HexagonInstrInfo.cpp revision 360784
1//===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the Hexagon implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "HexagonInstrInfo.h"
14#include "Hexagon.h"
15#include "HexagonFrameLowering.h"
16#include "HexagonHazardRecognizer.h"
17#include "HexagonRegisterInfo.h"
18#include "HexagonSubtarget.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/CodeGen/DFAPacketizer.h"
24#include "llvm/CodeGen/LivePhysRegs.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineInstrBundle.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineMemOperand.h"
34#include "llvm/CodeGen/MachineOperand.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/ScheduleDAG.h"
37#include "llvm/CodeGen/TargetInstrInfo.h"
38#include "llvm/CodeGen/TargetOpcodes.h"
39#include "llvm/CodeGen/TargetRegisterInfo.h"
40#include "llvm/CodeGen/TargetSubtargetInfo.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCInstrDesc.h"
44#include "llvm/MC/MCInstrItineraries.h"
45#include "llvm/MC/MCRegisterInfo.h"
46#include "llvm/Support/BranchProbability.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MachineValueType.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetMachine.h"
54#include <cassert>
55#include <cctype>
56#include <cstdint>
57#include <cstring>
58#include <iterator>
59#include <string>
60#include <utility>
61
62using namespace llvm;
63
64#define DEBUG_TYPE "hexagon-instrinfo"
65
66#define GET_INSTRINFO_CTOR_DTOR
67#define GET_INSTRMAP_INFO
68#include "HexagonDepTimingClasses.h"
69#include "HexagonGenDFAPacketizer.inc"
70#include "HexagonGenInstrInfo.inc"
71
72cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
73  cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
74                            "packetization boundary."));
75
76static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
77  cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
78
79static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
80  cl::Hidden, cl::ZeroOrMore, cl::init(false),
81  cl::desc("Disable schedule adjustment for new value stores."));
82
83static cl::opt<bool> EnableTimingClassLatency(
84  "enable-timing-class-latency", cl::Hidden, cl::init(false),
85  cl::desc("Enable timing class latency"));
86
87static cl::opt<bool> EnableALUForwarding(
88  "enable-alu-forwarding", cl::Hidden, cl::init(true),
89  cl::desc("Enable vec alu forwarding"));
90
91static cl::opt<bool> EnableACCForwarding(
92  "enable-acc-forwarding", cl::Hidden, cl::init(true),
93  cl::desc("Enable vec acc forwarding"));
94
95static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
96  cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
97
98static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec",
99  cl::init(true), cl::Hidden, cl::ZeroOrMore,
100  cl::desc("Use the DFA based hazard recognizer."));
101
102/// Constants for Hexagon instructions.
103const int Hexagon_MEMW_OFFSET_MAX = 4095;
104const int Hexagon_MEMW_OFFSET_MIN = -4096;
105const int Hexagon_MEMD_OFFSET_MAX = 8191;
106const int Hexagon_MEMD_OFFSET_MIN = -8192;
107const int Hexagon_MEMH_OFFSET_MAX = 2047;
108const int Hexagon_MEMH_OFFSET_MIN = -2048;
109const int Hexagon_MEMB_OFFSET_MAX = 1023;
110const int Hexagon_MEMB_OFFSET_MIN = -1024;
111const int Hexagon_ADDI_OFFSET_MAX = 32767;
112const int Hexagon_ADDI_OFFSET_MIN = -32768;
113
114// Pin the vtable to this file.
115void HexagonInstrInfo::anchor() {}
116
117HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
118  : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
119    Subtarget(ST) {}
120
121static bool isIntRegForSubInst(unsigned Reg) {
122  return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
123         (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
124}
125
126static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
127  return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
128         isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
129}
130
131/// Calculate number of instructions excluding the debug instructions.
132static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
133                              MachineBasicBlock::const_instr_iterator MIE) {
134  unsigned Count = 0;
135  for (; MIB != MIE; ++MIB) {
136    if (!MIB->isDebugInstr())
137      ++Count;
138  }
139  return Count;
140}
141
142/// Find the hardware loop instruction used to set-up the specified loop.
143/// On Hexagon, we have two instructions used to set-up the hardware loop
144/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
145/// to indicate the end of a loop.
146MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB,
147      unsigned EndLoopOp, MachineBasicBlock *TargetBB,
148      SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
149  unsigned LOOPi;
150  unsigned LOOPr;
151  if (EndLoopOp == Hexagon::ENDLOOP0) {
152    LOOPi = Hexagon::J2_loop0i;
153    LOOPr = Hexagon::J2_loop0r;
154  } else { // EndLoopOp == Hexagon::EndLOOP1
155    LOOPi = Hexagon::J2_loop1i;
156    LOOPr = Hexagon::J2_loop1r;
157  }
158
159  // The loop set-up instruction will be in a predecessor block
160  for (MachineBasicBlock *PB : BB->predecessors()) {
161    // If this has been visited, already skip it.
162    if (!Visited.insert(PB).second)
163      continue;
164    if (PB == BB)
165      continue;
166    for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) {
167      unsigned Opc = I->getOpcode();
168      if (Opc == LOOPi || Opc == LOOPr)
169        return &*I;
170      // We've reached a different loop, which means the loop01 has been
171      // removed.
172      if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB)
173        return nullptr;
174    }
175    // Check the predecessors for the LOOP instruction.
176    if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
177      return Loop;
178  }
179  return nullptr;
180}
181
182/// Gather register def/uses from MI.
183/// This treats possible (predicated) defs as actually happening ones
184/// (conservatively).
185static inline void parseOperands(const MachineInstr &MI,
186      SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
187  Defs.clear();
188  Uses.clear();
189
190  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
191    const MachineOperand &MO = MI.getOperand(i);
192
193    if (!MO.isReg())
194      continue;
195
196    Register Reg = MO.getReg();
197    if (!Reg)
198      continue;
199
200    if (MO.isUse())
201      Uses.push_back(MO.getReg());
202
203    if (MO.isDef())
204      Defs.push_back(MO.getReg());
205  }
206}
207
208// Position dependent, so check twice for swap.
209static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
210  switch (Ga) {
211  case HexagonII::HSIG_None:
212  default:
213    return false;
214  case HexagonII::HSIG_L1:
215    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
216  case HexagonII::HSIG_L2:
217    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
218            Gb == HexagonII::HSIG_A);
219  case HexagonII::HSIG_S1:
220    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
221            Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
222  case HexagonII::HSIG_S2:
223    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
224            Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
225            Gb == HexagonII::HSIG_A);
226  case HexagonII::HSIG_A:
227    return (Gb == HexagonII::HSIG_A);
228  case HexagonII::HSIG_Compound:
229    return (Gb == HexagonII::HSIG_Compound);
230  }
231  return false;
232}
233
234/// isLoadFromStackSlot - If the specified machine instruction is a direct
235/// load from a stack slot, return the virtual or physical register number of
236/// the destination along with the FrameIndex of the loaded stack slot.  If
237/// not, return 0.  This predicate must return 0 if the instruction has
238/// any side effects other than loading from the stack slot.
239unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
240                                               int &FrameIndex) const {
241  switch (MI.getOpcode()) {
242    default:
243      break;
244    case Hexagon::L2_loadri_io:
245    case Hexagon::L2_loadrd_io:
246    case Hexagon::V6_vL32b_ai:
247    case Hexagon::V6_vL32b_nt_ai:
248    case Hexagon::V6_vL32Ub_ai:
249    case Hexagon::LDriw_pred:
250    case Hexagon::LDriw_ctr:
251    case Hexagon::PS_vloadrq_ai:
252    case Hexagon::PS_vloadrw_ai:
253    case Hexagon::PS_vloadrw_nt_ai: {
254      const MachineOperand OpFI = MI.getOperand(1);
255      if (!OpFI.isFI())
256        return 0;
257      const MachineOperand OpOff = MI.getOperand(2);
258      if (!OpOff.isImm() || OpOff.getImm() != 0)
259        return 0;
260      FrameIndex = OpFI.getIndex();
261      return MI.getOperand(0).getReg();
262    }
263
264    case Hexagon::L2_ploadrit_io:
265    case Hexagon::L2_ploadrif_io:
266    case Hexagon::L2_ploadrdt_io:
267    case Hexagon::L2_ploadrdf_io: {
268      const MachineOperand OpFI = MI.getOperand(2);
269      if (!OpFI.isFI())
270        return 0;
271      const MachineOperand OpOff = MI.getOperand(3);
272      if (!OpOff.isImm() || OpOff.getImm() != 0)
273        return 0;
274      FrameIndex = OpFI.getIndex();
275      return MI.getOperand(0).getReg();
276    }
277  }
278
279  return 0;
280}
281
282/// isStoreToStackSlot - If the specified machine instruction is a direct
283/// store to a stack slot, return the virtual or physical register number of
284/// the source reg along with the FrameIndex of the loaded stack slot.  If
285/// not, return 0.  This predicate must return 0 if the instruction has
286/// any side effects other than storing to the stack slot.
287unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
288                                              int &FrameIndex) const {
289  switch (MI.getOpcode()) {
290    default:
291      break;
292    case Hexagon::S2_storerb_io:
293    case Hexagon::S2_storerh_io:
294    case Hexagon::S2_storeri_io:
295    case Hexagon::S2_storerd_io:
296    case Hexagon::V6_vS32b_ai:
297    case Hexagon::V6_vS32Ub_ai:
298    case Hexagon::STriw_pred:
299    case Hexagon::STriw_ctr:
300    case Hexagon::PS_vstorerq_ai:
301    case Hexagon::PS_vstorerw_ai: {
302      const MachineOperand &OpFI = MI.getOperand(0);
303      if (!OpFI.isFI())
304        return 0;
305      const MachineOperand &OpOff = MI.getOperand(1);
306      if (!OpOff.isImm() || OpOff.getImm() != 0)
307        return 0;
308      FrameIndex = OpFI.getIndex();
309      return MI.getOperand(2).getReg();
310    }
311
312    case Hexagon::S2_pstorerbt_io:
313    case Hexagon::S2_pstorerbf_io:
314    case Hexagon::S2_pstorerht_io:
315    case Hexagon::S2_pstorerhf_io:
316    case Hexagon::S2_pstorerit_io:
317    case Hexagon::S2_pstorerif_io:
318    case Hexagon::S2_pstorerdt_io:
319    case Hexagon::S2_pstorerdf_io: {
320      const MachineOperand &OpFI = MI.getOperand(1);
321      if (!OpFI.isFI())
322        return 0;
323      const MachineOperand &OpOff = MI.getOperand(2);
324      if (!OpOff.isImm() || OpOff.getImm() != 0)
325        return 0;
326      FrameIndex = OpFI.getIndex();
327      return MI.getOperand(3).getReg();
328    }
329  }
330
331  return 0;
332}
333
334/// This function checks if the instruction or bundle of instructions
335/// has load from stack slot and returns frameindex and machine memory
336/// operand of that instruction if true.
337bool HexagonInstrInfo::hasLoadFromStackSlot(
338    const MachineInstr &MI,
339    SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
340  if (MI.isBundle()) {
341    const MachineBasicBlock *MBB = MI.getParent();
342    MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
343    for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
344      if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
345        return true;
346    return false;
347  }
348
349  return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses);
350}
351
352/// This function checks if the instruction or bundle of instructions
353/// has store to stack slot and returns frameindex and machine memory
354/// operand of that instruction if true.
355bool HexagonInstrInfo::hasStoreToStackSlot(
356    const MachineInstr &MI,
357    SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
358  if (MI.isBundle()) {
359    const MachineBasicBlock *MBB = MI.getParent();
360    MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
361    for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
362      if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
363        return true;
364    return false;
365  }
366
367  return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses);
368}
369
370/// This function can analyze one/two way branching only and should (mostly) be
371/// called by target independent side.
372/// First entry is always the opcode of the branching instruction, except when
373/// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
374/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
375/// e.g. Jump_c p will have
376/// Cond[0] = Jump_c
377/// Cond[1] = p
378/// HW-loop ENDLOOP:
379/// Cond[0] = ENDLOOP
380/// Cond[1] = MBB
381/// New value jump:
382/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
383/// Cond[1] = R
384/// Cond[2] = Imm
385bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
386                                     MachineBasicBlock *&TBB,
387                                     MachineBasicBlock *&FBB,
388                                     SmallVectorImpl<MachineOperand> &Cond,
389                                     bool AllowModify) const {
390  TBB = nullptr;
391  FBB = nullptr;
392  Cond.clear();
393
394  // If the block has no terminators, it just falls into the block after it.
395  MachineBasicBlock::instr_iterator I = MBB.instr_end();
396  if (I == MBB.instr_begin())
397    return false;
398
399  // A basic block may looks like this:
400  //
401  //  [   insn
402  //     EH_LABEL
403  //      insn
404  //      insn
405  //      insn
406  //     EH_LABEL
407  //      insn     ]
408  //
409  // It has two succs but does not have a terminator
410  // Don't know how to handle it.
411  do {
412    --I;
413    if (I->isEHLabel())
414      // Don't analyze EH branches.
415      return true;
416  } while (I != MBB.instr_begin());
417
418  I = MBB.instr_end();
419  --I;
420
421  while (I->isDebugInstr()) {
422    if (I == MBB.instr_begin())
423      return false;
424    --I;
425  }
426
427  bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
428                     I->getOperand(0).isMBB();
429  // Delete the J2_jump if it's equivalent to a fall-through.
430  if (AllowModify && JumpToBlock &&
431      MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
432    LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
433    I->eraseFromParent();
434    I = MBB.instr_end();
435    if (I == MBB.instr_begin())
436      return false;
437    --I;
438  }
439  if (!isUnpredicatedTerminator(*I))
440    return false;
441
442  // Get the last instruction in the block.
443  MachineInstr *LastInst = &*I;
444  MachineInstr *SecondLastInst = nullptr;
445  // Find one more terminator if present.
446  while (true) {
447    if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
448      if (!SecondLastInst)
449        SecondLastInst = &*I;
450      else
451        // This is a third branch.
452        return true;
453    }
454    if (I == MBB.instr_begin())
455      break;
456    --I;
457  }
458
459  int LastOpcode = LastInst->getOpcode();
460  int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
461  // If the branch target is not a basic block, it could be a tail call.
462  // (It is, if the target is a function.)
463  if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
464    return true;
465  if (SecLastOpcode == Hexagon::J2_jump &&
466      !SecondLastInst->getOperand(0).isMBB())
467    return true;
468
469  bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
470  bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
471
472  if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
473    return true;
474
475  // If there is only one terminator instruction, process it.
476  if (LastInst && !SecondLastInst) {
477    if (LastOpcode == Hexagon::J2_jump) {
478      TBB = LastInst->getOperand(0).getMBB();
479      return false;
480    }
481    if (isEndLoopN(LastOpcode)) {
482      TBB = LastInst->getOperand(0).getMBB();
483      Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
484      Cond.push_back(LastInst->getOperand(0));
485      return false;
486    }
487    if (LastOpcodeHasJMP_c) {
488      TBB = LastInst->getOperand(1).getMBB();
489      Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
490      Cond.push_back(LastInst->getOperand(0));
491      return false;
492    }
493    // Only supporting rr/ri versions of new-value jumps.
494    if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
495      TBB = LastInst->getOperand(2).getMBB();
496      Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
497      Cond.push_back(LastInst->getOperand(0));
498      Cond.push_back(LastInst->getOperand(1));
499      return false;
500    }
501    LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
502                      << " with one jump\n";);
503    // Otherwise, don't know what this is.
504    return true;
505  }
506
507  bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
508  bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
509  if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
510    if (!SecondLastInst->getOperand(1).isMBB())
511      return true;
512    TBB =  SecondLastInst->getOperand(1).getMBB();
513    Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
514    Cond.push_back(SecondLastInst->getOperand(0));
515    FBB = LastInst->getOperand(0).getMBB();
516    return false;
517  }
518
519  // Only supporting rr/ri versions of new-value jumps.
520  if (SecLastOpcodeHasNVJump &&
521      (SecondLastInst->getNumExplicitOperands() == 3) &&
522      (LastOpcode == Hexagon::J2_jump)) {
523    TBB = SecondLastInst->getOperand(2).getMBB();
524    Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
525    Cond.push_back(SecondLastInst->getOperand(0));
526    Cond.push_back(SecondLastInst->getOperand(1));
527    FBB = LastInst->getOperand(0).getMBB();
528    return false;
529  }
530
531  // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
532  // executed, so remove it.
533  if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
534    TBB = SecondLastInst->getOperand(0).getMBB();
535    I = LastInst->getIterator();
536    if (AllowModify)
537      I->eraseFromParent();
538    return false;
539  }
540
541  // If the block ends with an ENDLOOP, and J2_jump, handle it.
542  if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
543    TBB = SecondLastInst->getOperand(0).getMBB();
544    Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
545    Cond.push_back(SecondLastInst->getOperand(0));
546    FBB = LastInst->getOperand(0).getMBB();
547    return false;
548  }
549  LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
550                    << " with two jumps";);
551  // Otherwise, can't handle this.
552  return true;
553}
554
555unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
556                                        int *BytesRemoved) const {
557  assert(!BytesRemoved && "code size not handled");
558
559  LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
560  MachineBasicBlock::iterator I = MBB.end();
561  unsigned Count = 0;
562  while (I != MBB.begin()) {
563    --I;
564    if (I->isDebugInstr())
565      continue;
566    // Only removing branches from end of MBB.
567    if (!I->isBranch())
568      return Count;
569    if (Count && (I->getOpcode() == Hexagon::J2_jump))
570      llvm_unreachable("Malformed basic block: unconditional branch not last");
571    MBB.erase(&MBB.back());
572    I = MBB.end();
573    ++Count;
574  }
575  return Count;
576}
577
578unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
579                                        MachineBasicBlock *TBB,
580                                        MachineBasicBlock *FBB,
581                                        ArrayRef<MachineOperand> Cond,
582                                        const DebugLoc &DL,
583                                        int *BytesAdded) const {
584  unsigned BOpc   = Hexagon::J2_jump;
585  unsigned BccOpc = Hexagon::J2_jumpt;
586  assert(validateBranchCond(Cond) && "Invalid branching condition");
587  assert(TBB && "insertBranch must not be told to insert a fallthrough");
588  assert(!BytesAdded && "code size not handled");
589
590  // Check if reverseBranchCondition has asked to reverse this branch
591  // If we want to reverse the branch an odd number of times, we want
592  // J2_jumpf.
