HexagonSplitDouble.cpp revision 341825
1//===- HexagonSplitDouble.cpp ---------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hsdr"
11
12#include "HexagonInstrInfo.h"
13#include "HexagonRegisterInfo.h"
14#include "HexagonSubtarget.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstr.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/MachineMemOperand.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/TargetRegisterInfo.h"
29#include "llvm/Config/llvm-config.h"
30#include "llvm/IR/DebugLoc.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <algorithm>
38#include <cassert>
39#include <cstdint>
40#include <limits>
41#include <map>
42#include <set>
43#include <utility>
44#include <vector>
45
46using namespace llvm;
47
48namespace llvm {
49
50  FunctionPass *createHexagonSplitDoubleRegs();
51  void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
52
53} // end namespace llvm
54
55static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
56    cl::desc("Maximum number of split partitions"));
57static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
58    cl::desc("Do not split loads or stores"));
59  static cl::opt<bool> SplitAll("hsdr-split-all", cl::Hidden, cl::init(false),
60      cl::desc("Split all partitions"));
61
62namespace {
63
64  class HexagonSplitDoubleRegs : public MachineFunctionPass {
65  public:
66    static char ID;
67
68    HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {}
69
70    StringRef getPassName() const override {
71      return "Hexagon Split Double Registers";
72    }
73
74    void getAnalysisUsage(AnalysisUsage &AU) const override {
75      AU.addRequired<MachineLoopInfo>();
76      AU.addPreserved<MachineLoopInfo>();
77      MachineFunctionPass::getAnalysisUsage(AU);
78    }
79
80    bool runOnMachineFunction(MachineFunction &MF) override;
81
82  private:
83    static const TargetRegisterClass *const DoubleRC;
84
85    const HexagonRegisterInfo *TRI = nullptr;
86    const HexagonInstrInfo *TII = nullptr;
87    const MachineLoopInfo *MLI;
88    MachineRegisterInfo *MRI;
89
90    using USet = std::set<unsigned>;
91    using UUSetMap = std::map<unsigned, USet>;
92    using UUPair = std::pair<unsigned, unsigned>;
93    using UUPairMap = std::map<unsigned, UUPair>;
94    using LoopRegMap = std::map<const MachineLoop *, USet>;
95
96    bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
97    bool isVolatileInstr(const MachineInstr *MI) const;
98    bool isFixedInstr(const MachineInstr *MI) const;
99    void partitionRegisters(UUSetMap &P2Rs);
100    int32_t profit(const MachineInstr *MI) const;
101    int32_t profit(unsigned Reg) const;
102    bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
103
104    void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
105    void collectIndRegs(LoopRegMap &IRM);
106
107    void createHalfInstr(unsigned Opc, MachineInstr *MI,
108        const UUPairMap &PairMap, unsigned SubR);
109    void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
110    void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
111    void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
112    void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
113    void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
114    void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
115    bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
116    void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
117    void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
118    bool splitPartition(const USet &Part);
119
120    static int Counter;
121
122    static void dump_partition(raw_ostream&, const USet&,
123       const TargetRegisterInfo&);
124  };
125
126} // end anonymous namespace
127
128char HexagonSplitDoubleRegs::ID;
129int HexagonSplitDoubleRegs::Counter = 0;
130const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC =
131    &Hexagon::DoubleRegsRegClass;
132
133INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
134  "Hexagon Split Double Registers", false, false)
135
136#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
137LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
138      const USet &Part, const TargetRegisterInfo &TRI) {
139  dbgs() << '{';
140  for (auto I : Part)
141    dbgs() << ' ' << printReg(I, &TRI);
142  dbgs() << " }";
143}
144#endif
145
146bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
147  for (auto I : IRM) {
148    const USet &Rs = I.second;
149    if (Rs.find(Reg) != Rs.end())
150      return true;
151  }
152  return false;
153}
154
155bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
156  for (auto &I : MI->memoperands())
157    if (I->isVolatile())
158      return true;
159  return false;
160}
161
162bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
163  if (MI->mayLoad() || MI->mayStore())
164    if (MemRefsFixed || isVolatileInstr(MI))
165      return true;
166  if (MI->isDebugInstr())
167    return false;
168
169  unsigned Opc = MI->getOpcode();
170  switch (Opc) {
171    default:
172      return true;
173
174    case TargetOpcode::PHI:
175    case TargetOpcode::COPY:
176      break;
177
178    case Hexagon::L2_loadrd_io:
179      // Not handling stack stores (only reg-based addresses).
180      if (MI->getOperand(1).isReg())
181        break;
182      return true;
183    case Hexagon::S2_storerd_io:
184      // Not handling stack stores (only reg-based addresses).
