HexagonSplitDouble.cpp revision 292915
1//===--- HexagonSplitDouble.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hsdr"
11
12#include "HexagonRegisterInfo.h"
13#include "HexagonTargetMachine.h"
14
15#include "llvm/Pass.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFunctionPass.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/MachineLoopInfo.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26
27#include <map>
28#include <set>
29#include <vector>
30
31using namespace llvm;
32
33namespace llvm {
34  FunctionPass *createHexagonSplitDoubleRegs();
35  void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
36}
37
38namespace {
39  static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
40      cl::desc("Maximum number of split partitions"));
41  static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
42      cl::desc("Do not split loads or stores"));
43
44  class HexagonSplitDoubleRegs : public MachineFunctionPass {
45  public:
46    static char ID;
47    HexagonSplitDoubleRegs() : MachineFunctionPass(ID), TRI(nullptr),
48        TII(nullptr) {
49      initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry());
50    }
51    const char *getPassName() const override {
52      return "Hexagon Split Double Registers";
53    }
54    void getAnalysisUsage(AnalysisUsage &AU) const override {
55      AU.addRequired<MachineLoopInfo>();
56      AU.addPreserved<MachineLoopInfo>();
57      MachineFunctionPass::getAnalysisUsage(AU);
58    }
59    bool runOnMachineFunction(MachineFunction &MF) override;
60
61  private:
62    static const TargetRegisterClass *const DoubleRC;
63
64    const HexagonRegisterInfo *TRI;
65    const HexagonInstrInfo *TII;
66    const MachineLoopInfo *MLI;
67    MachineRegisterInfo *MRI;
68
69    typedef std::set<unsigned> USet;
70    typedef std::map<unsigned,USet> UUSetMap;
71    typedef std::pair<unsigned,unsigned> UUPair;
72    typedef std::map<unsigned,UUPair> UUPairMap;
73    typedef std::map<const MachineLoop*,USet> LoopRegMap;
74
75    bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
76    bool isVolatileInstr(const MachineInstr *MI) const;
77    bool isFixedInstr(const MachineInstr *MI) const;
78    void partitionRegisters(UUSetMap &P2Rs);
79    int32_t profit(const MachineInstr *MI) const;
80    bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
81
82    void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
83    void collectIndRegs(LoopRegMap &IRM);
84
85    void createHalfInstr(unsigned Opc, MachineInstr *MI,
86        const UUPairMap &PairMap, unsigned SubR);
87    void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
88    void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
89    void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
90    void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
91    void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
92    void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
93    bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
94    void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
95    void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
96    bool splitPartition(const USet &Part);
97
98    static int Counter;
99    static void dump_partition(raw_ostream&, const USet&,
100       const TargetRegisterInfo&);
101  };
102  char HexagonSplitDoubleRegs::ID;
103  int HexagonSplitDoubleRegs::Counter = 0;
104  const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC
105      = &Hexagon::DoubleRegsRegClass;
106}
107
108INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
109  "Hexagon Split Double Registers", false, false)
110
111
112static inline uint32_t getRegState(const MachineOperand &R) {
113  assert(R.isReg());
114  return getDefRegState(R.isDef()) |
115         getImplRegState(R.isImplicit()) |
116         getKillRegState(R.isKill()) |
117         getDeadRegState(R.isDead()) |
118         getUndefRegState(R.isUndef()) |
119         getInternalReadRegState(R.isInternalRead()) |
120         (R.isDebug() ? RegState::Debug : 0);
121}
122
123
124void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
125      const USet &Part, const TargetRegisterInfo &TRI) {
126  dbgs() << '{';
127  for (auto I : Part)
128    dbgs() << ' ' << PrintReg(I, &TRI);
129  dbgs() << " }";
130}
131
132
133bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
134  for (auto I : IRM) {
135    const USet &Rs = I.second;
136    if (Rs.find(Reg) != Rs.end())
137      return true;
138  }
139  return false;
140}
141
142
143bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
144  for (auto &I : MI->memoperands())
145    if (I->isVolatile())
146      return true;
147  return false;
148}
149
150
151bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
152  if (MI->mayLoad() || MI->mayStore())
153    if (MemRefsFixed || isVolatileInstr(MI))
154      return true;
155  if (MI->isDebugValue())
156    return false;
157
158  unsigned Opc = MI->getOpcode();
159  switch (Opc) {
160    default:
161      return true;
162
163    case TargetOpcode::PHI:
164    case TargetOpcode::COPY:
165      break;
166
167    case Hexagon::L2_loadrd_io:
168      // Not handling stack stores (only reg-based addresses).
169      if (MI->getOperand(1).isReg())
170        break;
171      return true;
172    case Hexagon::S2_storerd_io:
173      // Not handling stack stores (only reg-based addresses).
