PPCMIPeephole.cpp revision 360784
1//===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===---------------------------------------------------------------------===//
8//
9// This pass performs peephole optimizations to clean up ugly code
10// sequences at the MachineInstruction layer.  It runs at the end of
11// the SSA phases, following VSX swap removal.  A pass of dead code
12// elimination follows this one for quick clean-up of any dead
13// instructions introduced here.  Although we could do this as callbacks
14// from the generic peephole pass, this would have a couple of bad
15// effects:  it might remove optimization opportunities for VSX swap
16// removal, and it would miss cleanups made possible following VSX
17// swap removal.
18//
19//===---------------------------------------------------------------------===//
20
21#include "MCTargetDesc/PPCMCTargetDesc.h"
22#include "MCTargetDesc/PPCPredicates.h"
23#include "PPC.h"
24#include "PPCInstrBuilder.h"
25#include "PPCInstrInfo.h"
26#include "PPCMachineFunctionInfo.h"
27#include "PPCTargetMachine.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFunctionPass.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachinePostDominators.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/InitializePasses.h"
36#include "llvm/Support/Debug.h"
37
38using namespace llvm;
39
40#define DEBUG_TYPE "ppc-mi-peepholes"
41
42STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
43STATISTIC(MultiTOCSaves,
44          "Number of functions with multiple TOC saves that must be kept");
45STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
46STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
47STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
48STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
49STATISTIC(NumConvertedToImmediateForm,
50          "Number of instructions converted to their immediate form");
51STATISTIC(NumFunctionsEnteredInMIPeephole,
52          "Number of functions entered in PPC MI Peepholes");
53STATISTIC(NumFixedPointIterations,
54          "Number of fixed-point iterations converting reg-reg instructions "
55          "to reg-imm ones");
56STATISTIC(NumRotatesCollapsed,
57          "Number of pairs of rotate left, clear left/right collapsed");
58STATISTIC(NumEXTSWAndSLDICombined,
59          "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
60
61static cl::opt<bool>
62FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
63                   cl::desc("Iterate to a fixed point when attempting to "
64                            "convert reg-reg instructions to reg-imm"));
65
66static cl::opt<bool>
67ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
68              cl::desc("Convert eligible reg+reg instructions to reg+imm"));
69
70static cl::opt<bool>
71    EnableSExtElimination("ppc-eliminate-signext",
72                          cl::desc("enable elimination of sign-extensions"),
73                          cl::init(false), cl::Hidden);
74
75static cl::opt<bool>
76    EnableZExtElimination("ppc-eliminate-zeroext",
77                          cl::desc("enable elimination of zero-extensions"),
78                          cl::init(false), cl::Hidden);
79
80namespace {
81
82struct PPCMIPeephole : public MachineFunctionPass {
83
84  static char ID;
85  const PPCInstrInfo *TII;
86  MachineFunction *MF;
87  MachineRegisterInfo *MRI;
88
89  PPCMIPeephole() : MachineFunctionPass(ID) {
90    initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
91  }
92
93private:
94  MachineDominatorTree *MDT;
95  MachinePostDominatorTree *MPDT;
96  MachineBlockFrequencyInfo *MBFI;
97  uint64_t EntryFreq;
98
99  // Initialize class variables.
100  void initialize(MachineFunction &MFParm);
101
102  // Perform peepholes.
103  bool simplifyCode(void);
104
105  // Perform peepholes.
106  bool eliminateRedundantCompare(void);
107  bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
108  bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
109  bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
110  void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
111                      MachineInstr *MI);
112
113public:
114
115  void getAnalysisUsage(AnalysisUsage &AU) const override {
116    AU.addRequired<MachineDominatorTree>();
117    AU.addRequired<MachinePostDominatorTree>();
118    AU.addRequired<MachineBlockFrequencyInfo>();
119    AU.addPreserved<MachineDominatorTree>();
120    AU.addPreserved<MachinePostDominatorTree>();
121    AU.addPreserved<MachineBlockFrequencyInfo>();
122    MachineFunctionPass::getAnalysisUsage(AU);
123  }
124
125  // Main entry point for this pass.
126  bool runOnMachineFunction(MachineFunction &MF) override {
127    if (skipFunction(MF.getFunction()))
128      return false;
129    initialize(MF);
130    return simplifyCode();
131  }
132};
133
134// Initialize class variables.
135void PPCMIPeephole::initialize(MachineFunction &MFParm) {
136  MF = &MFParm;
137  MRI = &MF->getRegInfo();
138  MDT = &getAnalysis<MachineDominatorTree>();
139  MPDT = &getAnalysis<MachinePostDominatorTree>();
140  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
141  EntryFreq = MBFI->getEntryFreq();
142  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
143  LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
144  LLVM_DEBUG(MF->dump());
145}
146
147static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
148                                      MachineRegisterInfo *MRI) {
149  assert(Op && "Invalid Operand!");
150  if (!Op->isReg())
151    return nullptr;
152
153  Register Reg = Op->getReg();
154  if (!Register::isVirtualRegister(Reg))
155    return nullptr;
156
157  return MRI->getVRegDef(Reg);
158}
159
160// This function returns number of known zero bits in output of MI
161// starting from the most significant bit.
162static unsigned
163getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
164  unsigned Opcode = MI->getOpcode();
165  if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
166      Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
167    return MI->getOperand(3).getImm();
168
169  if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
170      MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
171    return MI->getOperand(3).getImm();
172
173  if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
174       Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
175       Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
176      MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
177    return 32 + MI->getOperand(3).getImm();
178
179  if (Opcode == PPC::ANDI_rec) {
180    uint16_t Imm = MI->getOperand(2).getImm();
181    return 48 + countLeadingZeros(Imm);
182  }
183
184  if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
185      Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
186      Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
187    // The result ranges from 0 to 32.
188    return 58;
189
190  if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
191      Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
192    // The result ranges from 0 to 64.
193    return 57;
194
195  if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
196      Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
197      Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
198      Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
199    return 48;
200
201  if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
202      Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
203      Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
204      Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
205    return 56;
206
207  if (TII->isZeroExtended(*MI))
208    return 32;
209
210  return 0;
211}
212
213// This function maintains a map for the pairs <TOC Save Instr, Keep>
214// Each time a new TOC save is encountered, it checks if any of the existing
215// ones are dominated by the new one. If so, it marks the existing one as
216// redundant by setting it's entry in the map as false. It then adds the new
217// instruction to the map with either true or false depending on if any
218// existing instructions dominated the new one.
219void PPCMIPeephole::UpdateTOCSaves(
220  std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
221  assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
222  assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
223         "TOC-save removal only supported on ELFv2");
224  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
225
226  MachineBasicBlock *Entry = &MF->front();
227  uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
228
229  // If the block in which the TOC save resides is in a block that
230  // post-dominates Entry, or a block that is hotter than entry (keep in mind
231  // that early MachineLICM has already run so the TOC save won't be hoisted)
232  // we can just do the save in the prologue.