185      if (MI->getOperand(0).isReg())
186        break;
187      return true;
188    case Hexagon::L2_loadrd_pi:
189    case Hexagon::S2_storerd_pi:
190
191    case Hexagon::A2_tfrpi:
192    case Hexagon::A2_combineii:
193    case Hexagon::A4_combineir:
194    case Hexagon::A4_combineii:
195    case Hexagon::A4_combineri:
196    case Hexagon::A2_combinew:
197    case Hexagon::CONST64:
198
199    case Hexagon::A2_sxtw:
200
201    case Hexagon::A2_andp:
202    case Hexagon::A2_orp:
203    case Hexagon::A2_xorp:
204    case Hexagon::S2_asl_i_p_or:
205    case Hexagon::S2_asl_i_p:
206    case Hexagon::S2_asr_i_p:
207    case Hexagon::S2_lsr_i_p:
208      break;
209  }
210
211  for (auto &Op : MI->operands()) {
212    if (!Op.isReg())
213      continue;
214    unsigned R = Op.getReg();
215    if (!TargetRegisterInfo::isVirtualRegister(R))
216      return true;
217  }
218  return false;
219}
220
221void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
222  using UUMap = std::map<unsigned, unsigned>;
223  using UVect = std::vector<unsigned>;
224
225  unsigned NumRegs = MRI->getNumVirtRegs();
226  BitVector DoubleRegs(NumRegs);
227  for (unsigned i = 0; i < NumRegs; ++i) {
228    unsigned R = TargetRegisterInfo::index2VirtReg(i);
229    if (MRI->getRegClass(R) == DoubleRC)
230      DoubleRegs.set(i);
231  }
232
233  BitVector FixedRegs(NumRegs);
234  for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
235    unsigned R = TargetRegisterInfo::index2VirtReg(x);
236    MachineInstr *DefI = MRI->getVRegDef(R);
237    // In some cases a register may exist, but never be defined or used.
238    // It should never appear anywhere, but mark it as "fixed", just to be
239    // safe.
240    if (!DefI || isFixedInstr(DefI))
241      FixedRegs.set(x);
242  }
243
244  UUSetMap AssocMap;
245  for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
246    if (FixedRegs[x])
247      continue;
248    unsigned R = TargetRegisterInfo::index2VirtReg(x);
249    LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~");
250    USet &Asc = AssocMap[R];
251    for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
252         U != Z; ++U) {
253      MachineOperand &Op = *U;
254      MachineInstr *UseI = Op.getParent();
255      if (isFixedInstr(UseI))
256        continue;
257      for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
258        MachineOperand &MO = UseI->getOperand(i);
259        // Skip non-registers or registers with subregisters.
260        if (&MO == &Op || !MO.isReg() || MO.getSubReg())
261          continue;
262        unsigned T = MO.getReg();
263        if (!TargetRegisterInfo::isVirtualRegister(T)) {
264          FixedRegs.set(x);
265          continue;
266        }
267        if (MRI->getRegClass(T) != DoubleRC)
268          continue;
269        unsigned u = TargetRegisterInfo::virtReg2Index(T);
270        if (FixedRegs[u])
271          continue;
272        LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI));
273        Asc.insert(T);
274        // Make it symmetric.
275        AssocMap[T].insert(R);
276      }
277    }
278    LLVM_DEBUG(dbgs() << '\n');
279  }
280
281  UUMap R2P;
282  unsigned NextP = 1;
283  USet Visited;
284  for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
285    unsigned R = TargetRegisterInfo::index2VirtReg(x);
286    if (Visited.count(R))
287      continue;
288    // Create a new partition for R.
289    unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
290    UVect WorkQ;
291    WorkQ.push_back(R);
292    for (unsigned i = 0; i < WorkQ.size(); ++i) {
293      unsigned T = WorkQ[i];
294      if (Visited.count(T))
295        continue;
296      R2P[T] = ThisP;
297      Visited.insert(T);
298      // Add all registers associated with T.
299      USet &Asc = AssocMap[T];
300      for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
301        WorkQ.push_back(*J);
302    }
303  }
304
305  for (auto I : R2P)
306    P2Rs[I.second].insert(I.first);
307}
308
309static inline int32_t profitImm(unsigned Imm) {
310  int32_t P = 0;
311  if (Imm == 0 || Imm == 0xFFFFFFFF)
312    P += 10;
313  return P;
314}
315
316int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
317  unsigned ImmX = 0;
318  unsigned Opc = MI->getOpcode();
319  switch (Opc) {
320    case TargetOpcode::PHI:
321      for (const auto &Op : MI->operands())
322        if (!Op.getSubReg())
323          return 0;
324      return 10;
325    case TargetOpcode::COPY:
326      if (MI->getOperand(1).getSubReg() != 0)
327        return 10;
328      return 0;
329
330    case Hexagon::L2_loadrd_io:
331    case Hexagon::S2_storerd_io:
332      return -1;
333    case Hexagon::L2_loadrd_pi:
334    case Hexagon::S2_storerd_pi:
335      return 2;
336
337    case Hexagon::A2_tfrpi:
338    case Hexagon::CONST64: {
339      uint64_t D = MI->getOperand(1).getImm();
340      unsigned Lo = D & 0xFFFFFFFFULL;
341      unsigned Hi = D >> 32;
342      return profitImm(Lo) + profitImm(Hi);
343    }
344    case Hexagon::A2_combineii:
345    case Hexagon::A4_combineii: {
346      const MachineOperand &Op1 = MI->getOperand(1);
347      const MachineOperand &Op2 = MI->getOperand(2);
348      int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0;
349      int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0;
350      return Prof1 + Prof2;
351    }
352    case Hexagon::A4_combineri:
353      ImmX++;
354      // Fall through into A4_combineir.
