HexagonTargetTransformInfo.cpp revision 360784
1//===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7/// \file
8/// This file implements a TargetTransformInfo analysis pass specific to the
9/// Hexagon target machine. It uses the target's detailed information to provide
10/// more precise answers to certain TTI queries, while letting the target
11/// independent and default TTI implementations handle the rest.
12///
13//===----------------------------------------------------------------------===//
14
15#include "HexagonTargetTransformInfo.h"
16#include "HexagonSubtarget.h"
17#include "llvm/Analysis/TargetTransformInfo.h"
18#include "llvm/CodeGen/ValueTypes.h"
19#include "llvm/IR/InstrTypes.h"
20#include "llvm/IR/Instructions.h"
21#include "llvm/IR/User.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Transforms/Utils/UnrollLoop.h"
25
26using namespace llvm;
27
28#define DEBUG_TYPE "hexagontti"
29
30static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
31  cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
32
33static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
34  cl::init(true), cl::Hidden,
35  cl::desc("Control lookup table emission on Hexagon target"));
36
37// Constant "cost factor" to make floating point operations more expensive
38// in terms of vectorization cost. This isn't the best way, but it should
39// do. Ultimately, the cost should use cycles.
40static const unsigned FloatFactor = 4;
41
42bool HexagonTTIImpl::useHVX() const {
43  return ST.useHVXOps() && HexagonAutoHVX;
44}
45
46bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
47  assert(VecTy->isVectorTy());
48  if (cast<VectorType>(VecTy)->isScalable())
49    return false;
50  // Avoid types like <2 x i32*>.
51  if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
52    return false;
53  EVT VecVT = EVT::getEVT(VecTy);
54  if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
55    return false;
56  if (ST.isHVXVectorType(VecVT.getSimpleVT()))
57    return true;
58  auto Action = TLI.getPreferredVectorAction(VecVT.getSimpleVT());
59  return Action == TargetLoweringBase::TypeWidenVector;
60}
61
62unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
63  if (Ty->isVectorTy())
64    return Ty->getVectorNumElements();
65  assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
66         "Expecting scalar type");
67  return 1;
68}
69
70TargetTransformInfo::PopcntSupportKind
71HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
72  // Return fast hardware support as every input < 64 bits will be promoted
73  // to 64 bits.
74  return TargetTransformInfo::PSK_FastHardware;
75}
76
77// The Hexagon target can unroll loops with run-time trip counts.
78void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
79                                             TTI::UnrollingPreferences &UP) {
80  UP.Runtime = UP.Partial = true;
81  // Only try to peel innermost loops with small runtime trip counts.
82  if (L && L->empty() && canPeel(L) &&
83      SE.getSmallConstantTripCount(L) == 0 &&
84      SE.getSmallConstantMaxTripCount(L) > 0 &&
85      SE.getSmallConstantMaxTripCount(L) <= 5) {
86    UP.PeelCount = 2;
87  }
88}
89
90bool HexagonTTIImpl::shouldFavorPostInc() const {
91  return true;
92}
93
94/// --- Vector TTI begin ---
95
96unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
97  if (Vector)
98    return useHVX() ? 32 : 0;
99  return 32;
100}
101
102unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
103  return useHVX() ? 2 : 0;
104}
105
106unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
107  return Vector ? getMinVectorRegisterBitWidth() : 32;
108}
109
110unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
111  return useHVX() ? ST.getVectorLength()*8 : 0;
112}
113
114unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
115  return (8 * ST.getVectorLength()) / ElemWidth;
116}
117
118unsigned HexagonTTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
119      bool Extract) {
120  return BaseT::getScalarizationOverhead(Ty, Insert, Extract);
121}
122
123unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
124      ArrayRef<const Value*> Args, unsigned VF) {
125  return BaseT::getOperandsScalarizationOverhead(Args, VF);
126}
127
128unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
129      ArrayRef<Type*> Tys) {
130  return BaseT::getCallInstrCost(F, RetTy, Tys);
131}
132
133unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
134      ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
135  return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
136}
137
138unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
139      ArrayRef<Type*> Tys, FastMathFlags FMF,
140      unsigned ScalarizationCostPassed) {
141  if (ID == Intrinsic::bswap) {
142    std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, RetTy);
143    return LT.first + 2;
144  }
145  return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
146                                      ScalarizationCostPassed);
147}
148
149unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
150      ScalarEvolution *SE, const SCEV *S) {
151  return 0;
152}
153
154unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
155                                         MaybeAlign Alignment,
156                                         unsigned AddressSpace,
157                                         const Instruction *I) {
158  assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
159  if (Opcode == Instruction::Store)
160    return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
161
162  if (Src->isVectorTy()) {
163    VectorType *VecTy = cast<VectorType>(Src);
164    unsigned VecWidth = VecTy->getBitWidth();
165    if (useHVX() && isTypeForHVX(VecTy)) {
166      unsigned RegWidth = getRegisterBitWidth(true);
167      assert(RegWidth && "Non-zero vector register width expected");
168      // Cost of HVX loads.