593  if (!Cond.empty() && Cond[0].isImm())
594    BccOpc = Cond[0].getImm();
595
596  if (!FBB) {
597    if (Cond.empty()) {
598      // Due to a bug in TailMerging/CFG Optimization, we need to add a
599      // special case handling of a predicated jump followed by an
600      // unconditional jump. If not, Tail Merging and CFG Optimization go
601      // into an infinite loop.
602      MachineBasicBlock *NewTBB, *NewFBB;
603      SmallVector<MachineOperand, 4> Cond;
604      auto Term = MBB.getFirstTerminator();
605      if (Term != MBB.end() && isPredicated(*Term) &&
606          !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
607          MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
608        reverseBranchCondition(Cond);
609        removeBranch(MBB);
610        return insertBranch(MBB, TBB, nullptr, Cond, DL);
611      }
612      BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
613    } else if (isEndLoopN(Cond[0].getImm())) {
614      int EndLoopOp = Cond[0].getImm();
615      assert(Cond[1].isMBB());
616      // Since we're adding an ENDLOOP, there better be a LOOP instruction.
617      // Check for it, and change the BB target if needed.
618      SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
619      MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
620                                         VisitedBBs);
621      assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
622      Loop->getOperand(0).setMBB(TBB);
623      // Add the ENDLOOP after the finding the LOOP0.
624      BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
625    } else if (isNewValueJump(Cond[0].getImm())) {
626      assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
627      // New value jump
628      // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
629      // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
630      unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
631      LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
632                        << printMBBReference(MBB););
633      if (Cond[2].isReg()) {
634        unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
635        BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
636          addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
637      } else if(Cond[2].isImm()) {
638        BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
639          addImm(Cond[2].getImm()).addMBB(TBB);
640      } else
641        llvm_unreachable("Invalid condition for branching");
642    } else {
643      assert((Cond.size() == 2) && "Malformed cond vector");
644      const MachineOperand &RO = Cond[1];
645      unsigned Flags = getUndefRegState(RO.isUndef());
646      BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
647    }
648    return 1;
649  }
650  assert((!Cond.empty()) &&
651         "Cond. cannot be empty when multiple branchings are required");
652  assert((!isNewValueJump(Cond[0].getImm())) &&
653         "NV-jump cannot be inserted with another branch");
654  // Special case for hardware loops.  The condition is a basic block.
655  if (isEndLoopN(Cond[0].getImm())) {
656    int EndLoopOp = Cond[0].getImm();
657    assert(Cond[1].isMBB());
658    // Since we're adding an ENDLOOP, there better be a LOOP instruction.
659    // Check for it, and change the BB target if needed.
660    SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
661    MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
662                                       VisitedBBs);
663    assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
664    Loop->getOperand(0).setMBB(TBB);
665    // Add the ENDLOOP after the finding the LOOP0.
666    BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
667  } else {
668    const MachineOperand &RO = Cond[1];
669    unsigned Flags = getUndefRegState(RO.isUndef());
670    BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
671  }
672  BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
673
674  return 2;
675}
676
677namespace {
678class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
679  MachineInstr *Loop, *EndLoop;
680  MachineFunction *MF;
681  const HexagonInstrInfo *TII;
682  int64_t TripCount;
683  Register LoopCount;
684  DebugLoc DL;
685
686public:
687  HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop)
688      : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()),
689        TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()),
690        DL(Loop->getDebugLoc()) {
691    // Inspect the Loop instruction up-front, as it may be deleted when we call
692    // createTripCountGreaterCondition.
693    TripCount = Loop->getOpcode() == Hexagon::J2_loop0r
694                    ? -1
695                    : Loop->getOperand(1).getImm();
696    if (TripCount == -1)
697      LoopCount = Loop->getOperand(1).getReg();
698  }
699
700  bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
701    // Only ignore the terminator.
702    return MI == EndLoop;
703  }
704
705  Optional<bool>
706  createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
707                                  SmallVectorImpl<MachineOperand> &Cond) override {
708    if (TripCount == -1) {
709      // Check if we're done with the loop.
710      unsigned Done = TII->createVR(MF, MVT::i1);
711      MachineInstr *NewCmp = BuildMI(&MBB, DL,
712                                     TII->get(Hexagon::C2_cmpgtui), Done)
713                                 .addReg(LoopCount)
714                                 .addImm(TC);
715      Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
716      Cond.push_back(NewCmp->getOperand(0));
717      return {};
718    }
719
720    return TripCount > TC;
721  }
722
723  void setPreheader(MachineBasicBlock *NewPreheader) override {
724    NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(),
725                         Loop);
726  }
727
728  void adjustTripCount(int TripCountAdjust) override {
729    // If the loop trip count is a compile-time value, then just change the
730    // value.
731    if (Loop->getOpcode() == Hexagon::J2_loop0i ||
732        Loop->getOpcode() == Hexagon::J2_loop1i) {
733      int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust;
734      assert(TripCount > 0 && "Can't create an empty or negative loop!");
735      Loop->getOperand(1).setImm(TripCount);
736      return;
737    }
738
739    // The loop trip count is a run-time value. We generate code to subtract
740    // one from the trip count, and update the loop instruction.
741    Register LoopCount = Loop->getOperand(1).getReg();
742    Register NewLoopCount = TII->createVR(MF, MVT::i32);
743    BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(),
744            TII->get(Hexagon::A2_addi), NewLoopCount)
745        .addReg(LoopCount)
746        .addImm(TripCountAdjust);
747    Loop->getOperand(1).setReg(NewLoopCount);
748  }
749
750  void disposed() override { Loop->eraseFromParent(); }
751};
752} // namespace
753
754std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
755HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
756  // We really "analyze" only hardware loops right now.
757  MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
758
759  if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) {
760    SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
761    MachineInstr *LoopInst = findLoopInstr(
762        LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs);
763    if (LoopInst)
764      return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I);
765  }
766  return nullptr;
767}
768
769bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
770      unsigned NumCycles, unsigned ExtraPredCycles,
771      BranchProbability Probability) const {
772  return nonDbgBBSize(&MBB) <= 3;
773}
774
775bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
776      unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
777      unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
778      const {
779  return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
780}
781
782bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
783      unsigned NumInstrs, BranchProbability Probability) const {
784  return NumInstrs <= 4;
785}
786
787void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
788                                   MachineBasicBlock::iterator I,
789                                   const DebugLoc &DL, MCRegister DestReg,
790                                   MCRegister SrcReg, bool KillSrc) const {
791  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
792  unsigned KillFlag = getKillRegState(KillSrc);
793
794  if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
795    BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
796      .addReg(SrcReg, KillFlag);
797    return;
798  }
799  if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
800    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
801      .addReg(SrcReg, KillFlag);
802    return;
803  }
804  if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
805    // Map Pd = Ps to Pd = or(Ps, Ps).
806    BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
807      .addReg(SrcReg).addReg(SrcReg, KillFlag);
808    return;
809  }
810  if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
811      Hexagon::IntRegsRegClass.contains(SrcReg)) {
812    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
813      .addReg(SrcReg, KillFlag);
814    return;
815  }
816  if (Hexagon::IntRegsRegClass.contains(DestReg) &&
817      Hexagon::CtrRegsRegClass.contains(SrcReg)) {
818    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
819      .addReg(SrcReg, KillFlag);
820    return;
821  }
822  if (Hexagon::ModRegsRegClass.contains(DestReg) &&
823      Hexagon::IntRegsRegClass.contains(SrcReg)) {
824    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
825      .addReg(SrcReg, KillFlag);
826    return;
827  }
828  if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
829      Hexagon::IntRegsRegClass.contains(DestReg)) {
830    BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
831      .addReg(SrcReg, KillFlag);
832    return;
833  }
834  if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
835      Hexagon::PredRegsRegClass.contains(DestReg)) {
836    BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
837      .addReg(SrcReg, KillFlag);
838    return;
839  }
840  if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
841      Hexagon::IntRegsRegClass.contains(DestReg)) {
842    BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
843      .addReg(SrcReg, KillFlag);
844    return;
845  }
846  if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
847    BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
848      addReg(SrcReg, KillFlag);
849    return;
850  }
851  if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
852    Register LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
853    Register HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
854    BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
855      .addReg(HiSrc, KillFlag)
856      .addReg(LoSrc, KillFlag);
857    return;
858  }
859  if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
860    BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
861      .addReg(SrcReg)
862      .addReg(SrcReg, KillFlag);
863    return;
864  }
865  if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
866      Hexagon::HvxVRRegClass.contains(DestReg)) {
867    llvm_unreachable("Unimplemented pred to vec");
868    return;
869  }
870  if (Hexagon::HvxQRRegClass.contains(DestReg) &&
871      Hexagon::HvxVRRegClass.contains(SrcReg)) {
872    llvm_unreachable("Unimplemented vec to pred");
873    return;
874  }
875
876#ifndef NDEBUG
877  // Show the invalid registers to ease debugging.