233  if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
234    FI->setMustSaveTOC(true);
235
236  // If we are saving the TOC in the prologue, all the TOC saves can be removed
237  // from the code.
238  if (FI->mustSaveTOC()) {
239    for (auto &TOCSave : TOCSaves)
240      TOCSave.second = false;
241    // Add new instruction to map.
242    TOCSaves[MI] = false;
243    return;
244  }
245
246  bool Keep = true;
247  for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
248    MachineInstr *CurrInst = It->first;
249    // If new instruction dominates an existing one, mark existing one as
250    // redundant.
251    if (It->second && MDT->dominates(MI, CurrInst))
252      It->second = false;
253    // Check if the new instruction is redundant.
254    if (MDT->dominates(CurrInst, MI)) {
255      Keep = false;
256      break;
257    }
258  }
259  // Add new instruction to map.
260  TOCSaves[MI] = Keep;
261}
262
263// Perform peephole optimizations.
264bool PPCMIPeephole::simplifyCode(void) {
265  bool Simplified = false;
266  MachineInstr* ToErase = nullptr;
267  std::map<MachineInstr *, bool> TOCSaves;
268  const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
269  NumFunctionsEnteredInMIPeephole++;
270  if (ConvertRegReg) {
271    // Fixed-point conversion of reg/reg instructions fed by load-immediate
272    // into reg/imm instructions. FIXME: This is expensive, control it with
273    // an option.
274    bool SomethingChanged = false;
275    do {
276      NumFixedPointIterations++;
277      SomethingChanged = false;
278      for (MachineBasicBlock &MBB : *MF) {
279        for (MachineInstr &MI : MBB) {
280          if (MI.isDebugInstr())
281            continue;
282
283          if (TII->convertToImmediateForm(MI)) {
284            // We don't erase anything in case the def has other uses. Let DCE
285            // remove it if it can be removed.
286            LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
287            LLVM_DEBUG(MI.dump());
288            NumConvertedToImmediateForm++;
289            SomethingChanged = true;
290            Simplified = true;
291            continue;
292          }
293        }
294      }
295    } while (SomethingChanged && FixedPointRegToImm);
296  }
297
298  for (MachineBasicBlock &MBB : *MF) {
299    for (MachineInstr &MI : MBB) {
300
301      // If the previous instruction was marked for elimination,
302      // remove it now.
303      if (ToErase) {
304        ToErase->eraseFromParent();
305        ToErase = nullptr;
306      }
307
308      // Ignore debug instructions.
309      if (MI.isDebugInstr())
310        continue;
311
312      // Per-opcode peepholes.
313      switch (MI.getOpcode()) {
314
315      default:
316        break;
317
318      case PPC::STD: {
319        MachineFrameInfo &MFI = MF->getFrameInfo();
320        if (MFI.hasVarSizedObjects() ||
321            !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
322          break;
323        // When encountering a TOC save instruction, call UpdateTOCSaves
324        // to add it to the TOCSaves map and mark any existing TOC saves
325        // it dominates as redundant.
326        if (TII->isTOCSaveMI(MI))
327          UpdateTOCSaves(TOCSaves, &MI);
328        break;
329      }
330      case PPC::XXPERMDI: {
331        // Perform simplifications of 2x64 vector swaps and splats.
332        // A swap is identified by an immediate value of 2, and a splat
333        // is identified by an immediate value of 0 or 3.
334        int Immed = MI.getOperand(3).getImm();
335
336        if (Immed == 1)
337          break;
338
339        // For each of these simplifications, we need the two source
340        // regs to match.  Unfortunately, MachineCSE ignores COPY and
341        // SUBREG_TO_REG, so for example we can see
342        //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
343        // We have to look through chains of COPY and SUBREG_TO_REG
344        // to find the real source values for comparison.
345        unsigned TrueReg1 =
346          TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
347        unsigned TrueReg2 =
348          TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
349
350        if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
351          break;
352
353        MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
354
355        if (!DefMI)
356          break;
357
358        unsigned DefOpc = DefMI->getOpcode();
359
360        // If this is a splat fed by a splatting load, the splat is
361        // redundant. Replace with a copy. This doesn't happen directly due
362        // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
363        // a load of a double to a vector of 64-bit integers.
364        auto isConversionOfLoadAndSplat = [=]() -> bool {
365          if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
366            return false;
367          unsigned FeedReg1 =
368            TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
369          if (Register::isVirtualRegister(FeedReg1)) {
370            MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
371            if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
372              return true;
373          }
374          return false;
375        };
376        if ((Immed == 0 || Immed == 3) &&
377            (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
378          LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
379                               "to load-and-splat/copy: ");
380          LLVM_DEBUG(MI.dump());
381          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
382                  MI.getOperand(0).getReg())
383              .add(MI.getOperand(1));
384          ToErase = &MI;
385          Simplified = true;
386        }
387
388        // If this is a splat or a swap fed by another splat, we
389        // can replace it with a copy.
390        if (DefOpc == PPC::XXPERMDI) {
391          unsigned DefReg1 = DefMI->getOperand(1).getReg();
392          unsigned DefReg2 = DefMI->getOperand(2).getReg();
393          unsigned DefImmed = DefMI->getOperand(3).getImm();
394
395          // If the two inputs are not the same register, check to see if
396          // they originate from the same virtual register after only
397          // copy-like instructions.
398          if (DefReg1 != DefReg2) {
399            unsigned FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
400            unsigned FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
401
402            if (!(FeedReg1 == FeedReg2 &&
403                  Register::isVirtualRegister(FeedReg1)))
404              break;
405          }
406
407          if (DefImmed == 0 || DefImmed == 3) {
408            LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
409                                 "to splat/copy: ");
410            LLVM_DEBUG(MI.dump());
411            BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
412                    MI.getOperand(0).getReg())
413                .add(MI.getOperand(1));
414            ToErase = &MI;
415            Simplified = true;
416          }
417
418          // If this is a splat fed by a swap, we can simplify modify
419          // the splat to splat the other value from the swap's input
420          // parameter.
421          else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
422            LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
423            LLVM_DEBUG(MI.dump());
424            MI.getOperand(1).setReg(DefReg1);
425            MI.getOperand(2).setReg(DefReg2);
426            MI.getOperand(3).setImm(3 - Immed);
427            Simplified = true;
428          }
429
430          // If this is a swap fed by a swap, we can replace it
431          // with a copy from the first swap's input.
