PPCInstrInfo.cpp revision 363496
1//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the PowerPC implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "PPCInstrInfo.h"
14#include "MCTargetDesc/PPCPredicates.h"
15#include "PPC.h"
16#include "PPCHazardRecognizers.h"
17#include "PPCInstrBuilder.h"
18#include "PPCMachineFunctionInfo.h"
19#include "PPCTargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/LiveIntervals.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunctionPass.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineMemOperand.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/PseudoSourceValue.h"
29#include "llvm/CodeGen/ScheduleDAG.h"
30#include "llvm/CodeGen/SlotIndexes.h"
31#include "llvm/CodeGen/StackMaps.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/MC/MCInst.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/TargetRegistry.h"
38#include "llvm/Support/raw_ostream.h"
39
40using namespace llvm;
41
42#define DEBUG_TYPE "ppc-instr-info"
43
44#define GET_INSTRMAP_INFO
45#define GET_INSTRINFO_CTOR_DTOR
46#include "PPCGenInstrInfo.inc"
47
48STATISTIC(NumStoreSPILLVSRRCAsVec,
49          "Number of spillvsrrc spilled to stack as vec");
50STATISTIC(NumStoreSPILLVSRRCAsGpr,
51          "Number of spillvsrrc spilled to stack as gpr");
52STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53STATISTIC(CmpIselsConverted,
54          "Number of ISELs that depend on comparison of constants converted");
55STATISTIC(MissedConvertibleImmediateInstrs,
56          "Number of compare-immediate instructions fed by constants");
57STATISTIC(NumRcRotatesConvertedToRcAnd,
58          "Number of record-form rotates converted to record-form andi");
59
60static cl::
61opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62            cl::desc("Disable analysis for CTR loops"));
63
64static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65cl::desc("Disable compare instruction optimization"), cl::Hidden);
66
67static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69cl::Hidden);
70
71static cl::opt<bool>
72UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73  cl::desc("Use the old (incorrect) instruction latency calculation"));
74
75// Index into the OpcodesForSpill array.
76enum SpillOpcodeKey {
77  SOK_Int4Spill,
78  SOK_Int8Spill,
79  SOK_Float8Spill,
80  SOK_Float4Spill,
81  SOK_CRSpill,
82  SOK_CRBitSpill,
83  SOK_VRVectorSpill,
84  SOK_VSXVectorSpill,
85  SOK_VectorFloat8Spill,
86  SOK_VectorFloat4Spill,
87  SOK_VRSaveSpill,
88  SOK_QuadFloat8Spill,
89  SOK_QuadFloat4Spill,
90  SOK_QuadBitSpill,
91  SOK_SpillToVSR,
92  SOK_SPESpill,
93  SOK_LastOpcodeSpill  // This must be last on the enum.
94};
95
96// Pin the vtable to this file.
97void PPCInstrInfo::anchor() {}
98
99PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
100    : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
101                      /* CatchRetOpcode */ -1,
102                      STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
103      Subtarget(STI), RI(STI.getTargetMachine()) {}
104
105/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
106/// this target when scheduling the DAG.
107ScheduleHazardRecognizer *
108PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
109                                           const ScheduleDAG *DAG) const {
110  unsigned Directive =
111      static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
112  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
113      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
114    const InstrItineraryData *II =
115        static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
116    return new ScoreboardHazardRecognizer(II, DAG);
117  }
118
119  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
120}
121
122/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
123/// to use for this target when scheduling the DAG.
124ScheduleHazardRecognizer *
125PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
126                                                 const ScheduleDAG *DAG) const {
127  unsigned Directive =
128      DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
129
130  // FIXME: Leaving this as-is until we have POWER9 scheduling info
131  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
132    return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
133
134  // Most subtargets use a PPC970 recognizer.
135  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
136      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
137    assert(DAG->TII && "No InstrInfo?");
138
139    return new PPCHazardRecognizer970(*DAG);
140  }
141
142  return new ScoreboardHazardRecognizer(II, DAG);
143}
144
145unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
146                                       const MachineInstr &MI,
147                                       unsigned *PredCost) const {
148  if (!ItinData || UseOldLatencyCalc)
149    return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
150
151  // The default implementation of getInstrLatency calls getStageLatency, but
152  // getStageLatency does not do the right thing for us. While we have
153  // itinerary, most cores are fully pipelined, and so the itineraries only
154  // express the first part of the pipeline, not every stage. Instead, we need
155  // to use the listed output operand cycle number (using operand 0 here, which
156  // is an output).
157
158  unsigned Latency = 1;
159  unsigned DefClass = MI.getDesc().getSchedClass();
160  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161    const MachineOperand &MO = MI.getOperand(i);
162    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
163      continue;
164
165    int Cycle = ItinData->getOperandCycle(DefClass, i);
166    if (Cycle < 0)
167      continue;
168
169    Latency = std::max(Latency, (unsigned) Cycle);
170  }
171
172  return Latency;
173}
174
175int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
176                                    const MachineInstr &DefMI, unsigned DefIdx,
177                                    const MachineInstr &UseMI,
178                                    unsigned UseIdx) const {
179  int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
180                                                   UseMI, UseIdx);
181
182  if (!DefMI.getParent())
183    return Latency;
184
185  const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
186  Register Reg = DefMO.getReg();
187
188  bool IsRegCR;
189  if (Register::isVirtualRegister(Reg)) {
190    const MachineRegisterInfo *MRI =
191        &DefMI.getParent()->getParent()->getRegInfo();
192    IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
193              MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
194  } else {
195    IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
196              PPC::CRBITRCRegClass.contains(Reg);
197  }
198
199  if (UseMI.isBranch() && IsRegCR) {
200    if (Latency < 0)
201      Latency = getInstrLatency(ItinData, DefMI);
202
203    // On some cores, there is an additional delay between writing to a condition
204    // register, and using it from a branch.
205    unsigned Directive = Subtarget.getCPUDirective();
206    switch (Directive) {
207    default: break;
208    case PPC::DIR_7400:
209    case PPC::DIR_750:
210    case PPC::DIR_970:
211    case PPC::DIR_E5500:
212    case PPC::DIR_PWR4:
213    case PPC::DIR_PWR5:
214    case PPC::DIR_PWR5X:
215    case PPC::DIR_PWR6:
216    case PPC::DIR_PWR6X:
217    case PPC::DIR_PWR7:
218    case PPC::DIR_PWR8:
219    // FIXME: Is this needed for POWER9?
220      Latency += 2;
221      break;
222    }
223  }
224
225  return Latency;
226}
227
228// This function does not list all associative and commutative operations, but
229// only those worth feeding through the machine combiner in an attempt to
230// reduce the critical path. Mostly, this means floating-point operations,
231// because they have high latencies (compared to other operations, such and
232// and/or, which are also associative and commutative, but have low latencies).
233bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
234  switch (Inst.getOpcode()) {
235  // FP Add:
236  case PPC::FADD:
237  case PPC::FADDS:
238  // FP Multiply:
239  case PPC::FMUL:
240  case PPC::FMULS:
241  // Altivec Add:
242  case PPC::VADDFP:
243  // VSX Add:
244  case PPC::XSADDDP:
245  case PPC::XVADDDP:
246  case PPC::XVADDSP:
247  case PPC::XSADDSP:
248  // VSX Multiply:
249  case PPC::XSMULDP:
250  case PPC::XVMULDP:
251  case PPC::XVMULSP:
252  case PPC::XSMULSP:
253  // QPX Add:
254  case PPC::QVFADD:
255  case PPC::QVFADDS:
256  case PPC::QVFADDSs:
257  // QPX Multiply:
258  case PPC::QVFMUL:
259  case PPC::QVFMULS:
260  case PPC::QVFMULSs:
261    return true;
262  default:
263    return false;
264  }
265}
266
267bool PPCInstrInfo::getMachineCombinerPatterns(
268    MachineInstr &Root,
269    SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
270  // Using the machine combiner in this way is potentially expensive, so
271  // restrict to when aggressive optimizations are desired.
272  if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
273    return false;
274
275  // FP reassociation is only legal when we don't need strict IEEE semantics.
276  if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
277    return false;
278
279  return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
280}
281
282// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
283bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
284                                         unsigned &SrcReg, unsigned &DstReg,
285                                         unsigned &SubIdx) const {
286  switch (MI.getOpcode()) {
287  default: return false;
288  case PPC::EXTSW:
289  case PPC::EXTSW_32:
290  case PPC::EXTSW_32_64:
291    SrcReg = MI.getOperand(1).getReg();
292    DstReg = MI.getOperand(0).getReg();
293    SubIdx = PPC::sub_32;
294    return true;
295  }
296}
297
298unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
299                                           int &FrameIndex) const {
300  unsigned Opcode = MI.getOpcode();
301  const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
302  const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
303
304  if (End != std::find(OpcodesForSpill, End, Opcode)) {
305    // Check for the operands added by addFrameReference (the immediate is the
306    // offset which defaults to 0).
307    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
308        MI.getOperand(2).isFI()) {
309      FrameIndex = MI.getOperand(2).getIndex();
310      return MI.getOperand(0).getReg();
311    }
312  }
313  return 0;
314}
315
316// For opcodes with the ReMaterializable flag set, this function is called to
317// verify the instruction is really rematable.
318bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
319                                                     AliasAnalysis *AA) const {
320  switch (MI.getOpcode()) {
321  default:
322    // This function should only be called for opcodes with the ReMaterializable
323    // flag set.
324    llvm_unreachable("Unknown rematerializable operation!");
325    break;
326  case PPC::LI:
327  case PPC::LI8:
328  case PPC::LIS:
329  case PPC::LIS8:
330  case PPC::QVGPCI:
331  case PPC::ADDIStocHA:
332  case PPC::ADDIStocHA8:
333  case PPC::ADDItocL:
334  case PPC::LOAD_STACK_GUARD:
335  case PPC::XXLXORz:
336  case PPC::XXLXORspz:
337  case PPC::XXLXORdpz:
338  case PPC::XXLEQVOnes:
339  case PPC::V_SET0B:
340  case PPC::V_SET0H:
341  case PPC::V_SET0:
342  case PPC::V_SETALLONESB:
343  case PPC::V_SETALLONESH:
344  case PPC::V_SETALLONES:
345  case PPC::CRSET:
346  case PPC::CRUNSET:
347    return true;
348  }
349  return false;
350}
351
352unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
353                                          int &FrameIndex) const {
354  unsigned Opcode = MI.getOpcode();
355  const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
356  const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
357
358  if (End != std::find(OpcodesForSpill, End, Opcode)) {
359    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
360        MI.getOperand(2).isFI()) {
361      FrameIndex = MI.getOperand(2).getIndex();
362      return MI.getOperand(0).getReg();
363    }
364  }
365  return 0;
366}
367
368MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
369                                                   unsigned OpIdx1,
370                                                   unsigned OpIdx2) const {
371  MachineFunction &MF = *MI.getParent()->getParent();
372
373  // Normal instructions can be commuted the obvious way.
374  if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
375    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
376  // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
377  // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
378  // changing the relative order of the mask operands might change what happens
379  // to the high-bits of the mask (and, thus, the result).
380
381  // Cannot commute if it has a non-zero rotate count.
382  if (MI.getOperand(3).getImm() != 0)
383    return nullptr;
384
385  // If we have a zero rotate count, we have:
386  //   M = mask(MB,ME)
387  //   Op0 = (Op1 & ~M) | (Op2 & M)
388  // Change this to:
389  //   M = mask((ME+1)&31, (MB-1)&31)
390  //   Op0 = (Op2 & ~M) | (Op1 & M)
391
392  // Swap op1/op2
393  assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
394         "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
395  Register Reg0 = MI.getOperand(0).getReg();
396  Register Reg1 = MI.getOperand(1).getReg();
397  Register Reg2 = MI.getOperand(2).getReg();
398  unsigned SubReg1 = MI.getOperand(1).getSubReg();
399  unsigned SubReg2 = MI.getOperand(2).getSubReg();
400  bool Reg1IsKill = MI.getOperand(1).isKill();
401  bool Reg2IsKill = MI.getOperand(2).isKill();
402  bool ChangeReg0 = false;
403  // If machine instrs are no longer in two-address forms, update
404  // destination register as well.
405  if (Reg0 == Reg1) {
406    // Must be two address instruction!
407    assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
408           "Expecting a two-address instruction!");
409    assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
410    Reg2IsKill = false;
411    ChangeReg0 = true;
412  }
413
414  // Masks.
415  unsigned MB = MI.getOperand(4).getImm();
416  unsigned ME = MI.getOperand(5).getImm();
417
418  // We can't commute a trivial mask (there is no way to represent an all-zero
419  // mask).
420  if (MB == 0 && ME == 31)
421    return nullptr;
422
423  if (NewMI) {
424    // Create a new instruction.
425    Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
426    bool Reg0IsDead = MI.getOperand(0).isDead();
427    return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
428        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
429        .addReg(Reg2, getKillRegState(Reg2IsKill))
430        .addReg(Reg1, getKillRegState(Reg1IsKill))
431        .addImm((ME + 1) & 31)
432        .addImm((MB - 1) & 31);
433  }
434
435  if (ChangeReg0) {
436    MI.getOperand(0).setReg(Reg2);
437    MI.getOperand(0).setSubReg(SubReg2);
438  }
439  MI.getOperand(2).setReg(Reg1);
440  MI.getOperand(1).setReg(Reg2);
441  MI.getOperand(2).setSubReg(SubReg1);
442  MI.getOperand(1).setSubReg(SubReg2);
443  MI.getOperand(2).setIsKill(Reg1IsKill);
444  MI.getOperand(1).setIsKill(Reg2IsKill);
445
446  // Swap the mask around.
447  MI.getOperand(4).setImm((ME + 1) & 31);
448  MI.getOperand(5).setImm((MB - 1) & 31);
449  return &MI;
450}
451
452bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
453                                         unsigned &SrcOpIdx1,
454                                         unsigned &SrcOpIdx2) const {
455  // For VSX A-Type FMA instructions, it is the first two operands that can be
456  // commuted, however, because the non-encoded tied input operand is listed
457  // first, the operands to swap are actually the second and third.
458
459  int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
460  if (AltOpc == -1)
461    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
462
463  // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
464  // and SrcOpIdx2.
465  return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
466}
467
468void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
469                              MachineBasicBlock::iterator MI) const {
470  // This function is used for scheduling, and the nop wanted here is the type
471  // that terminates dispatch groups on the POWER cores.
472  unsigned Directive = Subtarget.getCPUDirective();
473  unsigned Opcode;
474  switch (Directive) {
475  default:            Opcode = PPC::NOP; break;
476  case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
477  case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
478  case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
479  // FIXME: Update when POWER9 scheduling model is ready.
480  case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
481  }
482
483  DebugLoc DL;
484  BuildMI(MBB, MI, DL, get(Opcode));
485}
486
487/// Return the noop instruction to use for a noop.
488void PPCInstrInfo::getNoop(MCInst &NopInst) const {
489  NopInst.setOpcode(PPC::NOP);
490}
491
492// Branch analysis.
493// Note: If the condition register is set to CTR or CTR8 then this is a
494// BDNZ (imm == 1) or BDZ (imm == 0) branch.
495bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
496                                 MachineBasicBlock *&TBB,
497                                 MachineBasicBlock *&FBB,
498                                 SmallVectorImpl<MachineOperand> &Cond,
499                                 bool AllowModify) const {
500  bool isPPC64 = Subtarget.isPPC64();
501
502  // If the block has no terminators, it just falls into the block after it.
503  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
504  if (I == MBB.end())
505    return false;
506
507  if (!isUnpredicatedTerminator(*I))
508    return false;
509
510  if (AllowModify) {
511    // If the BB ends with an unconditional branch to the fallthrough BB,
512    // we eliminate the branch instruction.
513    if (I->getOpcode() == PPC::B &&
514        MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
515      I->eraseFromParent();
516
517      // We update iterator after deleting the last branch.
518      I = MBB.getLastNonDebugInstr();
519      if (I == MBB.end() || !isUnpredicatedTerminator(*I))
520        return false;
521    }
522  }
523
524  // Get the last instruction in the block.
525  MachineInstr &LastInst = *I;
526
527  // If there is only one terminator instruction, process it.
528  if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
529    if (LastInst.getOpcode() == PPC::B) {
530      if (!LastInst.getOperand(0).isMBB())
531        return true;
532      TBB = LastInst.getOperand(0).getMBB();
533      return false;
534    } else if (LastInst.getOpcode() == PPC::BCC) {
535      if (!LastInst.getOperand(2).isMBB())
536        return true;
537      // Block ends with fall-through condbranch.
538      TBB = LastInst.getOperand(2).getMBB();
539      Cond.push_back(LastInst.getOperand(0));
540      Cond.push_back(LastInst.getOperand(1));
541      return false;
542    } else if (LastInst.getOpcode() == PPC::BC) {
543      if (!LastInst.getOperand(1).isMBB())
544        return true;
545      // Block ends with fall-through condbranch.
546      TBB = LastInst.getOperand(1).getMBB();
547      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
548      Cond.push_back(LastInst.getOperand(0));
549      return false;
550    } else if (LastInst.getOpcode() == PPC::BCn) {
551      if (!LastInst.getOperand(1).isMBB())
552        return true;
553      // Block ends with fall-through condbranch.
554      TBB = LastInst.getOperand(1).getMBB();
555      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
556      Cond.push_back(LastInst.getOperand(0));
557      return false;
558    } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
559               LastInst.getOpcode() == PPC::BDNZ) {
560      if (!LastInst.getOperand(0).isMBB())
561        return true;
562      if (DisableCTRLoopAnal)
563        return true;
564      TBB = LastInst.getOperand(0).getMBB();
565      Cond.push_back(MachineOperand::CreateImm(1));
566      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
567                                               true));
568      return false;
569    } else if (LastInst.getOpcode() == PPC::BDZ8 ||
570               LastInst.getOpcode() == PPC::BDZ) {
571      if (!LastInst.getOperand(0).isMBB())
572        return true;
573      if (DisableCTRLoopAnal)
574        return true;
575      TBB = LastInst.getOperand(0).getMBB();
576      Cond.push_back(MachineOperand::CreateImm(0));
577      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
578                                               true));
579      return false;
580    }
581
582    // Otherwise, don't know what this is.