174      if (MI->getOperand(0).isReg())
175        break;
176      return true;
177    case Hexagon::L2_loadrd_pi:
178    case Hexagon::S2_storerd_pi:
179
180    case Hexagon::A2_tfrpi:
181    case Hexagon::A2_combineii:
182    case Hexagon::A4_combineir:
183    case Hexagon::A4_combineii:
184    case Hexagon::A4_combineri:
185    case Hexagon::A2_combinew:
186    case Hexagon::CONST64_Int_Real:
187
188    case Hexagon::A2_sxtw:
189
190    case Hexagon::A2_andp:
191    case Hexagon::A2_orp:
192    case Hexagon::A2_xorp:
193    case Hexagon::S2_asl_i_p_or:
194    case Hexagon::S2_asl_i_p:
195    case Hexagon::S2_asr_i_p:
196    case Hexagon::S2_lsr_i_p:
197      break;
198  }
199
200  for (auto &Op : MI->operands()) {
201    if (!Op.isReg())
202      continue;
203    unsigned R = Op.getReg();
204    if (!TargetRegisterInfo::isVirtualRegister(R))
205      return true;
206  }
207  return false;
208}
209
210
211void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
212  typedef std::map<unsigned,unsigned> UUMap;
213  typedef std::vector<unsigned> UVect;
214
215  unsigned NumRegs = MRI->getNumVirtRegs();
216  BitVector DoubleRegs(NumRegs);
217  for (unsigned i = 0; i < NumRegs; ++i) {
218    unsigned R = TargetRegisterInfo::index2VirtReg(i);
219    if (MRI->getRegClass(R) == DoubleRC)
220      DoubleRegs.set(i);
221  }
222
223  BitVector FixedRegs(NumRegs);
224  for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
225    unsigned R = TargetRegisterInfo::index2VirtReg(x);
226    MachineInstr *DefI = MRI->getVRegDef(R);
227    // In some cases a register may exist, but never be defined or used.
228    // It should never appear anywhere, but mark it as "fixed", just to be
229    // safe.
230    if (!DefI || isFixedInstr(DefI))
231      FixedRegs.set(x);
232  }
233
234  UUSetMap AssocMap;
235  for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
236    if (FixedRegs[x])
237      continue;
238    unsigned R = TargetRegisterInfo::index2VirtReg(x);
239    DEBUG(dbgs() << PrintReg(R, TRI) << " ~~");
240    USet &Asc = AssocMap[R];
241    for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
242         U != Z; ++U) {
243      MachineOperand &Op = *U;
244      MachineInstr *UseI = Op.getParent();
245      if (isFixedInstr(UseI))
246        continue;
247      for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
248        MachineOperand &MO = UseI->getOperand(i);
249        // Skip non-registers or registers with subregisters.
250        if (&MO == &Op || !MO.isReg() || MO.getSubReg())
251          continue;
252        unsigned T = MO.getReg();
253        if (!TargetRegisterInfo::isVirtualRegister(T)) {
254          FixedRegs.set(x);
255          continue;
256        }
257        if (MRI->getRegClass(T) != DoubleRC)
258          continue;
259        unsigned u = TargetRegisterInfo::virtReg2Index(T);
260        if (FixedRegs[u])
261          continue;
262        DEBUG(dbgs() << ' ' << PrintReg(T, TRI));
263        Asc.insert(T);
264        // Make it symmetric.
265        AssocMap[T].insert(R);
266      }
267    }
268    DEBUG(dbgs() << '\n');
269  }
270
271  UUMap R2P;
272  unsigned NextP = 1;
273  USet Visited;
274  for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
275    unsigned R = TargetRegisterInfo::index2VirtReg(x);
276    if (Visited.count(R))
277      continue;
278    // Create a new partition for R.
279    unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
280    UVect WorkQ;
281    WorkQ.push_back(R);
282    for (unsigned i = 0; i < WorkQ.size(); ++i) {
283      unsigned T = WorkQ[i];
284      if (Visited.count(T))
285        continue;
286      R2P[T] = ThisP;
287      Visited.insert(T);
288      // Add all registers associated with T.