432          else if (Immed == 2 && DefImmed == 2) {
433            LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
434            LLVM_DEBUG(MI.dump());
435            BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
436                    MI.getOperand(0).getReg())
437                .add(DefMI->getOperand(1));
438            ToErase = &MI;
439            Simplified = true;
440          }
441        } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
442                   (DefMI->getOperand(2).getImm() == 0 ||
443                    DefMI->getOperand(2).getImm() == 3)) {
444          // Splat fed by another splat - switch the output of the first
445          // and remove the second.
446          DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
447          ToErase = &MI;
448          Simplified = true;
449          LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
450          LLVM_DEBUG(MI.dump());
451        }
452        break;
453      }
454      case PPC::VSPLTB:
455      case PPC::VSPLTH:
456      case PPC::XXSPLTW: {
457        unsigned MyOpcode = MI.getOpcode();
458        unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
459        unsigned TrueReg =
460          TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
461        if (!Register::isVirtualRegister(TrueReg))
462          break;
463        MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
464        if (!DefMI)
465          break;
466        unsigned DefOpcode = DefMI->getOpcode();
467        auto isConvertOfSplat = [=]() -> bool {
468          if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
469            return false;
470          Register ConvReg = DefMI->getOperand(1).getReg();
471          if (!Register::isVirtualRegister(ConvReg))
472            return false;
473          MachineInstr *Splt = MRI->getVRegDef(ConvReg);
474          return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
475            Splt->getOpcode() == PPC::XXSPLTW);
476        };
477        bool AlreadySplat = (MyOpcode == DefOpcode) ||
478          (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
479          (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
480          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
481          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
482          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
483          (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
484        // If the instruction[s] that feed this splat have already splat
485        // the value, this splat is redundant.
486        if (AlreadySplat) {
487          LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
488          LLVM_DEBUG(MI.dump());
489          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
490                  MI.getOperand(0).getReg())
491              .add(MI.getOperand(OpNo));
492          ToErase = &MI;
493          Simplified = true;
494        }
495        // Splat fed by a shift. Usually when we align value to splat into
496        // vector element zero.
497        if (DefOpcode == PPC::XXSLDWI) {
498          Register ShiftRes = DefMI->getOperand(0).getReg();
499          Register ShiftOp1 = DefMI->getOperand(1).getReg();
500          Register ShiftOp2 = DefMI->getOperand(2).getReg();
501          unsigned ShiftImm = DefMI->getOperand(3).getImm();
502          unsigned SplatImm = MI.getOperand(2).getImm();
503          if (ShiftOp1 == ShiftOp2) {
504            unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
505            if (MRI->hasOneNonDBGUse(ShiftRes)) {
506              LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
507              LLVM_DEBUG(DefMI->dump());
508              ToErase = DefMI;
509            }
510            Simplified = true;
511            LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
512                              << " to " << NewElem << " in instruction: ");
513            LLVM_DEBUG(MI.dump());
514            MI.getOperand(1).setReg(ShiftOp1);
515            MI.getOperand(2).setImm(NewElem);
516          }
517        }
518        break;
519      }
520      case PPC::XVCVDPSP: {
521        // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
522        unsigned TrueReg =
523          TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
524        if (!Register::isVirtualRegister(TrueReg))
525          break;
526        MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
527
528        // This can occur when building a vector of single precision or integer
529        // values.
530        if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
531          unsigned DefsReg1 =
532            TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
533          unsigned DefsReg2 =
534            TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
535          if (!Register::isVirtualRegister(DefsReg1) ||
536              !Register::isVirtualRegister(DefsReg2))
537            break;
538          MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
539          MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
540
541          if (!P1 || !P2)
542            break;
543
544          // Remove the passed FRSP instruction if it only feeds this MI and
545          // set any uses of that FRSP (in this MI) to the source of the FRSP.
546          auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
547            if (RoundInstr->getOpcode() == PPC::FRSP &&
548                MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
549              Simplified = true;
550              Register ConvReg1 = RoundInstr->getOperand(1).getReg();
551              Register FRSPDefines = RoundInstr->getOperand(0).getReg();
552              MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
553              for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
554                if (Use.getOperand(i).isReg() &&
555                    Use.getOperand(i).getReg() == FRSPDefines)
556                  Use.getOperand(i).setReg(ConvReg1);
557              LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n");
558              LLVM_DEBUG(RoundInstr->dump());
559              LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
560              LLVM_DEBUG(MI.dump());
561              LLVM_DEBUG(dbgs() << "Through instruction:\n");
562              LLVM_DEBUG(DefMI->dump());
563              RoundInstr->eraseFromParent();
564            }
565          };
566
567          // If the input to XVCVDPSP is a vector that was built (even
568          // partially) out of FRSP's, the FRSP(s) can safely be removed
569          // since this instruction performs the same operation.
570          if (P1 != P2) {
571            removeFRSPIfPossible(P1);
572            removeFRSPIfPossible(P2);
573            break;
574          }
575          removeFRSPIfPossible(P1);
576        }
577        break;
578      }
579      case PPC::EXTSH:
580      case PPC::EXTSH8:
581      case PPC::EXTSH8_32_64: {
582        if (!EnableSExtElimination) break;
583        Register NarrowReg = MI.getOperand(1).getReg();
584        if (!Register::isVirtualRegister(NarrowReg))
585          break;
586
587        MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
588        // If we've used a zero-extending load that we will sign-extend,
589        // just do a sign-extending load.
590        if (SrcMI->getOpcode() == PPC::LHZ ||
591            SrcMI->getOpcode() == PPC::LHZX) {
592          if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
593            break;
594          auto is64Bit = [] (unsigned Opcode) {
595            return Opcode == PPC::EXTSH8;
596          };
597          auto isXForm = [] (unsigned Opcode) {
598            return Opcode == PPC::LHZX;
599          };
600          auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
601            if (is64Bit)
602              if (isXForm) return PPC::LHAX8;
603              else         return PPC::LHA8;
604            else
605              if (isXForm) return PPC::LHAX;
606              else         return PPC::LHA;
607          };
608          unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
609                                       isXForm(SrcMI->getOpcode()));
610          LLVM_DEBUG(dbgs() << "Zero-extending load\n");
611          LLVM_DEBUG(SrcMI->dump());
612          LLVM_DEBUG(dbgs() << "and sign-extension\n");
613          LLVM_DEBUG(MI.dump());
614          LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
615          SrcMI->setDesc(TII->get(Opc));
616          SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
617          ToErase = &MI;
618          Simplified = true;
619          NumEliminatedSExt++;
620        }
621        break;
622      }
623      case PPC::EXTSW:
624      case PPC::EXTSW_32:
625      case PPC::EXTSW_32_64: {
626        if (!EnableSExtElimination) break;
627        Register NarrowReg = MI.getOperand(1).getReg();
628        if (!Register::isVirtualRegister(NarrowReg))
629          break;
630
631        MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
632        // If we've used a zero-extending load that we will sign-extend,
633        // just do a sign-extending load.