583    return true;
584  }
585
586  // Get the instruction before it if it's a terminator.
587  MachineInstr &SecondLastInst = *I;
588
589  // If there are three terminators, we don't know what sort of block this is.
590  if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
591    return true;
592
593  // If the block ends with PPC::B and PPC:BCC, handle it.
594  if (SecondLastInst.getOpcode() == PPC::BCC &&
595      LastInst.getOpcode() == PPC::B) {
596    if (!SecondLastInst.getOperand(2).isMBB() ||
597        !LastInst.getOperand(0).isMBB())
598      return true;
599    TBB = SecondLastInst.getOperand(2).getMBB();
600    Cond.push_back(SecondLastInst.getOperand(0));
601    Cond.push_back(SecondLastInst.getOperand(1));
602    FBB = LastInst.getOperand(0).getMBB();
603    return false;
604  } else if (SecondLastInst.getOpcode() == PPC::BC &&
605             LastInst.getOpcode() == PPC::B) {
606    if (!SecondLastInst.getOperand(1).isMBB() ||
607        !LastInst.getOperand(0).isMBB())
608      return true;
609    TBB = SecondLastInst.getOperand(1).getMBB();
610    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
611    Cond.push_back(SecondLastInst.getOperand(0));
612    FBB = LastInst.getOperand(0).getMBB();
613    return false;
614  } else if (SecondLastInst.getOpcode() == PPC::BCn &&
615             LastInst.getOpcode() == PPC::B) {
616    if (!SecondLastInst.getOperand(1).isMBB() ||
617        !LastInst.getOperand(0).isMBB())
618      return true;
619    TBB = SecondLastInst.getOperand(1).getMBB();
620    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
621    Cond.push_back(SecondLastInst.getOperand(0));
622    FBB = LastInst.getOperand(0).getMBB();
623    return false;
624  } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
625              SecondLastInst.getOpcode() == PPC::BDNZ) &&
626             LastInst.getOpcode() == PPC::B) {
627    if (!SecondLastInst.getOperand(0).isMBB() ||
628        !LastInst.getOperand(0).isMBB())
629      return true;
630    if (DisableCTRLoopAnal)
631      return true;
632    TBB = SecondLastInst.getOperand(0).getMBB();
633    Cond.push_back(MachineOperand::CreateImm(1));
634    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
635                                             true));
636    FBB = LastInst.getOperand(0).getMBB();
637    return false;
638  } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
639              SecondLastInst.getOpcode() == PPC::BDZ) &&
640             LastInst.getOpcode() == PPC::B) {
641    if (!SecondLastInst.getOperand(0).isMBB() ||
642        !LastInst.getOperand(0).isMBB())
643      return true;
644    if (DisableCTRLoopAnal)
645      return true;
646    TBB = SecondLastInst.getOperand(0).getMBB();
647    Cond.push_back(MachineOperand::CreateImm(0));
648    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
649                                             true));
650    FBB = LastInst.getOperand(0).getMBB();
651    return false;
652  }
653
654  // If the block ends with two PPC:Bs, handle it.  The second one is not
655  // executed, so remove it.
656  if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
657    if (!SecondLastInst.getOperand(0).isMBB())
658      return true;
659    TBB = SecondLastInst.getOperand(0).getMBB();
660    I = LastInst;
661    if (AllowModify)
662      I->eraseFromParent();
663    return false;
664  }
665
666  // Otherwise, can't handle this.
667  return true;
668}
669
670unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
671                                    int *BytesRemoved) const {
672  assert(!BytesRemoved && "code size not handled");
673
674  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
675  if (I == MBB.end())
676    return 0;
677
678  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
679      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
680      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
681      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
682    return 0;
683
684  // Remove the branch.
685  I->eraseFromParent();
686
687  I = MBB.end();
688
689  if (I == MBB.begin()) return 1;
690  --I;
691  if (I->getOpcode() != PPC::BCC &&
692      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
693      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
694      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
695    return 1;
696
697  // Remove the branch.
698  I->eraseFromParent();
699  return 2;
700}
701
702unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
703                                    MachineBasicBlock *TBB,
704                                    MachineBasicBlock *FBB,
705                                    ArrayRef<MachineOperand> Cond,
706                                    const DebugLoc &DL,
707                                    int *BytesAdded) const {
708  // Shouldn't be a fall through.
709  assert(TBB && "insertBranch must not be told to insert a fallthrough");
710  assert((Cond.size() == 2 || Cond.size() == 0) &&
711         "PPC branch conditions have two components!");
712  assert(!BytesAdded && "code size not handled");
713
714  bool isPPC64 = Subtarget.isPPC64();
715
716  // One-way branch.
717  if (!FBB) {
718    if (Cond.empty())   // Unconditional branch
719      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
720    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
721      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
722                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
723                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
724    else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
725      BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
726    else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
727      BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
728    else                // Conditional branch
729      BuildMI(&MBB, DL, get(PPC::BCC))
730          .addImm(Cond[0].getImm())
731          .add(Cond[1])
732          .addMBB(TBB);
733    return 1;
734  }
735
736  // Two-way Conditional Branch.
737  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
738    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
739                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
740                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
741  else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
742    BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
743  else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
744    BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
745  else
746    BuildMI(&MBB, DL, get(PPC::BCC))
747        .addImm(Cond[0].getImm())
748        .add(Cond[1])
749        .addMBB(TBB);
750  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
751  return 2;
752}
753
754// Select analysis.
755bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
756                ArrayRef<MachineOperand> Cond,
757                unsigned TrueReg, unsigned FalseReg,
758                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
759  if (Cond.size() != 2)
760    return false;
761
762  // If this is really a bdnz-like condition, then it cannot be turned into a
763  // select.
764  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
765    return false;
766
767  // Check register classes.
768  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
769  const TargetRegisterClass *RC =
770    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
771  if (!RC)
772    return false;
773
774  // isel is for regular integer GPRs only.
775  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
776      !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
777      !PPC::G8RCRegClass.hasSubClassEq(RC) &&
778      !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
779    return false;
780
781  // FIXME: These numbers are for the A2, how well they work for other cores is
782  // an open question. On the A2, the isel instruction has a 2-cycle latency
783  // but single-cycle throughput. These numbers are used in combination with
784  // the MispredictPenalty setting from the active SchedMachineModel.
785  CondCycles = 1;
786  TrueCycles = 1;
787  FalseCycles = 1;
788
789  return true;
790}
791
792void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
793                                MachineBasicBlock::iterator MI,
794                                const DebugLoc &dl, unsigned DestReg,
795                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
796                                unsigned FalseReg) const {
797  assert(Cond.size() == 2 &&
798         "PPC branch conditions have two components!");
799
800  // Get the register classes.
801  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
802  const TargetRegisterClass *RC =
803    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
804  assert(RC && "TrueReg and FalseReg must have overlapping register classes");
805
806  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
807                 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
808  assert((Is64Bit ||
809          PPC::GPRCRegClass.hasSubClassEq(RC) ||
810          PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
811         "isel is for regular integer GPRs only");
812
813  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
814  auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
815
816  unsigned SubIdx = 0;
817  bool SwapOps = false;
818  switch (SelectPred) {
819  case PPC::PRED_EQ:
820  case PPC::PRED_EQ_MINUS:
821  case PPC::PRED_EQ_PLUS:
822      SubIdx = PPC::sub_eq; SwapOps = false; break;
823  case PPC::PRED_NE:
824  case PPC::PRED_NE_MINUS:
825  case PPC::PRED_NE_PLUS:
826      SubIdx = PPC::sub_eq; SwapOps = true; break;
827  case PPC::PRED_LT:
828  case PPC::PRED_LT_MINUS:
829  case PPC::PRED_LT_PLUS:
830      SubIdx = PPC::sub_lt; SwapOps = false; break;
831  case PPC::PRED_GE:
832  case PPC::PRED_GE_MINUS:
833  case PPC::PRED_GE_PLUS:
834      SubIdx = PPC::sub_lt; SwapOps = true; break;
835  case PPC::PRED_GT:
836  case PPC::PRED_GT_MINUS:
837  case PPC::PRED_GT_PLUS:
838      SubIdx = PPC::sub_gt; SwapOps = false; break;
839  case PPC::PRED_LE:
840  case PPC::PRED_LE_MINUS:
841  case PPC::PRED_LE_PLUS:
842      SubIdx = PPC::sub_gt; SwapOps = true; break;
843  case PPC::PRED_UN:
844  case PPC::PRED_UN_MINUS:
845  case PPC::PRED_UN_PLUS:
846      SubIdx = PPC::sub_un; SwapOps = false; break;
847  case PPC::PRED_NU:
848  case PPC::PRED_NU_MINUS:
849  case PPC::PRED_NU_PLUS:
850      SubIdx = PPC::sub_un; SwapOps = true; break;
851  case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
852  case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
853  }
854
855  unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
856           SecondReg = SwapOps ? TrueReg  : FalseReg;
857
858  // The first input register of isel cannot be r0. If it is a member
859  // of a register class that can be r0, then copy it first (the
860  // register allocator should eliminate the copy).
861  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
862      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
863    const TargetRegisterClass *FirstRC =
864      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
865        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
866    unsigned OldFirstReg = FirstReg;
867    FirstReg = MRI.createVirtualRegister(FirstRC);
868    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
869      .addReg(OldFirstReg);
870  }
871
872  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
873    .addReg(FirstReg).addReg(SecondReg)
874    .addReg(Cond[1].getReg(), 0, SubIdx);
875}
876
877static unsigned getCRBitValue(unsigned CRBit) {
878  unsigned Ret = 4;
879  if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
880      CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
881      CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
882      CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
883    Ret = 3;
884  if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
885      CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
886      CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
887      CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
888    Ret = 2;
889  if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
890      CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
891      CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
892      CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
893    Ret = 1;
894  if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
895      CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
896      CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
897      CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
898    Ret = 0;
899
900  assert(Ret != 4 && "Invalid CR bit register");
901  return Ret;
902}
903
904void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
905                               MachineBasicBlock::iterator I,
906                               const DebugLoc &DL, MCRegister DestReg,
907                               MCRegister SrcReg, bool KillSrc) const {
908  // We can end up with self copies and similar things as a result of VSX copy
909  // legalization. Promote them here.
910  const TargetRegisterInfo *TRI = &getRegisterInfo();
911  if (PPC::F8RCRegClass.contains(DestReg) &&
912      PPC::VSRCRegClass.contains(SrcReg)) {
913    MCRegister SuperReg =
914        TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
915
916    if (VSXSelfCopyCrash && SrcReg == SuperReg)
917      llvm_unreachable("nop VSX copy");
918
919    DestReg = SuperReg;
920  } else if (PPC::F8RCRegClass.contains(SrcReg) &&
921             PPC::VSRCRegClass.contains(DestReg)) {
922    MCRegister SuperReg =
923        TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
924
925    if (VSXSelfCopyCrash && DestReg == SuperReg)
926      llvm_unreachable("nop VSX copy");
927
928    SrcReg = SuperReg;
929  }
930
931  // Different class register copy
932  if (PPC::CRBITRCRegClass.contains(SrcReg) &&
933      PPC::GPRCRegClass.contains(DestReg)) {
934    MCRegister CRReg = getCRFromCRBit(SrcReg);
935    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
936    getKillRegState(KillSrc);
937    // Rotate the CR bit in the CR fields to be the least significant bit and
938    // then mask with 0x1 (MB = ME = 31).
939    BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
940       .addReg(DestReg, RegState::Kill)
941       .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
942       .addImm(31)
943       .addImm(31);
944    return;
945  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
946      PPC::G8RCRegClass.contains(DestReg)) {
947    BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
948    getKillRegState(KillSrc);
949    return;
950  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
951      PPC::GPRCRegClass.contains(DestReg)) {
952    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
953    getKillRegState(KillSrc);
954    return;
955  } else if (PPC::G8RCRegClass.contains(SrcReg) &&
956             PPC::VSFRCRegClass.contains(DestReg)) {
957    assert(Subtarget.hasDirectMove() &&
958           "Subtarget doesn't support directmove, don't know how to copy.");
959    BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
960    NumGPRtoVSRSpill++;
961    getKillRegState(KillSrc);
962    return;
963  } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
964             PPC::G8RCRegClass.contains(DestReg)) {
965    assert(Subtarget.hasDirectMove() &&
966           "Subtarget doesn't support directmove, don't know how to copy.");
967    BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
968    getKillRegState(KillSrc);
969    return;
970  } else if (PPC::SPERCRegClass.contains(SrcReg) &&
971             PPC::GPRCRegClass.contains(DestReg)) {
972    BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
973    getKillRegState(KillSrc);
974    return;
975  } else if (PPC::GPRCRegClass.contains(SrcReg) &&
976             PPC::SPERCRegClass.contains(DestReg)) {
977    BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
978    getKillRegState(KillSrc);
979    return;
980  }
981
982  unsigned Opc;
983  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
984    Opc = PPC::OR;
985  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
986    Opc = PPC::OR8;
987  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
988    Opc = PPC::FMR;
989  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
990    Opc = PPC::MCRF;
991  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
992    Opc = PPC::VOR;
993  else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
994    // There are two different ways this can be done:
995    //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
996    //      issue in VSU pipeline 0.
997    //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
998    //      can go to either pipeline.
999    // We'll always use xxlor here, because in practically all cases where
1000    // copies are generated, they are close enough to some use that the
1001    // lower-latency form is preferable.