289      USet &Asc = AssocMap[T];
290      for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
291        WorkQ.push_back(*J);
292    }
293  }
294
295  for (auto I : R2P)
296    P2Rs[I.second].insert(I.first);
297}
298
299
300static inline int32_t profitImm(unsigned Lo, unsigned Hi) {
301  int32_t P = 0;
302  bool LoZ1 = false, HiZ1 = false;
303  if (Lo == 0 || Lo == 0xFFFFFFFF)
304    P += 10, LoZ1 = true;
305  if (Hi == 0 || Hi == 0xFFFFFFFF)
306    P += 10, HiZ1 = true;
307  if (!LoZ1 && !HiZ1 && Lo == Hi)
308    P += 3;
309  return P;
310}
311
312
313int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
314  unsigned ImmX = 0;
315  unsigned Opc = MI->getOpcode();
316  switch (Opc) {
317    case TargetOpcode::PHI:
318      for (const auto &Op : MI->operands())
319        if (!Op.getSubReg())
320          return 0;
321      return 10;
322    case TargetOpcode::COPY:
323      if (MI->getOperand(1).getSubReg() != 0)
324        return 10;
325      return 0;
326
327    case Hexagon::L2_loadrd_io:
328    case Hexagon::S2_storerd_io:
329      return -1;
330    case Hexagon::L2_loadrd_pi:
331    case Hexagon::S2_storerd_pi:
332      return 2;
333
334    case Hexagon::A2_tfrpi:
335    case Hexagon::CONST64_Int_Real: {
336      uint64_t D = MI->getOperand(1).getImm();
337      unsigned Lo = D & 0xFFFFFFFFULL;
338      unsigned Hi = D >> 32;
339      return profitImm(Lo, Hi);
340    }
341    case Hexagon::A2_combineii:
342    case Hexagon::A4_combineii:
343      return profitImm(MI->getOperand(1).getImm(),
344                       MI->getOperand(2).getImm());
345    case Hexagon::A4_combineri:
346      ImmX++;
347    case Hexagon::A4_combineir: {
348      ImmX++;
349      int64_t V = MI->getOperand(ImmX).getImm();
350      if (V == 0 || V == -1)
351        return 10;
352      // Fall through into A2_combinew.
353    }
354    case Hexagon::A2_combinew:
355      return 2;
356
357    case Hexagon::A2_sxtw:
358      return 3;
359
360    case Hexagon::A2_andp:
361    case Hexagon::A2_orp:
362    case Hexagon::A2_xorp:
363      return 1;
364
365    case Hexagon::S2_asl_i_p_or: {
366      unsigned S = MI->getOperand(3).getImm();
367      if (S == 0 || S == 32)
368        return 10;
369      return -1;
370    }
371    case Hexagon::S2_asl_i_p:
372    case Hexagon::S2_asr_i_p:
373    case Hexagon::S2_lsr_i_p:
374      unsigned S = MI->getOperand(2).getImm();
375      if (S == 0 || S == 32)
376        return 10;
377      if (S == 16)
378        return 5;
379      if (S == 48)
380        return 7;
381      return -10;
382  }
383
384  return 0;
385}
386
387
388bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
389      const {
390  unsigned FixedNum = 0, SplitNum = 0, LoopPhiNum = 0;
391  int32_t TotalP = 0;
392
393  for (unsigned DR : Part) {
394    MachineInstr *DefI = MRI->getVRegDef(DR);
395    int32_t P = profit(DefI);
396    if (P == INT_MIN)
397      return false;
398    TotalP += P;
399    // Reduce the profitability of splitting induction registers.
400    if (isInduction(DR, IRM))
401      TotalP -= 30;
402
403    for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
404         U != W; ++U) {
405      MachineInstr *UseI = U->getParent();
406      if (isFixedInstr(UseI)) {
407        FixedNum++;
408        // Calculate the cost of generating REG_SEQUENCE instructions.
409        for (auto &Op : UseI->operands()) {
410          if (Op.isReg() && Part.count(Op.getReg()))
411            if (Op.getSubReg())
412              TotalP -= 2;
413        }
414        continue;
415      }
416      // If a register from this partition is used in a fixed instruction,
417      // and there is also a register in this partition that is used in
418      // a loop phi node, then decrease the splitting profit as this can
419      // confuse the modulo scheduler.
420      if (UseI->isPHI()) {
421        const MachineBasicBlock *PB = UseI->getParent();
422        const MachineLoop *L = MLI->getLoopFor(PB);
423        if (L && L->getHeader() == PB)
424          LoopPhiNum++;
425      }
426      // Splittable instruction.
427      SplitNum++;
428      int32_t P = profit(UseI);
429      if (P == INT_MIN)
430        return false;
431      TotalP += P;
432    }
433  }
434
435  if (FixedNum > 0 && LoopPhiNum > 0)
436    TotalP -= 20*LoopPhiNum;
437
438  DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
439  return TotalP > 0;
440}
441
442
443void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
444      USet &Rs) {
445  const MachineBasicBlock *HB = L->getHeader();
446  const MachineBasicBlock *LB = L->getLoopLatch();
447  if (!HB || !LB)
448    return;
449
450  // Examine the latch branch. Expect it to be a conditional branch to
451  // the header (either "br-cond header" or "br-cond exit; br header").
452  MachineBasicBlock *TB = 0, *FB = 0;
453  MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
454  SmallVector<MachineOperand,2> Cond;
455  bool BadLB = TII->AnalyzeBranch(*TmpLB, TB, FB, Cond, false);
456  // Only analyzable conditional branches. HII::AnalyzeBranch will put
457  // the branch opcode as the first element of Cond, and the predicate
458  // operand as the second.
459  if (BadLB || Cond.size() != 2)
460    return;
461  // Only simple jump-conditional (with or without negation).
462  if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
463    return;
464  // Must go to the header.