355      LLVM_FALLTHROUGH;
356    case Hexagon::A4_combineir: {
357      ImmX++;
358      const MachineOperand &OpX = MI->getOperand(ImmX);
359      if (OpX.isImm()) {
360        int64_t V = OpX.getImm();
361        if (V == 0 || V == -1)
362          return 10;
363      }
364      // Fall through into A2_combinew.
365      LLVM_FALLTHROUGH;
366    }
367    case Hexagon::A2_combinew:
368      return 2;
369
370    case Hexagon::A2_sxtw:
371      return 3;
372
373    case Hexagon::A2_andp:
374    case Hexagon::A2_orp:
375    case Hexagon::A2_xorp: {
376      unsigned Rs = MI->getOperand(1).getReg();
377      unsigned Rt = MI->getOperand(2).getReg();
378      return profit(Rs) + profit(Rt);
379    }
380
381    case Hexagon::S2_asl_i_p_or: {
382      unsigned S = MI->getOperand(3).getImm();
383      if (S == 0 || S == 32)
384        return 10;
385      return -1;
386    }
387    case Hexagon::S2_asl_i_p:
388    case Hexagon::S2_asr_i_p:
389    case Hexagon::S2_lsr_i_p:
390      unsigned S = MI->getOperand(2).getImm();
391      if (S == 0 || S == 32)
392        return 10;
393      if (S == 16)
394        return 5;
395      if (S == 48)
396        return 7;
397      return -10;
398  }
399
400  return 0;
401}
402
403int32_t HexagonSplitDoubleRegs::profit(unsigned Reg) const {
404  assert(TargetRegisterInfo::isVirtualRegister(Reg));
405
406  const MachineInstr *DefI = MRI->getVRegDef(Reg);
407  switch (DefI->getOpcode()) {
408    case Hexagon::A2_tfrpi:
409    case Hexagon::CONST64:
410    case Hexagon::A2_combineii:
411    case Hexagon::A4_combineii:
412    case Hexagon::A4_combineri:
413    case Hexagon::A4_combineir:
414    case Hexagon::A2_combinew:
415      return profit(DefI);
416    default:
417      break;
418  }
419  return 0;
420}
421
422bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
423      const {
424  unsigned FixedNum = 0, LoopPhiNum = 0;
425  int32_t TotalP = 0;
426
427  for (unsigned DR : Part) {
428    MachineInstr *DefI = MRI->getVRegDef(DR);
429    int32_t P = profit(DefI);
430    if (P == std::numeric_limits<int>::min())
431      return false;
432    TotalP += P;
433    // Reduce the profitability of splitting induction registers.
434    if (isInduction(DR, IRM))
435      TotalP -= 30;
436
437    for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
438         U != W; ++U) {
439      MachineInstr *UseI = U->getParent();
440      if (isFixedInstr(UseI)) {
441        FixedNum++;
442        // Calculate the cost of generating REG_SEQUENCE instructions.
443        for (auto &Op : UseI->operands()) {
444          if (Op.isReg() && Part.count(Op.getReg()))
445            if (Op.getSubReg())
446              TotalP -= 2;
447        }
448        continue;
449      }
450      // If a register from this partition is used in a fixed instruction,
451      // and there is also a register in this partition that is used in
452      // a loop phi node, then decrease the splitting profit as this can
453      // confuse the modulo scheduler.
454      if (UseI->isPHI()) {
455        const MachineBasicBlock *PB = UseI->getParent();
456        const MachineLoop *L = MLI->getLoopFor(PB);
457        if (L && L->getHeader() == PB)
458          LoopPhiNum++;
459      }
460      // Splittable instruction.
461      int32_t P = profit(UseI);
462      if (P == std::numeric_limits<int>::min())
463        return false;
464      TotalP += P;
465    }
466  }
467
468  if (FixedNum > 0 && LoopPhiNum > 0)
469    TotalP -= 20*LoopPhiNum;
470
471  LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
472  if (SplitAll)
473    return true;
474  return TotalP > 0;
475}
476
477void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
478      USet &Rs) {
479  const MachineBasicBlock *HB = L->getHeader();
480  const MachineBasicBlock *LB = L->getLoopLatch();
481  if (!HB || !LB)
482    return;
483
484  // Examine the latch branch. Expect it to be a conditional branch to
485  // the header (either "br-cond header" or "br-cond exit; br header").