878  dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
879         << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
880#endif
881  llvm_unreachable("Unimplemented");
882}
883
884void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
885      MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
886      const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
887  DebugLoc DL = MBB.findDebugLoc(I);
888  MachineFunction &MF = *MBB.getParent();
889  MachineFrameInfo &MFI = MF.getFrameInfo();
890  unsigned SlotAlign = MFI.getObjectAlignment(FI);
891  unsigned KillFlag = getKillRegState(isKill);
892
893  MachineMemOperand *MMO = MF.getMachineMemOperand(
894      MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
895      MFI.getObjectSize(FI), SlotAlign);
896
897  if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
898    BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
899      .addFrameIndex(FI).addImm(0)
900      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
901  } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
902    BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
903      .addFrameIndex(FI).addImm(0)
904      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
905  } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
906    BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
907      .addFrameIndex(FI).addImm(0)
908      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
909  } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
910    BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
911      .addFrameIndex(FI).addImm(0)
912      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
913  } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
914    BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
915      .addFrameIndex(FI).addImm(0)
916      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
917  } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
918    BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerv_ai))
919      .addFrameIndex(FI).addImm(0)
920      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
921  } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
922    BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerw_ai))
923      .addFrameIndex(FI).addImm(0)
924      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
925  } else {
926    llvm_unreachable("Unimplemented");
927  }
928}
929
930void HexagonInstrInfo::loadRegFromStackSlot(
931    MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg,
932    int FI, const TargetRegisterClass *RC,
933    const TargetRegisterInfo *TRI) const {
934  DebugLoc DL = MBB.findDebugLoc(I);
935  MachineFunction &MF = *MBB.getParent();
936  MachineFrameInfo &MFI = MF.getFrameInfo();
937  unsigned SlotAlign = MFI.getObjectAlignment(FI);
938
939  MachineMemOperand *MMO = MF.getMachineMemOperand(
940      MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
941      MFI.getObjectSize(FI), SlotAlign);
942
943  if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
944    BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
945      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
946  } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
947    BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
948      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
949  } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
950    BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
951      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
952  } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
953    BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
954      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
955  } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
956    BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
957      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
958  } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
959    BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrv_ai), DestReg)
960      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
961  } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
962    BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrw_ai), DestReg)
963      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
964  } else {
965    llvm_unreachable("Can't store this register to stack slot");
966  }
967}
968
969static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
970  const MachineBasicBlock &B = *MI.getParent();
971  Regs.addLiveOuts(B);
972  auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
973  for (auto I = B.rbegin(); I != E; ++I)
974    Regs.stepBackward(*I);
975}
976
977/// expandPostRAPseudo - This function is called for all pseudo instructions
978/// that remain after register allocation. Many pseudo instructions are
979/// created to help register allocation. This is the place to convert them
980/// into real instructions. The target can edit MI in place, or it can insert
981/// new instructions and erase MI. The function should return true if
982/// anything was changed.
983bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
984  MachineBasicBlock &MBB = *MI.getParent();
985  MachineFunction &MF = *MBB.getParent();
986  MachineRegisterInfo &MRI = MF.getRegInfo();
987  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
988  DebugLoc DL = MI.getDebugLoc();
989  unsigned Opc = MI.getOpcode();
990
991  auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
992    Register Mx = MI.getOperand(MxOp).getReg();
993    unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
994    BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
995        .add(MI.getOperand((HasImm ? 5 : 4)));
996    auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
997        .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
998    if (HasImm)
999      MIB.add(MI.getOperand(4));
1000    MIB.addReg(CSx, RegState::Implicit);
1001    MBB.erase(MI);
1002    return true;
1003  };
1004
1005  auto UseAligned = [&] (const MachineInstr &MI, unsigned NeedAlign) {
1006    if (MI.memoperands().empty())
1007      return false;
1008    return all_of(MI.memoperands(),
1009                  [NeedAlign] (const MachineMemOperand *MMO) {
1010                    return NeedAlign <= MMO->getAlignment();
1011                  });
1012  };
1013
1014  switch (Opc) {
1015    case TargetOpcode::COPY: {
1016      MachineOperand &MD = MI.getOperand(0);
1017      MachineOperand &MS = MI.getOperand(1);
1018      MachineBasicBlock::iterator MBBI = MI.getIterator();
1019      if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1020        copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1021        std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1022      }
1023      MBB.erase(MBBI);
1024      return true;
1025    }
1026    case Hexagon::PS_aligna:
1027      BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1028          .addReg(HRI.getFrameRegister())
1029          .addImm(-MI.getOperand(1).getImm());
1030      MBB.erase(MI);
1031      return true;
1032    case Hexagon::V6_vassignp: {
1033      Register SrcReg = MI.getOperand(1).getReg();
1034      Register DstReg = MI.getOperand(0).getReg();
1035      unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1036      BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1037        .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill)
1038        .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill);
1039      MBB.erase(MI);
1040      return true;
1041    }
1042    case Hexagon::V6_lo: {
1043      Register SrcReg = MI.getOperand(1).getReg();
1044      Register DstReg = MI.getOperand(0).getReg();
1045      Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1046      copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1047      MBB.erase(MI);
1048      MRI.clearKillFlags(SrcSubLo);
1049      return true;
1050    }
1051    case Hexagon::V6_hi: {
1052      Register SrcReg = MI.getOperand(1).getReg();
1053      Register DstReg = MI.getOperand(0).getReg();
1054      Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1055      copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1056      MBB.erase(MI);
1057      MRI.clearKillFlags(SrcSubHi);
1058      return true;
1059    }
1060    case Hexagon::PS_vloadrv_ai: {
1061      Register DstReg = MI.getOperand(0).getReg();
1062      const MachineOperand &BaseOp = MI.getOperand(1);
1063      assert(BaseOp.getSubReg() == 0);
1064      int Offset = MI.getOperand(2).getImm();
1065      unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
1066      unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1067                                                  : Hexagon::V6_vL32Ub_ai;
1068      BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
1069          .addReg(BaseOp.getReg(), getRegState(BaseOp))
1070          .addImm(Offset)
1071          .cloneMemRefs(MI);
1072      MBB.erase(MI);
1073      return true;
1074    }
1075    case Hexagon::PS_vloadrw_ai: {
1076      Register DstReg = MI.getOperand(0).getReg();
1077      const MachineOperand &BaseOp = MI.getOperand(1);
1078      assert(BaseOp.getSubReg() == 0);
1079      int Offset = MI.getOperand(2).getImm();
1080      unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1081      unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
1082      unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1083                                                  : Hexagon::V6_vL32Ub_ai;
1084      BuildMI(MBB, MI, DL, get(NewOpc),
1085              HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1086          .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1087          .addImm(Offset)
1088          .cloneMemRefs(MI);
1089      BuildMI(MBB, MI, DL, get(NewOpc),
1090              HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1091          .addReg(BaseOp.getReg(), getRegState(BaseOp))
1092          .addImm(Offset + VecOffset)
1093          .cloneMemRefs(MI);
1094      MBB.erase(MI);
1095      return true;
1096    }
1097    case Hexagon::PS_vstorerv_ai: {
1098      const MachineOperand &SrcOp = MI.getOperand(2);
1099      assert(SrcOp.getSubReg() == 0);
1100      const MachineOperand &BaseOp = MI.getOperand(0);
1101      assert(BaseOp.getSubReg() == 0);
1102      int Offset = MI.getOperand(1).getImm();
1103      unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
1104      unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1105                                                  : Hexagon::V6_vS32Ub_ai;