634        if (SrcMI->getOpcode() == PPC::LWZ ||
635            SrcMI->getOpcode() == PPC::LWZX) {
636          if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
637            break;
638          auto is64Bit = [] (unsigned Opcode) {
639            return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
640          };
641          auto isXForm = [] (unsigned Opcode) {
642            return Opcode == PPC::LWZX;
643          };
644          auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
645            if (is64Bit)
646              if (isXForm) return PPC::LWAX;
647              else         return PPC::LWA;
648            else
649              if (isXForm) return PPC::LWAX_32;
650              else         return PPC::LWA_32;
651          };
652          unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
653                                       isXForm(SrcMI->getOpcode()));
654          LLVM_DEBUG(dbgs() << "Zero-extending load\n");
655          LLVM_DEBUG(SrcMI->dump());
656          LLVM_DEBUG(dbgs() << "and sign-extension\n");
657          LLVM_DEBUG(MI.dump());
658          LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
659          SrcMI->setDesc(TII->get(Opc));
660          SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
661          ToErase = &MI;
662          Simplified = true;
663          NumEliminatedSExt++;
664        } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
665                   TII->isSignExtended(*SrcMI)) {
666          // We can eliminate EXTSW if the input is known to be already
667          // sign-extended.
668          LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
669          Register TmpReg =
670              MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
671          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
672                  TmpReg);
673          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
674                  MI.getOperand(0).getReg())
675              .addReg(TmpReg)
676              .addReg(NarrowReg)
677              .addImm(PPC::sub_32);
678          ToErase = &MI;
679          Simplified = true;
680          NumEliminatedSExt++;
681        }
682        break;
683      }
684      case PPC::RLDICL: {
685        // We can eliminate RLDICL (e.g. for zero-extension)
686        // if all bits to clear are already zero in the input.
687        // This code assume following code sequence for zero-extension.
688        //   %6 = COPY %5:sub_32; (optional)
689        //   %8 = IMPLICIT_DEF;
690        //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
691        if (!EnableZExtElimination) break;
692
693        if (MI.getOperand(2).getImm() != 0)
694          break;
695
696        Register SrcReg = MI.getOperand(1).getReg();
697        if (!Register::isVirtualRegister(SrcReg))
698          break;
699
700        MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
701        if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
702              SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
703          break;
704
705        MachineInstr *ImpDefMI, *SubRegMI;
706        ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
707        SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
708        if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
709
710        SrcMI = SubRegMI;
711        if (SubRegMI->getOpcode() == PPC::COPY) {
712          Register CopyReg = SubRegMI->getOperand(1).getReg();
713          if (Register::isVirtualRegister(CopyReg))
714            SrcMI = MRI->getVRegDef(CopyReg);
715        }
716
717        unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
718        if (MI.getOperand(3).getImm() <= KnownZeroCount) {
719          LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
720          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
721                  MI.getOperand(0).getReg())
722              .addReg(SrcReg);
723          ToErase = &MI;
724          Simplified = true;
725          NumEliminatedZExt++;
726        }
727        break;
728      }
729
730      // TODO: Any instruction that has an immediate form fed only by a PHI
731      // whose operands are all load immediate can be folded away. We currently
732      // do this for ADD instructions, but should expand it to arithmetic and
733      // binary instructions with immediate forms in the future.
734      case PPC::ADD4:
735      case PPC::ADD8: {
736        auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
737          assert(PhiOp && "Invalid Operand!");
738          MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
739
740          return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
741                 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
742        };
743
744        auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
745                                            MachineOperand *PhiOp) {
746          assert(PhiOp && "Invalid Operand!");
747          assert(DominatorOp && "Invalid Operand!");
748          MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
749          MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
750
751          // Note: the vregs only show up at odd indices position of PHI Node,
752          // the even indices position save the BB info.
753          for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
754            MachineInstr *LiMI =
755                getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
756            if (!LiMI ||
757                (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
758                || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
759                !MDT->dominates(DefDomMI, LiMI))
760              return false;
761          }
762
763          return true;
764        };
765
766        MachineOperand Op1 = MI.getOperand(1);
767        MachineOperand Op2 = MI.getOperand(2);
768        if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
769          std::swap(Op1, Op2);
770        else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
771          break; // We don't have an ADD fed by LI's that can be transformed
772
773        // Now we know that Op1 is the PHI node and Op2 is the dominator
774        Register DominatorReg = Op2.getReg();
775
776        const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
777                                             ? &PPC::G8RC_and_G8RC_NOX0RegClass
778                                             : &PPC::GPRC_and_GPRC_NOR0RegClass;
779        MRI->setRegClass(DominatorReg, TRC);
780
781        // replace LIs with ADDIs
782        MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
783        for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
784          MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
785          LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
786          LLVM_DEBUG(LiMI->dump());
787
788          // There could be repeated registers in the PHI, e.g: %1 =
789          // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
790          // already replaced the def instruction, skip.
791          if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
792            continue;
793
794          assert((LiMI->getOpcode() == PPC::LI ||
795                  LiMI->getOpcode() == PPC::LI8) &&
796                 "Invalid Opcode!");
797          auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
798          LiMI->RemoveOperand(1);                    // remove the imm of LI
799          LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
800                                                              : PPC::ADDI8));
801          MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
802              .addReg(DominatorReg)
803              .addImm(LiImm); // restore the imm of LI
804          LLVM_DEBUG(LiMI->dump());
805        }
806
807        // Replace ADD with COPY
808        LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
809        LLVM_DEBUG(MI.dump());
810        BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
811                MI.getOperand(0).getReg())
812            .add(Op1);
813        ToErase = &MI;
814        Simplified = true;
815        NumOptADDLIs++;
816        break;
817      }
818      case PPC::RLDICR: {
819        Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
820                      combineSEXTAndSHL(MI, ToErase);
821        break;
822      }
823      case PPC::RLWINM:
824      case PPC::RLWINM_rec:
825      case PPC::RLWINM8:
826      case PPC::RLWINM8_rec: {
827        unsigned FoldingReg = MI.getOperand(1).getReg();
828        if (!Register::isVirtualRegister(FoldingReg))
829          break;
830
831        MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
832        if (SrcMI->getOpcode() != PPC::RLWINM &&
833            SrcMI->getOpcode() != PPC::RLWINM_rec &&
834            SrcMI->getOpcode() != PPC::RLWINM8 &&
835            SrcMI->getOpcode() != PPC::RLWINM8_rec)
836          break;
837        assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
838                MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
839                SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
840               "Invalid PPC::RLWINM Instruction!");
841        uint64_t SHSrc = SrcMI->getOperand(2).getImm();
842        uint64_t SHMI = MI.getOperand(2).getImm();
843        uint64_t MBSrc = SrcMI->getOperand(3).getImm();
844        uint64_t MBMI = MI.getOperand(3).getImm();
845        uint64_t MESrc = SrcMI->getOperand(4).getImm();
846        uint64_t MEMI = MI.getOperand(4).getImm();
847
848        assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
849               "Invalid PPC::RLWINM Instruction!");
850
851        // If MBMI is bigger than MEMI, we always can not get run of ones.