486  MachineBasicBlock *TB = nullptr, *FB = nullptr;
487  MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
488  SmallVector<MachineOperand,2> Cond;
489  bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
490  // Only analyzable conditional branches. HII::analyzeBranch will put
491  // the branch opcode as the first element of Cond, and the predicate
492  // operand as the second.
493  if (BadLB || Cond.size() != 2)
494    return;
495  // Only simple jump-conditional (with or without negation).
496  if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
497    return;
498  // Must go to the header.
499  if (TB != HB && FB != HB)
500    return;
501  assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
502  // Expect a predicate register.
503  unsigned PR = Cond[1].getReg();
504  assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
505
506  // Get the registers on which the loop controlling compare instruction
507  // depends.
508  unsigned CmpR1 = 0, CmpR2 = 0;
509  const MachineInstr *CmpI = MRI->getVRegDef(PR);
510  while (CmpI->getOpcode() == Hexagon::C2_not)
511    CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
512
513  int Mask = 0, Val = 0;
514  bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
515  if (!OkCI)
516    return;
517  // Eliminate non-double input registers.
518  if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
519    CmpR1 = 0;
520  if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
521    CmpR2 = 0;
522  if (!CmpR1 && !CmpR2)
523    return;
524
525  // Now examine the top of the loop: the phi nodes that could poten-
526  // tially define loop induction registers. The registers defined by
527  // such a phi node would be used in a 64-bit add, which then would
528  // be used in the loop compare instruction.
529
530  // Get the set of all double registers defined by phi nodes in the
531  // loop header.
532  using UVect = std::vector<unsigned>;
533
534  UVect DP;
535  for (auto &MI : *HB) {
536    if (!MI.isPHI())
537      break;
538    const MachineOperand &MD = MI.getOperand(0);
539    unsigned R = MD.getReg();
540    if (MRI->getRegClass(R) == DoubleRC)
541      DP.push_back(R);
542  }
543  if (DP.empty())
544    return;
545
546  auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
547    for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
548         I != E; ++I) {
549      const MachineInstr *UseI = I->getParent();
550      if (UseI->getOpcode() != Hexagon::A2_addp)
551        continue;
552      // Get the output from the add. If it is one of the inputs to the
553      // loop-controlling compare instruction, then R is likely an induc-
554      // tion register.
555      unsigned T = UseI->getOperand(0).getReg();
556      if (T == CmpR1 || T == CmpR2)
557        return false;
558    }
559    return true;
560  };
561  UVect::iterator End = llvm::remove_if(DP, NoIndOp);
562  Rs.insert(DP.begin(), End);
563  Rs.insert(CmpR1);
564  Rs.insert(CmpR2);
565
566  LLVM_DEBUG({
567    dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: ";
568    dump_partition(dbgs(), Rs, *TRI);
569    dbgs() << '\n';
570  });
571}
572
573void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
574  using LoopVector = std::vector<MachineLoop *>;
575
576  LoopVector WorkQ;
577
578  for (auto I : *MLI)
579    WorkQ.push_back(I);
580  for (unsigned i = 0; i < WorkQ.size(); ++i) {
581    for (auto I : *WorkQ[i])
582      WorkQ.push_back(I);
583  }
584
585  USet Rs;
586  for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
587    MachineLoop *L = WorkQ[i];
588    Rs.clear();
589    collectIndRegsForLoop(L, Rs);
590    if (!Rs.empty())
591      IRM.insert(std::make_pair(L, Rs));
592  }
593}
594
595void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
596      const UUPairMap &PairMap, unsigned SubR) {
597  MachineBasicBlock &B = *MI->getParent();
598  DebugLoc DL = MI->getDebugLoc();
599  MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
600
601  for (auto &Op : MI->operands()) {
602    if (!Op.isReg()) {
603      NewI->addOperand(Op);
604      continue;
605    }
606    // For register operands, set the subregister.
607    unsigned R = Op.getReg();
608    unsigned SR = Op.getSubReg();
609    bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R);
610    bool isKill = Op.isKill();
611    if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
612      isKill = false;
613      UUPairMap::const_iterator F = PairMap.find(R);
614      if (F == PairMap.end()) {
615        SR = SubR;
616      } else {
617        const UUPair &P = F->second;
618        R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
619        SR = 0;
620      }
621    }
622    auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
623          Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
624          Op.isInternalRead());
625    NewI->addOperand(CO);
626  }
627}
628
629void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
630      const UUPairMap &PairMap) {
631  bool Load = MI->mayLoad();
632  unsigned OrigOpc = MI->getOpcode();
633  bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
634                  OrigOpc == Hexagon::S2_storerd_pi);
635  MachineInstr *LowI, *HighI;
636  MachineBasicBlock &B = *MI->getParent();
637  DebugLoc DL = MI->getDebugLoc();
638
639  // Index of the base-address-register operand.