1002    Opc = PPC::XXLOR;
1003  else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1004           PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1005    Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1006  else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1007    Opc = PPC::QVFMR;
1008  else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1009    Opc = PPC::QVFMRs;
1010  else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1011    Opc = PPC::QVFMRb;
1012  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1013    Opc = PPC::CROR;
1014  else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1015    Opc = PPC::EVOR;
1016  else
1017    llvm_unreachable("Impossible reg-to-reg copy");
1018
1019  const MCInstrDesc &MCID = get(Opc);
1020  if (MCID.getNumOperands() == 3)
1021    BuildMI(MBB, I, DL, MCID, DestReg)
1022      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1023  else
1024    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1025}
1026
1027unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1028                                              const TargetRegisterClass *RC)
1029                                              const {
1030  const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1031  int OpcodeIndex = 0;
1032
1033  if (RC != nullptr) {
1034    if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1035        PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1036      OpcodeIndex = SOK_Int4Spill;
1037    } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1038               PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1039      OpcodeIndex = SOK_Int8Spill;
1040    } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1041      OpcodeIndex = SOK_Float8Spill;
1042    } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1043      OpcodeIndex = SOK_Float4Spill;
1044    } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1045      OpcodeIndex = SOK_SPESpill;
1046    } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1047      OpcodeIndex = SOK_CRSpill;
1048    } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1049      OpcodeIndex = SOK_CRBitSpill;
1050    } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1051      OpcodeIndex = SOK_VRVectorSpill;
1052    } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1053      OpcodeIndex = SOK_VSXVectorSpill;
1054    } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1055      OpcodeIndex = SOK_VectorFloat8Spill;
1056    } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1057      OpcodeIndex = SOK_VectorFloat4Spill;
1058    } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1059      OpcodeIndex = SOK_VRSaveSpill;
1060    } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1061      OpcodeIndex = SOK_QuadFloat8Spill;
1062    } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1063      OpcodeIndex = SOK_QuadFloat4Spill;
1064    } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1065      OpcodeIndex = SOK_QuadBitSpill;
1066    } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1067      OpcodeIndex = SOK_SpillToVSR;
1068    } else {
1069      llvm_unreachable("Unknown regclass!");
1070    }
1071  } else {
1072    if (PPC::GPRCRegClass.contains(Reg) ||
1073        PPC::GPRC_NOR0RegClass.contains(Reg)) {
1074      OpcodeIndex = SOK_Int4Spill;
1075    } else if (PPC::G8RCRegClass.contains(Reg) ||
1076               PPC::G8RC_NOX0RegClass.contains(Reg)) {
1077      OpcodeIndex = SOK_Int8Spill;
1078    } else if (PPC::F8RCRegClass.contains(Reg)) {
1079      OpcodeIndex = SOK_Float8Spill;
1080    } else if (PPC::F4RCRegClass.contains(Reg)) {
1081      OpcodeIndex = SOK_Float4Spill;
1082    } else if (PPC::SPERCRegClass.contains(Reg)) {
1083      OpcodeIndex = SOK_SPESpill;
1084    } else if (PPC::CRRCRegClass.contains(Reg)) {
1085      OpcodeIndex = SOK_CRSpill;
1086    } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1087      OpcodeIndex = SOK_CRBitSpill;
1088    } else if (PPC::VRRCRegClass.contains(Reg)) {
1089      OpcodeIndex = SOK_VRVectorSpill;
1090    } else if (PPC::VSRCRegClass.contains(Reg)) {
1091      OpcodeIndex = SOK_VSXVectorSpill;
1092    } else if (PPC::VSFRCRegClass.contains(Reg)) {
1093      OpcodeIndex = SOK_VectorFloat8Spill;
1094    } else if (PPC::VSSRCRegClass.contains(Reg)) {
1095      OpcodeIndex = SOK_VectorFloat4Spill;
1096    } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1097      OpcodeIndex = SOK_VRSaveSpill;
1098    } else if (PPC::QFRCRegClass.contains(Reg)) {
1099      OpcodeIndex = SOK_QuadFloat8Spill;
1100    } else if (PPC::QSRCRegClass.contains(Reg)) {
1101      OpcodeIndex = SOK_QuadFloat4Spill;
1102    } else if (PPC::QBRCRegClass.contains(Reg)) {
1103      OpcodeIndex = SOK_QuadBitSpill;
1104    } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1105      OpcodeIndex = SOK_SpillToVSR;
1106    } else {
1107      llvm_unreachable("Unknown regclass!");
1108    }
1109  }
1110  return OpcodesForSpill[OpcodeIndex];
1111}
1112
1113unsigned
1114PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1115                                    const TargetRegisterClass *RC) const {
1116  const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1117  int OpcodeIndex = 0;
1118
1119  if (RC != nullptr) {
1120    if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1121        PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1122      OpcodeIndex = SOK_Int4Spill;
1123    } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1124               PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1125      OpcodeIndex = SOK_Int8Spill;
1126    } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1127      OpcodeIndex = SOK_Float8Spill;
1128    } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1129      OpcodeIndex = SOK_Float4Spill;
1130    } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1131      OpcodeIndex = SOK_SPESpill;
1132    } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1133      OpcodeIndex = SOK_CRSpill;
1134    } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1135      OpcodeIndex = SOK_CRBitSpill;
1136    } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1137      OpcodeIndex = SOK_VRVectorSpill;
1138    } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1139      OpcodeIndex = SOK_VSXVectorSpill;
1140    } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1141      OpcodeIndex = SOK_VectorFloat8Spill;
1142    } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1143      OpcodeIndex = SOK_VectorFloat4Spill;
1144    } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1145      OpcodeIndex = SOK_VRSaveSpill;
1146    } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1147      OpcodeIndex = SOK_QuadFloat8Spill;
1148    } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1149      OpcodeIndex = SOK_QuadFloat4Spill;
1150    } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1151      OpcodeIndex = SOK_QuadBitSpill;
1152    } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1153      OpcodeIndex = SOK_SpillToVSR;
1154    } else {
1155      llvm_unreachable("Unknown regclass!");
1156    }
1157  } else {
1158    if (PPC::GPRCRegClass.contains(Reg) ||
1159        PPC::GPRC_NOR0RegClass.contains(Reg)) {
1160      OpcodeIndex = SOK_Int4Spill;
1161    } else if (PPC::G8RCRegClass.contains(Reg) ||
1162               PPC::G8RC_NOX0RegClass.contains(Reg)) {
1163      OpcodeIndex = SOK_Int8Spill;
1164    } else if (PPC::F8RCRegClass.contains(Reg)) {
1165      OpcodeIndex = SOK_Float8Spill;
1166    } else if (PPC::F4RCRegClass.contains(Reg)) {
1167      OpcodeIndex = SOK_Float4Spill;
1168    } else if (PPC::SPERCRegClass.contains(Reg)) {
1169      OpcodeIndex = SOK_SPESpill;
1170    } else if (PPC::CRRCRegClass.contains(Reg)) {
1171      OpcodeIndex = SOK_CRSpill;
1172    } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1173      OpcodeIndex = SOK_CRBitSpill;
1174    } else if (PPC::VRRCRegClass.contains(Reg)) {
1175      OpcodeIndex = SOK_VRVectorSpill;
1176    } else if (PPC::VSRCRegClass.contains(Reg)) {
1177      OpcodeIndex = SOK_VSXVectorSpill;
1178    } else if (PPC::VSFRCRegClass.contains(Reg)) {
1179      OpcodeIndex = SOK_VectorFloat8Spill;
1180    } else if (PPC::VSSRCRegClass.contains(Reg)) {
1181      OpcodeIndex = SOK_VectorFloat4Spill;
1182    } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1183      OpcodeIndex = SOK_VRSaveSpill;
1184    } else if (PPC::QFRCRegClass.contains(Reg)) {
1185      OpcodeIndex = SOK_QuadFloat8Spill;
1186    } else if (PPC::QSRCRegClass.contains(Reg)) {
1187      OpcodeIndex = SOK_QuadFloat4Spill;
1188    } else if (PPC::QBRCRegClass.contains(Reg)) {
1189      OpcodeIndex = SOK_QuadBitSpill;
1190    } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1191      OpcodeIndex = SOK_SpillToVSR;
1192    } else {
1193      llvm_unreachable("Unknown regclass!");
1194    }
1195  }
1196  return OpcodesForSpill[OpcodeIndex];
1197}
1198
1199void PPCInstrInfo::StoreRegToStackSlot(
1200    MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1201    const TargetRegisterClass *RC,
1202    SmallVectorImpl<MachineInstr *> &NewMIs) const {
1203  unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1204  DebugLoc DL;
1205
1206  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1207  FuncInfo->setHasSpills();
1208
1209  NewMIs.push_back(addFrameReference(
1210      BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1211      FrameIdx));
1212
1213  if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1214      PPC::CRBITRCRegClass.hasSubClassEq(RC))
1215    FuncInfo->setSpillsCR();
1216
1217  if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1218    FuncInfo->setSpillsVRSAVE();
1219
1220  if (isXFormMemOp(Opcode))
1221    FuncInfo->setHasNonRISpills();
1222}
1223
1224void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1225                                       MachineBasicBlock::iterator MI,
1226                                       unsigned SrcReg, bool isKill,
1227                                       int FrameIdx,
1228                                       const TargetRegisterClass *RC,
1229                                       const TargetRegisterInfo *TRI) const {
1230  MachineFunction &MF = *MBB.getParent();
1231  SmallVector<MachineInstr *, 4> NewMIs;
1232
1233  // We need to avoid a situation in which the value from a VRRC register is
1234  // spilled using an Altivec instruction and reloaded into a VSRC register
1235  // using a VSX instruction. The issue with this is that the VSX
1236  // load/store instructions swap the doublewords in the vector and the Altivec
1237  // ones don't. The register classes on the spill/reload may be different if
1238  // the register is defined using an Altivec instruction and is then used by a
1239  // VSX instruction.
1240  RC = updatedRC(RC);
1241
1242  StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1243
1244  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1245    MBB.insert(MI, NewMIs[i]);
1246
1247  const MachineFrameInfo &MFI = MF.getFrameInfo();
1248  MachineMemOperand *MMO = MF.getMachineMemOperand(
1249      MachinePointerInfo::getFixedStack(MF, FrameIdx),
1250      MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1251      MFI.getObjectAlignment(FrameIdx));
1252  NewMIs.back()->addMemOperand(MF, MMO);
1253}
1254
1255void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1256                                        unsigned DestReg, int FrameIdx,
1257                                        const TargetRegisterClass *RC,
1258                                        SmallVectorImpl<MachineInstr *> &NewMIs)
1259                                        const {
1260  unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1261  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1262                                     FrameIdx));
1263  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1264
1265  if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1266      PPC::CRBITRCRegClass.hasSubClassEq(RC))
1267    FuncInfo->setSpillsCR();
1268
1269  if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1270    FuncInfo->setSpillsVRSAVE();
1271
1272  if (isXFormMemOp(Opcode))
1273    FuncInfo->setHasNonRISpills();
1274}
1275
1276void
1277PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1278                                   MachineBasicBlock::iterator MI,
1279                                   unsigned DestReg, int FrameIdx,
1280                                   const TargetRegisterClass *RC,
1281                                   const TargetRegisterInfo *TRI) const {
1282  MachineFunction &MF = *MBB.getParent();
1283  SmallVector<MachineInstr*, 4> NewMIs;
1284  DebugLoc DL;
1285  if (MI != MBB.end()) DL = MI->getDebugLoc();
1286
1287  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1288  FuncInfo->setHasSpills();
1289
1290  // We need to avoid a situation in which the value from a VRRC register is
1291  // spilled using an Altivec instruction and reloaded into a VSRC register
1292  // using a VSX instruction. The issue with this is that the VSX
1293  // load/store instructions swap the doublewords in the vector and the Altivec
1294  // ones don't. The register classes on the spill/reload may be different if
1295  // the register is defined using an Altivec instruction and is then used by a
1296  // VSX instruction.
1297  if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1298    RC = &PPC::VSRCRegClass;
1299
1300  LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1301
1302  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1303    MBB.insert(MI, NewMIs[i]);
1304
1305  const MachineFrameInfo &MFI = MF.getFrameInfo();
1306  MachineMemOperand *MMO = MF.getMachineMemOperand(
1307      MachinePointerInfo::getFixedStack(MF, FrameIdx),
1308      MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1309      MFI.getObjectAlignment(FrameIdx));
1310  NewMIs.back()->addMemOperand(MF, MMO);
1311}
1312
1313bool PPCInstrInfo::
1314reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1315  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1316  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1317    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1318  else
1319    // Leave the CR# the same, but invert the condition.
1320    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1321  return false;
1322}
1323
1324bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1325                                 unsigned Reg, MachineRegisterInfo *MRI) const {
1326  // For some instructions, it is legal to fold ZERO into the RA register field.
1327  // A zero immediate should always be loaded with a single li.
1328  unsigned DefOpc = DefMI.getOpcode();
1329  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1330    return false;
1331  if (!DefMI.getOperand(1).isImm())
1332    return false;
1333  if (DefMI.getOperand(1).getImm() != 0)
1334    return false;
1335
1336  // Note that we cannot here invert the arguments of an isel in order to fold
1337  // a ZERO into what is presented as the second argument. All we have here
1338  // is the condition bit, and that might come from a CR-logical bit operation.
1339
1340  const MCInstrDesc &UseMCID = UseMI.getDesc();
1341
1342  // Only fold into real machine instructions.
1343  if (UseMCID.isPseudo())
1344    return false;
1345
1346  unsigned UseIdx;
1347  for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1348    if (UseMI.getOperand(UseIdx).isReg() &&
1349        UseMI.getOperand(UseIdx).getReg() == Reg)
1350      break;
1351
1352  assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1353  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1354
1355  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1356
1357  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1358  // register (which might also be specified as a pointer class kind).
1359  if (UseInfo->isLookupPtrRegClass()) {
1360    if (UseInfo->RegClass /* Kind */ != 1)
1361      return false;
1362  } else {
1363    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1364        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1365      return false;
1366  }
1367
1368  // Make sure this is not tied to an output register (or otherwise
1369  // constrained). This is true for ST?UX registers, for example, which
1370  // are tied to their output registers.
1371  if (UseInfo->Constraints != 0)
1372    return false;
1373
1374  unsigned ZeroReg;
1375  if (UseInfo->isLookupPtrRegClass()) {
1376    bool isPPC64 = Subtarget.isPPC64();
1377    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1378  } else {
1379    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1380              PPC::ZERO8 : PPC::ZERO;
1381  }
1382
1383  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1384  UseMI.getOperand(UseIdx).setReg(ZeroReg);
1385
1386  if (DeleteDef)
1387    DefMI.eraseFromParent();
1388
1389  return true;
1390}
1391
1392static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1393  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1394       I != IE; ++I)
1395    if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1396      return true;
1397  return false;
1398}
1399
1400// We should make sure that, if we're going to predicate both sides of a
1401// condition (a diamond), that both sides don't define the counter register. We
1402// can predicate counter-decrement-based branches, but while that predicates
1403// the branching, it does not predicate the counter decrement. If we tried to
1404// merge the triangle into one predicated block, we'd decrement the counter
1405// twice.
1406bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1407                     unsigned NumT, unsigned ExtraT,
1408                     MachineBasicBlock &FMBB,
1409                     unsigned NumF, unsigned ExtraF,
1410                     BranchProbability Probability) const {
1411  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1412}
1413
1414
1415bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1416  // The predicated branches are identified by their type, not really by the
1417  // explicit presence of a predicate. Furthermore, some of them can be
1418  // predicated more than once. Because if conversion won't try to predicate
1419  // any instruction which already claims to be predicated (by returning true
1420  // here), always return false. In doing so, we let isPredicable() be the
1421  // final word on whether not the instruction can be (further) predicated.
1422
1423  return false;
1424}
1425
1426bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1427  if (!MI.isTerminator())
1428    return false;
1429
1430  // Conditional branch is a special case.
1431  if (MI.isBranch() && !MI.isBarrier())
1432    return true;
1433
1434  return !isPredicated(MI);
1435}
1436
1437bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1438                                        ArrayRef<MachineOperand> Pred) const {
1439  unsigned OpC = MI.getOpcode();
1440  if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1441    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1442      bool isPPC64 = Subtarget.isPPC64();
1443      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1444                                      : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1445    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1446      MI.setDesc(get(PPC::BCLR));
1447      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1448    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1449      MI.setDesc(get(PPC::BCLRn));
1450      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1451    } else {
1452      MI.setDesc(get(PPC::BCCLR));
1453      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1454          .addImm(Pred[0].getImm())
1455          .add(Pred[1]);
1456    }
1457
1458    return true;
1459  } else if (OpC == PPC::B) {
1460    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1461      bool isPPC64 = Subtarget.isPPC64();
1462      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1463                                      : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1464    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1465      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1466      MI.RemoveOperand(0);
1467
1468      MI.setDesc(get(PPC::BC));
1469      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1470          .add(Pred[1])
1471          .addMBB(MBB);
1472    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1473      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1474      MI.RemoveOperand(0);
1475
1476      MI.setDesc(get(PPC::BCn));
1477      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1478          .add(Pred[1])
1479          .addMBB(MBB);
1480    } else {
1481      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1482      MI.RemoveOperand(0);
1483
1484      MI.setDesc(get(PPC::BCC));
1485      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1486          .addImm(Pred[0].getImm())
1487          .add(Pred[1])
1488          .addMBB(MBB);
1489    }
1490
1491    return true;
1492  } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1493             OpC == PPC::BCTRL8) {
1494    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1495      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1496
1497    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1498    bool isPPC64 = Subtarget.isPPC64();
1499
1500    if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1501      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1502                             : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1503      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1504      return true;
1505    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1506      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1507                             : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1508      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1509      return true;
1510    }
1511
1512    MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1513                           : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1514    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1515        .addImm(Pred[0].getImm())
1516        .add(Pred[1]);
1517    return true;
1518  }
1519
1520  return false;
1521}
1522
1523bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1524                                     ArrayRef<MachineOperand> Pred2) const {
1525  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1526  assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1527
1528  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1529    return false;
1530  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1531    return false;
1532
1533  // P1 can only subsume P2 if they test the same condition register.
1534  if (Pred1[1].getReg() != Pred2[1].getReg())
1535    return false;
1536
1537  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1538  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1539
1540  if (P1 == P2)
1541    return true;
1542
1543  // Does P1 subsume P2, e.g. GE subsumes GT.
1544  if (P1 == PPC::PRED_LE &&
1545      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1546    return true;
1547  if (P1 == PPC::PRED_GE &&
1548      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1549    return true;
1550
1551  return false;
1552}
1553
1554bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1555                                    std::vector<MachineOperand> &Pred) const {
1556  // Note: At the present time, the contents of Pred from this function is
1557  // unused by IfConversion. This implementation follows ARM by pushing the
1558  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1559  // predicate, instructions defining CTR or CTR8 are also included as
1560  // predicate-defining instructions.
1561
1562  const TargetRegisterClass *RCs[] =
1563    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1564      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1565
1566  bool Found = false;
1567  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1568    const MachineOperand &MO = MI.getOperand(i);
1569    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1570      const TargetRegisterClass *RC = RCs[c];
1571      if (MO.isReg()) {
1572        if (MO.isDef() && RC->contains(MO.getReg())) {
1573          Pred.push_back(MO);
1574          Found = true;
1575        }
1576      } else if (MO.isRegMask()) {
1577        for (TargetRegisterClass::iterator I = RC->begin(),
1578             IE = RC->end(); I != IE; ++I)
1579          if (MO.clobbersPhysReg(*I)) {
1580            Pred.push_back(MO);
1581            Found = true;
1582          }
1583      }
1584    }
1585  }
1586
1587  return Found;
1588}
1589
1590bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1591                                  unsigned &SrcReg2, int &Mask,
1592                                  int &Value) const {
1593  unsigned Opc = MI.getOpcode();
1594
1595  switch (Opc) {
1596  default: return false;
1597  case PPC::CMPWI:
1598  case PPC::CMPLWI:
1599  case PPC::CMPDI:
1600  case PPC::CMPLDI:
1601    SrcReg = MI.getOperand(1).getReg();
1602    SrcReg2 = 0;
1603    Value = MI.getOperand(2).getImm();
1604    Mask = 0xFFFF;
1605    return true;
1606  case PPC::CMPW:
1607  case PPC::CMPLW:
1608  case PPC::CMPD:
1609  case PPC::CMPLD:
1610  case PPC::FCMPUS:
1611  case PPC::FCMPUD:
1612    SrcReg = MI.getOperand(1).getReg();
1613    SrcReg2 = MI.getOperand(2).getReg();
1614    Value = 0;
1615    Mask = 0;
1616    return true;
1617  }
1618}
1619
1620bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1621                                        unsigned SrcReg2, int Mask, int Value,
1622                                        const MachineRegisterInfo *MRI) const {
1623  if (DisableCmpOpt)
1624    return false;
1625
1626  int OpC = CmpInstr.getOpcode();
1627  Register CRReg = CmpInstr.getOperand(0).getReg();
1628
1629  // FP record forms set CR1 based on the exception status bits, not a
1630  // comparison with zero.
1631  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1632    return false;
1633
1634  const TargetRegisterInfo *TRI = &getRegisterInfo();
1635  // The record forms set the condition register based on a signed comparison
1636  // with zero (so says the ISA manual). This is not as straightforward as it
1637  // seems, however, because this is always a 64-bit comparison on PPC64, even
1638  // for instructions that are 32-bit in nature (like slw for example).
1639  // So, on PPC32, for unsigned comparisons, we can use the record forms only
1640  // for equality checks (as those don't depend on the sign). On PPC64,
1641  // we are restricted to equality for unsigned 64-bit comparisons and for
1642  // signed 32-bit comparisons the applicability is more restricted.
1643  bool isPPC64 = Subtarget.isPPC64();
1644  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1645  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1646  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1647
1648  // Look through copies unless that gets us to a physical register.
1649  unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1650  if (Register::isVirtualRegister(ActualSrc))
1651    SrcReg = ActualSrc;
1652
1653  // Get the unique definition of SrcReg.