465  if (TB != HB && FB != HB)
466    return;
467  assert(Cond[1].isReg() && "Unexpected Cond vector from AnalyzeBranch");
468  // Expect a predicate register.
469  unsigned PR = Cond[1].getReg();
470  assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
471
472  // Get the registers on which the loop controlling compare instruction
473  // depends.
474  unsigned CmpR1 = 0, CmpR2 = 0;
475  const MachineInstr *CmpI = MRI->getVRegDef(PR);
476  while (CmpI->getOpcode() == Hexagon::C2_not)
477    CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
478
479  int Mask = 0, Val = 0;
480  bool OkCI = TII->analyzeCompare(CmpI, CmpR1, CmpR2, Mask, Val);
481  if (!OkCI)
482    return;
483  // Eliminate non-double input registers.
484  if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
485    CmpR1 = 0;
486  if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
487    CmpR2 = 0;
488  if (!CmpR1 && !CmpR2)
489    return;
490
491  // Now examine the top of the loop: the phi nodes that could poten-
492  // tially define loop induction registers. The registers defined by
493  // such a phi node would be used in a 64-bit add, which then would
494  // be used in the loop compare instruction.
495
496  // Get the set of all double registers defined by phi nodes in the
497  // loop header.
498  typedef std::vector<unsigned> UVect;
499  UVect DP;
500  for (auto &MI : *HB) {
501    if (!MI.isPHI())
502      break;
503    const MachineOperand &MD = MI.getOperand(0);
504    unsigned R = MD.getReg();
505    if (MRI->getRegClass(R) == DoubleRC)
506      DP.push_back(R);
507  }
508  if (DP.empty())
509    return;
510
511  auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
512    for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
513         I != E; ++I) {
514      const MachineInstr *UseI = I->getParent();
515      if (UseI->getOpcode() != Hexagon::A2_addp)
516        continue;
517      // Get the output from the add. If it is one of the inputs to the
518      // loop-controlling compare instruction, then R is likely an induc-
519      // tion register.
520      unsigned T = UseI->getOperand(0).getReg();
521      if (T == CmpR1 || T == CmpR2)
522        return false;
523    }
524    return true;
525  };
526  UVect::iterator End = std::remove_if(DP.begin(), DP.end(), NoIndOp);
527  Rs.insert(DP.begin(), End);
528  Rs.insert(CmpR1);
529  Rs.insert(CmpR2);
530
531  DEBUG({
532    dbgs() << "For loop at BB#" << HB->getNumber() << " ind regs: ";
533    dump_partition(dbgs(), Rs, *TRI);
534    dbgs() << '\n';
535  });
536}
537
538
539void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
540  typedef std::vector<MachineLoop*> LoopVector;
541  LoopVector WorkQ;
542
543  for (auto I : *MLI)
544    WorkQ.push_back(I);
545  for (unsigned i = 0; i < WorkQ.size(); ++i) {
546    for (auto I : *WorkQ[i])
547      WorkQ.push_back(I);
548  }
549
550  USet Rs;
551  for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
552    MachineLoop *L = WorkQ[i];
553    Rs.clear();
554    collectIndRegsForLoop(L, Rs);
555    if (!Rs.empty())
556      IRM.insert(std::make_pair(L, Rs));
557  }
558}
559
560
561void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
562      const UUPairMap &PairMap, unsigned SubR) {
563  MachineBasicBlock &B = *MI->getParent();
564  DebugLoc DL = MI->getDebugLoc();
565  MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
566
567  for (auto &Op : MI->operands()) {
568    if (!Op.isReg()) {
569      NewI->addOperand(Op);
570      continue;
571    }
572    // For register operands, set the subregister.
573    unsigned R = Op.getReg();
574    unsigned SR = Op.getSubReg();
575    bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R);
576    bool isKill = Op.isKill();
577    if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
578      isKill = false;
579      UUPairMap::const_iterator F = PairMap.find(R);
580      if (F == PairMap.end()) {
581        SR = SubR;
582      } else {
583        const UUPair &P = F->second;
584        R = (SubR == Hexagon::subreg_loreg) ? P.first : P.second;
585        SR = 0;
586      }
587    }
588    auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
589          Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
590          Op.isInternalRead());
591    NewI->addOperand(CO);
592  }
593}
594
595
596void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
597      const UUPairMap &PairMap) {
598  bool Load = MI->mayLoad();
599  unsigned OrigOpc = MI->getOpcode();
600  bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
601                  OrigOpc == Hexagon::S2_storerd_pi);
602  MachineInstr *LowI, *HighI;
603  MachineBasicBlock &B = *MI->getParent();
604  DebugLoc DL = MI->getDebugLoc();
605
606  // Index of the base-address-register operand.