852        // RotatedSrcMask non-wrap:
853        //                 0........31|32........63
854        // RotatedSrcMask:   B---E        B---E
855        // MaskMI:         -----------|--E  B------
856        // Result:           -----          ---      (Bad candidate)
857        //
858        // RotatedSrcMask wrap:
859        //                 0........31|32........63
860        // RotatedSrcMask: --E   B----|--E    B----
861        // MaskMI:         -----------|--E  B------
862        // Result:         ---   -----|---    -----  (Bad candidate)
863        //
864        // One special case is RotatedSrcMask is a full set mask.
865        // RotatedSrcMask full:
866        //                 0........31|32........63
867        // RotatedSrcMask: ------EB---|-------EB---
868        // MaskMI:         -----------|--E  B------
869        // Result:         -----------|---  -------  (Good candidate)
870
871        // Mark special case.
872        bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
873
874        // For other MBMI > MEMI cases, just return.
875        if ((MBMI > MEMI) && !SrcMaskFull)
876          break;
877
878        // Handle MBMI <= MEMI cases.
879        APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
880        // In MI, we only need low 32 bits of SrcMI, just consider about low 32
881        // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
882        // while in PowerPC ISA, lowerest bit is at index 63.
883        APInt MaskSrc =
884            APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
885        // Current APInt::getBitsSetWithWrap sets all bits to 0 if loBit is
886        // equal to highBit.
887        // If MBSrc - MESrc == 1, we expect a full set mask instead of Null.
888        if (SrcMaskFull && (MBSrc - MESrc == 1))
889          MaskSrc.setAllBits();
890
891        APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
892        APInt FinalMask = RotatedSrcMask & MaskMI;
893        uint32_t NewMB, NewME;
894
895        // If final mask is 0, MI result should be 0 too.
896        if (FinalMask.isNullValue()) {
897          bool Is64Bit = (MI.getOpcode() == PPC::RLWINM8 ||
898                          MI.getOpcode() == PPC::RLWINM8_rec);
899
900          Simplified = true;
901
902          LLVM_DEBUG(dbgs() << "Replace Instr: ");
903          LLVM_DEBUG(MI.dump());
904
905          if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
906            // Replace MI with "LI 0"
907            MI.RemoveOperand(4);
908            MI.RemoveOperand(3);
909            MI.RemoveOperand(2);
910            MI.getOperand(1).ChangeToImmediate(0);
911            MI.setDesc(TII->get(Is64Bit ? PPC::LI8 : PPC::LI));
912          } else {
913            // Replace MI with "ANDI_rec reg, 0"
914            MI.RemoveOperand(4);
915            MI.RemoveOperand(3);
916            MI.getOperand(2).setImm(0);
917            MI.setDesc(TII->get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
918            MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
919            if (SrcMI->getOperand(1).isKill()) {
920              MI.getOperand(1).setIsKill(true);
921              SrcMI->getOperand(1).setIsKill(false);
922            } else
923              // About to replace MI.getOperand(1), clear its kill flag.
924              MI.getOperand(1).setIsKill(false);
925          }
926
927          LLVM_DEBUG(dbgs() << "With: ");
928          LLVM_DEBUG(MI.dump());
929        } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB,
930                               NewME) && NewMB <= NewME)|| SrcMaskFull) {
931          // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
932          // than NewME. Otherwise we get a 64 bit value after folding, but MI
933          // return a 32 bit value.
934
935          Simplified = true;
936          LLVM_DEBUG(dbgs() << "Converting Instr: ");
937          LLVM_DEBUG(MI.dump());
938
939          uint16_t NewSH = (SHSrc + SHMI) % 32;
940          MI.getOperand(2).setImm(NewSH);
941          // If SrcMI mask is full, no need to update MBMI and MEMI.
942          if (!SrcMaskFull) {
943            MI.getOperand(3).setImm(NewMB);
944            MI.getOperand(4).setImm(NewME);
945          }
946          MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
947          if (SrcMI->getOperand(1).isKill()) {
948            MI.getOperand(1).setIsKill(true);
949            SrcMI->getOperand(1).setIsKill(false);
950          } else
951            // About to replace MI.getOperand(1), clear its kill flag.
952            MI.getOperand(1).setIsKill(false);
953
954          LLVM_DEBUG(dbgs() << "To: ");
955          LLVM_DEBUG(MI.dump());
956        }
957        if (Simplified) {
958          // If FoldingReg has no non-debug use and it has no implicit def (it
959          // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
960          // Otherwise keep it.
961          ++NumRotatesCollapsed;
962          if (MRI->use_nodbg_empty(FoldingReg) && !SrcMI->hasImplicitDef()) {
963            ToErase = SrcMI;
964            LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
965            LLVM_DEBUG(SrcMI->dump());
966          }
967        }
968        break;
969      }
970      }
971    }
972
973    // If the last instruction was marked for elimination,
974    // remove it now.
975    if (ToErase) {
976      ToErase->eraseFromParent();
977      ToErase = nullptr;
978    }
979  }
980
981  // Eliminate all the TOC save instructions which are redundant.
982  Simplified |= eliminateRedundantTOCSaves(TOCSaves);
983  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
984  if (FI->mustSaveTOC())
985    NumTOCSavesInPrologue++;
986
987  // We try to eliminate redundant compare instruction.
988  Simplified |= eliminateRedundantCompare();
989
990  return Simplified;
991}
992
993// helper functions for eliminateRedundantCompare
994static bool isEqOrNe(MachineInstr *BI) {
995  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
996  unsigned PredCond = PPC::getPredicateCondition(Pred);
997  return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
998}
999
1000static bool isSupportedCmpOp(unsigned opCode) {
1001  return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1002          opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1003          opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1004          opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1005}
1006
1007static bool is64bitCmpOp(unsigned opCode) {
1008  return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1009          opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1010}
1011
1012static bool isSignedCmpOp(unsigned opCode) {
1013  return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1014          opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1015}
1016
1017static unsigned getSignedCmpOpCode(unsigned opCode) {
1018  if (opCode == PPC::CMPLD)  return PPC::CMPD;
1019  if (opCode == PPC::CMPLW)  return PPC::CMPW;
1020  if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1021  if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1022  return opCode;
1023}
1024
1025// We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1026// (LT x) to (LE x-1)
1027static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1028  uint64_t Imm = CMPI->getOperand(2).getImm();
1029  bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1030  if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1031    return 0;
1032
1033  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1034  unsigned PredCond = PPC::getPredicateCondition(Pred);
1035  unsigned PredHint = PPC::getPredicateHint(Pred);
1036  if (PredCond == PPC::PRED_GE)
1037    return PPC::getPredicate(PPC::PRED_GT, PredHint);
1038  if (PredCond == PPC::PRED_LT)
1039    return PPC::getPredicate(PPC::PRED_LE, PredHint);
1040
1041  return 0;
1042}
1043
1044// We can increment immediate x in (GT x) by changing it to (GE x+1) or
1045// (LE x) to (LT x+1)
1046static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1047  uint64_t Imm = CMPI->getOperand(2).getImm();
1048  bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1049  if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1050    return 0;
1051
1052  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1053  unsigned PredCond = PPC::getPredicateCondition(Pred);
1054  unsigned PredHint = PPC::getPredicateHint(Pred);
1055  if (PredCond == PPC::PRED_GT)
1056    return PPC::getPredicate(PPC::PRED_GE, PredHint);
1057  if (PredCond == PPC::PRED_LE)
1058    return PPC::getPredicate(PPC::PRED_LT, PredHint);
1059
1060  return 0;
1061}
1062
1063// This takes a Phi node and returns a register value for the specified BB.
