmpSwapW(MI, MBB);
7984  case SystemZ::MVCSequence:
7985  case SystemZ::MVCLoop:
7986    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7987  case SystemZ::NCSequence:
7988  case SystemZ::NCLoop:
7989    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7990  case SystemZ::OCSequence:
7991  case SystemZ::OCLoop:
7992    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7993  case SystemZ::XCSequence:
7994  case SystemZ::XCLoop:
7995    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7996  case SystemZ::CLCSequence:
7997  case SystemZ::CLCLoop:
7998    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7999  case SystemZ::CLSTLoop:
8000    return emitStringWrapper(MI, MBB, SystemZ::CLST);
8001  case SystemZ::MVSTLoop:
8002    return emitStringWrapper(MI, MBB, SystemZ::MVST);
8003  case SystemZ::SRSTLoop:
8004    return emitStringWrapper(MI, MBB, SystemZ::SRST);
8005  case SystemZ::TBEGIN:
8006    return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8007  case SystemZ::TBEGIN_nofloat:
8008    return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8009  case SystemZ::TBEGINC:
8010    return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8011  case SystemZ::LTEBRCompare_VecPseudo:
8012    return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8013  case SystemZ::LTDBRCompare_VecPseudo:
8014    return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8015  case SystemZ::LTXBRCompare_VecPseudo:
8016    return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8017
8018  case TargetOpcode::STACKMAP:
8019  case TargetOpcode::PATCHPOINT:
8020    return emitPatchPoint(MI, MBB);
8021
8022  default:
8023    llvm_unreachable("Unexpected instr type to insert");
8024  }
8025}
8026
8027// This is only used by the isel schedulers, and is needed only to prevent
8028// compiler from crashing when list-ilp is used.
8029const TargetRegisterClass *
8030SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8031  if (VT == MVT::Untyped)
8032    return &SystemZ::ADDR128BitRegClass;
8033  return TargetLowering::getRepRegClassFor(VT);
8034}
8035