607  unsigned AdrX = PostInc ? (Load ? 2 : 1)
608                          : (Load ? 1 : 0);
609  MachineOperand &AdrOp = MI->getOperand(AdrX);
610  unsigned RSA = getRegState(AdrOp);
611  MachineOperand &ValOp = Load ? MI->getOperand(0)
612                               : (PostInc ? MI->getOperand(3)
613                                          : MI->getOperand(2));
614  UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
615  assert(F != PairMap.end());
616
617  if (Load) {
618    const UUPair &P = F->second;
619    int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
620    LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
621             .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
622             .addImm(Off);
623    HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
624              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
625              .addImm(Off+4);
626  } else {
627    const UUPair &P = F->second;
628    int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
629    LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
630             .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
631             .addImm(Off)
632             .addReg(P.first);
633    HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
634              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
635              .addImm(Off+4)
636              .addReg(P.second);
637  }
638
639  if (PostInc) {
640    // Create the increment of the address register.
641    int64_t Inc = Load ? MI->getOperand(3).getImm()
642                       : MI->getOperand(2).getImm();
643    MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
644    const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
645    unsigned NewR = MRI->createVirtualRegister(RC);
646    assert(!UpdOp.getSubReg() && "Def operand with subreg");
647    BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
648      .addReg(AdrOp.getReg(), RSA)
649      .addImm(Inc);
650    MRI->replaceRegWith(UpdOp.getReg(), NewR);
651    // The original instruction will be deleted later.
652  }
653
654  // Generate a new pair of memory-operands.
655  MachineFunction &MF = *B.getParent();
656  for (auto &MO : MI->memoperands()) {
657    const MachinePointerInfo &Ptr = MO->getPointerInfo();
658    unsigned F = MO->getFlags();
659    int A = MO->getAlignment();
660
661    auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
662    LowI->addMemOperand(MF, Tmp1);
663    auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
664    HighI->addMemOperand(MF, Tmp2);
665  }
666}
667
668
669void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
670      const UUPairMap &PairMap) {
671  MachineOperand &Op0 = MI->getOperand(0);
672  MachineOperand &Op1 = MI->getOperand(1);
673  assert(Op0.isReg() && Op1.isImm());
674  uint64_t V = Op1.getImm();
675
676  MachineBasicBlock &B = *MI->getParent();
677  DebugLoc DL = MI->getDebugLoc();
678  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
679  assert(F != PairMap.end());
680  const UUPair &P = F->second;
681
682  // The operand to A2_tfrsi can only have 32 significant bits. Immediate
683  // values in MachineOperand are stored as 64-bit integers, and so the
684  // value -1 may be represented either as 64-bit -1, or 4294967295. Both
685  // will have the 32 higher bits truncated in the end, but -1 will remain
686  // as -1, while the latter may appear to be a large unsigned value
687  // requiring a constant extender. The casting to int32_t will select the
688  // former representation. (The same reasoning applies to all 32-bit
689  // values.)
690  BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
691    .addImm(int32_t(V & 0xFFFFFFFFULL));
692  BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
693    .addImm(int32_t(V >> 32));
694}
695
696
697void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
698      const UUPairMap &PairMap) {
699  MachineOperand &Op0 = MI->getOperand(0);
700  MachineOperand &Op1 = MI->getOperand(1);
701  MachineOperand &Op2 = MI->getOperand(2);
702  assert(Op0.isReg());
703
704  MachineBasicBlock &B = *MI->getParent();
705  DebugLoc DL = MI->getDebugLoc();
706  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
707  assert(F != PairMap.end());
708  const UUPair &P = F->second;
709
710  if (Op1.isImm()) {
711    BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
712      .addImm(Op1.getImm());
713  } else if (Op1.isReg()) {
714    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
715      .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
716  } else
717    llvm_unreachable("Unexpected operand");
718
719  if (Op2.isImm()) {
720    BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
721      .addImm(Op2.getImm());
722  } else if (Op2.isReg()) {
723    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
724      .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
725  } else
726    llvm_unreachable("Unexpected operand");
727}
728
729
730void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
731      const UUPairMap &PairMap) {
732  MachineOperand &Op0 = MI->getOperand(0);
733  MachineOperand &Op1 = MI->getOperand(1);
734  assert(Op0.isReg() && Op1.isReg());
735
736  MachineBasicBlock &B = *MI->getParent();
737  DebugLoc DL = MI->getDebugLoc();
738  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
739  assert(F != PairMap.end());
740  const UUPair &P = F->second;
741  unsigned RS = getRegState(Op1);
742
743  BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
744    .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
745  BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
746    .addReg(Op1.getReg(), RS, Op1.getSubReg())
747    .addImm(31);
748}
749
750
751void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
752      const UUPairMap &PairMap) {
753  MachineOperand &Op0 = MI->getOperand(0);
754  MachineOperand &Op1 = MI->getOperand(1);
755  MachineOperand &Op2 = MI->getOperand(2);
756  assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
757  int64_t Sh64 = Op2.getImm();
758  assert(Sh64 >= 0 && Sh64 < 64);
759  unsigned S = Sh64;
760
761  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
762  assert(F != PairMap.end());
763  const UUPair &P = F->second;
764  unsigned LoR = P.first;
765  unsigned HiR = P.second;
766  using namespace Hexagon;
767
768  unsigned Opc = MI->getOpcode();
769  bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
770  bool Left = !Right;
771  bool Signed = (Opc == S2_asr_i_p);
772
773  MachineBasicBlock &B = *MI->getParent();
774  DebugLoc DL = MI->getDebugLoc();
775  unsigned RS = getRegState(Op1);
776  unsigned ShiftOpc = Left ? S2_asl_i_r
777                           : (Signed ? S2_asr_i_r : S2_lsr_i_r);
778  unsigned LoSR = subreg_loreg;
779  unsigned HiSR = subreg_hireg;
780
781  if (S == 0) {
782    // No shift, subregister copy.