1654  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1655  if (!MI) return false;
1656
1657  bool equalityOnly = false;
1658  bool noSub = false;
1659  if (isPPC64) {
1660    if (is32BitSignedCompare) {
1661      // We can perform this optimization only if MI is sign-extending.
1662      if (isSignExtended(*MI))
1663        noSub = true;
1664      else
1665        return false;
1666    } else if (is32BitUnsignedCompare) {
1667      // We can perform this optimization, equality only, if MI is
1668      // zero-extending.
1669      if (isZeroExtended(*MI)) {
1670        noSub = true;
1671        equalityOnly = true;
1672      } else
1673        return false;
1674    } else
1675      equalityOnly = is64BitUnsignedCompare;
1676  } else
1677    equalityOnly = is32BitUnsignedCompare;
1678
1679  if (equalityOnly) {
1680    // We need to check the uses of the condition register in order to reject
1681    // non-equality comparisons.
1682    for (MachineRegisterInfo::use_instr_iterator
1683         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1684         I != IE; ++I) {
1685      MachineInstr *UseMI = &*I;
1686      if (UseMI->getOpcode() == PPC::BCC) {
1687        PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1688        unsigned PredCond = PPC::getPredicateCondition(Pred);
1689        // We ignore hint bits when checking for non-equality comparisons.
1690        if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1691          return false;
1692      } else if (UseMI->getOpcode() == PPC::ISEL ||
1693                 UseMI->getOpcode() == PPC::ISEL8) {
1694        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1695        if (SubIdx != PPC::sub_eq)
1696          return false;
1697      } else
1698        return false;
1699    }
1700  }
1701
1702  MachineBasicBlock::iterator I = CmpInstr;
1703
1704  // Scan forward to find the first use of the compare.
1705  for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1706       ++I) {
1707    bool FoundUse = false;
1708    for (MachineRegisterInfo::use_instr_iterator
1709         J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1710         J != JE; ++J)
1711      if (&*J == &*I) {
1712        FoundUse = true;
1713        break;
1714      }
1715
1716    if (FoundUse)
1717      break;
1718  }
1719
1720  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1721  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1722
1723  // There are two possible candidates which can be changed to set CR[01].
1724  // One is MI, the other is a SUB instruction.
1725  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1726  MachineInstr *Sub = nullptr;
1727  if (SrcReg2 != 0)
1728    // MI is not a candidate for CMPrr.
1729    MI = nullptr;
1730  // FIXME: Conservatively refuse to convert an instruction which isn't in the
1731  // same BB as the comparison. This is to allow the check below to avoid calls
1732  // (and other explicit clobbers); instead we should really check for these
1733  // more explicitly (in at least a few predecessors).
1734  else if (MI->getParent() != CmpInstr.getParent())
1735    return false;
1736  else if (Value != 0) {
1737    // The record-form instructions set CR bit based on signed comparison
1738    // against 0. We try to convert a compare against 1 or -1 into a compare
1739    // against 0 to exploit record-form instructions. For example, we change
1740    // the condition "greater than -1" into "greater than or equal to 0"
1741    // and "less than 1" into "less than or equal to 0".
1742
1743    // Since we optimize comparison based on a specific branch condition,
1744    // we don't optimize if condition code is used by more than once.
1745    if (equalityOnly || !MRI->hasOneUse(CRReg))
1746      return false;
1747
1748    MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1749    if (UseMI->getOpcode() != PPC::BCC)
1750      return false;
1751
1752    PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1753    unsigned PredCond = PPC::getPredicateCondition(Pred);
1754    unsigned PredHint = PPC::getPredicateHint(Pred);
1755    int16_t Immed = (int16_t)Value;
1756
1757    // When modifying the condition in the predicate, we propagate hint bits
1758    // from the original predicate to the new one.
1759    if (Immed == -1 && PredCond == PPC::PRED_GT)
1760      // We convert "greater than -1" into "greater than or equal to 0",
1761      // since we are assuming signed comparison by !equalityOnly
1762      Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1763    else if (Immed == -1 && PredCond == PPC::PRED_LE)
1764      // We convert "less than or equal to -1" into "less than 0".
1765      Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1766    else if (Immed == 1 && PredCond == PPC::PRED_LT)
1767      // We convert "less than 1" into "less than or equal to 0".
1768      Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1769    else if (Immed == 1 && PredCond == PPC::PRED_GE)
1770      // We convert "greater than or equal to 1" into "greater than 0".
1771      Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1772    else
1773      return false;
1774
1775    PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1776  }
1777
1778  // Search for Sub.
1779  --I;
1780
1781  // Get ready to iterate backward from CmpInstr.
1782  MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1783
1784  for (; I != E && !noSub; --I) {
1785    const MachineInstr &Instr = *I;
1786    unsigned IOpC = Instr.getOpcode();
1787
1788    if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1789                             Instr.readsRegister(PPC::CR0, TRI)))
1790      // This instruction modifies or uses the record condition register after
1791      // the one we want to change. While we could do this transformation, it
1792      // would likely not be profitable. This transformation removes one
1793      // instruction, and so even forcing RA to generate one move probably
1794      // makes it unprofitable.
1795      return false;
1796
1797    // Check whether CmpInstr can be made redundant by the current instruction.
1798    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1799         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1800        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1801        ((Instr.getOperand(1).getReg() == SrcReg &&
1802          Instr.getOperand(2).getReg() == SrcReg2) ||
1803        (Instr.getOperand(1).getReg() == SrcReg2 &&
1804         Instr.getOperand(2).getReg() == SrcReg))) {
1805      Sub = &*I;
1806      break;
1807    }
1808
1809    if (I == B)
1810      // The 'and' is below the comparison instruction.
1811      return false;
1812  }
1813
1814  // Return false if no candidates exist.
1815  if (!MI && !Sub)
1816    return false;
1817
1818  // The single candidate is called MI.
1819  if (!MI) MI = Sub;
1820
1821  int NewOpC = -1;
1822  int MIOpC = MI->getOpcode();
1823  if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
1824      MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
1825    NewOpC = MIOpC;
1826  else {
1827    NewOpC = PPC::getRecordFormOpcode(MIOpC);
1828    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1829      NewOpC = MIOpC;
1830  }
1831
1832  // FIXME: On the non-embedded POWER architectures, only some of the record
1833  // forms are fast, and we should use only the fast ones.
1834
1835  // The defining instruction has a record form (or is already a record
1836  // form). It is possible, however, that we'll need to reverse the condition
1837  // code of the users.
1838  if (NewOpC == -1)
1839    return false;
1840
1841  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1842  // needs to be updated to be based on SUB.  Push the condition code
1843  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1844  // condition code of these operands will be modified.
1845  // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1846  // comparison against 0, which may modify predicate.
1847  bool ShouldSwap = false;
1848  if (Sub && Value == 0) {
1849    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1850      Sub->getOperand(2).getReg() == SrcReg;
1851
1852    // The operands to subf are the opposite of sub, so only in the fixed-point
1853    // case, invert the order.
1854    ShouldSwap = !ShouldSwap;
1855  }
1856
1857  if (ShouldSwap)
1858    for (MachineRegisterInfo::use_instr_iterator
1859         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1860         I != IE; ++I) {
1861      MachineInstr *UseMI = &*I;
1862      if (UseMI->getOpcode() == PPC::BCC) {
1863        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1864        unsigned PredCond = PPC::getPredicateCondition(Pred);
1865        assert((!equalityOnly ||
1866                PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1867               "Invalid predicate for equality-only optimization");
1868        (void)PredCond; // To suppress warning in release build.
1869        PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1870                                PPC::getSwappedPredicate(Pred)));
1871      } else if (UseMI->getOpcode() == PPC::ISEL ||
1872                 UseMI->getOpcode() == PPC::ISEL8) {
1873        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1874        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1875               "Invalid CR bit for equality-only optimization");
1876
1877        if (NewSubReg == PPC::sub_lt)
1878          NewSubReg = PPC::sub_gt;
1879        else if (NewSubReg == PPC::sub_gt)
1880          NewSubReg = PPC::sub_lt;
1881
1882        SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1883                                                 NewSubReg));
1884      } else // We need to abort on a user we don't understand.
1885        return false;
1886    }
1887  assert(!(Value != 0 && ShouldSwap) &&
1888         "Non-zero immediate support and ShouldSwap"
1889         "may conflict in updating predicate");
1890
1891  // Create a new virtual register to hold the value of the CR set by the
1892  // record-form instruction. If the instruction was not previously in
1893  // record form, then set the kill flag on the CR.
1894  CmpInstr.eraseFromParent();
1895
1896  MachineBasicBlock::iterator MII = MI;
1897  BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1898          get(TargetOpcode::COPY), CRReg)
1899    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1900
1901  // Even if CR0 register were dead before, it is alive now since the
1902  // instruction we just built uses it.
1903  MI->clearRegisterDeads(PPC::CR0);
1904
1905  if (MIOpC != NewOpC) {
1906    // We need to be careful here: we're replacing one instruction with
1907    // another, and we need to make sure that we get all of the right
1908    // implicit uses and defs. On the other hand, the caller may be holding
1909    // an iterator to this instruction, and so we can't delete it (this is
1910    // specifically the case if this is the instruction directly after the
1911    // compare).
1912
1913    // Rotates are expensive instructions. If we're emitting a record-form
1914    // rotate that can just be an andi/andis, we should just emit that.
1915    if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1916      Register GPRRes = MI->getOperand(0).getReg();
1917      int64_t SH = MI->getOperand(2).getImm();
1918      int64_t MB = MI->getOperand(3).getImm();
1919      int64_t ME = MI->getOperand(4).getImm();
1920      // We can only do this if both the start and end of the mask are in the
1921      // same halfword.
1922      bool MBInLoHWord = MB >= 16;
1923      bool MEInLoHWord = ME >= 16;
1924      uint64_t Mask = ~0LLU;
1925
1926      if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1927        Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1928        // The mask value needs to shift right 16 if we're emitting andis.
1929        Mask >>= MBInLoHWord ? 0 : 16;
1930        NewOpC = MIOpC == PPC::RLWINM
1931                     ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
1932                     : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
1933      } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1934                 (ME - MB + 1 == SH) && (MB >= 16)) {
1935        // If we are rotating by the exact number of bits as are in the mask
1936        // and the mask is in the least significant bits of the register,
1937        // that's just an andis. (as long as the GPR result has no uses).
1938        Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1939        Mask >>= 16;
1940        NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
1941      }
1942      // If we've set the mask, we can transform.
1943      if (Mask != ~0LLU) {
1944        MI->RemoveOperand(4);
1945        MI->RemoveOperand(3);
1946        MI->getOperand(2).setImm(Mask);
1947        NumRcRotatesConvertedToRcAnd++;
1948      }
1949    } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1950      int64_t MB = MI->getOperand(3).getImm();
1951      if (MB >= 48) {
1952        uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1953        NewOpC = PPC::ANDI8_rec;
1954        MI->RemoveOperand(3);
1955        MI->getOperand(2).setImm(Mask);
1956        NumRcRotatesConvertedToRcAnd++;
1957      }
1958    }
1959
1960    const MCInstrDesc &NewDesc = get(NewOpC);
1961    MI->setDesc(NewDesc);
1962
1963    if (NewDesc.ImplicitDefs)
1964      for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1965           *ImpDefs; ++ImpDefs)
1966        if (!MI->definesRegister(*ImpDefs))
1967          MI->addOperand(*MI->getParent()->getParent(),
1968                         MachineOperand::CreateReg(*ImpDefs, true, true));
1969    if (NewDesc.ImplicitUses)
1970      for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1971           *ImpUses; ++ImpUses)
1972        if (!MI->readsRegister(*ImpUses))
1973          MI->addOperand(*MI->getParent()->getParent(),
1974                         MachineOperand::CreateReg(*ImpUses, false, true));
1975  }
1976  assert(MI->definesRegister(PPC::CR0) &&
1977         "Record-form instruction does not define cr0?");
1978
1979  // Modify the condition code of operands in OperandsToUpdate.
1980  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1981  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1982  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1983    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1984
1985  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1986    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1987
1988  return true;
1989}
1990
1991/// GetInstSize - Return the number of bytes of code the specified
1992/// instruction may be.  This returns the maximum number of bytes.
1993///
1994unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1995  unsigned Opcode = MI.getOpcode();
1996
1997  if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
1998    const MachineFunction *MF = MI.getParent()->getParent();
1999    const char *AsmStr = MI.getOperand(0).getSymbolName();
2000    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2001  } else if (Opcode == TargetOpcode::STACKMAP) {
2002    StackMapOpers Opers(&MI);
2003    return Opers.getNumPatchBytes();
2004  } else if (Opcode == TargetOpcode::PATCHPOINT) {
2005    PatchPointOpers Opers(&MI);
2006    return Opers.getNumPatchBytes();
2007  } else {
2008    return get(Opcode).getSize();
2009  }
2010}
2011
2012std::pair<unsigned, unsigned>
2013PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2014  const unsigned Mask = PPCII::MO_ACCESS_MASK;
2015  return std::make_pair(TF & Mask, TF & ~Mask);
2016}
2017
2018ArrayRef<std::pair<unsigned, const char *>>
2019PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2020  using namespace PPCII;
2021  static const std::pair<unsigned, const char *> TargetFlags[] = {
2022      {MO_LO, "ppc-lo"},
2023      {MO_HA, "ppc-ha"},
2024      {MO_TPREL_LO, "ppc-tprel-lo"},
2025      {MO_TPREL_HA, "ppc-tprel-ha"},
2026      {MO_DTPREL_LO, "ppc-dtprel-lo"},
2027      {MO_TLSLD_LO, "ppc-tlsld-lo"},
2028      {MO_TOC_LO, "ppc-toc-lo"},
2029      {MO_TLS, "ppc-tls"}};
2030  return makeArrayRef(TargetFlags);
2031}
2032
2033ArrayRef<std::pair<unsigned, const char *>>
2034PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2035  using namespace PPCII;
2036  static const std::pair<unsigned, const char *> TargetFlags[] = {
2037      {MO_PLT, "ppc-plt"},
2038      {MO_PIC_FLAG, "ppc-pic"},
2039      {MO_NLP_FLAG, "ppc-nlp"},
2040      {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2041  return makeArrayRef(TargetFlags);
2042}
2043
2044// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2045// The VSX versions have the advantage of a full 64-register target whereas
2046// the FP ones have the advantage of lower latency and higher throughput. So
2047// what we are after is using the faster instructions in low register pressure
2048// situations and using the larger register file in high register pressure
2049// situations.
2050bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2051    unsigned UpperOpcode, LowerOpcode;
2052    switch (MI.getOpcode()) {
2053    case PPC::DFLOADf32:
2054      UpperOpcode = PPC::LXSSP;
2055      LowerOpcode = PPC::LFS;
2056      break;
2057    case PPC::DFLOADf64:
2058      UpperOpcode = PPC::LXSD;
2059      LowerOpcode = PPC::LFD;
2060      break;
2061    case PPC::DFSTOREf32:
2062      UpperOpcode = PPC::STXSSP;
2063      LowerOpcode = PPC::STFS;
2064      break;
2065    case PPC::DFSTOREf64:
2066      UpperOpcode = PPC::STXSD;
2067      LowerOpcode = PPC::STFD;
2068      break;
2069    case PPC::XFLOADf32:
2070      UpperOpcode = PPC::LXSSPX;
2071      LowerOpcode = PPC::LFSX;
2072      break;
2073    case PPC::XFLOADf64:
2074      UpperOpcode = PPC::LXSDX;
2075      LowerOpcode = PPC::LFDX;
2076      break;
2077    case PPC::XFSTOREf32:
2078      UpperOpcode = PPC::STXSSPX;
2079      LowerOpcode = PPC::STFSX;
2080      break;
2081    case PPC::XFSTOREf64:
2082      UpperOpcode = PPC::STXSDX;
2083      LowerOpcode = PPC::STFDX;
2084      break;
2085    case PPC::LIWAX:
2086      UpperOpcode = PPC::LXSIWAX;
2087      LowerOpcode = PPC::LFIWAX;
2088      break;
2089    case PPC::LIWZX:
2090      UpperOpcode = PPC::LXSIWZX;
2091      LowerOpcode = PPC::LFIWZX;
2092      break;
2093    case PPC::STIWX:
2094      UpperOpcode = PPC::STXSIWX;
2095      LowerOpcode = PPC::STFIWX;
2096      break;
2097    default:
2098      llvm_unreachable("Unknown Operation!");
2099    }
2100
2101    Register TargetReg = MI.getOperand(0).getReg();
2102    unsigned Opcode;
2103    if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2104        (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2105      Opcode = LowerOpcode;
2106    else
2107      Opcode = UpperOpcode;
2108    MI.setDesc(get(Opcode));
2109    return true;
2110}
2111
2112static bool isAnImmediateOperand(const MachineOperand &MO) {
2113  return MO.isCPI() || MO.isGlobal() || MO.isImm();
2114}
2115
2116bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2117  auto &MBB = *MI.getParent();
2118  auto DL = MI.getDebugLoc();
2119
2120  switch (MI.getOpcode()) {
2121  case TargetOpcode::LOAD_STACK_GUARD: {
2122    assert(Subtarget.isTargetLinux() &&
2123           "Only Linux target is expected to contain LOAD_STACK_GUARD");
2124    const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2125    const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2126    MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2127    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2128        .addImm(Offset)
2129        .addReg(Reg);
2130    return true;
2131  }
2132  case PPC::DFLOADf32:
2133  case PPC::DFLOADf64:
2134  case PPC::DFSTOREf32:
2135  case PPC::DFSTOREf64: {
2136    assert(Subtarget.hasP9Vector() &&
2137           "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2138    assert(MI.getOperand(2).isReg() &&
2139           isAnImmediateOperand(MI.getOperand(1)) &&
2140           "D-form op must have register and immediate operands");
2141    return expandVSXMemPseudo(MI);
2142  }
2143  case PPC::XFLOADf32:
2144  case PPC::XFSTOREf32:
2145  case PPC::LIWAX:
2146  case PPC::LIWZX:
2147  case PPC::STIWX: {
2148    assert(Subtarget.hasP8Vector() &&
2149           "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2150    assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2151           "X-form op must have register and register operands");
2152    return expandVSXMemPseudo(MI);
2153  }
2154  case PPC::XFLOADf64:
2155  case PPC::XFSTOREf64: {
2156    assert(Subtarget.hasVSX() &&
2157           "Invalid X-Form Pseudo-ops on target that has no VSX.");
2158    assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2159           "X-form op must have register and register operands");
2160    return expandVSXMemPseudo(MI);
2161  }
2162  case PPC::SPILLTOVSR_LD: {
2163    Register TargetReg = MI.getOperand(0).getReg();
2164    if (PPC::VSFRCRegClass.contains(TargetReg)) {
2165      MI.setDesc(get(PPC::DFLOADf64));
2166      return expandPostRAPseudo(MI);
2167    }
2168    else
2169      MI.setDesc(get(PPC::LD));
2170    return true;
2171  }
2172  case PPC::SPILLTOVSR_ST: {
2173    Register SrcReg = MI.getOperand(0).getReg();
2174    if (PPC::VSFRCRegClass.contains(SrcReg)) {
2175      NumStoreSPILLVSRRCAsVec++;
2176      MI.setDesc(get(PPC::DFSTOREf64));
2177      return expandPostRAPseudo(MI);
2178    } else {
2179      NumStoreSPILLVSRRCAsGpr++;
2180      MI.setDesc(get(PPC::STD));
2181    }
2182    return true;
2183  }
2184  case PPC::SPILLTOVSR_LDX: {
2185    Register TargetReg = MI.getOperand(0).getReg();
2186    if (PPC::VSFRCRegClass.contains(TargetReg))
2187      MI.setDesc(get(PPC::LXSDX));
2188    else
2189      MI.setDesc(get(PPC::LDX));
2190    return true;
2191  }
2192  case PPC::SPILLTOVSR_STX: {
2193    Register SrcReg = MI.getOperand(0).getReg();
2194    if (PPC::VSFRCRegClass.contains(SrcReg)) {
2195      NumStoreSPILLVSRRCAsVec++;
2196      MI.setDesc(get(PPC::STXSDX));
2197    } else {
2198      NumStoreSPILLVSRRCAsGpr++;
2199      MI.setDesc(get(PPC::STDX));
2200    }
2201    return true;
2202  }
2203
2204  case PPC::CFENCE8: {
2205    auto Val = MI.getOperand(0).getReg();
2206    BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2207    BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2208        .addImm(PPC::PRED_NE_MINUS)
2209        .addReg(PPC::CR7)
2210        .addImm(1);
2211    MI.setDesc(get(PPC::ISYNC));
2212    MI.RemoveOperand(0);
2213    return true;
2214  }
2215  }
2216  return false;
2217}
2218
2219// Essentially a compile-time implementation of a compare->isel sequence.