1106      BuildMI(MBB, MI, DL, get(NewOpc))
1107          .addReg(BaseOp.getReg(), getRegState(BaseOp))
1108          .addImm(Offset)
1109          .addReg(SrcOp.getReg(), getRegState(SrcOp))
1110          .cloneMemRefs(MI);
1111      MBB.erase(MI);
1112      return true;
1113    }
1114    case Hexagon::PS_vstorerw_ai: {
1115      Register SrcReg = MI.getOperand(2).getReg();
1116      const MachineOperand &BaseOp = MI.getOperand(0);
1117      assert(BaseOp.getSubReg() == 0);
1118      int Offset = MI.getOperand(1).getImm();
1119      unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1120      unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
1121      unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1122                                                  : Hexagon::V6_vS32Ub_ai;
1123      BuildMI(MBB, MI, DL, get(NewOpc))
1124          .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1125          .addImm(Offset)
1126          .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo))
1127          .cloneMemRefs(MI);
1128      BuildMI(MBB, MI, DL, get(NewOpc))
1129          .addReg(BaseOp.getReg(), getRegState(BaseOp))
1130          .addImm(Offset + VecOffset)
1131          .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi))
1132          .cloneMemRefs(MI);
1133      MBB.erase(MI);
1134      return true;
1135    }
1136    case Hexagon::PS_true: {
1137      Register Reg = MI.getOperand(0).getReg();
1138      BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1139        .addReg(Reg, RegState::Undef)
1140        .addReg(Reg, RegState::Undef);
1141      MBB.erase(MI);
1142      return true;
1143    }
1144    case Hexagon::PS_false: {
1145      Register Reg = MI.getOperand(0).getReg();
1146      BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1147        .addReg(Reg, RegState::Undef)
1148        .addReg(Reg, RegState::Undef);
1149      MBB.erase(MI);
1150      return true;
1151    }
1152    case Hexagon::PS_qtrue: {
1153      BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1154        .addReg(Hexagon::V0, RegState::Undef)
1155        .addReg(Hexagon::V0, RegState::Undef);
1156      MBB.erase(MI);
1157      return true;
1158    }
1159    case Hexagon::PS_qfalse: {
1160      BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1161        .addReg(Hexagon::V0, RegState::Undef)
1162        .addReg(Hexagon::V0, RegState::Undef);
1163      MBB.erase(MI);
1164      return true;
1165    }
1166    case Hexagon::PS_vdd0: {
1167      Register Vd = MI.getOperand(0).getReg();
1168      BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1169        .addReg(Vd, RegState::Undef)
1170        .addReg(Vd, RegState::Undef);
1171      MBB.erase(MI);
1172      return true;
1173    }
1174    case Hexagon::PS_vmulw: {
1175      // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1176      Register DstReg = MI.getOperand(0).getReg();
1177      Register Src1Reg = MI.getOperand(1).getReg();
1178      Register Src2Reg = MI.getOperand(2).getReg();
1179      Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1180      Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1181      Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1182      Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1183      BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1184              HRI.getSubReg(DstReg, Hexagon::isub_hi))
1185          .addReg(Src1SubHi)
1186          .addReg(Src2SubHi);
1187      BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1188              HRI.getSubReg(DstReg, Hexagon::isub_lo))
1189          .addReg(Src1SubLo)
1190          .addReg(Src2SubLo);
1191      MBB.erase(MI);
1192      MRI.clearKillFlags(Src1SubHi);
1193      MRI.clearKillFlags(Src1SubLo);
1194      MRI.clearKillFlags(Src2SubHi);
1195      MRI.clearKillFlags(Src2SubLo);
1196      return true;
1197    }
1198    case Hexagon::PS_vmulw_acc: {
1199      // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1200      Register DstReg = MI.getOperand(0).getReg();
1201      Register Src1Reg = MI.getOperand(1).getReg();
1202      Register Src2Reg = MI.getOperand(2).getReg();
1203      Register Src3Reg = MI.getOperand(3).getReg();
1204      Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1205      Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1206      Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1207      Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1208      Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1209      Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1210      BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1211              HRI.getSubReg(DstReg, Hexagon::isub_hi))
1212          .addReg(Src1SubHi)
1213          .addReg(Src2SubHi)
1214          .addReg(Src3SubHi);
1215      BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1216              HRI.getSubReg(DstReg, Hexagon::isub_lo))
1217          .addReg(Src1SubLo)
1218          .addReg(Src2SubLo)
1219          .addReg(Src3SubLo);
1220      MBB.erase(MI);
1221      MRI.clearKillFlags(Src1SubHi);
1222      MRI.clearKillFlags(Src1SubLo);
1223      MRI.clearKillFlags(Src2SubHi);
1224      MRI.clearKillFlags(Src2SubLo);
1225      MRI.clearKillFlags(Src3SubHi);
1226      MRI.clearKillFlags(Src3SubLo);
1227      return true;
1228    }
1229    case Hexagon::PS_pselect: {
1230      const MachineOperand &Op0 = MI.getOperand(0);
1231      const MachineOperand &Op1 = MI.getOperand(1);
1232      const MachineOperand &Op2 = MI.getOperand(2);
1233      const MachineOperand &Op3 = MI.getOperand(3);
1234      Register Rd = Op0.getReg();
1235      Register Pu = Op1.getReg();
1236      Register Rs = Op2.getReg();
1237      Register Rt = Op3.getReg();
1238      DebugLoc DL = MI.getDebugLoc();
1239      unsigned K1 = getKillRegState(Op1.isKill());
1240      unsigned K2 = getKillRegState(Op2.isKill());
1241      unsigned K3 = getKillRegState(Op3.isKill());
1242      if (Rd != Rs)
1243        BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1244          .addReg(Pu, (Rd == Rt) ? K1 : 0)
1245          .addReg(Rs, K2);
1246      if (Rd != Rt)
1247        BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1248          .addReg(Pu, K1)
1249          .addReg(Rt, K3);
1250      MBB.erase(MI);
1251      return true;
1252    }
1253    case Hexagon::PS_vselect: {
1254      const MachineOperand &Op0 = MI.getOperand(0);
1255      const MachineOperand &Op1 = MI.getOperand(1);
1256      const MachineOperand &Op2 = MI.getOperand(2);
1257      const MachineOperand &Op3 = MI.getOperand(3);
1258      LivePhysRegs LiveAtMI(HRI);
1259      getLiveRegsAt(LiveAtMI, MI);
1260      bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1261      Register PReg = Op1.getReg();
1262      assert(Op1.getSubReg() == 0);
1263      unsigned PState = getRegState(Op1);
1264
1265      if (Op0.getReg() != Op2.getReg()) {
1266        unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1267                                                  : PState;
1268        auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1269                     .add(Op0)
1270                     .addReg(PReg, S)
1271                     .add(Op2);
1272        if (IsDestLive)
1273          T.addReg(Op0.getReg(), RegState::Implicit);
1274        IsDestLive = true;
1275      }
1276      if (Op0.getReg() != Op3.getReg()) {
1277        auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1278                     .add(Op0)
1279                     .addReg(PReg, PState)
1280                     .add(Op3);
1281        if (IsDestLive)
1282          T.addReg(Op0.getReg(), RegState::Implicit);
1283      }
1284      MBB.erase(MI);
1285      return true;
1286    }
1287    case Hexagon::PS_wselect: {
1288      MachineOperand &Op0 = MI.getOperand(0);
1289      MachineOperand &Op1 = MI.getOperand(1);
1290      MachineOperand &Op2 = MI.getOperand(2);
1291      MachineOperand &Op3 = MI.getOperand(3);
1292      LivePhysRegs LiveAtMI(HRI);
1293      getLiveRegsAt(LiveAtMI, MI);
1294      bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1295      Register PReg = Op1.getReg();
1296      assert(Op1.getSubReg() == 0);
1297      unsigned PState = getRegState(Op1);
1298
1299      if (Op0.getReg() != Op2.getReg()) {
1300        unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1301                                                  : PState;
1302        Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1303        Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1304        auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1305                     .add(Op0)
1306                     .addReg(PReg, S)
1307                     .addReg(SrcHi)
1308                     .addReg(SrcLo);
1309        if (IsDestLive)
1310          T.addReg(Op0.getReg(), RegState::Implicit);
1311        IsDestLive = true;
1312      }
1313      if (Op0.getReg() != Op3.getReg()) {
1314        Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1315        Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1316        auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1317                     .add(Op0)
1318                     .addReg(PReg, PState)
1319                     .addReg(SrcHi)
1320                     .addReg(SrcLo);
1321        if (IsDestLive)
1322          T.addReg(Op0.getReg(), RegState::Implicit);
1323      }
1324      MBB.erase(MI);
1325      return true;
1326    }
1327
1328    case Hexagon::PS_crash: {
1329      // Generate a misaligned load that is guaranteed to cause a crash.
1330      class CrashPseudoSourceValue : public PseudoSourceValue {
1331      public:
1332        CrashPseudoSourceValue(const TargetInstrInfo &TII)
1333          : PseudoSourceValue(TargetCustom, TII) {}
1334
1335        bool isConstant(const MachineFrameInfo *) const override {
1336          return false;
1337        }
1338        bool isAliased(const MachineFrameInfo *) const override {
1339          return false;
1340        }
1341        bool mayAlias(const MachineFrameInfo *) const override {
1342          return false;
1343        }
1344        void printCustom(raw_ostream &OS) const override {
1345          OS << "MisalignedCrash";
1346        }
1347      };
1348
1349      static const CrashPseudoSourceValue CrashPSV(*this);
1350      MachineMemOperand *MMO = MF.getMachineMemOperand(
1351          MachinePointerInfo(&CrashPSV),
1352          MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8, 1);
1353      BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
1354        .addImm(0xBADC0FEE)  // Misaligned load.
