MipsSEISelDAGToDAG.cpp revision 360784
1//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Subclass of MipsDAGToDAGISel specialized for mips32/64.
10//
11//===----------------------------------------------------------------------===//
12
13#include "MipsSEISelDAGToDAG.h"
14#include "MCTargetDesc/MipsBaseInfo.h"
15#include "Mips.h"
16#include "MipsAnalyzeImmediate.h"
17#include "MipsMachineFunction.h"
18#include "MipsRegisterInfo.h"
19#include "llvm/CodeGen/MachineConstantPool.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/SelectionDAGNodes.h"
25#include "llvm/IR/CFG.h"
26#include "llvm/IR/Dominators.h"
27#include "llvm/IR/GlobalValue.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/IntrinsicsMips.h"
31#include "llvm/IR/Type.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetMachine.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "mips-isel"
39
40bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
41  Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
42  if (Subtarget->inMips16Mode())
43    return false;
44  return MipsDAGToDAGISel::runOnMachineFunction(MF);
45}
46
47void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
48  AU.addRequired<DominatorTreeWrapperPass>();
49  SelectionDAGISel::getAnalysisUsage(AU);
50}
51
52void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
53                                               MachineFunction &MF) {
54  MachineInstrBuilder MIB(MF, &MI);
55  unsigned Mask = MI.getOperand(1).getImm();
56  unsigned Flag =
57      IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
58
59  if (Mask & 1)
60    MIB.addReg(Mips::DSPPos, Flag);
61
62  if (Mask & 2)
63    MIB.addReg(Mips::DSPSCount, Flag);
64
65  if (Mask & 4)
66    MIB.addReg(Mips::DSPCarry, Flag);
67
68  if (Mask & 8)
69    MIB.addReg(Mips::DSPOutFlag, Flag);
70
71  if (Mask & 16)
72    MIB.addReg(Mips::DSPCCond, Flag);
73
74  if (Mask & 32)
75    MIB.addReg(Mips::DSPEFI, Flag);
76}
77
78unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
79  uint64_t RegNum = cast<ConstantSDNode>(RegIdx)->getZExtValue();
80  return Mips::MSACtrlRegClass.getRegister(RegNum);
81}
82
83bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
84                                                const MachineInstr& MI) {
85  unsigned DstReg = 0, ZeroReg = 0;
86
87  // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
88  if ((MI.getOpcode() == Mips::ADDiu) &&
89      (MI.getOperand(1).getReg() == Mips::ZERO) &&
90      (MI.getOperand(2).isImm()) &&
91      (MI.getOperand(2).getImm() == 0)) {
92    DstReg = MI.getOperand(0).getReg();
93    ZeroReg = Mips::ZERO;
94  } else if ((MI.getOpcode() == Mips::DADDiu) &&
95             (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
96             (MI.getOperand(2).isImm()) &&
97             (MI.getOperand(2).getImm() == 0)) {
98    DstReg = MI.getOperand(0).getReg();
99    ZeroReg = Mips::ZERO_64;
100  }
101
102  if (!DstReg)
103    return false;
104
105  // Replace uses with ZeroReg.
106  for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
107       E = MRI->use_end(); U != E;) {
108    MachineOperand &MO = *U;
109    unsigned OpNo = U.getOperandNo();
110    MachineInstr *MI = MO.getParent();
111    ++U;
112
113    // Do not replace if it is a phi's operand or is tied to def operand.
114    if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
115      continue;
116
117    // Also, we have to check that the register class of the operand
118    // contains the zero register.
119    if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
120      continue;
121
122    MO.setReg(ZeroReg);
123  }
124
125  return true;
126}
127
128void MipsSEDAGToDAGISel::emitMCountABI(MachineInstr &MI, MachineBasicBlock &MBB,
129                                       MachineFunction &MF) {
130  MachineInstrBuilder MIB(MF, &MI);
131  if (!Subtarget->isABI_O32()) { // N32, N64
132    // Save current return address.
133    BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR64))
134        .addDef(Mips::AT_64)
135        .addUse(Mips::RA_64, RegState::Undef)
136        .addUse(Mips::ZERO_64);
137    // Stops instruction above from being removed later on.
138    MIB.addUse(Mips::AT_64, RegState::Implicit);
139  } else {  // O32
140    // Save current return address.
141    BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR))
142        .addDef(Mips::AT)
143        .addUse(Mips::RA, RegState::Undef)
144        .addUse(Mips::ZERO);
145    // _mcount pops 2 words from stack.
146    BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::ADDiu))
147        .addDef(Mips::SP)
148        .addUse(Mips::SP)
149        .addImm(-8);
150    // Stops first instruction above from being removed later on.