2220// It takes two constants to compare, along with the true/false registers
2221// and the comparison type (as a subreg to a CR field) and returns one
2222// of the true/false registers, depending on the comparison results.
2223static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2224                          unsigned TrueReg, unsigned FalseReg,
2225                          unsigned CRSubReg) {
2226  // Signed comparisons. The immediates are assumed to be sign-extended.
2227  if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2228    switch (CRSubReg) {
2229    default: llvm_unreachable("Unknown integer comparison type.");
2230    case PPC::sub_lt:
2231      return Imm1 < Imm2 ? TrueReg : FalseReg;
2232    case PPC::sub_gt:
2233      return Imm1 > Imm2 ? TrueReg : FalseReg;
2234    case PPC::sub_eq:
2235      return Imm1 == Imm2 ? TrueReg : FalseReg;
2236    }
2237  }
2238  // Unsigned comparisons.
2239  else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2240    switch (CRSubReg) {
2241    default: llvm_unreachable("Unknown integer comparison type.");
2242    case PPC::sub_lt:
2243      return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2244    case PPC::sub_gt:
2245      return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2246    case PPC::sub_eq:
2247      return Imm1 == Imm2 ? TrueReg : FalseReg;
2248    }
2249  }
2250  return PPC::NoRegister;
2251}
2252
2253void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2254                                              unsigned OpNo,
2255                                              int64_t Imm) const {
2256  assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2257  // Replace the REG with the Immediate.
2258  Register InUseReg = MI.getOperand(OpNo).getReg();
2259  MI.getOperand(OpNo).ChangeToImmediate(Imm);
2260
2261  if (MI.implicit_operands().empty())
2262    return;
2263
2264  // We need to make sure that the MI didn't have any implicit use
2265  // of this REG any more.
2266  const TargetRegisterInfo *TRI = &getRegisterInfo();
2267  int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2268  if (UseOpIdx >= 0) {
2269    MachineOperand &MO = MI.getOperand(UseOpIdx);
2270    if (MO.isImplicit())
2271      // The operands must always be in the following order:
2272      // - explicit reg defs,
2273      // - other explicit operands (reg uses, immediates, etc.),
2274      // - implicit reg defs
2275      // - implicit reg uses
2276      // Therefore, removing the implicit operand won't change the explicit
2277      // operands layout.
2278      MI.RemoveOperand(UseOpIdx);
2279  }
2280}
2281
2282// Replace an instruction with one that materializes a constant (and sets
2283// CR0 if the original instruction was a record-form instruction).
2284void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2285                                      const LoadImmediateInfo &LII) const {
2286  // Remove existing operands.
2287  int OperandToKeep = LII.SetCR ? 1 : 0;
2288  for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2289    MI.RemoveOperand(i);
2290
2291  // Replace the instruction.
2292  if (LII.SetCR) {
2293    MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
2294    // Set the immediate.
2295    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2296        .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2297    return;
2298  }
2299  else
2300    MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2301
2302  // Set the immediate.
2303  MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2304      .addImm(LII.Imm);
2305}
2306
2307MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2308                                           bool &SeenIntermediateUse) const {
2309  assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2310         "Should be called after register allocation.");
2311  const TargetRegisterInfo *TRI = &getRegisterInfo();
2312  MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2313  It++;
2314  SeenIntermediateUse = false;
2315  for (; It != E; ++It) {
2316    if (It->modifiesRegister(Reg, TRI))
2317      return &*It;
2318    if (It->readsRegister(Reg, TRI))
2319      SeenIntermediateUse = true;
2320  }
2321  return nullptr;
2322}
2323
2324MachineInstr *PPCInstrInfo::getForwardingDefMI(
2325  MachineInstr &MI,
2326  unsigned &OpNoForForwarding,
2327  bool &SeenIntermediateUse) const {
2328  OpNoForForwarding = ~0U;
2329  MachineInstr *DefMI = nullptr;
2330  MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2331  const TargetRegisterInfo *TRI = &getRegisterInfo();
2332  // If we're in SSA, get the defs through the MRI. Otherwise, only look
2333  // within the basic block to see if the register is defined using an LI/LI8.
2334  if (MRI->isSSA()) {
2335    for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2336      if (!MI.getOperand(i).isReg())
2337        continue;
2338      Register Reg = MI.getOperand(i).getReg();
2339      if (!Register::isVirtualRegister(Reg))
2340        continue;
2341      unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2342      if (Register::isVirtualRegister(TrueReg)) {
2343        DefMI = MRI->getVRegDef(TrueReg);
2344        if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2345          OpNoForForwarding = i;
2346          break;
2347        }
2348      }
2349    }
2350  } else {
2351    // Looking back through the definition for each operand could be expensive,
2352    // so exit early if this isn't an instruction that either has an immediate
2353    // form or is already an immediate form that we can handle.
2354    ImmInstrInfo III;
2355    unsigned Opc = MI.getOpcode();
2356    bool ConvertibleImmForm =
2357        Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
2358        Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2359        Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
2360        Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
2361        Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2362        Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
2363        Opc == PPC::RLWINM8_rec;
2364    bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2365                       ? isVFRegister(MI.getOperand(0).getReg())
2366                       : false;
2367    if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2368      return nullptr;
2369
2370    // Don't convert or %X, %Y, %Y since that's just a register move.
2371    if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2372        MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2373      return nullptr;
2374    for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2375      MachineOperand &MO = MI.getOperand(i);
2376      SeenIntermediateUse = false;
2377      if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2378        Register Reg = MI.getOperand(i).getReg();
2379        // If we see another use of this reg between the def and the MI,
2380        // we want to flat it so the def isn't deleted.
2381        MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2382        if (DefMI) {
2383          // Is this register defined by some form of add-immediate (including
2384          // load-immediate) within this basic block?
2385          switch (DefMI->getOpcode()) {
2386          default:
2387            break;
2388          case PPC::LI:
2389          case PPC::LI8:
2390          case PPC::ADDItocL:
2391          case PPC::ADDI:
2392          case PPC::ADDI8:
2393            OpNoForForwarding = i;
2394            return DefMI;
2395          }
2396        }
2397      }
2398    }
2399  }
2400  return OpNoForForwarding == ~0U ? nullptr : DefMI;
2401}
2402
2403const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2404  static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2405      // Power 8
2406      {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2407       PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2408       PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2409       PPC::SPILLTOVSR_ST, PPC::EVSTDD},
2410      // Power 9
2411      {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2412       PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2413       PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2414       PPC::SPILLTOVSR_ST}};
2415
2416  return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2417}
2418
2419const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2420  static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2421      // Power 8
2422      {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2423       PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2424       PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2425       PPC::SPILLTOVSR_LD, PPC::EVLDD},
2426      // Power 9
2427      {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2428       PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2429       PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2430       PPC::SPILLTOVSR_LD}};
2431
2432  return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2433}
2434
2435void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2436                                     unsigned RegNo) const {
2437  const MachineRegisterInfo &MRI =
2438      StartMI.getParent()->getParent()->getRegInfo();
2439  if (MRI.isSSA())
2440    return;
2441
2442  // Instructions between [StartMI, EndMI] should be in same basic block.
2443  assert((StartMI.getParent() == EndMI.getParent()) &&
2444         "Instructions are not in same basic block");
2445
2446  bool IsKillSet = false;
2447
2448  auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2449    MachineOperand &MO = MI.getOperand(Index);
2450    if (MO.isReg() && MO.isUse() && MO.isKill() &&
2451        getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2452      MO.setIsKill(false);
2453  };
2454
2455  // Set killed flag for EndMI.
2456  // No need to do anything if EndMI defines RegNo.
2457  int UseIndex =
2458      EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2459  if (UseIndex != -1) {
2460    EndMI.getOperand(UseIndex).setIsKill(true);
2461    IsKillSet = true;
2462    // Clear killed flag for other EndMI operands related to RegNo. In some
2463    // upexpected cases, killed may be set multiple times for same register
2464    // operand in same MI.
2465    for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2466      if (i != UseIndex)
2467        clearOperandKillInfo(EndMI, i);
2468  }
2469
2470  // Walking the inst in reverse order (EndMI -> StartMI].
2471  MachineBasicBlock::reverse_iterator It = EndMI;
2472  MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2473  // EndMI has been handled above, skip it here.
2474  It++;
2475  MachineOperand *MO = nullptr;
2476  for (; It != E; ++It) {
2477    // Skip insturctions which could not be a def/use of RegNo.
2478    if (It->isDebugInstr() || It->isPosition())
2479      continue;
2480
2481    // Clear killed flag for all It operands related to RegNo. In some
2482    // upexpected cases, killed may be set multiple times for same register
2483    // operand in same MI.
2484    for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2485        clearOperandKillInfo(*It, i);
2486
2487    // If killed is not set, set killed for its last use or set dead for its def
2488    // if no use found.
2489    if (!IsKillSet) {
2490      if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2491        // Use found, set it killed.
2492        IsKillSet = true;
2493        MO->setIsKill(true);
2494        continue;
2495      } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2496                                                  &getRegisterInfo()))) {
2497        // No use found, set dead for its def.
2498        assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2499        MO->setIsDead(true);
2500        break;
2501      }
2502    }
2503
2504    if ((&*It) == &StartMI)
2505      break;
2506  }
2507  // Ensure RegMo liveness is killed after EndMI.
2508  assert((IsKillSet || (MO && MO->isDead())) &&
2509         "RegNo should be killed or dead");
2510}
2511
2512// This opt tries to convert the following imm form to an index form to save an
2513// add for stack variables.
2514// Return false if no such pattern found.
2515//
2516// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
2517// ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
2518// Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
2519//
2520// can be converted to:
2521//
2522// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
2523// Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
2524//
2525// In order to eliminate ADD instr, make sure that:
2526// 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
2527//    new ADDI instr and ADDI can only take int16 Imm.
2528// 2: ToBeChangedReg must be killed in ADD instr and there is no other use
2529//    between ADDI and ADD instr since its original def in ADDI will be changed
2530//    in new ADDI instr. And also there should be no new def for it between
2531//    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
2532// 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
2533//    between ADD and Imm instr since ADD instr will be eliminated.
2534// 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
2535//    moved to Index instr.
2536bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
2537  MachineFunction *MF = MI.getParent()->getParent();
2538  MachineRegisterInfo *MRI = &MF->getRegInfo();
2539  bool PostRA = !MRI->isSSA();
2540  // Do this opt after PEI which is after RA. The reason is stack slot expansion
2541  // in PEI may expose such opportunities since in PEI, stack slot offsets to
2542  // frame base(OffsetAddi) are determined.
2543  if (!PostRA)
2544    return false;
2545  unsigned ToBeDeletedReg = 0;
2546  int64_t OffsetImm = 0;
2547  unsigned XFormOpcode = 0;
2548  ImmInstrInfo III;
2549
2550  // Check if Imm instr meets requirement.
2551  if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
2552                                    III))
2553    return false;
2554
2555  bool OtherIntermediateUse = false;
2556  MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
2557
2558  // Exit if there is other use between ADD and Imm instr or no def found.
2559  if (OtherIntermediateUse || !ADDMI)
2560    return false;
2561
2562  // Check if ADD instr meets requirement.
2563  if (!isADDInstrEligibleForFolding(*ADDMI))
2564    return false;
2565
2566  unsigned ScaleRegIdx = 0;
2567  int64_t OffsetAddi = 0;
2568  MachineInstr *ADDIMI = nullptr;
2569
2570  // Check if there is a valid ToBeChangedReg in ADDMI.
2571  // 1: It must be killed.
2572  // 2: Its definition must be a valid ADDIMI.
2573  // 3: It must satify int16 offset requirement.
2574  if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
2575    ScaleRegIdx = 2;
2576  else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
2577    ScaleRegIdx = 1;
2578  else
2579    return false;
2580
2581  assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
2582  unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
2583  unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
2584  auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
2585                       MachineBasicBlock::iterator End) {
2586    for (auto It = ++Start; It != End; It++)
2587      if (It->modifiesRegister(Reg, &getRegisterInfo()))
2588        return true;
2589    return false;
2590  };
2591  // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
2592  // and Imm Instr.
2593  if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
2594    return false;
2595
2596  // Now start to do the transformation.
2597  LLVM_DEBUG(dbgs() << "Replace instruction: "
2598                    << "\n");
2599  LLVM_DEBUG(ADDIMI->dump());
2600  LLVM_DEBUG(ADDMI->dump());
2601  LLVM_DEBUG(MI.dump());
2602  LLVM_DEBUG(dbgs() << "with: "
2603                    << "\n");
2604
2605  // Update ADDI instr.
2606  ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
2607
2608  // Update Imm instr.
2609  MI.setDesc(get(XFormOpcode));
2610  MI.getOperand(III.ImmOpNo)
2611      .ChangeToRegister(ScaleReg, false, false,
2612                        ADDMI->getOperand(ScaleRegIdx).isKill());
2613
2614  MI.getOperand(III.OpNoForForwarding)
2615      .ChangeToRegister(ToBeChangedReg, false, false, true);
2616
2617  // Eliminate ADD instr.
2618  ADDMI->eraseFromParent();
2619
2620  LLVM_DEBUG(ADDIMI->dump());
2621  LLVM_DEBUG(MI.dump());
2622
2623  return true;
2624}
2625
2626bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
2627                                                 int64_t &Imm) const {
2628  unsigned Opc = ADDIMI.getOpcode();
2629
2630  // Exit if the instruction is not ADDI.
2631  if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
2632    return false;
2633
2634  // The operand may not necessarily be an immediate - it could be a relocation.
2635  if (!ADDIMI.getOperand(2).isImm())
2636    return false;
2637
2638  Imm = ADDIMI.getOperand(2).getImm();
2639
2640  return true;
2641}
2642
2643bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
2644  unsigned Opc = ADDMI.getOpcode();
2645
2646  // Exit if the instruction is not ADD.
2647  return Opc == PPC::ADD4 || Opc == PPC::ADD8;
2648}
2649
2650bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
2651                                                unsigned &ToBeDeletedReg,
2652                                                unsigned &XFormOpcode,
2653                                                int64_t &OffsetImm,
2654                                                ImmInstrInfo &III) const {
2655  // Only handle load/store.
2656  if (!MI.mayLoadOrStore())
2657    return false;
2658
2659  unsigned Opc = MI.getOpcode();
2660
2661  XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
2662
2663  // Exit if instruction has no index form.
2664  if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
2665    return false;
2666
2667  // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
2668  if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
2669                       III, true))
2670    return false;
2671
2672  if (!III.IsSummingOperands)
2673    return false;
2674
2675  MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
2676  MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
2677  // Only support imm operands, not relocation slots or others.