783    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
784      .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
785    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
786      .addReg(Op1.getReg(), RS, HiSR);
787  } else if (S < 32) {
788    const TargetRegisterClass *IntRC = &IntRegsRegClass;
789    unsigned TmpR = MRI->createVirtualRegister(IntRC);
790    // Expansion:
791    // Shift left:    DR = shl R, #s
792    //   LoR  = shl R.lo, #s
793    //   TmpR = extractu R.lo, #s, #32-s
794    //   HiR  = or (TmpR, asl(R.hi, #s))
795    // Shift right:   DR = shr R, #s
796    //   HiR  = shr R.hi, #s
797    //   TmpR = shr R.lo, #s
798    //   LoR  = insert TmpR, R.hi, #s, #32-s
799
800    // Shift left:
801    //   LoR  = shl R.lo, #s
802    // Shift right:
803    //   TmpR = shr R.lo, #s
804
805    // Make a special case for A2_aslh and A2_asrh (they are predicable as
806    // opposed to S2_asl_i_r/S2_asr_i_r).
807    if (S == 16 && Left)
808      BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
809        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
810    else if (S == 16 && Signed)
811      BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
812        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
813    else
814      BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
815        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
816        .addImm(S);
817
818    if (Left) {
819      // TmpR = extractu R.lo, #s, #32-s
820      BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
821        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
822        .addImm(S)
823        .addImm(32-S);
824      // HiR  = or (TmpR, asl(R.hi, #s))
825      BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
826        .addReg(TmpR)
827        .addReg(Op1.getReg(), RS, HiSR)
828        .addImm(S);
829    } else {
830      // HiR  = shr R.hi, #s
831      BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
832        .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
833        .addImm(S);
834      // LoR  = insert TmpR, R.hi, #s, #32-s
835      BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
836        .addReg(TmpR)
837        .addReg(Op1.getReg(), RS, HiSR)
838        .addImm(S)
839        .addImm(32-S);
840    }
841  } else if (S == 32) {
842    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
843      .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
844    if (!Signed)
845      BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
846        .addImm(0);
847    else  // Must be right shift.
848      BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
849        .addReg(Op1.getReg(), RS, HiSR)
850        .addImm(31);
851  } else if (S < 64) {
852    S -= 32;
853    if (S == 16 && Left)
854      BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
855        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
856    else if (S == 16 && Signed)
857      BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
858        .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
859    else
860      BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
861        .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
862        .addImm(S);
863
864    if (Signed)
865      BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
866        .addReg(Op1.getReg(), RS, HiSR)
867        .addImm(31);
868    else
869      BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
870        .addImm(0);
871  }
872}
873
874
875void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
876      const UUPairMap &PairMap) {
877  MachineOperand &Op0 = MI->getOperand(0);
878  MachineOperand &Op1 = MI->getOperand(1);
879  MachineOperand &Op2 = MI->getOperand(2);
880  MachineOperand &Op3 = MI->getOperand(3);
881  assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
882  int64_t Sh64 = Op3.getImm();
883  assert(Sh64 >= 0 && Sh64 < 64);
884  unsigned S = Sh64;
885
886  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
887  assert(F != PairMap.end());
888  const UUPair &P = F->second;
889  unsigned LoR = P.first;
890  unsigned HiR = P.second;
891  using namespace Hexagon;
892
893  MachineBasicBlock &B = *MI->getParent();
894  DebugLoc DL = MI->getDebugLoc();
895  unsigned RS1 = getRegState(Op1);
896  unsigned RS2 = getRegState(Op2);
897  const TargetRegisterClass *IntRC = &IntRegsRegClass;
898
899  unsigned LoSR = subreg_loreg;
900  unsigned HiSR = subreg_hireg;
901
902  // Op0 = S2_asl_i_p_or Op1, Op2, Op3
903  // means:  Op0 = or (Op1, asl(Op2, Op3))
904
905  // Expansion of
906  //   DR = or (R1, asl(R2, #s))
907  //
908  //   LoR  = or (R1.lo, asl(R2.lo, #s))
909  //   Tmp1 = extractu R2.lo, #s, #32-s