151    MIB.addUse(Mips::AT, RegState::Implicit);
152  }
153}
154
155void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
156  MF.getInfo<MipsFunctionInfo>()->initGlobalBaseReg();
157
158  MachineRegisterInfo *MRI = &MF.getRegInfo();
159
160  for (auto &MBB: MF) {
161    for (auto &MI: MBB) {
162      switch (MI.getOpcode()) {
163      case Mips::RDDSP:
164        addDSPCtrlRegOperands(false, MI, MF);
165        break;
166      case Mips::WRDSP:
167        addDSPCtrlRegOperands(true, MI, MF);
168        break;
169      case Mips::BuildPairF64_64:
170      case Mips::ExtractElementF64_64:
171        if (!Subtarget->useOddSPReg()) {
172          MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
173          break;
174        }
175        LLVM_FALLTHROUGH;
176      case Mips::BuildPairF64:
177      case Mips::ExtractElementF64:
178        if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
179          MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
180        break;
181      case Mips::JAL:
182      case Mips::JAL_MM:
183        if (MI.getOperand(0).isGlobal() &&
184            MI.getOperand(0).getGlobal()->getGlobalIdentifier() == "_mcount")
185          emitMCountABI(MI, MBB, MF);
186        break;
187      case Mips::JALRPseudo:
188      case Mips::JALR64Pseudo:
189      case Mips::JALR16_MM:
190        if (MI.getOperand(2).isMCSymbol() &&
191            MI.getOperand(2).getMCSymbol()->getName() == "_mcount")
192          emitMCountABI(MI, MBB, MF);
193        break;
194      case Mips::JALR:
195        if (MI.getOperand(3).isMCSymbol() &&
196            MI.getOperand(3).getMCSymbol()->getName() == "_mcount")
197          emitMCountABI(MI, MBB, MF);
198        break;
199      default:
200        replaceUsesWithZeroReg(MRI, MI);
201      }
202    }
203  }
204}
205
206void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
207  SDValue InFlag = Node->getOperand(2);
208  unsigned Opc = InFlag.getOpcode();
209  SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
210  EVT VT = LHS.getValueType();
211
212  // In the base case, we can rely on the carry bit from the addsc
213  // instruction.
214  if (Opc == ISD::ADDC) {
215    SDValue Ops[3] = {LHS, RHS, InFlag};
216    CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
217    return;
218  }
219
220  assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
221
222  // The more complex case is when there is a chain of ISD::ADDE nodes like:
223  // (adde (adde (adde (addc a b) c) d) e).
224  //
225  // The addwc instruction does not write to the carry bit, instead it writes
226  // to bit 20 of the dsp control register. To match this series of nodes, each
227  // intermediate adde node must be expanded to write the carry bit before the
228  // addition.
229
230  // Start by reading the overflow field for addsc and moving the value to the
231  // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
232  // corresponds to reading/writing the entire control register to/from a GPR.
233
234  SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
235
236  SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
237
238  SDNode *DSPCtrlField = CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32,
239                                                MVT::Glue, CstOne, InFlag);
240
241  SDNode *Carry = CurDAG->getMachineNode(
242      Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
243
244  SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
245                    CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
246                    SDValue(Carry, 0)};
247  SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
248
249  // My reading of the MIPS DSP 3.01 specification isn't as clear as I
250  // would like about whether bit 20 always gets overwritten by addwc.
251  // Hence take an extremely conservative view and presume it's sticky. We
252  // therefore need to clear it.
253
254  SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
255
256  SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
257  SDNode *DSPCtrlFinal =
258      CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
259
260  SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
261                                         SDValue(DSPCtrlFinal, 0), CstOne);
262
263  SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
264  CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
265}
266
267/// Match frameindex
268bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
269                                              SDValue &Offset) const {
270  if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
271    EVT ValTy = Addr.getValueType();
272
273    Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
274    Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
275    return true;
276  }
277  return false;
278}
279
280/// Match frameindex+offset and frameindex|offset
281bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
282    SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
283    unsigned ShiftAmount = 0) const {
284  if (CurDAG->isBaseWithConstantOffset(Addr)) {
285    ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
286    if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
287      EVT ValTy = Addr.getValueType();
288
289      // If the first operand is a FI, get the TargetFI Node
290      if (FrameIndexSDNode *FIN =
291              dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
292        Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
293      else {
294        Base = Addr.getOperand(0);
295        // If base is a FI, additional offset calculation is done in
296        // eliminateFrameIndex, otherwise we need to check the alignment
297        const Align Alignment(1ULL << ShiftAmount);
298        if (!isAligned(Alignment, CN->getZExtValue()))
299          return false;
300      }
301
302      Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
303                                         ValTy);
304      return true;
305    }
306  }
307  return false;
308}
309
310/// ComplexPattern used on MipsInstrInfo
311/// Used on Mips Load/Store instructions
312bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
313                                          SDValue &Offset) const {
314  // if Address is FI, get the TargetFrameIndex.
315  if (selectAddrFrameIndex(Addr, Base, Offset))
316    return true;
317
318  // on PIC code Load GA
319  if (Addr.getOpcode() == MipsISD::Wrapper) {
320    Base   = Addr.getOperand(0);
321    Offset = Addr.getOperand(1);
322    return true;
323  }
324
325  if (!TM.isPositionIndependent()) {
326    if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
327        Addr.getOpcode() == ISD::TargetGlobalAddress))
328      return false;
329  }
330
331  // Addresses of the form FI+const or FI|const
332  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
333    return true;
334
335  // Operand is a result from an ADD.