1064static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1065                                       MachineBasicBlock *MBB) {
1066  for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1067    MachineOperand &MO = Phi->getOperand(I);
1068    if (MO.getMBB() == MBB)
1069      return Phi->getOperand(I-1).getReg();
1070  }
1071  llvm_unreachable("invalid src basic block for this Phi node\n");
1072  return 0;
1073}
1074
1075// This function tracks the source of the register through register copy.
1076// If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1077// assuming that the control comes from BB1 into BB2.
1078static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1079                           MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1080  unsigned SrcReg = Reg;
1081  while (1) {
1082    unsigned NextReg = SrcReg;
1083    MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1084    if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1085      NextReg = getIncomingRegForBlock(Inst, BB1);
1086      // We track through PHI only once to avoid infinite loop.
1087      BB1 = nullptr;
1088    }
1089    else if (Inst->isFullCopy())
1090      NextReg = Inst->getOperand(1).getReg();
1091    if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1092      break;
1093    SrcReg = NextReg;
1094  }
1095  return SrcReg;
1096}
1097
1098static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1099                                          MachineBasicBlock *&PredMBB,
1100                                          MachineBasicBlock *&MBBtoMoveCmp,
1101                                          MachineRegisterInfo *MRI) {
1102
1103  auto isEligibleBB = [&](MachineBasicBlock &BB) {
1104    auto BII = BB.getFirstInstrTerminator();
1105    // We optimize BBs ending with a conditional branch.
1106    // We check only for BCC here, not BCCLR, because BCCLR
1107    // will be formed only later in the pipeline.
1108    if (BB.succ_size() == 2 &&
1109        BII != BB.instr_end() &&
1110        (*BII).getOpcode() == PPC::BCC &&
1111        (*BII).getOperand(1).isReg()) {
1112      // We optimize only if the condition code is used only by one BCC.
1113      Register CndReg = (*BII).getOperand(1).getReg();
1114      if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1115        return false;
1116
1117      MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1118      // We assume compare and branch are in the same BB for ease of analysis.
1119      if (CMPI->getParent() != &BB)
1120        return false;
1121
1122      // We skip this BB if a physical register is used in comparison.
1123      for (MachineOperand &MO : CMPI->operands())
1124        if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1125          return false;
1126
1127      return true;
1128    }
1129    return false;
1130  };
1131
1132  // If this BB has more than one successor, we can create a new BB and
1133  // move the compare instruction in the new BB.
1134  // So far, we do not move compare instruction to a BB having multiple
1135  // successors to avoid potentially increasing code size.
1136  auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1137    return BB.succ_size() == 1;
1138  };
1139
1140  if (!isEligibleBB(MBB))
1141    return false;
1142
1143  unsigned NumPredBBs = MBB.pred_size();
1144  if (NumPredBBs == 1) {
1145    MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1146    if (isEligibleBB(*TmpMBB)) {
1147      PredMBB = TmpMBB;
1148      MBBtoMoveCmp = nullptr;
1149      return true;
1150    }
1151  }
1152  else if (NumPredBBs == 2) {
1153    // We check for partially redundant case.
1154    // So far, we support cases with only two predecessors
1155    // to avoid increasing the number of instructions.
1156    MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1157    MachineBasicBlock *Pred1MBB = *PI;
1158    MachineBasicBlock *Pred2MBB = *(PI+1);
1159
1160    if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1161      // We assume Pred1MBB is the BB containing the compare to be merged and
1162      // Pred2MBB is the BB to which we will append a compare instruction.
1163      // Hence we can proceed as is.
1164    }
1165    else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1166      // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1167      std::swap(Pred1MBB, Pred2MBB);
1168    }
1169    else return false;
1170
1171    // Here, Pred2MBB is the BB to which we need to append a compare inst.
1172    // We cannot move the compare instruction if operands are not available
1173    // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1174    MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1175    MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1176    for (int I = 1; I <= 2; I++)
1177      if (CMPI->getOperand(I).isReg()) {
1178        MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1179        if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1180          return false;
1181      }
1182
1183    PredMBB = Pred1MBB;
1184    MBBtoMoveCmp = Pred2MBB;
1185    return true;
1186  }
1187
1188  return false;
1189}
1190
1191// This function will iterate over the input map containing a pair of TOC save
1192// instruction and a flag. The flag will be set to false if the TOC save is
1193// proven redundant. This function will erase from the basic block all the TOC
1194// saves marked as redundant.
1195bool PPCMIPeephole::eliminateRedundantTOCSaves(
1196    std::map<MachineInstr *, bool> &TOCSaves) {
1197  bool Simplified = false;
1198  int NumKept = 0;
1199  for (auto TOCSave : TOCSaves) {
1200    if (!TOCSave.second) {
1201      TOCSave.first->eraseFromParent();
1202      RemoveTOCSave++;
1203      Simplified = true;
1204    } else {
1205      NumKept++;
1206    }
1207  }
1208
1209  if (NumKept > 1)
1210    MultiTOCSaves++;
1211
1212  return Simplified;
1213}
1214
1215// If multiple conditional branches are executed based on the (essentially)
1216// same comparison, we merge compare instructions into one and make multiple
1217// conditional branches on this comparison.
1218// For example,
1219//   if (a == 0) { ... }
1220//   else if (a < 0) { ... }
1221// can be executed by one compare and two conditional branches instead of
1222// two pairs of a compare and a conditional branch.
1223//
1224// This method merges two compare instructions in two MBBs and modifies the
1225// compare and conditional branch instructions if needed.