910  //   Tmp2 = or R1.hi, Tmp1
911  //   HiR  = or (Tmp2, asl(R2.hi, #s))
912
913  if (S == 0) {
914    // DR  = or (R1, asl(R2, #0))
915    //    -> or (R1, R2)
916    // i.e. LoR = or R1.lo, R2.lo
917    //      HiR = or R1.hi, R2.hi
918    BuildMI(B, MI, DL, TII->get(A2_or), LoR)
919      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
920      .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
921    BuildMI(B, MI, DL, TII->get(A2_or), HiR)
922      .addReg(Op1.getReg(), RS1, HiSR)
923      .addReg(Op2.getReg(), RS2, HiSR);
924  } else if (S < 32) {
925    BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
926      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
927      .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
928      .addImm(S);
929    unsigned TmpR1 = MRI->createVirtualRegister(IntRC);
930    BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
931      .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
932      .addImm(S)
933      .addImm(32-S);
934    unsigned TmpR2 = MRI->createVirtualRegister(IntRC);
935    BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
936      .addReg(Op1.getReg(), RS1, HiSR)
937      .addReg(TmpR1);
938    BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
939      .addReg(TmpR2)
940      .addReg(Op2.getReg(), RS2, HiSR)
941      .addImm(S);
942  } else if (S == 32) {
943    // DR  = or (R1, asl(R2, #32))
944    //    -> or R1, R2.lo
945    // LoR = R1.lo
946    // HiR = or R1.hi, R2.lo
947    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
948      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
949    BuildMI(B, MI, DL, TII->get(A2_or), HiR)
950      .addReg(Op1.getReg(), RS1, HiSR)
951      .addReg(Op2.getReg(), RS2, LoSR);
952  } else if (S < 64) {
953    // DR  = or (R1, asl(R2, #s))
954    //
955    // LoR = R1:lo
956    // HiR = or (R1:hi, asl(R2:lo, #s-32))
957    S -= 32;
958    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
959      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
960    BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
961      .addReg(Op1.getReg(), RS1, HiSR)
962      .addReg(Op2.getReg(), RS2, LoSR)
963      .addImm(S);
964  }
965}
966
967
968bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
969      const UUPairMap &PairMap) {
970  DEBUG(dbgs() << "Splitting: " << *MI);
971  bool Split = false;
972  unsigned Opc = MI->getOpcode();
973  using namespace Hexagon;
974
975  switch (Opc) {
976    case TargetOpcode::PHI:
977    case TargetOpcode::COPY: {
978      unsigned DstR = MI->getOperand(0).getReg();
979      if (MRI->getRegClass(DstR) == DoubleRC) {
980        createHalfInstr(Opc, MI, PairMap, subreg_loreg);
981        createHalfInstr(Opc, MI, PairMap, subreg_hireg);
982        Split = true;
983      }
984      break;
985    }
986    case A2_andp:
987      createHalfInstr(A2_and, MI, PairMap, subreg_loreg);
988      createHalfInstr(A2_and, MI, PairMap, subreg_hireg);
989      Split = true;
990      break;
991    case A2_orp:
992      createHalfInstr(A2_or, MI, PairMap, subreg_loreg);
993      createHalfInstr(A2_or, MI, PairMap, subreg_hireg);
994      Split = true;
995      break;
996    case A2_xorp:
997      createHalfInstr(A2_xor, MI, PairMap, subreg_loreg);
998      createHalfInstr(A2_xor, MI, PairMap, subreg_hireg);
999      Split = true;
1000      break;
1001
1002    case L2_loadrd_io:
1003    case L2_loadrd_pi:
1004    case S2_storerd_io:
1005    case S2_storerd_pi:
1006      splitMemRef(MI, PairMap);
1007      Split = true;
1008      break;
1009
1010    case A2_tfrpi:
1011    case CONST64_Int_Real:
1012      splitImmediate(MI, PairMap);
1013      Split = true;
1014      break;
1015
1016    case A2_combineii:
1017    case A4_combineir:
1018    case A4_combineii:
1019    case A4_combineri:
1020    case A2_combinew:
1021      splitCombine(MI, PairMap);
1022      Split = true;
1023      break;
1024
1025    case A2_sxtw:
1026      splitExt(MI, PairMap);
1027      Split = true;
1028      break;
1029
1030    case S2_asl_i_p:
1031    case S2_asr_i_p:
1032    case S2_lsr_i_p:
1033      splitShift(MI, PairMap);
1034      Split = true;
1035      break;
1036
1037    case S2_asl_i_p_or:
1038      splitAslOr(MI, PairMap);
1039      Split = true;
1040      break;
1041
1042    default:
1043      llvm_unreachable("Instruction not splitable");
1044      return false;
1045  }
1046
1047  return Split;
1048}
1049
1050
1051void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1052      const UUPairMap &PairMap) {
1053  for (auto &Op : MI->operands()) {
1054    if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1055      continue;
1056    unsigned R = Op.getReg();
1057    UUPairMap::const_iterator F = PairMap.find(R);