336  if (Addr.getOpcode() == ISD::ADD) {
337    // When loading from constant pools, load the lower address part in
338    // the instruction itself. Example, instead of:
339    //  lui $2, %hi($CPI1_0)
340    //  addiu $2, $2, %lo($CPI1_0)
341    //  lwc1 $f0, 0($2)
342    // Generate:
343    //  lui $2, %hi($CPI1_0)
344    //  lwc1 $f0, %lo($CPI1_0)($2)
345    if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
346        Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
347      SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
348      if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
349          isa<JumpTableSDNode>(Opnd0)) {
350        Base = Addr.getOperand(0);
351        Offset = Opnd0;
352        return true;
353      }
354    }
355  }
356
357  return false;
358}
359
360/// ComplexPattern used on MipsInstrInfo
361/// Used on Mips Load/Store instructions
362bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
363                                           SDValue &Offset) const {
364  Base = Addr;
365  Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
366  return true;
367}
368
369bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
370                                       SDValue &Offset) const {
371  return selectAddrRegImm(Addr, Base, Offset) ||
372    selectAddrDefault(Addr, Base, Offset);
373}
374
375bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
376                                           SDValue &Offset) const {
377  if (selectAddrFrameIndex(Addr, Base, Offset))
378    return true;
379
380  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
381    return true;
382
383  return false;
384}
385
386/// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
387bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
388                                            SDValue &Offset) const {
389  if (selectAddrFrameIndex(Addr, Base, Offset))
390    return true;
391
392  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
393    return true;
394
395  return false;
396}
397
398/// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
399bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
400                                            SDValue &Offset) const {
401  if (selectAddrFrameIndex(Addr, Base, Offset))
402    return true;
403
404  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
405    return true;
406
407  return false;
408}
409
410bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
411                                            SDValue &Offset) const {
412  if (selectAddrFrameIndex(Addr, Base, Offset))
413    return true;
414
415  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
416    return true;
417
418  return false;
419}
420
421bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
422                                         SDValue &Offset) const {
423  return selectAddrRegImm11(Addr, Base, Offset) ||
424    selectAddrDefault(Addr, Base, Offset);
425}
426
427bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
428                                         SDValue &Offset) const {
429  return selectAddrRegImm12(Addr, Base, Offset) ||
430    selectAddrDefault(Addr, Base, Offset);
431}
432
433bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
434                                         SDValue &Offset) const {
435  return selectAddrRegImm16(Addr, Base, Offset) ||
436    selectAddrDefault(Addr, Base, Offset);
437}
438
439bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
440                                             SDValue &Offset) const {
441  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
442    if (isa<FrameIndexSDNode>(Base))
443      return false;
444
445    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
446      unsigned CnstOff = CN->getZExtValue();
447      return (CnstOff == (CnstOff & 0x3c));
448    }
449
450    return false;
451  }
452
453  // For all other cases where "lw" would be selected, don't select "lw16"
454  // because it would result in additional instructions to prepare operands.
455  if (selectAddrRegImm(Addr, Base, Offset))
456    return false;
457
458  return selectAddrDefault(Addr, Base, Offset);
459}
460
461bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
462                                             SDValue &Offset) const {
463
464  if (selectAddrFrameIndex(Addr, Base, Offset))
465    return true;
466
467  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
468    return true;
469
470  return selectAddrDefault(Addr, Base, Offset);
471}
472
473bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
474                                                 SDValue &Offset) const {
475  if (selectAddrFrameIndex(Addr, Base, Offset))
476    return true;
477
478  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
479    return true;
480
481  return selectAddrDefault(Addr, Base, Offset);
482}
483
484bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
485                                                 SDValue &Offset) const {
486  if (selectAddrFrameIndex(Addr, Base, Offset))
487    return true;
488
489  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
490    return true;
491
492  return selectAddrDefault(Addr, Base, Offset);
493}
494
495bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
496                                                 SDValue &Offset) const {
497  if (selectAddrFrameIndex(Addr, Base, Offset))
498    return true;
499
500  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
501    return true;
502
503  return selectAddrDefault(Addr, Base, Offset);
504}
505
506// Select constant vector splats.
507//
508// Returns true and sets Imm if:
509// * MSA is enabled
510// * N is a ISD::BUILD_VECTOR representing a constant splat
511bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
512                                      unsigned MinSizeInBits) const {
513  if (!Subtarget->hasMSA())
514    return false;
515
516  BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
517
518  if (!Node)
519    return false;
520
521  APInt SplatValue, SplatUndef;
522  unsigned SplatBitSize;
523  bool HasAnyUndefs;
524
525  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
526                             MinSizeInBits, !Subtarget->isLittle()))
527    return false;
528
529  Imm = SplatValue;
530
531  return true;
532}
533
534// Select constant vector splats.
535//
536// In addition to the requirements of selectVSplat(), this function returns
537// true and sets Imm if:
538// * The splat value is the same width as the elements of the vector
539// * The splat value fits in an integer with the specified signed-ness and
540//   width.