169      if (VecWidth % RegWidth == 0)
170        return VecWidth / RegWidth;
171      // Cost of constructing HVX vector from scalar loads
172      const Align RegAlign(RegWidth / 8);
173      if (!Alignment || *Alignment > RegAlign)
174        Alignment = RegAlign;
175      assert(Alignment);
176      unsigned AlignWidth = 8 * Alignment->value();
177      unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
178      return 3 * NumLoads;
179    }
180
181    // Non-HVX vectors.
182    // Add extra cost for floating point types.
183    unsigned Cost =
184        VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
185
186    // At this point unspecified alignment is considered as Align::None().
187    const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
188    unsigned AlignWidth = 8 * BoundAlignment.value();
189    unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
190    if (Alignment == Align(4) || Alignment == Align(8))
191      return Cost * NumLoads;
192    // Loads of less than 32 bits will need extra inserts to compose a vector.
193    assert(BoundAlignment <= Align(8));
194    unsigned LogA = Log2(BoundAlignment);
195    return (3 - LogA) * Cost * NumLoads;
196  }
197
198  return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
199}
200
201unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode,
202      Type *Src, unsigned Alignment, unsigned AddressSpace) {
203  return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
204}
205
206unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
207      int Index, Type *SubTp) {
208  return 1;
209}
210
211unsigned HexagonTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
212      Value *Ptr, bool VariableMask, unsigned Alignment) {
213  return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
214                                       Alignment);
215}
216
217unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode,
218      Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
219      unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
220      bool UseMaskForGaps) {
221  if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
222    return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
223                                             Alignment, AddressSpace,
224                                             UseMaskForCond, UseMaskForGaps);
225  return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
226                         nullptr);
227}
228
229unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
230      Type *CondTy, const Instruction *I) {
231  if (ValTy->isVectorTy()) {
232    std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
233    if (Opcode == Instruction::FCmp)
234      return LT.first + FloatFactor * getTypeNumElements(ValTy);
235  }
236  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
237}
238
239unsigned HexagonTTIImpl::getArithmeticInstrCost(
240    unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
241    TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
242    TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
243    const Instruction *CxtI) {
244  if (Ty->isVectorTy()) {
245    std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
246    if (LT.second.isFloatingPoint())
247      return LT.first + FloatFactor * getTypeNumElements(Ty);
248  }
249  return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
250                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
251}
252
253unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
254      Type *SrcTy, const Instruction *I) {
255  if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
256    unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
257    unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
258
259    std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
260    std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
261    return std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
262  }
263  return 1;
264}
265
266unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
267      unsigned Index) {
268  Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
269                                   : Val;
270  if (Opcode == Instruction::InsertElement) {
271    // Need two rotations for non-zero index.
272    unsigned Cost = (Index != 0) ? 2 : 0;
273    if (ElemTy->isIntegerTy(32))
274      return Cost;
275    // If it's not a 32-bit value, there will need to be an extract.
276    return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
277  }
278
279  if (Opcode == Instruction::ExtractElement)
280    return 2;
281
282  return 1;
283}
284
285/// --- Vector TTI end ---
286
287unsigned HexagonTTIImpl::getPrefetchDistance() const {
288  return ST.getL1PrefetchDistance();
289}
290
291unsigned HexagonTTIImpl::getCacheLineSize() const {
292  return ST.getL1CacheLineSize();
293}
294
295int HexagonTTIImpl::getUserCost(const User *U,
296                                ArrayRef<const Value *> Operands) {
297  auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
298    if (!CI->isIntegerCast())
299      return false;
300    // Only extensions from an integer type shorter than 32-bit to i32
301    // can be folded into the load.
302    const DataLayout &DL = getDataLayout();
303    unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
304    unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
305    if (DBW != 32 || SBW >= DBW)
306      return false;
307
308    const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
309    // Technically, this code could allow multiple uses of the load, and
310    // check if all the uses are the same extension operation, but this
311    // should be sufficient for most cases.
312    return LI && LI->hasOneUse();
313  };
314
315  if (const CastInst *CI = dyn_cast<const CastInst>(U))
316    if (isCastFoldedIntoLoad(CI))
317      return TargetTransformInfo::TCC_Free;
318  return BaseT::getUserCost(U, Operands);
319}
320
321bool HexagonTTIImpl::shouldBuildLookupTables() const {
322  return EmitLookupTables;
323}
324