2678  if (!ImmOperand.isImm())
2679    return false;
2680
2681  assert(RegOperand.isReg() && "Instruction format is not right");
2682
2683  // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
2684  if (!RegOperand.isKill())
2685    return false;
2686
2687  ToBeDeletedReg = RegOperand.getReg();
2688  OffsetImm = ImmOperand.getImm();
2689
2690  return true;
2691}
2692
2693bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
2694                                         MachineInstr *&ADDIMI,
2695                                         int64_t &OffsetAddi,
2696                                         int64_t OffsetImm) const {
2697  assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
2698  MachineOperand &MO = ADDMI->getOperand(Index);
2699
2700  if (!MO.isKill())
2701    return false;
2702
2703  bool OtherIntermediateUse = false;
2704
2705  ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
2706  // Currently handle only one "add + Imminstr" pair case, exit if other
2707  // intermediate use for ToBeChangedReg found.
2708  // TODO: handle the cases where there are other "add + Imminstr" pairs
2709  // with same offset in Imminstr which is like:
2710  //
2711  // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
2712  // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
2713  // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
2714  // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
2715  // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
2716  //
2717  // can be converted to:
2718  //
2719  // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
2720  //                                       (OffsetAddi + OffsetImm)
2721  // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
2722  // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
2723
2724  if (OtherIntermediateUse || !ADDIMI)
2725    return false;
2726  // Check if ADDI instr meets requirement.
2727  if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
2728    return false;
2729
2730  if (isInt<16>(OffsetAddi + OffsetImm))
2731    return true;
2732  return false;
2733}
2734
2735// If this instruction has an immediate form and one of its operands is a
2736// result of a load-immediate or an add-immediate, convert it to
2737// the immediate form if the constant is in range.
2738bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2739                                          MachineInstr **KilledDef) const {
2740  MachineFunction *MF = MI.getParent()->getParent();
2741  MachineRegisterInfo *MRI = &MF->getRegInfo();
2742  bool PostRA = !MRI->isSSA();
2743  bool SeenIntermediateUse = true;
2744  unsigned ForwardingOperand = ~0U;
2745  MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2746                                           SeenIntermediateUse);
2747  if (!DefMI)
2748    return false;
2749  assert(ForwardingOperand < MI.getNumOperands() &&
2750         "The forwarding operand needs to be valid at this point");
2751  bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2752  bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2753  Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2754  if (KilledDef && KillFwdDefMI)
2755    *KilledDef = DefMI;
2756
2757  ImmInstrInfo III;
2758  bool IsVFReg = MI.getOperand(0).isReg()
2759                     ? isVFRegister(MI.getOperand(0).getReg())
2760                     : false;
2761  bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2762  // If this is a reg+reg instruction that has a reg+imm form,
2763  // and one of the operands is produced by an add-immediate,
2764  // try to convert it.
2765  if (HasImmForm &&
2766      transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2767                                 KillFwdDefMI))
2768    return true;
2769
2770  if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2771      !DefMI->getOperand(1).isImm())
2772    return false;
2773
2774  int64_t Immediate = DefMI->getOperand(1).getImm();
2775  // Sign-extend to 64-bits.
2776  int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2777    (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2778
2779  // If this is a reg+reg instruction that has a reg+imm form,
2780  // and one of the operands is produced by LI, convert it now.
2781  if (HasImmForm)
2782    return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2783
2784  bool ReplaceWithLI = false;
2785  bool Is64BitLI = false;
2786  int64_t NewImm = 0;
2787  bool SetCR = false;
2788  unsigned Opc = MI.getOpcode();
2789  switch (Opc) {
2790  default: return false;
2791
2792  // FIXME: Any branches conditional on such a comparison can be made
2793  // unconditional. At this time, this happens too infrequently to be worth
2794  // the implementation effort, but if that ever changes, we could convert
2795  // such a pattern here.
2796  case PPC::CMPWI:
2797  case PPC::CMPLWI:
2798  case PPC::CMPDI:
2799  case PPC::CMPLDI: {
2800    // Doing this post-RA would require dataflow analysis to reliably find uses
2801    // of the CR register set by the compare.
2802    // No need to fixup killed/dead flag since this transformation is only valid
2803    // before RA.
2804    if (PostRA)
2805      return false;
2806    // If a compare-immediate is fed by an immediate and is itself an input of
2807    // an ISEL (the most common case) into a COPY of the correct register.
2808    bool Changed = false;
2809    Register DefReg = MI.getOperand(0).getReg();
2810    int64_t Comparand = MI.getOperand(2).getImm();
2811    int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2812      (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2813
2814    for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2815      unsigned UseOpc = CompareUseMI.getOpcode();
2816      if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2817        continue;
2818      unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2819      Register TrueReg = CompareUseMI.getOperand(1).getReg();
2820      Register FalseReg = CompareUseMI.getOperand(2).getReg();
2821      unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2822                                     FalseReg, CRSubReg);
2823      if (RegToCopy == PPC::NoRegister)
2824        continue;
2825      // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2826      if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2827        CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2828        replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2829        CompareUseMI.RemoveOperand(3);
2830        CompareUseMI.RemoveOperand(2);
2831        continue;
2832      }
2833      LLVM_DEBUG(
2834          dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2835      LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2836      LLVM_DEBUG(dbgs() << "Is converted to:\n");
2837      // Convert to copy and remove unneeded operands.
2838      CompareUseMI.setDesc(get(PPC::COPY));
2839      CompareUseMI.RemoveOperand(3);
2840      CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2841      CmpIselsConverted++;
2842      Changed = true;
2843      LLVM_DEBUG(CompareUseMI.dump());
2844    }
2845    if (Changed)
2846      return true;
2847    // This may end up incremented multiple times since this function is called
2848    // during a fixed-point transformation, but it is only meant to indicate the
2849    // presence of this opportunity.
2850    MissedConvertibleImmediateInstrs++;
2851    return false;
2852  }
2853
2854  // Immediate forms - may simply be convertable to an LI.
2855  case PPC::ADDI:
2856  case PPC::ADDI8: {
2857    // Does the sum fit in a 16-bit signed field?
2858    int64_t Addend = MI.getOperand(2).getImm();
2859    if (isInt<16>(Addend + SExtImm)) {
2860      ReplaceWithLI = true;
2861      Is64BitLI = Opc == PPC::ADDI8;
2862      NewImm = Addend + SExtImm;
2863      break;
2864    }
2865    return false;
2866  }
2867  case PPC::RLDICL:
2868  case PPC::RLDICL_rec:
2869  case PPC::RLDICL_32:
2870  case PPC::RLDICL_32_64: {
2871    // Use APInt's rotate function.
2872    int64_t SH = MI.getOperand(2).getImm();
2873    int64_t MB = MI.getOperand(3).getImm();
2874    APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
2875                SExtImm, true);
2876    InVal = InVal.rotl(SH);
2877    uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2878    InVal &= Mask;
2879    // Can't replace negative values with an LI as that will sign-extend
2880    // and not clear the left bits. If we're setting the CR bit, we will use
2881    // ANDI_rec which won't sign extend, so that's safe.
2882    if (isUInt<15>(InVal.getSExtValue()) ||
2883        (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
2884      ReplaceWithLI = true;
2885      Is64BitLI = Opc != PPC::RLDICL_32;
2886      NewImm = InVal.getSExtValue();
2887      SetCR = Opc == PPC::RLDICL_rec;
2888      break;
2889    }
2890    return false;
2891  }
2892  case PPC::RLWINM:
2893  case PPC::RLWINM8:
2894  case PPC::RLWINM_rec:
2895  case PPC::RLWINM8_rec: {
2896    int64_t SH = MI.getOperand(2).getImm();
2897    int64_t MB = MI.getOperand(3).getImm();
2898    int64_t ME = MI.getOperand(4).getImm();
2899    APInt InVal(32, SExtImm, true);
2900    InVal = InVal.rotl(SH);
2901    // Set the bits (        MB + 32        ) to (        ME + 32        ).
2902    uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2903    InVal &= Mask;
2904    // Can't replace negative values with an LI as that will sign-extend
2905    // and not clear the left bits. If we're setting the CR bit, we will use
2906    // ANDI_rec which won't sign extend, so that's safe.
2907    bool ValueFits = isUInt<15>(InVal.getSExtValue());
2908    ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
2909                  isUInt<16>(InVal.getSExtValue()));
2910    if (ValueFits) {
2911      ReplaceWithLI = true;
2912      Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
2913      NewImm = InVal.getSExtValue();
2914      SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
2915      break;
2916    }
2917    return false;
2918  }
2919  case PPC::ORI:
2920  case PPC::ORI8:
2921  case PPC::XORI:
2922  case PPC::XORI8: {
2923    int64_t LogicalImm = MI.getOperand(2).getImm();
2924    int64_t Result = 0;
2925    if (Opc == PPC::ORI || Opc == PPC::ORI8)
2926      Result = LogicalImm | SExtImm;
2927    else
2928      Result = LogicalImm ^ SExtImm;
2929    if (isInt<16>(Result)) {
2930      ReplaceWithLI = true;
2931      Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2932      NewImm = Result;
2933      break;
2934    }
2935    return false;
2936  }
2937  }
2938
2939  if (ReplaceWithLI) {
2940    // We need to be careful with CR-setting instructions we're replacing.
2941    if (SetCR) {
2942      // We don't know anything about uses when we're out of SSA, so only
2943      // replace if the new immediate will be reproduced.
2944      bool ImmChanged = (SExtImm & NewImm) != NewImm;
2945      if (PostRA && ImmChanged)
2946        return false;
2947
2948      if (!PostRA) {
2949        // If the defining load-immediate has no other uses, we can just replace
2950        // the immediate with the new immediate.
2951        if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2952          DefMI->getOperand(1).setImm(NewImm);
2953
2954        // If we're not using the GPR result of the CR-setting instruction, we
2955        // just need to and with zero/non-zero depending on the new immediate.
2956        else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2957          if (NewImm) {
2958            assert(Immediate && "Transformation converted zero to non-zero?");
2959            NewImm = Immediate;
2960          }
2961        }
2962        else if (ImmChanged)
2963          return false;
2964      }
2965    }
2966
2967    LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2968    LLVM_DEBUG(MI.dump());
2969    LLVM_DEBUG(dbgs() << "Fed by:\n");
2970    LLVM_DEBUG(DefMI->dump());
2971    LoadImmediateInfo LII;
2972    LII.Imm = NewImm;
2973    LII.Is64Bit = Is64BitLI;
2974    LII.SetCR = SetCR;
2975    // If we're setting the CR, the original load-immediate must be kept (as an
2976    // operand to ANDI_rec/ANDI8_rec).
2977    if (KilledDef && SetCR)
2978      *KilledDef = nullptr;
2979    replaceInstrWithLI(MI, LII);
2980
2981    // Fixup killed/dead flag after transformation.
2982    // Pattern:
2983    // ForwardingOperandReg = LI imm1
2984    // y = op2 imm2, ForwardingOperandReg(killed)
2985    if (IsForwardingOperandKilled)
2986      fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2987
2988    LLVM_DEBUG(dbgs() << "With:\n");
2989    LLVM_DEBUG(MI.dump());
2990    return true;
2991  }
2992  return false;
2993}
2994
2995bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
2996                                   ImmInstrInfo &III, bool PostRA) const {
2997  // The vast majority of the instructions would need their operand 2 replaced
2998  // with an immediate when switching to the reg+imm form. A marked exception
2999  // are the update form loads/stores for which a constant operand 2 would need
3000  // to turn into a displacement and move operand 1 to the operand 2 position.
3001  III.ImmOpNo = 2;
3002  III.OpNoForForwarding = 2;
3003  III.ImmWidth = 16;
3004  III.ImmMustBeMultipleOf = 1;
3005  III.TruncateImmTo = 0;
3006  III.IsSummingOperands = false;
3007  switch (Opc) {
3008  default: return false;
3009  case PPC::ADD4:
3010  case PPC::ADD8:
3011    III.SignedImm = true;
3012    III.ZeroIsSpecialOrig = 0;
3013    III.ZeroIsSpecialNew = 1;
3014    III.IsCommutative = true;
3015    III.IsSummingOperands = true;
3016    III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3017    break;
3018  case PPC::ADDC:
3019  case PPC::ADDC8:
3020    III.SignedImm = true;
3021    III.ZeroIsSpecialOrig = 0;
3022    III.ZeroIsSpecialNew = 0;
3023    III.IsCommutative = true;
3024    III.IsSummingOperands = true;
3025    III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3026    break;
3027  case PPC::ADDC_rec:
3028    III.SignedImm = true;
3029    III.ZeroIsSpecialOrig = 0;
3030    III.ZeroIsSpecialNew = 0;
3031    III.IsCommutative = true;
3032    III.IsSummingOperands = true;
3033    III.ImmOpcode = PPC::ADDIC_rec;
3034    break;
3035  case PPC::SUBFC:
3036  case PPC::SUBFC8:
3037    III.SignedImm = true;
3038    III.ZeroIsSpecialOrig = 0;
3039    III.ZeroIsSpecialNew = 0;
3040    III.IsCommutative = false;
3041    III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3042    break;
3043  case PPC::CMPW:
3044  case PPC::CMPD:
3045    III.SignedImm = true;
3046    III.ZeroIsSpecialOrig = 0;
3047    III.ZeroIsSpecialNew = 0;
3048    III.IsCommutative = false;
3049    III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3050    break;
3051  case PPC::CMPLW:
3052  case PPC::CMPLD:
3053    III.SignedImm = false;
3054    III.ZeroIsSpecialOrig = 0;
3055    III.ZeroIsSpecialNew = 0;
3056    III.IsCommutative = false;
3057    III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3058    break;
3059  case PPC::AND_rec:
3060  case PPC::AND8_rec:
3061  case PPC::OR:
3062  case PPC::OR8:
3063  case PPC::XOR:
3064  case PPC::XOR8:
3065    III.SignedImm = false;
3066    III.ZeroIsSpecialOrig = 0;
3067    III.ZeroIsSpecialNew = 0;
3068    III.IsCommutative = true;
3069    switch(Opc) {
3070    default: llvm_unreachable("Unknown opcode");
3071    case PPC::AND_rec:
3072      III.ImmOpcode = PPC::ANDI_rec;
3073      break;
3074    case PPC::AND8_rec:
3075      III.ImmOpcode = PPC::ANDI8_rec;
3076      break;
3077    case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3078    case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3079    case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3080    case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3081    }
3082    break;
3083  case PPC::RLWNM:
3084  case PPC::RLWNM8:
3085  case PPC::RLWNM_rec:
3086  case PPC::RLWNM8_rec:
3087  case PPC::SLW:
3088  case PPC::SLW8:
3089  case PPC::SLW_rec:
3090  case PPC::SLW8_rec:
3091  case PPC::SRW:
3092  case PPC::SRW8:
3093  case PPC::SRW_rec:
3094  case PPC::SRW8_rec:
3095  case PPC::SRAW:
3096  case PPC::SRAW_rec:
3097    III.SignedImm = false;
3098    III.ZeroIsSpecialOrig = 0;
3099    III.ZeroIsSpecialNew = 0;
3100    III.IsCommutative = false;
3101    // This isn't actually true, but the instructions ignore any of the
3102    // upper bits, so any immediate loaded with an LI is acceptable.
3103    // This does not apply to shift right algebraic because a value
3104    // out of range will produce a -1/0.
3105    III.ImmWidth = 16;
3106    if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3107        Opc == PPC::RLWNM8_rec)
3108      III.TruncateImmTo = 5;
3109    else
3110      III.TruncateImmTo = 6;
3111    switch(Opc) {
3112    default: llvm_unreachable("Unknown opcode");
3113    case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3114    case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3115    case PPC::RLWNM_rec:
3116      III.ImmOpcode = PPC::RLWINM_rec;
3117      break;
3118    case PPC::RLWNM8_rec:
3119      III.ImmOpcode = PPC::RLWINM8_rec;
3120      break;
3121    case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3122    case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3123    case PPC::SLW_rec:
3124      III.ImmOpcode = PPC::RLWINM_rec;
3125      break;
3126    case PPC::SLW8_rec:
3127      III.ImmOpcode = PPC::RLWINM8_rec;
3128      break;
3129    case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3130    case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3131    case PPC::SRW_rec:
3132      III.ImmOpcode = PPC::RLWINM_rec;
3133      break;
3134    case PPC::SRW8_rec:
3135      III.ImmOpcode = PPC::RLWINM8_rec;
3136      break;
3137    case PPC::SRAW:
3138      III.ImmWidth = 5;
3139      III.TruncateImmTo = 0;
3140      III.ImmOpcode = PPC::SRAWI;
3141      break;
3142    case PPC::SRAW_rec:
3143      III.ImmWidth = 5;
3144      III.TruncateImmTo = 0;
3145      III.ImmOpcode = PPC::SRAWI_rec;
3146      break;
3147    }
3148    break;
3149  case PPC::RLDCL:
3150  case PPC::RLDCL_rec:
3151  case PPC::RLDCR:
3152  case PPC::RLDCR_rec:
3153  case PPC::SLD:
3154  case PPC::SLD_rec:
3155  case PPC::SRD:
3156  case PPC::SRD_rec:
3157  case PPC::SRAD:
3158  case PPC::SRAD_rec:
3159    III.SignedImm = false;
3160    III.ZeroIsSpecialOrig = 0;
3161    III.ZeroIsSpecialNew = 0;
3162    III.IsCommutative = false;
3163    // This isn't actually true, but the instructions ignore any of the
3164    // upper bits, so any immediate loaded with an LI is acceptable.
3165    // This does not apply to shift right algebraic because a value
3166    // out of range will produce a -1/0.