541//
542// This function looks through ISD::BITCAST nodes.
543// TODO: This might not be appropriate for big-endian MSA since BITCAST is
544//       sometimes a shuffle in big-endian mode.
545//
546// It's worth noting that this function is not used as part of the selection
547// of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
548// instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
549// MipsSEDAGToDAGISel::selectNode.
550bool MipsSEDAGToDAGISel::
551selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
552                   unsigned ImmBitSize) const {
553  APInt ImmValue;
554  EVT EltTy = N->getValueType(0).getVectorElementType();
555
556  if (N->getOpcode() == ISD::BITCAST)
557    N = N->getOperand(0);
558
559  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
560      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
561
562    if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
563        (!Signed && ImmValue.isIntN(ImmBitSize))) {
564      Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
565      return true;
566    }
567  }
568
569  return false;
570}
571
572// Select constant vector splats.
573bool MipsSEDAGToDAGISel::
574selectVSplatUimm1(SDValue N, SDValue &Imm) const {
575  return selectVSplatCommon(N, Imm, false, 1);
576}
577
578bool MipsSEDAGToDAGISel::
579selectVSplatUimm2(SDValue N, SDValue &Imm) const {
580  return selectVSplatCommon(N, Imm, false, 2);
581}
582
583bool MipsSEDAGToDAGISel::
584selectVSplatUimm3(SDValue N, SDValue &Imm) const {
585  return selectVSplatCommon(N, Imm, false, 3);
586}
587
588// Select constant vector splats.
589bool MipsSEDAGToDAGISel::
590selectVSplatUimm4(SDValue N, SDValue &Imm) const {
591  return selectVSplatCommon(N, Imm, false, 4);
592}
593
594// Select constant vector splats.
595bool MipsSEDAGToDAGISel::
596selectVSplatUimm5(SDValue N, SDValue &Imm) const {
597  return selectVSplatCommon(N, Imm, false, 5);
598}
599
600// Select constant vector splats.
601bool MipsSEDAGToDAGISel::
602selectVSplatUimm6(SDValue N, SDValue &Imm) const {
603  return selectVSplatCommon(N, Imm, false, 6);
604}
605
606// Select constant vector splats.
607bool MipsSEDAGToDAGISel::
608selectVSplatUimm8(SDValue N, SDValue &Imm) const {
609  return selectVSplatCommon(N, Imm, false, 8);
610}
611
612// Select constant vector splats.
613bool MipsSEDAGToDAGISel::
614selectVSplatSimm5(SDValue N, SDValue &Imm) const {
615  return selectVSplatCommon(N, Imm, true, 5);
616}
617
618// Select constant vector splats whose value is a power of 2.
619//
620// In addition to the requirements of selectVSplat(), this function returns
621// true and sets Imm if:
622// * The splat value is the same width as the elements of the vector
623// * The splat value is a power of two.
624//
625// This function looks through ISD::BITCAST nodes.
626// TODO: This might not be appropriate for big-endian MSA since BITCAST is
627//       sometimes a shuffle in big-endian mode.
628bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
629  APInt ImmValue;
630  EVT EltTy = N->getValueType(0).getVectorElementType();
631
632  if (N->getOpcode() == ISD::BITCAST)
633    N = N->getOperand(0);
634
635  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
636      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
637    int32_t Log2 = ImmValue.exactLogBase2();
638
639    if (Log2 != -1) {
640      Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
641      return true;
642    }
643  }
644
645  return false;
646}
647
648// Select constant vector splats whose value only has a consecutive sequence
649// of left-most bits set (e.g. 0b11...1100...00).
650//
651// In addition to the requirements of selectVSplat(), this function returns
652// true and sets Imm if:
653// * The splat value is the same width as the elements of the vector
654// * The splat value is a consecutive sequence of left-most bits.
655//
656// This function looks through ISD::BITCAST nodes.
657// TODO: This might not be appropriate for big-endian MSA since BITCAST is
658//       sometimes a shuffle in big-endian mode.
659bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
660  APInt ImmValue;
661  EVT EltTy = N->getValueType(0).getVectorElementType();
662
663  if (N->getOpcode() == ISD::BITCAST)
664    N = N->getOperand(0);
665
666  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
667      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
668    // Extract the run of set bits starting with bit zero from the bitwise
669    // inverse of ImmValue, and test that the inverse of this is the same
670    // as the original value.
671    if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
672
673      Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
674                                      EltTy);
675      return true;
676    }
677  }
678
679  return false;
680}
681
682// Select constant vector splats whose value only has a consecutive sequence
683// of right-most bits set (e.g. 0b00...0011...11).
684//
685// In addition to the requirements of selectVSplat(), this function returns
686// true and sets Imm if:
687// * The splat value is the same width as the elements of the vector
688// * The splat value is a consecutive sequence of right-most bits.
689//
690// This function looks through ISD::BITCAST nodes.
691// TODO: This might not be appropriate for big-endian MSA since BITCAST is
692//       sometimes a shuffle in big-endian mode.
693bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
694  APInt ImmValue;
695  EVT EltTy = N->getValueType(0).getVectorElementType();
696
697  if (N->getOpcode() == ISD::BITCAST)
698    N = N->getOperand(0);
699
700  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
701      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
702    // Extract the run of set bits starting with bit zero, and test that the
703    // result is the same as the original value
704    if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
705      Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
706                                      EltTy);
707      return true;
708    }
709  }
710
711  return false;
712}
713
714bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
715                                                 SDValue &Imm) const {
716  APInt ImmValue;
717  EVT EltTy = N->getValueType(0).getVectorElementType();
718
719  if (N->getOpcode() == ISD::BITCAST)
720    N = N->getOperand(0);
721
722  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
723      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
724    int32_t Log2 = (~ImmValue).exactLogBase2();
725
726    if (Log2 != -1) {
727      Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
728      return true;
729    }
730  }
731
732  return false;
733}
734
735bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
736  unsigned Opcode = Node->getOpcode();
737  SDLoc DL(Node);
738
739  ///
740  // Instruction Selection not handled by the auto-generated
741  // tablegen selection should be handled here.
742  ///
743  switch(Opcode) {
744  default: break;
745
746  case Mips::PseudoD_SELECT_I:
747  case Mips::PseudoD_SELECT_I64: {
748    MVT VT = Subtarget->isGP64bit() ? MVT::i64 : MVT::i32;
749    SDValue cond = Node->getOperand(0);
750    SDValue Hi1 = Node->getOperand(1);
751    SDValue Lo1 = Node->getOperand(2);
752    SDValue Hi2 = Node->getOperand(3);
753    SDValue Lo2 = Node->getOperand(4);
754
755    SDValue ops[] = {cond, Hi1, Lo1, Hi2, Lo2};
756    EVT NodeTys[] = {VT, VT};
757    ReplaceNode(Node, CurDAG->getMachineNode(Subtarget->isGP64bit()
758                                                 ? Mips::PseudoD_SELECT_I64
759                                                 : Mips::PseudoD_SELECT_I,
760                                             DL, NodeTys, ops));
761    return true;
762  }
763
764  case ISD::ADDE: {
765    selectAddE(Node, DL);
766    return true;
767  }
768
769  case ISD::ConstantFP: {
770    auto *CN = cast<ConstantFPSDNode>(Node);
771    if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
772      if (Subtarget->isGP64bit()) {
773        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
774                                              Mips::ZERO_64, MVT::i64);
775        ReplaceNode(Node,
776                    CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
777      } else if (Subtarget->isFP64bit()) {
778        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
779                                              Mips::ZERO, MVT::i32);
780        ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
781                                                 MVT::f64, Zero, Zero));
782      } else {
783        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
784                                              Mips::ZERO, MVT::i32);
785        ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
786                                                 MVT::f64, Zero, Zero));
787      }
788      return true;
789    }
790    break;
791  }
792
793  case ISD::Constant: {
794    auto *CN = cast<ConstantSDNode>(Node);
795    int64_t Imm = CN->getSExtValue();
796    unsigned Size = CN->getValueSizeInBits(0);
797
798    if (isInt<32>(Imm))
799      break;
800
801    MipsAnalyzeImmediate AnalyzeImm;
802
803    const MipsAnalyzeImmediate::InstSeq &Seq =
804      AnalyzeImm.Analyze(Imm, Size, false);
805
806    MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
807    SDLoc DL(CN);
808    SDNode *RegOpnd;
809    SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
810                                                DL, MVT::i64);
811
812    // The first instruction can be a LUi which is different from other
813    // instructions (ADDiu, ORI and SLL) in that it does not have a register
814    // operand.
815    if (Inst->Opc == Mips::LUi64)
816      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
817    else
818      RegOpnd =
819        CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
820                               CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
821                               ImmOpnd);
822
823    // The remaining instructions in the sequence are handled here.
824    for (++Inst; Inst != Seq.end(); ++Inst) {
825      ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
826                                          MVT::i64);
827      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
828                                       SDValue(RegOpnd, 0), ImmOpnd);
829    }
830
831    ReplaceNode(Node, RegOpnd);
832    return true;
833  }
834
835  case ISD::INTRINSIC_W_CHAIN: {
836    switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
837    default:
838      break;
839
840    case Intrinsic::mips_cfcmsa: {
841      SDValue ChainIn = Node->getOperand(0);
842      SDValue RegIdx = Node->getOperand(2);
843      SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
844                                           getMSACtrlReg(RegIdx), MVT::i32);
845      ReplaceNode(Node, Reg.getNode());
846      return true;
847    }
848    }
849    break;
850  }
851
852  case ISD::INTRINSIC_WO_CHAIN: {
853    switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
854    default:
855      break;
856
857    case Intrinsic::mips_move_v:
858      // Like an assignment but will always produce a move.v even if
859      // unnecessary.