1226// For the above example, the input for this pass looks like:
1227//   cmplwi r3, 0
1228//   beq    0, .LBB0_3
1229//   cmpwi  r3, -1
1230//   bgt    0, .LBB0_4
1231// So, before merging two compares, we need to modify these instructions as
1232//   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1233//   beq    0, .LBB0_3
1234//   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1235//   bge    0, .LBB0_4
1236
1237bool PPCMIPeephole::eliminateRedundantCompare(void) {
1238  bool Simplified = false;
1239
1240  for (MachineBasicBlock &MBB2 : *MF) {
1241    MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1242
1243    // For fully redundant case, we select two basic blocks MBB1 and MBB2
1244    // as an optimization target if
1245    // - both MBBs end with a conditional branch,
1246    // - MBB1 is the only predecessor of MBB2, and
1247    // - compare does not take a physical register as a operand in both MBBs.
1248    // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1249    //
1250    // As partially redundant case, we additionally handle if MBB2 has one
1251    // additional predecessor, which has only one successor (MBB2).
1252    // In this case, we move the compare instruction originally in MBB2 into
1253    // MBBtoMoveCmp. This partially redundant case is typically appear by
1254    // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1255    //
1256    // Overview of CFG of related basic blocks
1257    // Fully redundant case        Partially redundant case
1258    //   --------                   ----------------  --------
1259    //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1260    //   --------                   ----------------  --------
1261    //      |    \                     (w/ 1 succ) \     |    \
1262    //      |     \                                 \    |     \
1263    //      |                                        \   |
1264    //   --------                                     --------
1265    //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1266    //   -------- and 2 succ)                         -------- and 2 succ)
1267    //      |    \                                       |    \
1268    //      |     \                                      |     \
1269    //
1270    if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1271      continue;
1272
1273    MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1274    MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1275
1276    MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1277    MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1278    bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1279
1280    // We cannot optimize an unsupported compare opcode or
1281    // a mix of 32-bit and 64-bit comaprisons
1282    if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1283        !isSupportedCmpOp(CMPI2->getOpcode()) ||
1284        is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1285      continue;
1286
1287    unsigned NewOpCode = 0;
1288    unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1289    int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1290    bool SwapOperands = false;
1291
1292    if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1293      // Typically, unsigned comparison is used for equality check, but
1294      // we replace it with a signed comparison if the comparison
1295      // to be merged is a signed comparison.
1296      // In other cases of opcode mismatch, we cannot optimize this.
1297
1298      // We cannot change opcode when comparing against an immediate
1299      // if the most significant bit of the immediate is one
1300      // due to the difference in sign extension.
1301      auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1302        if (!I->getOperand(2).isImm())
1303          return false;
1304        int16_t Imm = (int16_t)I->getOperand(2).getImm();
1305        return Imm < 0;
1306      };
1307
1308      if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1309          CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1310        NewOpCode = CMPI1->getOpcode();
1311      else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1312               getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1313        NewOpCode = CMPI2->getOpcode();
1314      else continue;
1315    }
1316
1317    if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1318      // In case of comparisons between two registers, these two registers
1319      // must be same to merge two comparisons.
1320      unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1321                                         nullptr, nullptr, MRI);
1322      unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1323                                         nullptr, nullptr, MRI);
1324      unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1325                                         MBB1, &MBB2, MRI);
1326      unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1327                                         MBB1, &MBB2, MRI);
1328
1329      if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1330        // Same pair of registers in the same order; ready to merge as is.
1331      }
1332      else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1333        // Same pair of registers in different order.
1334        // We reverse the predicate to merge compare instructions.
1335        PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1336        NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1337        // In case of partial redundancy, we need to swap operands
1338        // in another compare instruction.
1339        SwapOperands = true;
1340      }
1341      else continue;
1342    }
1343    else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1344      // In case of comparisons between a register and an immediate,
1345      // the operand register must be same for two compare instructions.
1346      unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1347                                         nullptr, nullptr, MRI);
1348      unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1349                                         MBB1, &MBB2, MRI);
1350      if (Cmp1Operand1 != Cmp2Operand1)
1351        continue;
1352
1353      NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1354      NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1355
1356      // If immediate are not same, we try to adjust by changing predicate;
1357      // e.g. GT imm means GE (imm+1).
1358      if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1359        int Diff = Imm1 - Imm2;
1360        if (Diff < -2 || Diff > 2)
1361          continue;
1362
1363        unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1364        unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1365        unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1366        unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1367        if (Diff == 2) {
1368          if (PredToInc2 && PredToDec1) {
1369            NewPredicate2 = PredToInc2;
1370            NewPredicate1 = PredToDec1;
1371            NewImm2++;
1372            NewImm1--;
1373          }
1374        }
1375        else if (Diff == 1) {
1376          if (PredToInc2) {
1377            NewImm2++;
1378            NewPredicate2 = PredToInc2;
1379          }
1380          else if (PredToDec1) {
1381            NewImm1--;
1382            NewPredicate1 = PredToDec1;
1383          }
1384        }
1385        else if (Diff == -1) {
1386          if (PredToDec2) {
1387            NewImm2--;
1388            NewPredicate2 = PredToDec2;
1389          }
1390          else if (PredToInc1) {
1391            NewImm1++;
1392            NewPredicate1 = PredToInc1;
1393          }
1394        }
1395        else if (Diff == -2) {
1396          if (PredToDec2 && PredToInc1) {
1397            NewPredicate2 = PredToDec2;
1398            NewPredicate1 = PredToInc1;
1399            NewImm2--;
1400            NewImm1++;
1401          }
1402        }
1403      }
1404
1405      // We cannot merge two compares if the immediates are not same.
1406      if (NewImm2 != NewImm1)
1407        continue;
1408    }
1409
1410    LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1411    LLVM_DEBUG(CMPI1->dump());
1412    LLVM_DEBUG(BI1->dump());
1413    LLVM_DEBUG(CMPI2->dump());
1414    LLVM_DEBUG(BI2->dump());
1415
1416    // We adjust opcode, predicates and immediate as we determined above.
1417    if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1418      CMPI1->setDesc(TII->get(NewOpCode));
1419    }
1420    if (NewPredicate1) {
1421      BI1->getOperand(0).setImm(NewPredicate1);
1422    }
1423    if (NewPredicate2) {
1424      BI2->getOperand(0).setImm(NewPredicate2);
1425    }
1426    if (NewImm1 != Imm1) {
1427      CMPI1->getOperand(2).setImm(NewImm1);
1428    }
1429
1430    if (IsPartiallyRedundant) {
1431      // We touch up the compare instruction in MBB2 and move it to
1432      // a previous BB to handle partially redundant case.