1355        .addMemOperand(MMO);
1356      MBB.erase(MI);
1357      return true;
1358    }
1359
1360    case Hexagon::PS_tailcall_i:
1361      MI.setDesc(get(Hexagon::J2_jump));
1362      return true;
1363    case Hexagon::PS_tailcall_r:
1364    case Hexagon::PS_jmpret:
1365      MI.setDesc(get(Hexagon::J2_jumpr));
1366      return true;
1367    case Hexagon::PS_jmprett:
1368      MI.setDesc(get(Hexagon::J2_jumprt));
1369      return true;
1370    case Hexagon::PS_jmpretf:
1371      MI.setDesc(get(Hexagon::J2_jumprf));
1372      return true;
1373    case Hexagon::PS_jmprettnewpt:
1374      MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1375      return true;
1376    case Hexagon::PS_jmpretfnewpt:
1377      MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1378      return true;
1379    case Hexagon::PS_jmprettnew:
1380      MI.setDesc(get(Hexagon::J2_jumprtnew));
1381      return true;
1382    case Hexagon::PS_jmpretfnew:
1383      MI.setDesc(get(Hexagon::J2_jumprfnew));
1384      return true;
1385
1386    case Hexagon::PS_loadrub_pci:
1387      return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true,  /*MxOp*/4);
1388    case Hexagon::PS_loadrb_pci:
1389      return RealCirc(Hexagon::L2_loadrb_pci,  /*HasImm*/true,  /*MxOp*/4);
1390    case Hexagon::PS_loadruh_pci:
1391      return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true,  /*MxOp*/4);
1392    case Hexagon::PS_loadrh_pci:
1393      return RealCirc(Hexagon::L2_loadrh_pci,  /*HasImm*/true,  /*MxOp*/4);
1394    case Hexagon::PS_loadri_pci:
1395      return RealCirc(Hexagon::L2_loadri_pci,  /*HasImm*/true,  /*MxOp*/4);
1396    case Hexagon::PS_loadrd_pci:
1397      return RealCirc(Hexagon::L2_loadrd_pci,  /*HasImm*/true,  /*MxOp*/4);
1398    case Hexagon::PS_loadrub_pcr:
1399      return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1400    case Hexagon::PS_loadrb_pcr:
1401      return RealCirc(Hexagon::L2_loadrb_pcr,  /*HasImm*/false, /*MxOp*/3);
1402    case Hexagon::PS_loadruh_pcr:
1403      return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1404    case Hexagon::PS_loadrh_pcr:
1405      return RealCirc(Hexagon::L2_loadrh_pcr,  /*HasImm*/false, /*MxOp*/3);
1406    case Hexagon::PS_loadri_pcr:
1407      return RealCirc(Hexagon::L2_loadri_pcr,  /*HasImm*/false, /*MxOp*/3);
1408    case Hexagon::PS_loadrd_pcr:
1409      return RealCirc(Hexagon::L2_loadrd_pcr,  /*HasImm*/false, /*MxOp*/3);
1410    case Hexagon::PS_storerb_pci:
1411      return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true,  /*MxOp*/3);
1412    case Hexagon::PS_storerh_pci:
1413      return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true,  /*MxOp*/3);
1414    case Hexagon::PS_storerf_pci:
1415      return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true,  /*MxOp*/3);
1416    case Hexagon::PS_storeri_pci:
1417      return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true,  /*MxOp*/3);
1418    case Hexagon::PS_storerd_pci:
1419      return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true,  /*MxOp*/3);
1420    case Hexagon::PS_storerb_pcr:
1421      return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1422    case Hexagon::PS_storerh_pcr:
1423      return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1424    case Hexagon::PS_storerf_pcr:
1425      return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1426    case Hexagon::PS_storeri_pcr:
1427      return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1428    case Hexagon::PS_storerd_pcr:
1429      return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1430  }
1431
1432  return false;
1433}
1434
1435MachineBasicBlock::instr_iterator
1436HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const {
1437  MachineBasicBlock &MBB = *MI.getParent();
1438  const DebugLoc &DL = MI.getDebugLoc();
1439  unsigned Opc = MI.getOpcode();
1440  MachineBasicBlock::iterator First;
1441
1442  switch (Opc) {
1443    case Hexagon::V6_vgathermh_pseudo:
1444      First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1445                  .add(MI.getOperand(1))
1446                  .add(MI.getOperand(2))
1447                  .add(MI.getOperand(3));
1448      BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1449          .add(MI.getOperand(0))
1450          .addImm(0)
1451          .addReg(Hexagon::VTMP);
1452      MBB.erase(MI);
1453      return First.getInstrIterator();
1454
1455    case Hexagon::V6_vgathermw_pseudo:
1456      First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1457                  .add(MI.getOperand(1))
1458                  .add(MI.getOperand(2))
1459                  .add(MI.getOperand(3));
1460      BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1461          .add(MI.getOperand(0))
1462          .addImm(0)
1463          .addReg(Hexagon::VTMP);
1464      MBB.erase(MI);
1465      return First.getInstrIterator();
1466
1467    case Hexagon::V6_vgathermhw_pseudo:
1468      First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1469                  .add(MI.getOperand(1))
1470                  .add(MI.getOperand(2))
1471                  .add(MI.getOperand(3));
1472      BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1473          .add(MI.getOperand(0))
1474          .addImm(0)
1475          .addReg(Hexagon::VTMP);
1476      MBB.erase(MI);
1477      return First.getInstrIterator();
1478
1479    case Hexagon::V6_vgathermhq_pseudo:
1480      First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1481                  .add(MI.getOperand(1))
1482                  .add(MI.getOperand(2))
1483                  .add(MI.getOperand(3))
1484                  .add(MI.getOperand(4));
1485      BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1486          .add(MI.getOperand(0))
1487          .addImm(0)
1488          .addReg(Hexagon::VTMP);
1489      MBB.erase(MI);
1490      return First.getInstrIterator();
1491
1492    case Hexagon::V6_vgathermwq_pseudo:
1493      First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1494                  .add(MI.getOperand(1))
1495                  .add(MI.getOperand(2))
1496                  .add(MI.getOperand(3))
1497                  .add(MI.getOperand(4));
1498      BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1499          .add(MI.getOperand(0))
1500          .addImm(0)
1501          .addReg(Hexagon::VTMP);
1502      MBB.erase(MI);
1503      return First.getInstrIterator();
1504
1505    case Hexagon::V6_vgathermhwq_pseudo:
1506      First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1507                  .add(MI.getOperand(1))
1508                  .add(MI.getOperand(2))
1509                  .add(MI.getOperand(3))
1510                  .add(MI.getOperand(4));
1511      BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1512          .add(MI.getOperand(0))
1513          .addImm(0)
1514          .addReg(Hexagon::VTMP);
1515      MBB.erase(MI);
1516      return First.getInstrIterator();
1517  }
1518
1519  return MI.getIterator();
1520}
1521
1522// We indicate that we want to reverse the branch by
1523// inserting the reversed branching opcode.
1524bool HexagonInstrInfo::reverseBranchCondition(
1525      SmallVectorImpl<MachineOperand> &Cond) const {
1526  if (Cond.empty())
1527    return true;
1528  assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1529  unsigned opcode = Cond[0].getImm();
1530  //unsigned temp;
1531  assert(get(opcode).isBranch() && "Should be a branching condition.");
1532  if (isEndLoopN(opcode))
1533    return true;
1534  unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1535  Cond[0].setImm(NewOpcode);
1536  return false;
1537}
1538
1539void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1540      MachineBasicBlock::iterator MI) const {
1541  DebugLoc DL;
1542  BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1543}
1544
1545bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
1546  return getAddrMode(MI) == HexagonII::PostInc;
1547}
1548
1549// Returns true if an instruction is predicated irrespective of the predicate
1550// sense. For example, all of the following will return true.
1551// if (p0) R1 = add(R2, R3)
1552// if (!p0) R1 = add(R2, R3)
1553// if (p0.new) R1 = add(R2, R3)
1554// if (!p0.new) R1 = add(R2, R3)
1555// Note: New-value stores are not included here as in the current
1556// implementation, we don't need to check their predicate sense.
1557bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
1558  const uint64_t F = MI.getDesc().TSFlags;
1559  return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1560}
1561
1562bool HexagonInstrInfo::PredicateInstruction(
1563    MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
1564  if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1565      isEndLoopN(Cond[0].getImm())) {
1566    LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1567    return false;
1568  }
1569  int Opc = MI.getOpcode();
1570  assert (isPredicable(MI) && "Expected predicable instruction");
1571  bool invertJump = predOpcodeHasNot(Cond);
1572
1573  // We have to predicate MI "in place", i.e. after this function returns,
1574  // MI will need to be transformed into a predicated form. To avoid com-
1575  // plicated manipulations with the operands (handling tied operands,
1576  // etc.), build a new temporary instruction, then overwrite MI with it.
1577
1578  MachineBasicBlock &B = *MI.getParent();
1579  DebugLoc DL = MI.getDebugLoc();
1580  unsigned PredOpc = getCondOpcode(Opc, invertJump);
1581  MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1582  unsigned NOp = 0, NumOps = MI.getNumOperands();
1583  while (NOp < NumOps) {
1584    MachineOperand &Op = MI.getOperand(NOp);
1585    if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1586      break;
1587    T.add(Op);
1588    NOp++;
1589  }
1590
1591  unsigned PredReg, PredRegPos, PredRegFlags;
1592  bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1593  (void)GotPredReg;
1594  assert(GotPredReg);
1595  T.addReg(PredReg, PredRegFlags);
1596  while (NOp < NumOps)
1597    T.add(MI.getOperand(NOp++));
1598
1599  MI.setDesc(get(PredOpc));
1600  while (unsigned n = MI.getNumOperands())
1601    MI.RemoveOperand(n-1);
1602  for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1603    MI.addOperand(T->getOperand(i));
1604
1605  MachineBasicBlock::instr_iterator TI = T->getIterator();
1606  B.erase(TI);
1607
1608  MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1609  MRI.clearKillFlags(PredReg);
1610  return true;
1611}
1612
1613bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1614      ArrayRef<MachineOperand> Pred2) const {
1615  // TODO: Fix this
1616  return false;
1617}
1618
1619bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI,
1620      std::vector<MachineOperand> &Pred) const {
1621  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1622
1623  for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
1624    MachineOperand MO = MI.getOperand(oper);
1625    if (MO.isReg()) {
1626      if (!MO.isDef())
1627        continue;
1628      const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1629      if (RC == &Hexagon::PredRegsRegClass) {
1630        Pred.push_back(MO);
1631        return true;
1632      }
1633      continue;
1634    } else if (MO.isRegMask()) {
1635      for (unsigned PR : Hexagon::PredRegsRegClass) {
1636        if (!MI.modifiesRegister(PR, &HRI))
1637          continue;
1638        Pred.push_back(MO);
1639        return true;
1640      }
1641    }
1642  }
1643  return false;
1644}
1645
1646bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
1647  if (!MI.getDesc().isPredicable())
1648    return false;
1649
1650  if (MI.isCall() || isTailCall(MI)) {
1651    if (!Subtarget.usePredicatedCalls())
1652      return false;
1653  }
1654
1655  // HVX loads are not predicable on v60, but are on v62.