860      ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
861                                               Node->getValueType(0),
862                                               Node->getOperand(1)));
863      return true;
864    }
865    break;
866  }
867
868  case ISD::INTRINSIC_VOID: {
869    switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
870    default:
871      break;
872
873    case Intrinsic::mips_ctcmsa: {
874      SDValue ChainIn = Node->getOperand(0);
875      SDValue RegIdx  = Node->getOperand(2);
876      SDValue Value   = Node->getOperand(3);
877      SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
878                                              getMSACtrlReg(RegIdx), Value);
879      ReplaceNode(Node, ChainOut.getNode());
880      return true;
881    }
882    }
883    break;
884  }
885
886  // Manually match MipsISD::Ins nodes to get the correct instruction. It has
887  // to be done in this fashion so that we respect the differences between
888  // dins and dinsm, as the difference is that the size operand has the range
889  // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
890  // means SelectionDAGISel would have to test all the operands at once to
891  // match the instruction.
892  case MipsISD::Ins: {
893
894    // Sanity checking for the node operands.
895    if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
896      return false;
897
898    if (Node->getNumOperands() != 4)
899      return false;
900
901    if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
902        Node->getOperand(2)->getOpcode() != ISD::Constant)
903      return false;
904
905    MVT ResTy = Node->getSimpleValueType(0);
906    uint64_t Pos = Node->getConstantOperandVal(1);
907    uint64_t Size = Node->getConstantOperandVal(2);
908
909    // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
910    if (!Size)
911      return false;
912
913    if (Pos + Size > 64)
914      return false;
915
916    if (ResTy != MVT::i32 && ResTy != MVT::i64)
917      return false;
918
919    unsigned Opcode = 0;
920    if (ResTy == MVT::i32) {
921      if (Pos + Size <= 32)
922        Opcode = Mips::INS;
923    } else {
924      if (Pos + Size <= 32)
925        Opcode = Mips::DINS;
926      else if (Pos < 32 && 1 < Size)
927        Opcode = Mips::DINSM;
928      else
929        Opcode = Mips::DINSU;
930    }
931
932    if (Opcode) {
933      SDValue Ops[4] = {
934          Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
935          CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
936
937      ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
938      return true;
939    }
940
941    return false;
942  }
943
944  case MipsISD::ThreadPointer: {
945    EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
946    unsigned RdhwrOpc, DestReg;
947
948    if (PtrVT == MVT::i32) {
949      RdhwrOpc = Mips::RDHWR;
950      DestReg = Mips::V1;
951    } else {
952      RdhwrOpc = Mips::RDHWR64;
953      DestReg = Mips::V1_64;
954    }
955
956    SDNode *Rdhwr =
957        CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0),
958                               CurDAG->getRegister(Mips::HWR29, MVT::i32),
959                               CurDAG->getTargetConstant(0, DL, MVT::i32));
960    SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
961                                         SDValue(Rdhwr, 0));
962    SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
963    ReplaceNode(Node, ResNode.getNode());
964    return true;
965  }
966
967  case ISD::BUILD_VECTOR: {
968    // Select appropriate ldi.[bhwd] instructions for constant splats of
969    // 128-bit when MSA is enabled. Fixup any register class mismatches that
970    // occur as a result.
971    //
972    // This allows the compiler to use a wider range of immediates than would
973    // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
974    // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
975    // 0x01010101 } without using a constant pool. This would be sub-optimal
976    // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
977    // same set/ of registers. Similarly, ldi.h isn't capable of producing {
978    // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
979
980    const MipsABIInfo &ABI =
981        static_cast<const MipsTargetMachine &>(TM).getABI();
982
983    BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
984    APInt SplatValue, SplatUndef;
985    unsigned SplatBitSize;
986    bool HasAnyUndefs;
987    unsigned LdiOp;
988    EVT ResVecTy = BVN->getValueType(0);
989    EVT ViaVecTy;
990
991    if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
992      return false;
993
994    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
995                              HasAnyUndefs, 8,
996                              !Subtarget->isLittle()))
997      return false;
998
999    switch (SplatBitSize) {
1000    default:
1001      return false;
1002    case 8:
1003      LdiOp = Mips::LDI_B;
1004      ViaVecTy = MVT::v16i8;
1005      break;
1006    case 16:
1007      LdiOp = Mips::LDI_H;
1008      ViaVecTy = MVT::v8i16;
1009      break;
1010    case 32:
1011      LdiOp = Mips::LDI_W;
1012      ViaVecTy = MVT::v4i32;
1013      break;
1014    case 64:
1015      LdiOp = Mips::LDI_D;
1016      ViaVecTy = MVT::v2i64;
1017      break;
1018    }
1019
1020    SDNode *Res = nullptr;
1021
1022    // If we have a signed 10 bit integer, we can splat it directly.
1023    //
1024    // If we have something bigger we can synthesize the value into a GPR and
1025    // splat from there.
1026    if (SplatValue.isSignedIntN(10)) {
1027      SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
1028                                              ViaVecTy.getVectorElementType());
1029
1030      Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
1031    } else if (SplatValue.isSignedIntN(16) &&
1032               ((ABI.IsO32() && SplatBitSize < 64) ||
1033                (ABI.IsN32() || ABI.IsN64()))) {
1034      // Only handle signed 16 bit values when the element size is GPR width.