1058    if (F == PairMap.end())
1059      continue;
1060    const UUPair &P = F->second;
1061    switch (Op.getSubReg()) {
1062      case Hexagon::subreg_loreg:
1063        Op.setReg(P.first);
1064        break;
1065      case Hexagon::subreg_hireg:
1066        Op.setReg(P.second);
1067        break;
1068    }
1069    Op.setSubReg(0);
1070  }
1071}
1072
1073
1074void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1075      const UUPairMap &PairMap) {
1076  MachineBasicBlock &B = *MI->getParent();
1077  DebugLoc DL = MI->getDebugLoc();
1078
1079  for (auto &Op : MI->operands()) {
1080    if (!Op.isReg() || !Op.isUse())
1081      continue;
1082    unsigned R = Op.getReg();
1083    if (!TargetRegisterInfo::isVirtualRegister(R))
1084      continue;
1085    if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1086      continue;
1087    UUPairMap::const_iterator F = PairMap.find(R);
1088    if (F == PairMap.end())
1089      continue;
1090    const UUPair &Pr = F->second;
1091    unsigned NewDR = MRI->createVirtualRegister(DoubleRC);
1092    BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1093      .addReg(Pr.first)
1094      .addImm(Hexagon::subreg_loreg)
1095      .addReg(Pr.second)
1096      .addImm(Hexagon::subreg_hireg);
1097    Op.setReg(NewDR);
1098  }
1099}
1100
1101
1102bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1103  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1104  typedef std::set<MachineInstr*> MISet;
1105  bool Changed = false;
1106
1107  DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI);
1108        dbgs() << '\n');
1109
1110  UUPairMap PairMap;
1111
1112  MISet SplitIns;
1113  for (unsigned DR : Part) {
1114    MachineInstr *DefI = MRI->getVRegDef(DR);
1115    SplitIns.insert(DefI);
1116
1117    // Collect all instructions, including fixed ones.  We won't split them,
1118    // but we need to visit them again to insert the REG_SEQUENCE instructions.
1119    for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1120         U != W; ++U)
1121      SplitIns.insert(U->getParent());
1122
1123    unsigned LoR = MRI->createVirtualRegister(IntRC);
1124    unsigned HiR = MRI->createVirtualRegister(IntRC);
1125    DEBUG(dbgs() << "Created mapping: " << PrintReg(DR, TRI) << " -> "
1126                 << PrintReg(HiR, TRI) << ':' << PrintReg(LoR, TRI) << '\n');
1127    PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1128  }
1129
1130  MISet Erase;
1131  for (auto MI : SplitIns) {
1132    if (isFixedInstr(MI)) {
1133      collapseRegPairs(MI, PairMap);
1134    } else {
1135      bool Done = splitInstr(MI, PairMap);
1136      if (Done)
1137        Erase.insert(MI);
1138      Changed |= Done;
1139    }
1140  }
1141
1142  for (unsigned DR : Part) {
1143    // Before erasing "double" instructions, revisit all uses of the double
1144    // registers in this partition, and replace all uses of them with subre-
1145    // gisters, with the corresponding single registers.
1146    MISet Uses;
1147    for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1148         U != W; ++U)
1149      Uses.insert(U->getParent());
1150    for (auto M : Uses)
1151      replaceSubregUses(M, PairMap);
1152  }
1153
1154  for (auto MI : Erase) {
1155    MachineBasicBlock *B = MI->getParent();
1156    B->erase(MI);
1157  }
1158
1159  return Changed;
1160}
1161
1162
1163bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1164  DEBUG(dbgs() << "Splitting double registers in function: "
1165        << MF.getName() << '\n');
1166
1167  auto &ST = MF.getSubtarget<HexagonSubtarget>();
1168  TRI = ST.getRegisterInfo();
1169  TII = ST.getInstrInfo();
1170  MRI = &MF.getRegInfo();
1171  MLI = &getAnalysis<MachineLoopInfo>();
1172
1173  UUSetMap P2Rs;
1174  LoopRegMap IRM;
1175
1176  collectIndRegs(IRM);
1177  partitionRegisters(P2Rs);
1178
1179  DEBUG({
1180    dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1181    for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1182      dbgs() << '#' << I->first << " -> ";
1183      dump_partition(dbgs(), I->second, *TRI);
1184      dbgs() << '\n';
1185    }
1186  });
1187
1188  bool Changed = false;
1189  int Limit = MaxHSDR;
1190
1191  for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1192    if (I->first == 0)
1193      continue;
1194    if (Limit >= 0 && Counter >= Limit)
1195      break;
1196    USet &Part = I->second;
1197    DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n');
1198    if (!isProfitable(Part, IRM))
1199      continue;
1200    Counter++;
1201    Changed |= splitPartition(Part);
1202  }
1203
1204  return Changed;
1205}
1206
1207FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1208  return new HexagonSplitDoubleRegs();
1209}
1210