1656  if (!Subtarget.hasV62Ops()) {
1657    switch (MI.getOpcode()) {
1658      case Hexagon::V6_vL32b_ai:
1659      case Hexagon::V6_vL32b_pi:
1660      case Hexagon::V6_vL32b_ppu:
1661      case Hexagon::V6_vL32b_cur_ai:
1662      case Hexagon::V6_vL32b_cur_pi:
1663      case Hexagon::V6_vL32b_cur_ppu:
1664      case Hexagon::V6_vL32b_nt_ai:
1665      case Hexagon::V6_vL32b_nt_pi:
1666      case Hexagon::V6_vL32b_nt_ppu:
1667      case Hexagon::V6_vL32b_tmp_ai:
1668      case Hexagon::V6_vL32b_tmp_pi:
1669      case Hexagon::V6_vL32b_tmp_ppu:
1670      case Hexagon::V6_vL32b_nt_cur_ai:
1671      case Hexagon::V6_vL32b_nt_cur_pi:
1672      case Hexagon::V6_vL32b_nt_cur_ppu:
1673      case Hexagon::V6_vL32b_nt_tmp_ai:
1674      case Hexagon::V6_vL32b_nt_tmp_pi:
1675      case Hexagon::V6_vL32b_nt_tmp_ppu:
1676        return false;
1677    }
1678  }
1679  return true;
1680}
1681
1682bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1683                                            const MachineBasicBlock *MBB,
1684                                            const MachineFunction &MF) const {
1685  // Debug info is never a scheduling boundary. It's necessary to be explicit
1686  // due to the special treatment of IT instructions below, otherwise a
1687  // dbg_value followed by an IT will result in the IT instruction being
1688  // considered a scheduling hazard, which is wrong. It should be the actual
1689  // instruction preceding the dbg_value instruction(s), just like it is
1690  // when debug info is not present.
1691  if (MI.isDebugInstr())
1692    return false;
1693
1694  // Throwing call is a boundary.
1695  if (MI.isCall()) {
1696    // Don't mess around with no return calls.
1697    if (doesNotReturn(MI))
1698      return true;
1699    // If any of the block's successors is a landing pad, this could be a
1700    // throwing call.
1701    for (auto I : MBB->successors())
1702      if (I->isEHPad())
1703        return true;
1704  }
1705
1706  // Terminators and labels can't be scheduled around.
1707  if (MI.getDesc().isTerminator() || MI.isPosition())
1708    return true;
1709
1710  if (MI.isInlineAsm() && !ScheduleInlineAsm)
1711    return true;
1712
1713  return false;
1714}
1715
1716/// Measure the specified inline asm to determine an approximation of its
1717/// length.
1718/// Comments (which run till the next SeparatorString or newline) do not
1719/// count as an instruction.
1720/// Any other non-whitespace text is considered an instruction, with
1721/// multiple instructions separated by SeparatorString or newlines.
1722/// Variable-length instructions are not handled here; this function
1723/// may be overloaded in the target code to do that.
1724/// Hexagon counts the number of ##'s and adjust for that many
1725/// constant exenders.
1726unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1727                                              const MCAsmInfo &MAI,
1728                                              const TargetSubtargetInfo *STI) const {
1729  StringRef AStr(Str);
1730  // Count the number of instructions in the asm.
1731  bool atInsnStart = true;
1732  unsigned Length = 0;
1733  const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
1734  for (; *Str; ++Str) {
1735    if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1736                                strlen(MAI.getSeparatorString())) == 0)
1737      atInsnStart = true;
1738    if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1739      Length += MaxInstLength;
1740      atInsnStart = false;
1741    }
1742    if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1743                               MAI.getCommentString().size()) == 0)
1744      atInsnStart = false;
1745  }
1746
1747  // Add to size number of constant extenders seen * 4.
1748  StringRef Occ("##");
1749  Length += AStr.count(Occ)*4;
1750  return Length;
1751}
1752
1753ScheduleHazardRecognizer*
1754HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1755      const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1756  if (UseDFAHazardRec)
1757    return new HexagonHazardRecognizer(II, this, Subtarget);
1758  return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1759}
1760
1761/// For a comparison instruction, return the source registers in
1762/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1763/// compares against in CmpValue. Return true if the comparison instruction
1764/// can be analyzed.
1765bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1766                                      unsigned &SrcReg2, int &Mask,
1767                                      int &Value) const {
1768  unsigned Opc = MI.getOpcode();
1769
1770  // Set mask and the first source register.
1771  switch (Opc) {
1772    case Hexagon::C2_cmpeq:
1773    case Hexagon::C2_cmpeqp:
1774    case Hexagon::C2_cmpgt:
1775    case Hexagon::C2_cmpgtp:
1776    case Hexagon::C2_cmpgtu:
1777    case Hexagon::C2_cmpgtup:
1778    case Hexagon::C4_cmpneq:
1779    case Hexagon::C4_cmplte:
1780    case Hexagon::C4_cmplteu:
1781    case Hexagon::C2_cmpeqi:
1782    case Hexagon::C2_cmpgti:
1783    case Hexagon::C2_cmpgtui:
1784    case Hexagon::C4_cmpneqi:
1785    case Hexagon::C4_cmplteui:
1786    case Hexagon::C4_cmpltei:
1787      SrcReg = MI.getOperand(1).getReg();
1788      Mask = ~0;
1789      break;
1790    case Hexagon::A4_cmpbeq:
1791    case Hexagon::A4_cmpbgt:
1792    case Hexagon::A4_cmpbgtu:
1793    case Hexagon::A4_cmpbeqi:
1794    case Hexagon::A4_cmpbgti:
1795    case Hexagon::A4_cmpbgtui:
1796      SrcReg = MI.getOperand(1).getReg();
1797      Mask = 0xFF;
1798      break;
1799    case Hexagon::A4_cmpheq:
1800    case Hexagon::A4_cmphgt:
1801    case Hexagon::A4_cmphgtu:
1802    case Hexagon::A4_cmpheqi:
1803    case Hexagon::A4_cmphgti:
1804    case Hexagon::A4_cmphgtui:
1805      SrcReg = MI.getOperand(1).getReg();
1806      Mask = 0xFFFF;
1807      break;
1808  }
1809
1810  // Set the value/second source register.
1811  switch (Opc) {
1812    case Hexagon::C2_cmpeq:
1813    case Hexagon::C2_cmpeqp:
1814    case Hexagon::C2_cmpgt:
1815    case Hexagon::C2_cmpgtp:
1816    case Hexagon::C2_cmpgtu:
1817    case Hexagon::C2_cmpgtup:
1818    case Hexagon::A4_cmpbeq:
1819    case Hexagon::A4_cmpbgt:
1820    case Hexagon::A4_cmpbgtu:
1821    case Hexagon::A4_cmpheq:
1822    case Hexagon::A4_cmphgt:
1823    case Hexagon::A4_cmphgtu:
1824    case Hexagon::C4_cmpneq:
1825    case Hexagon::C4_cmplte:
1826    case Hexagon::C4_cmplteu:
1827      SrcReg2 = MI.getOperand(2).getReg();
1828      return true;
1829
1830    case Hexagon::C2_cmpeqi:
1831    case Hexagon::C2_cmpgtui:
1832    case Hexagon::C2_cmpgti:
1833    case Hexagon::C4_cmpneqi:
1834    case Hexagon::C4_cmplteui:
1835    case Hexagon::C4_cmpltei:
1836    case Hexagon::A4_cmpbeqi:
1837    case Hexagon::A4_cmpbgti:
1838    case Hexagon::A4_cmpbgtui:
1839    case Hexagon::A4_cmpheqi:
1840    case Hexagon::A4_cmphgti:
1841    case Hexagon::A4_cmphgtui: {
1842      SrcReg2 = 0;
1843      const MachineOperand &Op2 = MI.getOperand(2);
1844      if (!Op2.isImm())
1845        return false;
1846      Value = MI.getOperand(2).getImm();
1847      return true;
1848    }
1849  }
1850
1851  return false;
1852}
1853
1854unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1855                                           const MachineInstr &MI,
1856                                           unsigned *PredCost) const {
1857  return getInstrTimingClassLatency(ItinData, MI);
1858}
1859
1860DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1861    const TargetSubtargetInfo &STI) const {
1862  const InstrItineraryData *II = STI.getInstrItineraryData();
1863  return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1864}
1865
1866// Inspired by this pair:
1867//  %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1868//  S2_storeri_io %r29, 132, killed %r1; flags:  mem:ST4[FixedStack1]
1869// Currently AA considers the addresses in these instructions to be aliasing.