1035      // MIPS64 can handle all the cases but MIPS32 would need to handle
1036      // negative cases specifically here. Instead, handle those cases as
1037      // 64bit values.
1038
1039      bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
1040      const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
1041      const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
1042      SDValue ZeroVal = CurDAG->getRegister(
1043          Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
1044
1045      const unsigned FILLOp =
1046          SplatBitSize == 16
1047              ? Mips::FILL_H
1048              : (SplatBitSize == 32 ? Mips::FILL_W
1049                                    : (SplatBitSize == 64 ? Mips::FILL_D : 0));
1050
1051      assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
1052      assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
1053             "Attempting to use fill.d on MIPS32!");
1054
1055      const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1056      SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
1057
1058      Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
1059      Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
1060
1061    } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
1062      // Only handle the cases where the splat size agrees with the size
1063      // of the SplatValue here.
1064      const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1065      const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1066      SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1067
1068      SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1069      SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1070
1071      if (Hi)
1072        Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1073
1074      if (Lo)
1075        Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1076                                     Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1077
1078      assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
1079      Res =
1080          CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
1081
1082    } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
1083               (ABI.IsN32() || ABI.IsN64())) {
1084      // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1085      // integers due to having 64bit registers. lui will cause the necessary
1086      // zero/sign extension.
1087      const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1088      const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1089      SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1090
1091      SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1092      SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1093
1094      if (Hi)
1095        Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1096
1097      if (Lo)
1098        Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1099                                     Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1100
1101      Res = CurDAG->getMachineNode(
1102              Mips::SUBREG_TO_REG, DL, MVT::i64,
1103              CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1104              SDValue(Res, 0),
1105              CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1106
1107      Res =
1108          CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1109
1110    } else if (SplatValue.isSignedIntN(64)) {
1111      // If we have a 64 bit Splat value, we perform a similar sequence to the
1112      // above:
1113      //
1114      // MIPS32:                            MIPS64:
1115      //   lui $res, %highest(val)            lui $res, %highest(val)
1116      //   ori $res, $res, %higher(val)       ori $res, $res, %higher(val)
1117      //   lui $res2, %hi(val)                lui $res2, %hi(val)
1118      //   ori $res2, %res2, %lo(val)         ori $res2, %res2, %lo(val)
1119      //   $res3 = fill $res2                 dinsu $res, $res2, 0, 32
1120      //   $res4 = insert.w $res3[1], $res    fill.d $res
1121      //   splat.d $res4, 0
1122      //
1123      // The ability to use dinsu is guaranteed as MSA requires MIPSR5.
1124      // This saves having to materialize the value by shifts and ors.
1125      //
1126      // FIXME: Implement the preferred sequence for MIPS64R6:
1127      //
1128      // MIPS64R6:
1129      //   ori $res, $zero, %lo(val)
1130      //   daui $res, $res, %hi(val)
1131      //   dahi $res, $res, %higher(val)
1132      //   dati $res, $res, %highest(cal)
1133      //   fill.d $res
1134      //
1135
1136      const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1137      const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1138      const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
1139      const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
1140
1141      SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1142      SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1143      SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
1144      SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
1145      SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1146
1147      // Independent of whether we're targeting MIPS64 or not, the basic
1148      // operations are the same. Also, directly use the $zero register if
1149      // the 16 bit chunk is zero.
1150      //
1151      // For optimization purposes we always synthesize the splat value as
1152      // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1153      // just before combining the values with dinsu to produce an i64. This
1154      // enables SelectionDAG to aggressively share components of splat values
1155      // where possible.
1156      //
1157      // FIXME: This is the general constant synthesis problem. This code
1158      //        should be factored out into a class shared between all the
1159      //        classes that need it. Specifically, for a splat size of 64
1160      //        bits that's a negative number we can do better than LUi/ORi
1161      //        for the upper 32bits.
1162
1163      if (Hi)
1164        Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1165
1166      if (Lo)
1167        Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1168                                     Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1169
1170      SDNode *HiRes;
1171      if (Highest)
1172        HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
1173
1174      if (Higher)
1175        HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1176                                       Highest ? SDValue(HiRes, 0) : ZeroVal,
1177                                       HigherVal);
1178
1179
1180      if (ABI.IsO32()) {
1181        Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
1182                                     (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
1183
1184        Res = CurDAG->getMachineNode(
1185            Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
1186            (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
1187            CurDAG->getTargetConstant(1, DL, MVT::i32));
1188
1189        const TargetLowering *TLI = getTargetLowering();
1190        const TargetRegisterClass *RC =
1191            TLI->getRegClassFor(ViaVecTy.getSimpleVT());
1192
1193        Res = CurDAG->getMachineNode(
1194            Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
1195            CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
1196
1197        Res = CurDAG->getMachineNode(
1198            Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
1199            CurDAG->getTargetConstant(0, DL, MVT::i32));
1200      } else if (ABI.IsN64() || ABI.IsN32()) {
1201
1202        SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
1203        const bool HiResNonZero = Highest || Higher;
1204        const bool ResNonZero = Hi || Lo;
1205
1206        if (HiResNonZero)
1207          HiRes = CurDAG->getMachineNode(
1208              Mips::SUBREG_TO_REG, DL, MVT::i64,
1209              CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
1210              SDValue(HiRes, 0),
1211              CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1212
1213        if (ResNonZero)
1214          Res = CurDAG->getMachineNode(
1215              Mips::SUBREG_TO_REG, DL, MVT::i64,
1216              CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1217              SDValue(Res, 0),
1218              CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1219
1220        // We have 3 cases:
1221        //   The HiRes is nonzero but Res is $zero  => dsll32 HiRes, 0
1222        //   The Res is nonzero but HiRes is $zero  => dinsu Res, $zero, 32, 32
1223        //   Both are non zero                      => dinsu Res, HiRes, 32, 32
1224        //
1225        // The obvious "missing" case is when both are zero, but that case is
1226        // handled by the ldi case.