640  unsigned AdrX = PostInc ? (Load ? 2 : 1)
641                          : (Load ? 1 : 0);
642  MachineOperand &AdrOp = MI->getOperand(AdrX);
643  unsigned RSA = getRegState(AdrOp);
644  MachineOperand &ValOp = Load ? MI->getOperand(0)
645                               : (PostInc ? MI->getOperand(3)
646                                          : MI->getOperand(2));
647  UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
648  assert(F != PairMap.end());
649
650  if (Load) {
651    const UUPair &P = F->second;
652    int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
653    LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
654             .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
655             .addImm(Off);
656    HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
657              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
658              .addImm(Off+4);
659  } else {
660    const UUPair &P = F->second;
661    int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
662    LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
663             .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
664             .addImm(Off)
665             .addReg(P.first);
666    HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
667              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
668              .addImm(Off+4)
669              .addReg(P.second);
670  }
671
672  if (PostInc) {
673    // Create the increment of the address register.
674    int64_t Inc = Load ? MI->getOperand(3).getImm()
675                       : MI->getOperand(2).getImm();
676    MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
677    const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
678    unsigned NewR = MRI->createVirtualRegister(RC);
679    assert(!UpdOp.getSubReg() && "Def operand with subreg");
680    BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
681      .addReg(AdrOp.getReg(), RSA)
682      .addImm(Inc);
683    MRI->replaceRegWith(UpdOp.getReg(), NewR);
684    // The original instruction will be deleted later.
685  }
686
687  // Generate a new pair of memory-operands.
688  MachineFunction &MF = *B.getParent();
689  for (auto &MO : MI->memoperands()) {
690    const MachinePointerInfo &Ptr = MO->getPointerInfo();
691    MachineMemOperand::Flags F = MO->getFlags();
692    int A = MO->getAlignment();
693
694    auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
695    LowI->addMemOperand(MF, Tmp1);
696    auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
697    HighI->addMemOperand(MF, Tmp2);
698  }
699}
700
701void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
702      const UUPairMap &PairMap) {
703  MachineOperand &Op0 = MI->getOperand(0);
704  MachineOperand &Op1 = MI->getOperand(1);
705  assert(Op0.isReg() && Op1.isImm());
706  uint64_t V = Op1.getImm();
707
708  MachineBasicBlock &B = *MI->getParent();
709  DebugLoc DL = MI->getDebugLoc();
710  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
711  assert(F != PairMap.end());
712  const UUPair &P = F->second;
713
714  // The operand to A2_tfrsi can only have 32 significant bits. Immediate
715  // values in MachineOperand are stored as 64-bit integers, and so the
716  // value -1 may be represented either as 64-bit -1, or 4294967295. Both
717  // will have the 32 higher bits truncated in the end, but -1 will remain
718  // as -1, while the latter may appear to be a large unsigned value
719  // requiring a constant extender. The casting to int32_t will select the
720  // former representation. (The same reasoning applies to all 32-bit
721  // values.)
722  BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
723    .addImm(int32_t(V & 0xFFFFFFFFULL));
724  BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
725    .addImm(int32_t(V >> 32));
726}
727
728void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
729      const UUPairMap &PairMap) {
730  MachineOperand &Op0 = MI->getOperand(0);
731  MachineOperand &Op1 = MI->getOperand(1);
732  MachineOperand &Op2 = MI->getOperand(2);
733  assert(Op0.isReg());
734
735  MachineBasicBlock &B = *MI->getParent();
736  DebugLoc DL = MI->getDebugLoc();
737  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
738  assert(F != PairMap.end());
739  const UUPair &P = F->second;
740
741  if (!Op1.isReg()) {
742    BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
743      .add(Op1);
744  } else {
745    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
746      .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
747  }
748
749  if (!Op2.isReg()) {
750    BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
751      .add(Op2);
752  } else {
753    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
754      .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
755  }
756}
757
758void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
759      const UUPairMap &PairMap) {
760  MachineOperand &Op0 = MI->getOperand(0);
761  MachineOperand &Op1 = MI->getOperand(1);
762  assert(Op0.isReg() && Op1.isReg());
763
764  MachineBasicBlock &B = *MI->getParent();
765  DebugLoc DL = MI->getDebugLoc();
766  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
767  assert(F != PairMap.end());
768  const UUPair &P = F->second;
769  unsigned RS = getRegState(Op1);
770
771  BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
772    .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
773  BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
774    .addReg(Op1.getReg(), RS, Op1.getSubReg())
775    .addImm(31);
776}
777
778void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
779      const UUPairMap &PairMap) {
780  using namespace Hexagon;
781
782  MachineOperand &Op0 = MI->getOperand(0);
783  MachineOperand &Op1 = MI->getOperand(1);
784  MachineOperand &Op2 = MI->getOperand(2);
785  assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
786  int64_t Sh64 = Op2.getImm();
787  assert(Sh64 >= 0 && Sh64 < 64);
788  unsigned S = Sh64;
789
790  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
791  assert(F != PairMap.end());
792  const UUPair &P = F->second;
793  unsigned LoR = P.first;
794  unsigned HiR = P.second;
795
796  unsigned Opc = MI->getOpcode();
797  bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
798  bool Left = !Right;
799  bool Signed = (Opc == S2_asr_i_p);
800
801  MachineBasicBlock &B = *MI->getParent();
802  DebugLoc DL = MI->getDebugLoc();
803  unsigned RS = getRegState(Op1);
804  unsigned ShiftOpc = Left ? S2_asl_i_r
805                           : (Signed ? S2_asr_i_r : S2_lsr_i_r);
806  unsigned LoSR = isub_lo;
807  unsigned HiSR = isub_hi;
808
809  if (S == 0) {
810    // No shift, subregister copy.