3167    III.ImmWidth = 16;
3168    if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
3169        Opc == PPC::RLDCR_rec)
3170      III.TruncateImmTo = 6;
3171    else
3172      III.TruncateImmTo = 7;
3173    switch(Opc) {
3174    default: llvm_unreachable("Unknown opcode");
3175    case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
3176    case PPC::RLDCL_rec:
3177      III.ImmOpcode = PPC::RLDICL_rec;
3178      break;
3179    case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
3180    case PPC::RLDCR_rec:
3181      III.ImmOpcode = PPC::RLDICR_rec;
3182      break;
3183    case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
3184    case PPC::SLD_rec:
3185      III.ImmOpcode = PPC::RLDICR_rec;
3186      break;
3187    case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
3188    case PPC::SRD_rec:
3189      III.ImmOpcode = PPC::RLDICL_rec;
3190      break;
3191    case PPC::SRAD:
3192      III.ImmWidth = 6;
3193      III.TruncateImmTo = 0;
3194      III.ImmOpcode = PPC::SRADI;
3195       break;
3196    case PPC::SRAD_rec:
3197      III.ImmWidth = 6;
3198      III.TruncateImmTo = 0;
3199      III.ImmOpcode = PPC::SRADI_rec;
3200      break;
3201    }
3202    break;
3203  // Loads and stores:
3204  case PPC::LBZX:
3205  case PPC::LBZX8:
3206  case PPC::LHZX:
3207  case PPC::LHZX8:
3208  case PPC::LHAX:
3209  case PPC::LHAX8:
3210  case PPC::LWZX:
3211  case PPC::LWZX8:
3212  case PPC::LWAX:
3213  case PPC::LDX:
3214  case PPC::LFSX:
3215  case PPC::LFDX:
3216  case PPC::STBX:
3217  case PPC::STBX8:
3218  case PPC::STHX:
3219  case PPC::STHX8:
3220  case PPC::STWX:
3221  case PPC::STWX8:
3222  case PPC::STDX:
3223  case PPC::STFSX:
3224  case PPC::STFDX:
3225    III.SignedImm = true;
3226    III.ZeroIsSpecialOrig = 1;
3227    III.ZeroIsSpecialNew = 2;
3228    III.IsCommutative = true;
3229    III.IsSummingOperands = true;
3230    III.ImmOpNo = 1;
3231    III.OpNoForForwarding = 2;
3232    switch(Opc) {
3233    default: llvm_unreachable("Unknown opcode");
3234    case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3235    case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3236    case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3237    case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3238    case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3239    case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3240    case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3241    case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3242    case PPC::LWAX:
3243      III.ImmOpcode = PPC::LWA;
3244      III.ImmMustBeMultipleOf = 4;
3245      break;
3246    case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3247    case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3248    case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3249    case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3250    case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3251    case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3252    case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3253    case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3254    case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3255    case PPC::STDX:
3256      III.ImmOpcode = PPC::STD;
3257      III.ImmMustBeMultipleOf = 4;
3258      break;
3259    case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3260    case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3261    }
3262    break;
3263  case PPC::LBZUX:
3264  case PPC::LBZUX8:
3265  case PPC::LHZUX:
3266  case PPC::LHZUX8:
3267  case PPC::LHAUX:
3268  case PPC::LHAUX8:
3269  case PPC::LWZUX:
3270  case PPC::LWZUX8:
3271  case PPC::LDUX:
3272  case PPC::LFSUX:
3273  case PPC::LFDUX:
3274  case PPC::STBUX:
3275  case PPC::STBUX8:
3276  case PPC::STHUX:
3277  case PPC::STHUX8:
3278  case PPC::STWUX:
3279  case PPC::STWUX8:
3280  case PPC::STDUX:
3281  case PPC::STFSUX:
3282  case PPC::STFDUX:
3283    III.SignedImm = true;
3284    III.ZeroIsSpecialOrig = 2;
3285    III.ZeroIsSpecialNew = 3;
3286    III.IsCommutative = false;
3287    III.IsSummingOperands = true;
3288    III.ImmOpNo = 2;
3289    III.OpNoForForwarding = 3;
3290    switch(Opc) {
3291    default: llvm_unreachable("Unknown opcode");
3292    case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3293    case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3294    case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3295    case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3296    case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3297    case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3298    case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3299    case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3300    case PPC::LDUX:
3301      III.ImmOpcode = PPC::LDU;
3302      III.ImmMustBeMultipleOf = 4;
3303      break;
3304    case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3305    case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3306    case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3307    case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3308    case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3309    case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3310    case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3311    case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3312    case PPC::STDUX:
3313      III.ImmOpcode = PPC::STDU;
3314      III.ImmMustBeMultipleOf = 4;
3315      break;
3316    case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3317    case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3318    }
3319    break;
3320  // Power9 and up only. For some of these, the X-Form version has access to all
3321  // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3322  // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3323  // into or stored from is one of the VR registers.
3324  case PPC::LXVX:
3325  case PPC::LXSSPX:
3326  case PPC::LXSDX:
3327  case PPC::STXVX:
3328  case PPC::STXSSPX:
3329  case PPC::STXSDX:
3330  case PPC::XFLOADf32:
3331  case PPC::XFLOADf64:
3332  case PPC::XFSTOREf32:
3333  case PPC::XFSTOREf64:
3334    if (!Subtarget.hasP9Vector())
3335      return false;
3336    III.SignedImm = true;
3337    III.ZeroIsSpecialOrig = 1;
3338    III.ZeroIsSpecialNew = 2;
3339    III.IsCommutative = true;
3340    III.IsSummingOperands = true;
3341    III.ImmOpNo = 1;
3342    III.OpNoForForwarding = 2;
3343    III.ImmMustBeMultipleOf = 4;
3344    switch(Opc) {
3345    default: llvm_unreachable("Unknown opcode");
3346    case PPC::LXVX:
3347      III.ImmOpcode = PPC::LXV;
3348      III.ImmMustBeMultipleOf = 16;
3349      break;
3350    case PPC::LXSSPX:
3351      if (PostRA) {
3352        if (IsVFReg)
3353          III.ImmOpcode = PPC::LXSSP;
3354        else {
3355          III.ImmOpcode = PPC::LFS;
3356          III.ImmMustBeMultipleOf = 1;
3357        }
3358        break;
3359      }
3360      LLVM_FALLTHROUGH;
3361    case PPC::XFLOADf32:
3362      III.ImmOpcode = PPC::DFLOADf32;
3363      break;
3364    case PPC::LXSDX:
3365      if (PostRA) {
3366        if (IsVFReg)
3367          III.ImmOpcode = PPC::LXSD;
3368        else {
3369          III.ImmOpcode = PPC::LFD;
3370          III.ImmMustBeMultipleOf = 1;
3371        }
3372        break;
3373      }
3374      LLVM_FALLTHROUGH;
3375    case PPC::XFLOADf64:
3376      III.ImmOpcode = PPC::DFLOADf64;
3377      break;
3378    case PPC::STXVX:
3379      III.ImmOpcode = PPC::STXV;
3380      III.ImmMustBeMultipleOf = 16;
3381      break;
3382    case PPC::STXSSPX:
3383      if (PostRA) {
3384        if (IsVFReg)
3385          III.ImmOpcode = PPC::STXSSP;
3386        else {
3387          III.ImmOpcode = PPC::STFS;
3388          III.ImmMustBeMultipleOf = 1;
3389        }
3390        break;
3391      }
3392      LLVM_FALLTHROUGH;
3393    case PPC::XFSTOREf32:
3394      III.ImmOpcode = PPC::DFSTOREf32;
3395      break;
3396    case PPC::STXSDX:
3397      if (PostRA) {
3398        if (IsVFReg)
3399          III.ImmOpcode = PPC::STXSD;
3400        else {
3401          III.ImmOpcode = PPC::STFD;
3402          III.ImmMustBeMultipleOf = 1;
3403        }
3404        break;
3405      }
3406      LLVM_FALLTHROUGH;
3407    case PPC::XFSTOREf64:
3408      III.ImmOpcode = PPC::DFSTOREf64;
3409      break;
3410    }
3411    break;
3412  }
3413  return true;
3414}
3415
3416// Utility function for swaping two arbitrary operands of an instruction.
3417static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3418  assert(Op1 != Op2 && "Cannot swap operand with itself.");
3419
3420  unsigned MaxOp = std::max(Op1, Op2);
3421  unsigned MinOp = std::min(Op1, Op2);
3422  MachineOperand MOp1 = MI.getOperand(MinOp);
3423  MachineOperand MOp2 = MI.getOperand(MaxOp);
3424  MI.RemoveOperand(std::max(Op1, Op2));
3425  MI.RemoveOperand(std::min(Op1, Op2));
3426
3427  // If the operands we are swapping are the two at the end (the common case)
3428  // we can just remove both and add them in the opposite order.
3429  if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3430    MI.addOperand(MOp2);
3431    MI.addOperand(MOp1);
3432  } else {
3433    // Store all operands in a temporary vector, remove them and re-add in the
3434    // right order.
3435    SmallVector<MachineOperand, 2> MOps;
3436    unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3437    for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3438      MOps.push_back(MI.getOperand(i));
3439      MI.RemoveOperand(i);
3440    }
3441    // MOp2 needs to be added next.
3442    MI.addOperand(MOp2);
3443    // Now add the rest.
3444    for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3445      if (i == MaxOp)
3446        MI.addOperand(MOp1);
3447      else {
3448        MI.addOperand(MOps.back());
3449        MOps.pop_back();
3450      }
3451    }
3452  }
3453}
3454
3455// Check if the 'MI' that has the index OpNoForForwarding
3456// meets the requirement described in the ImmInstrInfo.
3457bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3458                                               const ImmInstrInfo &III,
3459                                               unsigned OpNoForForwarding
3460                                               ) const {
3461  // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3462  // would not work pre-RA, we can only do the check post RA.
3463  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3464  if (MRI.isSSA())
3465    return false;
3466
3467  // Cannot do the transform if MI isn't summing the operands.
3468  if (!III.IsSummingOperands)
3469    return false;
3470
3471  // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3472  if (!III.ZeroIsSpecialOrig)
3473    return false;
3474
3475  // We cannot do the transform if the operand we are trying to replace
3476  // isn't the same as the operand the instruction allows.
3477  if (OpNoForForwarding != III.OpNoForForwarding)
3478    return false;
3479
3480  // Check if the instruction we are trying to transform really has
3481  // the special zero register as its operand.
3482  if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3483      MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3484    return false;
3485
3486  // This machine instruction is convertible if it is,
3487  // 1. summing the operands.
3488  // 2. one of the operands is special zero register.
3489  // 3. the operand we are trying to replace is allowed by the MI.
3490  return true;
3491}
3492
3493// Check if the DefMI is the add inst and set the ImmMO and RegMO
3494// accordingly.
3495bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3496                                               const ImmInstrInfo &III,
3497                                               MachineOperand *&ImmMO,
3498                                               MachineOperand *&RegMO) const {
3499  unsigned Opc = DefMI.getOpcode();
3500  if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3501    return false;
3502
3503  assert(DefMI.getNumOperands() >= 3 &&
3504         "Add inst must have at least three operands");
3505  RegMO = &DefMI.getOperand(1);
3506  ImmMO = &DefMI.getOperand(2);
3507
3508  // This DefMI is elgible for forwarding if it is:
3509  // 1. add inst
3510  // 2. one of the operands is Imm/CPI/Global.
3511  return isAnImmediateOperand(*ImmMO);
3512}
3513
3514bool PPCInstrInfo::isRegElgibleForForwarding(
3515    const MachineOperand &RegMO, const MachineInstr &DefMI,
3516    const MachineInstr &MI, bool KillDefMI,
3517    bool &IsFwdFeederRegKilled) const {
3518  // x = addi y, imm
3519  // ...
3520  // z = lfdx 0, x   -> z = lfd imm(y)
3521  // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3522  // of "y" between the DEF of "x" and "z".
3523  // The query is only valid post RA.
3524  const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3525  if (MRI.isSSA())
3526    return false;
3527
3528  Register Reg = RegMO.getReg();
3529
3530  // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3531  MachineBasicBlock::const_reverse_iterator It = MI;
3532  MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3533  It++;
3534  for (; It != E; ++It) {
3535    if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3536      return false;
3537    else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3538      IsFwdFeederRegKilled = true;
3539    // Made it to DefMI without encountering a clobber.
3540    if ((&*It) == &DefMI)
3541      break;
3542  }
3543  assert((&*It) == &DefMI && "DefMI is missing");
3544
3545  // If DefMI also defines the register to be forwarded, we can only forward it
3546  // if DefMI is being erased.
3547  if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3548    return KillDefMI;
3549
3550  return true;
3551}
3552
3553bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3554                                             const MachineInstr &DefMI,
3555                                             const ImmInstrInfo &III,
3556                                             int64_t &Imm) const {
3557  assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3558  if (DefMI.getOpcode() == PPC::ADDItocL) {
3559    // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3560    // However, we know that, it is 16-bit width, and has the alignment of 4.
3561    // Check if the instruction met the requirement.
3562    if (III.ImmMustBeMultipleOf > 4 ||
3563       III.TruncateImmTo || III.ImmWidth != 16)
3564      return false;
3565
3566    // Going from XForm to DForm loads means that the displacement needs to be
3567    // not just an immediate but also a multiple of 4, or 16 depending on the
3568    // load. A DForm load cannot be represented if it is a multiple of say 2.
3569    // XForm loads do not have this restriction.
3570    if (ImmMO.isGlobal() &&
3571        ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3572      return false;
3573
3574    return true;
3575  }
3576
3577  if (ImmMO.isImm()) {
3578    // It is Imm, we need to check if the Imm fit the range.
3579    int64_t Immediate = ImmMO.getImm();
3580    // Sign-extend to 64-bits.
3581    Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3582      (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3583
3584    if (Imm % III.ImmMustBeMultipleOf)
3585      return false;
3586    if (III.TruncateImmTo)
3587      Imm &= ((1 << III.TruncateImmTo) - 1);
3588    if (III.SignedImm) {
3589      APInt ActualValue(64, Imm, true);
3590      if (!ActualValue.isSignedIntN(III.ImmWidth))
3591        return false;
3592    } else {
3593      uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3594      if ((uint64_t)Imm > UnsignedMax)
3595        return false;
3596    }
3597  }
3598  else
3599    return false;
3600
3601  // This ImmMO is forwarded if it meets the requriement describle
3602  // in ImmInstrInfo
3603  return true;
3604}
3605
3606// If an X-Form instruction is fed by an add-immediate and one of its operands
3607// is the literal zero, attempt to forward the source of the add-immediate to
3608// the corresponding D-Form instruction with the displacement coming from
3609// the immediate being added.
3610bool PPCInstrInfo::transformToImmFormFedByAdd(
3611    MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3612    MachineInstr &DefMI, bool KillDefMI) const {
3613  //         RegMO ImmMO
3614  //           |    |
3615  // x = addi reg, imm  <----- DefMI
3616  // y = op    0 ,  x   <----- MI
3617  //                |
3618  //         OpNoForForwarding
3619  // Check if the MI meet the requirement described in the III.
3620  if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3621    return false;
3622
3623  // Check if the DefMI meet the requirement
3624  // described in the III. If yes, set the ImmMO and RegMO accordingly.
3625  MachineOperand *ImmMO = nullptr;
3626  MachineOperand *RegMO = nullptr;
3627  if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3628    return false;
3629  assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3630
3631  // As we get the Imm operand now, we need to check if the ImmMO meet
3632  // the requirement described in the III. If yes set the Imm.
3633  int64_t Imm = 0;
3634  if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3635    return false;
3636
3637  bool IsFwdFeederRegKilled = false;
3638  // Check if the RegMO can be forwarded to MI.
3639  if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3640                                 IsFwdFeederRegKilled))
3641    return false;
3642
3643  // Get killed info in case fixup needed after transformation.
3644  unsigned ForwardKilledOperandReg = ~0U;
3645  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3646  bool PostRA = !MRI.isSSA();
3647  if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3648    ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3649
3650  // We know that, the MI and DefMI both meet the pattern, and
3651  // the Imm also meet the requirement with the new Imm-form.
3652  // It is safe to do the transformation now.
3653  LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3654  LLVM_DEBUG(MI.dump());
3655  LLVM_DEBUG(dbgs() << "Fed by:\n");
3656  LLVM_DEBUG(DefMI.dump());
3657
3658  // Update the base reg first.
3659  MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3660                                                        false, false,
3661                                                        RegMO->isKill());
3662
3663  // Then, update the imm.
3664  if (ImmMO->isImm()) {
3665    // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3666    // directly.
3667    replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3668  }
3669  else {
3670    // Otherwise, it is Constant Pool Index(CPI) or Global,
3671    // which is relocation in fact. We need to replace the special zero
3672    // register with ImmMO.
3673    // Before that, we need to fixup the target flags for imm.
3674    // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3675    if (DefMI.getOpcode() == PPC::ADDItocL)
3676      ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3677
3678    // MI didn't have the interface such as MI.setOperand(i) though
3679    // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3680    // ImmMO, we need to remove ZERO operand and all the operands behind it,
3681    // and, add the ImmMO, then, move back all the operands behind ZERO.
3682    SmallVector<MachineOperand, 2> MOps;
3683    for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3684      MOps.push_back(MI.getOperand(i));
3685      MI.RemoveOperand(i);
3686    }
3687
3688    // Remove the last MO in the list, which is ZERO operand in fact.
3689    MOps.pop_back();
3690    // Add the imm operand.
3691    MI.addOperand(*ImmMO);
3692    // Now add the rest back.
3693    for (auto &MO : MOps)
3694      MI.addOperand(MO);
3695  }
3696
3697  // Update the opcode.
3698  MI.setDesc(get(III.ImmOpcode));
3699
3700  // Fix up killed/dead flag after transformation.
3701  // Pattern 1:
3702  // x = ADD KilledFwdFeederReg, imm
3703  // n = opn KilledFwdFeederReg(killed), regn
3704  // y = XOP 0, x
3705  // Pattern 2:
3706  // x = ADD reg(killed), imm
3707  // y = XOP 0, x
3708  if (IsFwdFeederRegKilled || RegMO->isKill())
3709    fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3710  // Pattern 3:
3711  // ForwardKilledOperandReg = ADD reg, imm
3712  // y = XOP 0, ForwardKilledOperandReg(killed)
3713  if (ForwardKilledOperandReg != ~0U)
3714    fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3715
3716  LLVM_DEBUG(dbgs() << "With:\n");
3717  LLVM_DEBUG(MI.dump());
3718
3719  return true;
3720}
3721
3722bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3723                                             const ImmInstrInfo &III,
3724                                             unsigned ConstantOpNo,
3725                                             MachineInstr &DefMI,
3726                                             int64_t Imm) const {
3727  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3728  bool PostRA = !MRI.isSSA();
3729  // Exit early if we can't convert this.