1227        if (ResNonZero) {
1228          IntegerType *Int32Ty =
1229              IntegerType::get(MF->getFunction().getContext(), 32);
1230          const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
1231          SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
1232                            CurDAG->getConstant(*Const32, DL, MVT::i32),
1233                            CurDAG->getConstant(*Const32, DL, MVT::i32),
1234                            SDValue(Res, 0)};
1235
1236          Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
1237        } else if (HiResNonZero) {
1238          Res = CurDAG->getMachineNode(
1239              Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
1240              CurDAG->getTargetConstant(0, DL, MVT::i32));
1241        } else
1242          llvm_unreachable(
1243              "Zero splat value handled by non-zero 64bit splat synthesis!");
1244
1245        Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64,
1246                                     SDValue(Res, 0));
1247      } else
1248        llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1249
1250    } else
1251      return false;
1252
1253    if (ResVecTy != ViaVecTy) {
1254      // If LdiOp is writing to a different register class to ResVecTy, then
1255      // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1256      // since the source and destination register sets contain the same
1257      // registers.
1258      const TargetLowering *TLI = getTargetLowering();
1259      MVT ResVecTySimple = ResVecTy.getSimpleVT();
1260      const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
1261      Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
1262                                   ResVecTy, SDValue(Res, 0),
1263                                   CurDAG->getTargetConstant(RC->getID(), DL,
1264                                                             MVT::i32));
1265    }
1266
1267    ReplaceNode(Node, Res);
1268    return true;
1269  }
1270
1271  }
1272
1273  return false;
1274}
1275
1276bool MipsSEDAGToDAGISel::
1277SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
1278                             std::vector<SDValue> &OutOps) {
1279  SDValue Base, Offset;
1280
1281  switch(ConstraintID) {
1282  default:
1283    llvm_unreachable("Unexpected asm memory constraint");
1284  // All memory constraints can at least accept raw pointers.
1285  case InlineAsm::Constraint_m:
1286  case InlineAsm::Constraint_o:
1287    if (selectAddrRegImm16(Op, Base, Offset)) {
1288      OutOps.push_back(Base);
1289      OutOps.push_back(Offset);
1290      return false;
1291    }
1292    OutOps.push_back(Op);
1293    OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1294    return false;
1295  case InlineAsm::Constraint_R:
1296    // The 'R' constraint is supposed to be much more complicated than this.
1297    // However, it's becoming less useful due to architectural changes and
1298    // ought to be replaced by other constraints such as 'ZC'.
1299    // For now, support 9-bit signed offsets which is supportable by all
1300    // subtargets for all instructions.
1301    if (selectAddrRegImm9(Op, Base, Offset)) {
1302      OutOps.push_back(Base);
1303      OutOps.push_back(Offset);
1304      return false;
1305    }
1306    OutOps.push_back(Op);
1307    OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1308    return false;
1309  case InlineAsm::Constraint_ZC:
1310    // ZC matches whatever the pref, ll, and sc instructions can handle for the
1311    // given subtarget.
1312    if (Subtarget->inMicroMipsMode()) {
1313      // On microMIPS, they can handle 12-bit offsets.
1314      if (selectAddrRegImm12(Op, Base, Offset)) {
1315        OutOps.push_back(Base);
1316        OutOps.push_back(Offset);
1317        return false;
1318      }
1319    } else if (Subtarget->hasMips32r6()) {
1320      // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1321      if (selectAddrRegImm9(Op, Base, Offset)) {
1322        OutOps.push_back(Base);
1323        OutOps.push_back(Offset);
1324        return false;
1325      }
1326    } else if (selectAddrRegImm16(Op, Base, Offset)) {
1327      // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1328      OutOps.push_back(Base);
1329      OutOps.push_back(Offset);
1330      return false;
1331    }
1332    // In all cases, 0-bit offsets are acceptable.
1333    OutOps.push_back(Op);
1334    OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1335    return false;
1336  }
1337  return true;
1338}
1339
1340FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1341                                        CodeGenOpt::Level OptLevel) {
1342  return new MipsSEDAGToDAGISel(TM, OptLevel);
1343}
1344