811    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
812      .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
813    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
814      .addReg(Op1.getReg(), RS, HiSR);
815  } else if (S < 32) {
816    const TargetRegisterClass *IntRC = &IntRegsRegClass;
817    unsigned TmpR = MRI->createVirtualRegister(IntRC);
818    // Expansion:
819    // Shift left:    DR = shl R, #s
820    //   LoR  = shl R.lo, #s
821    //   TmpR = extractu R.lo, #s, #32-s
822    //   HiR  = or (TmpR, asl(R.hi, #s))
823    // Shift right:   DR = shr R, #s
824    //   HiR  = shr R.hi, #s
825    //   TmpR = shr R.lo, #s
826    //   LoR  = insert TmpR, R.hi, #s, #32-s
827
828    // Shift left:
829    //   LoR  = shl R.lo, #s
830    // Shift right:
831    //   TmpR = shr R.lo, #s
832
833    // Make a special case for A2_aslh and A2_asrh (they are predicable as
834    // opposed to S2_asl_i_r/S2_asr_i_r).
835    if (S == 16 && Left)
836      BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
837        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
838    else if (S == 16 && Signed)
839      BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
840        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
841    else
842      BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
843        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
844        .addImm(S);
845
846    if (Left) {
847      // TmpR = extractu R.lo, #s, #32-s
848      BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
849        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
850        .addImm(S)
851        .addImm(32-S);
852      // HiR  = or (TmpR, asl(R.hi, #s))
853      BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
854        .addReg(TmpR)
855        .addReg(Op1.getReg(), RS, HiSR)
856        .addImm(S);
857    } else {
858      // HiR  = shr R.hi, #s
859      BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
860        .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
861        .addImm(S);
862      // LoR  = insert TmpR, R.hi, #s, #32-s
863      BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
864        .addReg(TmpR)
865        .addReg(Op1.getReg(), RS, HiSR)
866        .addImm(S)
867        .addImm(32-S);
868    }
869  } else if (S == 32) {
870    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
871      .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
872    if (!Signed)
873      BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
874        .addImm(0);
875    else  // Must be right shift.
876      BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
877        .addReg(Op1.getReg(), RS, HiSR)
878        .addImm(31);
879  } else if (S < 64) {
880    S -= 32;
881    if (S == 16 && Left)
882      BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
883        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
884    else if (S == 16 && Signed)
885      BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
886        .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
887    else
888      BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
889        .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
890        .addImm(S);
891
892    if (Signed)
893      BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
894        .addReg(Op1.getReg(), RS, HiSR)
895        .addImm(31);
896    else
897      BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
898        .addImm(0);
899  }
900}
901
902void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
903      const UUPairMap &PairMap) {
904  using namespace Hexagon;
905
906  MachineOperand &Op0 = MI->getOperand(0);
907  MachineOperand &Op1 = MI->getOperand(1);
908  MachineOperand &Op2 = MI->getOperand(2);
909  MachineOperand &Op3 = MI->getOperand(3);
910  assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
911  int64_t Sh64 = Op3.getImm();
912  assert(Sh64 >= 0 && Sh64 < 64);
913  unsigned S = Sh64;
914
915  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
916  assert(F != PairMap.end());
917  const UUPair &P = F->second;
918  unsigned LoR = P.first;
919  unsigned HiR = P.second;
920
921  MachineBasicBlock &B = *MI->getParent();
922  DebugLoc DL = MI->getDebugLoc();
923  unsigned RS1 = getRegState(Op1);
924  unsigned RS2 = getRegState(Op2);
925  const TargetRegisterClass *IntRC = &IntRegsRegClass;
926
927  unsigned LoSR = isub_lo;
928  unsigned HiSR = isub_hi;
929
930  // Op0 = S2_asl_i_p_or Op1, Op2, Op3
931  // means:  Op0 = or (Op1, asl(Op2, Op3))
932
933  // Expansion of
934  //   DR = or (R1, asl(R2, #s))
935  //
936  //   LoR  = or (R1.lo, asl(R2.lo, #s))
937  //   Tmp1 = extractu R2.lo, #s, #32-s
938  //   Tmp2 = or R1.hi, Tmp1