1433      if (SwapOperands) {
1434        Register Op1 = CMPI2->getOperand(1).getReg();
1435        Register Op2 = CMPI2->getOperand(2).getReg();
1436        CMPI2->getOperand(1).setReg(Op2);
1437        CMPI2->getOperand(2).setReg(Op1);
1438      }
1439      if (NewImm2 != Imm2)
1440        CMPI2->getOperand(2).setImm(NewImm2);
1441
1442      for (int I = 1; I <= 2; I++) {
1443        if (CMPI2->getOperand(I).isReg()) {
1444          MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1445          if (Inst->getParent() != &MBB2)
1446            continue;
1447
1448          assert(Inst->getOpcode() == PPC::PHI &&
1449                 "We cannot support if an operand comes from this BB.");
1450          unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1451          CMPI2->getOperand(I).setReg(SrcReg);
1452        }
1453      }
1454      auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1455      MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1456
1457      DebugLoc DL = CMPI2->getDebugLoc();
1458      Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1459      BuildMI(MBB2, MBB2.begin(), DL,
1460              TII->get(PPC::PHI), NewVReg)
1461        .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1462        .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1463      BI2->getOperand(1).setReg(NewVReg);
1464    }
1465    else {
1466      // We finally eliminate compare instruction in MBB2.
1467      BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1468      CMPI2->eraseFromParent();
1469    }
1470    BI2->getOperand(1).setIsKill(true);
1471    BI1->getOperand(1).setIsKill(false);
1472
1473    LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1474    LLVM_DEBUG(CMPI1->dump());
1475    LLVM_DEBUG(BI1->dump());
1476    LLVM_DEBUG(BI2->dump());
1477    if (IsPartiallyRedundant) {
1478      LLVM_DEBUG(dbgs() << "The following compare is moved into "
1479                        << printMBBReference(*MBBtoMoveCmp)
1480                        << " to handle partial redundancy.\n");
1481      LLVM_DEBUG(CMPI2->dump());
1482    }
1483
1484    Simplified = true;
1485  }
1486
1487  return Simplified;
1488}
1489
1490// We miss the opportunity to emit an RLDIC when lowering jump tables
1491// since ISEL sees only a single basic block. When selecting, the clear
1492// and shift left will be in different blocks.
1493bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1494  if (MI.getOpcode() != PPC::RLDICR)
1495    return false;
1496
1497  Register SrcReg = MI.getOperand(1).getReg();
1498  if (!Register::isVirtualRegister(SrcReg))
1499    return false;
1500
1501  MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1502  if (SrcMI->getOpcode() != PPC::RLDICL)
1503    return false;
1504
1505  MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1506  MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1507  MachineOperand MOpSHMI = MI.getOperand(2);
1508  MachineOperand MOpMEMI = MI.getOperand(3);
1509  if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1510        MOpMEMI.isImm()))
1511    return false;
1512
1513  uint64_t SHSrc = MOpSHSrc.getImm();
1514  uint64_t MBSrc = MOpMBSrc.getImm();
1515  uint64_t SHMI = MOpSHMI.getImm();
1516  uint64_t MEMI = MOpMEMI.getImm();
1517  uint64_t NewSH = SHSrc + SHMI;
1518  uint64_t NewMB = MBSrc - SHMI;
1519  if (NewMB > 63 || NewSH > 63)
1520    return false;
1521
1522  // The bits cleared with RLDICL are [0, MBSrc).
1523  // The bits cleared with RLDICR are (MEMI, 63].
1524  // After the sequence, the bits cleared are:
1525  // [0, MBSrc-SHMI) and (MEMI, 63).
1526  //
1527  // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1528  if ((63 - NewSH) != MEMI)
1529    return false;
1530
1531  LLVM_DEBUG(dbgs() << "Converting pair: ");
1532  LLVM_DEBUG(SrcMI->dump());
1533  LLVM_DEBUG(MI.dump());
1534
1535  MI.setDesc(TII->get(PPC::RLDIC));
1536  MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1537  MI.getOperand(2).setImm(NewSH);
1538  MI.getOperand(3).setImm(NewMB);
1539
1540  LLVM_DEBUG(dbgs() << "To: ");
1541  LLVM_DEBUG(MI.dump());
1542  NumRotatesCollapsed++;
1543  return true;
1544}
1545
1546// For case in LLVM IR
1547// entry:
1548//   %iconv = sext i32 %index to i64
1549//   br i1 undef label %true, label %false
1550// true:
1551//   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1552// ...
1553// PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1554// different BBs when conducting instruction selection. We can do a peephole
1555// optimization to combine these two instructions into extswsli after
1556// instruction selection.
1557bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1558                                      MachineInstr *&ToErase) {
1559  if (MI.getOpcode() != PPC::RLDICR)
1560    return false;
1561
1562  if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1563    return false;
1564
1565  assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1566
1567  MachineOperand MOpSHMI = MI.getOperand(2);
1568  MachineOperand MOpMEMI = MI.getOperand(3);
1569  if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1570    return false;
1571
1572  uint64_t SHMI = MOpSHMI.getImm();
1573  uint64_t MEMI = MOpMEMI.getImm();
1574  if (SHMI + MEMI != 63)
1575    return false;
1576
1577  Register SrcReg = MI.getOperand(1).getReg();
1578  if (!Register::isVirtualRegister(SrcReg))
1579    return false;
1580
1581  MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1582  if (SrcMI->getOpcode() != PPC::EXTSW &&
1583      SrcMI->getOpcode() != PPC::EXTSW_32_64)
1584    return false;
1585
1586  // If the register defined by extsw has more than one use, combination is not
1587  // needed.
1588  if (!MRI->hasOneNonDBGUse(SrcReg))
1589    return false;
1590
1591  assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1592  assert(SrcMI->getOperand(1).isReg() &&
1593         "EXTSW's second operand should be a register");
1594  if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1595    return false;
1596
1597  LLVM_DEBUG(dbgs() << "Combining pair: ");
1598  LLVM_DEBUG(SrcMI->dump());
1599  LLVM_DEBUG(MI.dump());
1600
1601  MachineInstr *NewInstr =
1602      BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1603              SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1604                                               : TII->get(PPC::EXTSWSLI_32_64),
1605              MI.getOperand(0).getReg())
1606          .add(SrcMI->getOperand(1))
1607          .add(MOpSHMI);
1608  (void)NewInstr;
1609
1610  LLVM_DEBUG(dbgs() << "TO: ");
1611  LLVM_DEBUG(NewInstr->dump());
1612  ++NumEXTSWAndSLDICombined;
1613  ToErase = &MI;
1614  // SrcMI, which is extsw, is of no use now, erase it.
1615  SrcMI->eraseFromParent();
1616  return true;
1617}
1618
1619} // end default namespace
1620
1621INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1622                      "PowerPC MI Peephole Optimization", false, false)
1623INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1624INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1625INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1626INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1627                    "PowerPC MI Peephole Optimization", false, false)
1628
1629char PPCMIPeephole::ID = 0;
1630FunctionPass*
1631llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1632
1633