3730  if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3731    return false;
3732  if (Imm % III.ImmMustBeMultipleOf)
3733    return false;
3734  if (III.TruncateImmTo)
3735    Imm &= ((1 << III.TruncateImmTo) - 1);
3736  if (III.SignedImm) {
3737    APInt ActualValue(64, Imm, true);
3738    if (!ActualValue.isSignedIntN(III.ImmWidth))
3739      return false;
3740  } else {
3741    uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3742    if ((uint64_t)Imm > UnsignedMax)
3743      return false;
3744  }
3745
3746  // If we're post-RA, the instructions don't agree on whether register zero is
3747  // special, we can transform this as long as the register operand that will
3748  // end up in the location where zero is special isn't R0.
3749  if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3750    unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3751      III.ZeroIsSpecialNew + 1;
3752    Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3753    Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3754    // If R0 is in the operand where zero is special for the new instruction,
3755    // it is unsafe to transform if the constant operand isn't that operand.
3756    if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3757        ConstantOpNo != III.ZeroIsSpecialNew)
3758      return false;
3759    if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3760        ConstantOpNo != PosForOrigZero)
3761      return false;
3762  }
3763
3764  // Get killed info in case fixup needed after transformation.
3765  unsigned ForwardKilledOperandReg = ~0U;
3766  if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3767    ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3768
3769  unsigned Opc = MI.getOpcode();
3770  bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
3771                        Opc == PPC::SRW || Opc == PPC::SRW_rec ||
3772                        Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
3773                        Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
3774  bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
3775                        Opc == PPC::SRD || Opc == PPC::SRD_rec;
3776  bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
3777               Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
3778  bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
3779                    Opc == PPC::SRD_rec;
3780
3781  MI.setDesc(get(III.ImmOpcode));
3782  if (ConstantOpNo == III.OpNoForForwarding) {
3783    // Converting shifts to immediate form is a bit tricky since they may do
3784    // one of three things:
3785    // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3786    // 2. If the shift amount is zero, the result is unchanged (save for maybe
3787    //    setting CR0)
3788    // 3. If the shift amount is in [1, OpSize), it's just a shift
3789    if (SpecialShift32 || SpecialShift64) {
3790      LoadImmediateInfo LII;
3791      LII.Imm = 0;
3792      LII.SetCR = SetCR;
3793      LII.Is64Bit = SpecialShift64;
3794      uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3795      if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3796        replaceInstrWithLI(MI, LII);
3797      // Shifts by zero don't change the value. If we don't need to set CR0,
3798      // just convert this to a COPY. Can't do this post-RA since we've already
3799      // cleaned up the copies.
3800      else if (!SetCR && ShAmt == 0 && !PostRA) {
3801        MI.RemoveOperand(2);
3802        MI.setDesc(get(PPC::COPY));
3803      } else {
3804        // The 32 bit and 64 bit instructions are quite different.
3805        if (SpecialShift32) {
3806          // Left shifts use (N, 0, 31-N).
3807          // Right shifts use (32-N, N, 31) if 0 < N < 32.
3808          //              use (0, 0, 31)    if N == 0.
3809          uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
3810          uint64_t MB = RightShift ? ShAmt : 0;
3811          uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3812          replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3813          MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3814            .addImm(ME);
3815        } else {
3816          // Left shifts use (N, 63-N).
3817          // Right shifts use (64-N, N) if 0 < N < 64.
3818          //              use (0, 0)    if N == 0.
3819          uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
3820          uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3821          replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3822          MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3823        }
3824      }
3825    } else
3826      replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3827  }
3828  // Convert commutative instructions (switch the operands and convert the
3829  // desired one to an immediate.
3830  else if (III.IsCommutative) {
3831    replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3832    swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3833  } else
3834    llvm_unreachable("Should have exited early!");
3835
3836  // For instructions for which the constant register replaces a different
3837  // operand than where the immediate goes, we need to swap them.
3838  if (III.OpNoForForwarding != III.ImmOpNo)
3839    swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3840
3841  // If the special R0/X0 register index are different for original instruction
3842  // and new instruction, we need to fix up the register class in new
3843  // instruction.
3844  if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3845    if (III.ZeroIsSpecialNew) {
3846      // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3847      // need to fix up register class.
3848      Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3849      if (Register::isVirtualRegister(RegToModify)) {
3850        const TargetRegisterClass *NewRC =
3851          MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3852          &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3853        MRI.setRegClass(RegToModify, NewRC);
3854      }
3855    }
3856  }
3857
3858  // Fix up killed/dead flag after transformation.
3859  // Pattern:
3860  // ForwardKilledOperandReg = LI imm
3861  // y = XOP reg, ForwardKilledOperandReg(killed)
3862  if (ForwardKilledOperandReg != ~0U)
3863    fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3864  return true;
3865}
3866
3867const TargetRegisterClass *
3868PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3869  if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3870    return &PPC::VSRCRegClass;
3871  return RC;
3872}
3873
3874int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3875  return PPC::getRecordFormOpcode(Opcode);
3876}
3877
3878// This function returns true if the machine instruction
3879// always outputs a value by sign-extending a 32 bit value,
3880// i.e. 0 to 31-th bits are same as 32-th bit.
3881static bool isSignExtendingOp(const MachineInstr &MI) {
3882  int Opcode = MI.getOpcode();
3883  if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
3884      Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
3885      Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
3886      Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3887      Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
3888      Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3889      Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
3890      Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3891      Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
3892      Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3893      Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
3894      Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
3895      Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
3896      Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
3897      Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
3898      Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3899      Opcode == PPC::EXTSB8_32_64)
3900    return true;
3901
3902  if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3903    return true;
3904
3905  if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
3906       Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
3907      MI.getOperand(3).getImm() > 0 &&
3908      MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3909    return true;
3910
3911  return false;
3912}
3913
3914// This function returns true if the machine instruction
3915// always outputs zeros in higher 32 bits.
3916static bool isZeroExtendingOp(const MachineInstr &MI) {
3917  int Opcode = MI.getOpcode();
3918  // The 16-bit immediate is sign-extended in li/lis.
3919  // If the most significant bit is zero, all higher bits are zero.
3920  if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3921      Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3922    int64_t Imm = MI.getOperand(1).getImm();
3923    if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3924      return true;
3925  }
3926
3927  // We have some variations of rotate-and-mask instructions
3928  // that clear higher 32-bits.
3929  if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
3930       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
3931       Opcode == PPC::RLDICL_32_64) &&
3932      MI.getOperand(3).getImm() >= 32)
3933    return true;
3934
3935  if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
3936      MI.getOperand(3).getImm() >= 32 &&
3937      MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3938    return true;
3939
3940  if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
3941       Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
3942       Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3943      MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3944    return true;
3945
3946  // There are other instructions that clear higher 32-bits.
3947  if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
3948      Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
3949      Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3950      Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
3951      Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
3952      Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
3953      Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
3954      Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
3955      Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
3956      Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
3957      Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
3958      Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3959      Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
3960      Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3961      Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
3962      Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
3963      Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
3964      Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3965      Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3966      Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
3967      Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
3968      Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
3969      Opcode == PPC::MFVSRWZ)
3970    return true;
3971
3972  return false;
3973}
3974
3975// This function returns true if the input MachineInstr is a TOC save
3976// instruction.
3977bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3978  if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3979    return false;
3980  unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3981  unsigned StackOffset = MI.getOperand(1).getImm();
3982  Register StackReg = MI.getOperand(2).getReg();
3983  if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3984    return true;
3985
3986  return false;
3987}
3988
3989// We limit the max depth to track incoming values of PHIs or binary ops
3990// (e.g. AND) to avoid excessive cost.
3991const unsigned MAX_DEPTH = 1;
3992
3993bool
3994PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3995                                   const unsigned Depth) const {
3996  const MachineFunction *MF = MI.getParent()->getParent();
3997  const MachineRegisterInfo *MRI = &MF->getRegInfo();
3998
3999  // If we know this instruction returns sign- or zero-extended result,
4000  // return true.
4001  if (SignExt ? isSignExtendingOp(MI):
4002                isZeroExtendingOp(MI))
4003    return true;
4004
4005  switch (MI.getOpcode()) {
4006  case PPC::COPY: {
4007    Register SrcReg = MI.getOperand(1).getReg();
4008
4009    // In both ELFv1 and v2 ABI, method parameters and the return value
4010    // are sign- or zero-extended.
4011    if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
4012      const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
4013      // We check the ZExt/SExt flags for a method parameter.
4014      if (MI.getParent()->getBasicBlock() ==
4015          &MF->getFunction().getEntryBlock()) {
4016        Register VReg = MI.getOperand(0).getReg();
4017        if (MF->getRegInfo().isLiveIn(VReg))
4018          return SignExt ? FuncInfo->isLiveInSExt(VReg) :
4019                           FuncInfo->isLiveInZExt(VReg);
4020      }
4021
4022      // For a method return value, we check the ZExt/SExt flags in attribute.
4023      // We assume the following code sequence for method call.
4024      //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
4025      //   BL8_NOP @func,...
4026      //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
4027      //   %5 = COPY %x3; G8RC:%5
4028      if (SrcReg == PPC::X3) {
4029        const MachineBasicBlock *MBB = MI.getParent();
4030        MachineBasicBlock::const_instr_iterator II =
4031          MachineBasicBlock::const_instr_iterator(&MI);
4032        if (II != MBB->instr_begin() &&
4033            (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
4034          const MachineInstr &CallMI = *(--II);
4035          if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
4036            const Function *CalleeFn =
4037              dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
4038            if (!CalleeFn)
4039              return false;
4040            const IntegerType *IntTy =
4041              dyn_cast<IntegerType>(CalleeFn->getReturnType());
4042            const AttributeSet &Attrs =
4043              CalleeFn->getAttributes().getRetAttributes();
4044            if (IntTy && IntTy->getBitWidth() <= 32)
4045              return Attrs.hasAttribute(SignExt ? Attribute::SExt :
4046                                                  Attribute::ZExt);
4047          }
4048        }
4049      }
4050    }
4051
4052    // If this is a copy from another register, we recursively check source.
4053    if (!Register::isVirtualRegister(SrcReg))
4054      return false;
4055    const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4056    if (SrcMI != NULL)
4057      return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4058
4059    return false;
4060  }
4061
4062  case PPC::ANDI_rec:
4063  case PPC::ANDIS_rec:
4064  case PPC::ORI:
4065  case PPC::ORIS:
4066  case PPC::XORI:
4067  case PPC::XORIS:
4068  case PPC::ANDI8_rec:
4069  case PPC::ANDIS8_rec:
4070  case PPC::ORI8:
4071  case PPC::ORIS8:
4072  case PPC::XORI8:
4073  case PPC::XORIS8: {
4074    // logical operation with 16-bit immediate does not change the upper bits.
4075    // So, we track the operand register as we do for register copy.
4076    Register SrcReg = MI.getOperand(1).getReg();
4077    if (!Register::isVirtualRegister(SrcReg))
4078      return false;
4079    const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4080    if (SrcMI != NULL)
4081      return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4082
4083    return false;
4084  }
4085
4086  // If all incoming values are sign-/zero-extended,
4087  // the output of OR, ISEL or PHI is also sign-/zero-extended.
4088  case PPC::OR:
4089  case PPC::OR8:
4090  case PPC::ISEL:
4091  case PPC::PHI: {
4092    if (Depth >= MAX_DEPTH)
4093      return false;
4094
4095    // The input registers for PHI are operand 1, 3, ...
4096    // The input registers for others are operand 1 and 2.
4097    unsigned E = 3, D = 1;
4098    if (MI.getOpcode() == PPC::PHI) {
4099      E = MI.getNumOperands();
4100      D = 2;
4101    }
4102
4103    for (unsigned I = 1; I != E; I += D) {
4104      if (MI.getOperand(I).isReg()) {
4105        Register SrcReg = MI.getOperand(I).getReg();
4106        if (!Register::isVirtualRegister(SrcReg))
4107          return false;
4108        const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4109        if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
4110          return false;
4111      }
4112      else
4113        return false;
4114    }
4115    return true;
4116  }
4117
4118  // If at least one of the incoming values of an AND is zero extended
4119  // then the output is also zero-extended. If both of the incoming values
4120  // are sign-extended then the output is also sign extended.
4121  case PPC::AND:
4122  case PPC::AND8: {
4123    if (Depth >= MAX_DEPTH)
4124       return false;
4125
4126    assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
4127
4128    Register SrcReg1 = MI.getOperand(1).getReg();
4129    Register SrcReg2 = MI.getOperand(2).getReg();
4130
4131    if (!Register::isVirtualRegister(SrcReg1) ||
4132        !Register::isVirtualRegister(SrcReg2))
4133      return false;
4134
4135    const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
4136    const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
4137    if (!MISrc1 || !MISrc2)
4138        return false;
4139
4140    if(SignExt)
4141        return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
4142               isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4143    else
4144        return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
4145               isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4146  }
4147
4148  default:
4149    break;
4150  }
4151  return false;
4152}
4153
4154bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
4155  return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
4156}
4157
4158namespace {
4159class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4160  MachineInstr *Loop, *EndLoop, *LoopCount;
4161  MachineFunction *MF;
4162  const TargetInstrInfo *TII;
4163  int64_t TripCount;
4164
4165public:
4166  PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
4167                       MachineInstr *LoopCount)
4168      : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
4169        MF(Loop->getParent()->getParent()),
4170        TII(MF->getSubtarget().getInstrInfo()) {
4171    // Inspect the Loop instruction up-front, as it may be deleted when we call
4172    // createTripCountGreaterCondition.
4173    if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
4174      TripCount = LoopCount->getOperand(1).getImm();
4175    else
4176      TripCount = -1;
4177  }
4178
4179  bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4180    // Only ignore the terminator.
4181    return MI == EndLoop;
4182  }
4183
4184  Optional<bool>
4185  createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
4186                                  SmallVectorImpl<MachineOperand> &Cond) override {
4187    if (TripCount == -1) {
4188      // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4189      // so we don't need to generate any thing here.
4190      Cond.push_back(MachineOperand::CreateImm(0));
4191      Cond.push_back(MachineOperand::CreateReg(
4192          MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
4193          true));
4194      return {};
4195    }
4196
4197    return TripCount > TC;
4198  }
4199
4200  void setPreheader(MachineBasicBlock *NewPreheader) override {
4201    // Do nothing. We want the LOOP setup instruction to stay in the *old*
4202    // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
4203  }
4204
4205  void adjustTripCount(int TripCountAdjust) override {
4206    // If the loop trip count is a compile-time value, then just change the
4207    // value.
4208    if (LoopCount->getOpcode() == PPC::LI8 ||
4209        LoopCount->getOpcode() == PPC::LI) {
4210      int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
4211      LoopCount->getOperand(1).setImm(TripCount);
4212      return;
4213    }
4214
4215    // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4216    // so we don't need to generate any thing here.
4217  }
4218
4219  void disposed() override {
4220    Loop->eraseFromParent();
4221    // Ensure the loop setup instruction is deleted too.
4222    LoopCount->eraseFromParent();
4223  }
4224};
4225} // namespace
4226
4227std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4228PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4229  // We really "analyze" only hardware loops right now.
4230  MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4231  MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4232  if (Preheader == LoopBB)
4233    Preheader = *std::next(LoopBB->pred_begin());
4234  MachineFunction *MF = Preheader->getParent();
4235
4236  if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4237    SmallPtrSet<MachineBasicBlock *, 8> Visited;
4238    if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4239      Register LoopCountReg = LoopInst->getOperand(0).getReg();
4240      MachineRegisterInfo &MRI = MF->getRegInfo();
4241      MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4242      return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4243    }
4244  }
4245  return nullptr;
4246}
4247
4248MachineInstr *PPCInstrInfo::findLoopInstr(
4249    MachineBasicBlock &PreHeader,
4250    SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4251
4252  unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4253
4254  // The loop set-up instruction should be in preheader
4255  for (auto &I : PreHeader.instrs())
4256    if (I.getOpcode() == LOOPi)
4257      return &I;
4258  return nullptr;
4259}
4260
4261// Return true if get the base operand, byte offset of an instruction and the
4262// memory width. Width is the size of memory that is being loaded/stored.
4263bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4264    const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
4265    unsigned &Width, const TargetRegisterInfo *TRI) const {
4266  if (!LdSt.mayLoadOrStore())
4267    return false;
4268
4269  // Handle only loads/stores with base register followed by immediate offset.
4270  if (LdSt.getNumExplicitOperands() != 3)
4271    return false;
4272  if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4273    return false;
4274
4275  if (!LdSt.hasOneMemOperand())
4276    return false;
4277
4278  Width = (*LdSt.memoperands_begin())->getSize();
4279  Offset = LdSt.getOperand(1).getImm();
4280  BaseReg = &LdSt.getOperand(2);
4281  return true;
4282}
4283
4284bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4285    const MachineInstr &MIa, const MachineInstr &MIb) const {
4286  assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4287  assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4288
4289  if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4290      MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4291    return false;
4292
4293  // Retrieve the base register, offset from the base register and width. Width
4294  // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4295  // base registers are identical, and the offset of a lower memory access +
4296  // the width doesn't overlap the offset of a higher memory access,
4297  // then the memory accesses are different.
4298  const TargetRegisterInfo *TRI = &getRegisterInfo();
4299  const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4300  int64_t OffsetA = 0, OffsetB = 0;
4301  unsigned int WidthA = 0, WidthB = 0;
4302  if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4303      getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4304    if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4305      int LowOffset = std::min(OffsetA, OffsetB);
4306      int HighOffset = std::max(OffsetA, OffsetB);
4307      int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4308      if (LowOffset + LowWidth <= HighOffset)
4309        return true;
4310    }
4311  }
4312  return false;
4313}
4314