939  //   HiR  = or (Tmp2, asl(R2.hi, #s))
940
941  if (S == 0) {
942    // DR  = or (R1, asl(R2, #0))
943    //    -> or (R1, R2)
944    // i.e. LoR = or R1.lo, R2.lo
945    //      HiR = or R1.hi, R2.hi
946    BuildMI(B, MI, DL, TII->get(A2_or), LoR)
947      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
948      .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
949    BuildMI(B, MI, DL, TII->get(A2_or), HiR)
950      .addReg(Op1.getReg(), RS1, HiSR)
951      .addReg(Op2.getReg(), RS2, HiSR);
952  } else if (S < 32) {
953    BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
954      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
955      .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
956      .addImm(S);
957    unsigned TmpR1 = MRI->createVirtualRegister(IntRC);
958    BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
959      .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
960      .addImm(S)
961      .addImm(32-S);
962    unsigned TmpR2 = MRI->createVirtualRegister(IntRC);
963    BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
964      .addReg(Op1.getReg(), RS1, HiSR)
965      .addReg(TmpR1);
966    BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
967      .addReg(TmpR2)
968      .addReg(Op2.getReg(), RS2, HiSR)
969      .addImm(S);
970  } else if (S == 32) {
971    // DR  = or (R1, asl(R2, #32))
972    //    -> or R1, R2.lo
973    // LoR = R1.lo
974    // HiR = or R1.hi, R2.lo
975    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
976      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
977    BuildMI(B, MI, DL, TII->get(A2_or), HiR)
978      .addReg(Op1.getReg(), RS1, HiSR)
979      .addReg(Op2.getReg(), RS2, LoSR);
980  } else if (S < 64) {
981    // DR  = or (R1, asl(R2, #s))
982    //
983    // LoR = R1:lo
984    // HiR = or (R1:hi, asl(R2:lo, #s-32))
985    S -= 32;
986    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
987      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
988    BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
989      .addReg(Op1.getReg(), RS1, HiSR)
990      .addReg(Op2.getReg(), RS2, LoSR)
991      .addImm(S);
992  }
993}
994
995bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
996      const UUPairMap &PairMap) {
997  using namespace Hexagon;
998
999  LLVM_DEBUG(dbgs() << "Splitting: " << *MI);
1000  bool Split = false;
1001  unsigned Opc = MI->getOpcode();
1002
1003  switch (Opc) {
1004    case TargetOpcode::PHI:
1005    case TargetOpcode::COPY: {
1006      unsigned DstR = MI->getOperand(0).getReg();
1007      if (MRI->getRegClass(DstR) == DoubleRC) {
1008        createHalfInstr(Opc, MI, PairMap, isub_lo);
1009        createHalfInstr(Opc, MI, PairMap, isub_hi);
1010        Split = true;
1011      }
1012      break;
1013    }
1014    case A2_andp:
1015      createHalfInstr(A2_and, MI, PairMap, isub_lo);
1016      createHalfInstr(A2_and, MI, PairMap, isub_hi);
1017      Split = true;
1018      break;
1019    case A2_orp:
1020      createHalfInstr(A2_or, MI, PairMap, isub_lo);
1021      createHalfInstr(A2_or, MI, PairMap, isub_hi);
1022      Split = true;
1023      break;
1024    case A2_xorp:
1025      createHalfInstr(A2_xor, MI, PairMap, isub_lo);
1026      createHalfInstr(A2_xor, MI, PairMap, isub_hi);
1027      Split = true;
1028      break;
1029
1030    case L2_loadrd_io:
1031    case L2_loadrd_pi:
1032    case S2_storerd_io:
1033    case S2_storerd_pi:
1034      splitMemRef(MI, PairMap);
1035      Split = true;
1036      break;
1037
1038    case A2_tfrpi:
1039    case CONST64:
1040      splitImmediate(MI, PairMap);
1041      Split = true;
1042      break;
1043
1044    case A2_combineii:
1045    case A4_combineir:
1046    case A4_combineii:
1047    case A4_combineri:
1048    case A2_combinew:
1049      splitCombine(MI, PairMap);
1050      Split = true;
1051      break;
1052
1053    case A2_sxtw:
1054      splitExt(MI, PairMap);
1055      Split = true;
1056      break;
1057
1058    case S2_asl_i_p:
1059    case S2_asr_i_p:
1060    case S2_lsr_i_p:
1061      splitShift(MI, PairMap);
1062      Split = true;
1063      break;
1064
1065    case S2_asl_i_p_or:
1066      splitAslOr(MI, PairMap);
1067      Split = true;
1068      break;
1069
1070    default:
1071      llvm_unreachable("Instruction not splitable");
1072      return false;
1073  }
1074
1075  return Split;
1076}
1077
1078void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1079      const UUPairMap &PairMap) {
1080  for (auto &Op : MI->operands()) {
1081    if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1082      continue;
1083    unsigned R = Op.getReg();
1084    UUPairMap::const_iterator F = PairMap.find(R);
1085    if (F == PairMap.end())
1086      continue;
1087    const UUPair &P = F->second;
1088    switch (Op.getSubReg()) {
1089      case Hexagon::isub_lo:
1090        Op.setReg(P.first);
1091        break;
1092      case Hexagon::isub_hi:
1093        Op.setReg(P.second);
1094        break;
1095    }
1096    Op.setSubReg(0);
1097  }
1098}
1099
1100void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1101      const UUPairMap &PairMap) {
1102  MachineBasicBlock &B = *MI->getParent();
1103  DebugLoc DL = MI->getDebugLoc();
1104
1105  for (auto &Op : MI->operands()) {
1106    if (!Op.isReg() || !Op.isUse())
1107      continue;
1108    unsigned R = Op.getReg();
1109    if (!TargetRegisterInfo::isVirtualRegister(R))
1110      continue;
1111    if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1112      continue;
1113    UUPairMap::const_iterator F = PairMap.find(R);
1114    if (F == PairMap.end())
1115      continue;
1116    const UUPair &Pr = F->second;
1117    unsigned NewDR = MRI->createVirtualRegister(DoubleRC);
1118    BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1119      .addReg(Pr.first)
1120      .addImm(Hexagon::isub_lo)
1121      .addReg(Pr.second)
1122      .addImm(Hexagon::isub_hi);
1123    Op.setReg(NewDR);
1124  }
1125}
1126
1127bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1128  using MISet = std::set<MachineInstr *>;
1129
1130  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1131  bool Changed = false;
1132
1133  LLVM_DEBUG(dbgs() << "Splitting partition: ";
1134             dump_partition(dbgs(), Part, *TRI); dbgs() << '\n');
1135
1136  UUPairMap PairMap;
1137
1138  MISet SplitIns;
1139  for (unsigned DR : Part) {
1140    MachineInstr *DefI = MRI->getVRegDef(DR);
1141    SplitIns.insert(DefI);
1142
1143    // Collect all instructions, including fixed ones.  We won't split them,
1144    // but we need to visit them again to insert the REG_SEQUENCE instructions.
1145    for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1146         U != W; ++U)
1147      SplitIns.insert(U->getParent());
1148
1149    unsigned LoR = MRI->createVirtualRegister(IntRC);
1150    unsigned HiR = MRI->createVirtualRegister(IntRC);
1151    LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> "
1152                      << printReg(HiR, TRI) << ':' << printReg(LoR, TRI)
1153                      << '\n');
1154    PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1155  }
1156
1157  MISet Erase;
1158  for (auto MI : SplitIns) {
1159    if (isFixedInstr(MI)) {
1160      collapseRegPairs(MI, PairMap);
1161    } else {
1162      bool Done = splitInstr(MI, PairMap);
1163      if (Done)
1164        Erase.insert(MI);
1165      Changed |= Done;
1166    }
1167  }
1168
1169  for (unsigned DR : Part) {
1170    // Before erasing "double" instructions, revisit all uses of the double
1171    // registers in this partition, and replace all uses of them with subre-
1172    // gisters, with the corresponding single registers.
1173    MISet Uses;
1174    for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1175         U != W; ++U)
1176      Uses.insert(U->getParent());
1177    for (auto M : Uses)
1178      replaceSubregUses(M, PairMap);
1179  }
1180
1181  for (auto MI : Erase) {
1182    MachineBasicBlock *B = MI->getParent();
1183    B->erase(MI);
1184  }
1185
1186  return Changed;
1187}
1188
1189bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1190  if (skipFunction(MF.getFunction()))
1191    return false;
1192
1193  LLVM_DEBUG(dbgs() << "Splitting double registers in function: "
1194                    << MF.getName() << '\n');
1195
1196  auto &ST = MF.getSubtarget<HexagonSubtarget>();
1197  TRI = ST.getRegisterInfo();
1198  TII = ST.getInstrInfo();
1199  MRI = &MF.getRegInfo();
1200  MLI = &getAnalysis<MachineLoopInfo>();
1201
1202  UUSetMap P2Rs;
1203  LoopRegMap IRM;
1204
1205  collectIndRegs(IRM);
1206  partitionRegisters(P2Rs);
1207
1208  LLVM_DEBUG({
1209    dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1210    for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1211      dbgs() << '#' << I->first << " -> ";
1212      dump_partition(dbgs(), I->second, *TRI);
1213      dbgs() << '\n';
1214    }
1215  });
1216
1217  bool Changed = false;
1218  int Limit = MaxHSDR;
1219
1220  for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1221    if (I->first == 0)
1222      continue;
1223    if (Limit >= 0 && Counter >= Limit)
1224      break;
1225    USet &Part = I->second;
1226    LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first
1227                      << '\n');
1228    if (!isProfitable(Part, IRM))
1229      continue;
1230    Counter++;
1231    Changed |= splitPartition(Part);
1232  }
1233
1234  return Changed;
1235}
1236
1237FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1238  return new HexagonSplitDoubleRegs();
1239}
1240