1870bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1871    const MachineInstr &MIa, const MachineInstr &MIb) const {
1872  if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1873      MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1874    return false;
1875
1876  // Instructions that are pure loads, not loads and stores like memops are not
1877  // dependent.
1878  if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1879    return true;
1880
1881  // Get the base register in MIa.
1882  unsigned BasePosA, OffsetPosA;
1883  if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
1884    return false;
1885  const MachineOperand &BaseA = MIa.getOperand(BasePosA);
1886  Register BaseRegA = BaseA.getReg();
1887  unsigned BaseSubA = BaseA.getSubReg();
1888
1889  // Get the base register in MIb.
1890  unsigned BasePosB, OffsetPosB;
1891  if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
1892    return false;
1893  const MachineOperand &BaseB = MIb.getOperand(BasePosB);
1894  Register BaseRegB = BaseB.getReg();
1895  unsigned BaseSubB = BaseB.getSubReg();
1896
1897  if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
1898    return false;
1899
1900  // Get the access sizes.
1901  unsigned SizeA = getMemAccessSize(MIa);
1902  unsigned SizeB = getMemAccessSize(MIb);
1903
1904  // Get the offsets. Handle immediates only for now.
1905  const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
1906  const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
1907  if (!MIa.getOperand(OffsetPosA).isImm() ||
1908      !MIb.getOperand(OffsetPosB).isImm())
1909    return false;
1910  int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
1911  int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
1912
1913  // This is a mem access with the same base register and known offsets from it.
1914  // Reason about it.
1915  if (OffsetA > OffsetB) {
1916    uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1917    return SizeB <= OffDiff;
1918  }
1919  if (OffsetA < OffsetB) {
1920    uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1921    return SizeA <= OffDiff;
1922  }
1923
1924  return false;
1925}
1926
1927/// If the instruction is an increment of a constant value, return the amount.
1928bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
1929      int &Value) const {
1930  if (isPostIncrement(MI)) {
1931    unsigned BasePos = 0, OffsetPos = 0;
1932    if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
1933      return false;
1934    const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
1935    if (OffsetOp.isImm()) {
1936      Value = OffsetOp.getImm();
1937      return true;
1938    }
1939  } else if (MI.getOpcode() == Hexagon::A2_addi) {
1940    const MachineOperand &AddOp = MI.getOperand(2);
1941    if (AddOp.isImm()) {
1942      Value = AddOp.getImm();
1943      return true;
1944    }
1945  }
1946
1947  return false;
1948}
1949
1950std::pair<unsigned, unsigned>
1951HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1952  return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
1953                        TF & HexagonII::MO_Bitmasks);
1954}
1955
1956ArrayRef<std::pair<unsigned, const char*>>
1957HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1958  using namespace HexagonII;
1959
1960  static const std::pair<unsigned, const char*> Flags[] = {
1961    {MO_PCREL,  "hexagon-pcrel"},
1962    {MO_GOT,    "hexagon-got"},
1963    {MO_LO16,   "hexagon-lo16"},
1964    {MO_HI16,   "hexagon-hi16"},
1965    {MO_GPREL,  "hexagon-gprel"},
1966    {MO_GDGOT,  "hexagon-gdgot"},
1967    {MO_GDPLT,  "hexagon-gdplt"},
1968    {MO_IE,     "hexagon-ie"},
1969    {MO_IEGOT,  "hexagon-iegot"},
1970    {MO_TPREL,  "hexagon-tprel"}
1971  };
1972  return makeArrayRef(Flags);
1973}
1974
1975ArrayRef<std::pair<unsigned, const char*>>
1976HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1977  using namespace HexagonII;
1978
1979  static const std::pair<unsigned, const char*> Flags[] = {
1980    {HMOTF_ConstExtended, "hexagon-ext"}
1981  };
1982  return makeArrayRef(Flags);
1983}
1984
1985unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
1986  MachineRegisterInfo &MRI = MF->getRegInfo();
1987  const TargetRegisterClass *TRC;
1988  if (VT == MVT::i1) {
1989    TRC = &Hexagon::PredRegsRegClass;
1990  } else if (VT == MVT::i32 || VT == MVT::f32) {
1991    TRC = &Hexagon::IntRegsRegClass;
1992  } else if (VT == MVT::i64 || VT == MVT::f64) {
1993    TRC = &Hexagon::DoubleRegsRegClass;
1994  } else {
1995    llvm_unreachable("Cannot handle this register class");
1996  }
1997
1998  Register NewReg = MRI.createVirtualRegister(TRC);
1999  return NewReg;
2000}
2001
2002bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
2003  return (getAddrMode(MI) == HexagonII::AbsoluteSet);
2004}
2005
2006bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
2007  const uint64_t F = MI.getDesc().TSFlags;
2008  return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
2009}
2010
2011bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const {
2012  return getAddrMode(MI) == HexagonII::BaseImmOffset;
2013}
2014
2015bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
2016  return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
2017         !MI.getDesc().mayStore() &&
2018         MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
2019         MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
2020         !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
2021}
2022
2023// Return true if the instruction is a compund branch instruction.
2024bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
2025  return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
2026}
2027
2028// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2029// isFPImm and later getFPImm as well.
2030bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
2031  const uint64_t F = MI.getDesc().TSFlags;
2032  unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
2033  if (isExtended) // Instruction must be extended.
2034    return true;
2035
2036  unsigned isExtendable =
2037    (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
2038  if (!isExtendable)
2039    return false;
2040
2041  if (MI.isCall())
2042    return false;
2043
2044  short ExtOpNum = getCExtOpNum(MI);
2045  const MachineOperand &MO = MI.getOperand(ExtOpNum);
2046  // Use MO operand flags to determine if MO
2047  // has the HMOTF_ConstExtended flag set.
2048  if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2049    return true;
2050  // If this is a Machine BB address we are talking about, and it is
2051  // not marked as extended, say so.
2052  if (MO.isMBB())
2053    return false;
2054
2055  // We could be using an instruction with an extendable immediate and shoehorn
2056  // a global address into it. If it is a global address it will be constant
2057  // extended. We do this for COMBINE.
2058  if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2059      MO.isJTI() || MO.isCPI() || MO.isFPImm())
2060    return true;
2061
2062  // If the extendable operand is not 'Immediate' type, the instruction should
2063  // have 'isExtended' flag set.
2064  assert(MO.isImm() && "Extendable operand must be Immediate type");
2065
2066  int MinValue = getMinValue(MI);
2067  int MaxValue = getMaxValue(MI);
2068  int ImmValue = MO.getImm();
2069
2070  return (ImmValue < MinValue || ImmValue > MaxValue);
2071}
2072
2073bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
2074  switch (MI.getOpcode()) {
2075  case Hexagon::L4_return:
2076  case Hexagon::L4_return_t:
2077  case Hexagon::L4_return_f:
2078  case Hexagon::L4_return_tnew_pnt:
2079  case Hexagon::L4_return_fnew_pnt:
2080  case Hexagon::L4_return_tnew_pt:
2081  case Hexagon::L4_return_fnew_pt:
2082    return true;
2083  }
2084  return false;
2085}
2086
2087// Return true when ConsMI uses a register defined by ProdMI.
2088bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
2089      const MachineInstr &ConsMI) const {
2090  if (!ProdMI.getDesc().getNumDefs())
2091    return false;
2092  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2093
2094  SmallVector<unsigned, 4> DefsA;
2095  SmallVector<unsigned, 4> DefsB;
2096  SmallVector<unsigned, 8> UsesA;
2097  SmallVector<unsigned, 8> UsesB;
2098
2099  parseOperands(ProdMI, DefsA, UsesA);
2100  parseOperands(ConsMI, DefsB, UsesB);
2101
2102  for (auto &RegA : DefsA)
2103    for (auto &RegB : UsesB) {
2104      // True data dependency.
2105      if (RegA == RegB)
2106        return true;
2107
2108      if (Register::isPhysicalRegister(RegA))
2109        for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
2110          if (RegB == *SubRegs)
2111            return true;
2112
2113      if (Register::isPhysicalRegister(RegB))
2114        for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
2115          if (RegA == *SubRegs)
2116            return true;
2117    }
2118
2119  return false;
2120}
2121
2122// Returns true if the instruction is alread a .cur.
2123bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
2124  switch (MI.getOpcode()) {
2125  case Hexagon::V6_vL32b_cur_pi:
2126  case Hexagon::V6_vL32b_cur_ai:
2127    return true;
2128  }
2129  return false;
2130}
2131
2132// Returns true, if any one of the operands is a dot new
2133// insn, whether it is predicated dot new or register dot new.
2134bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
2135  if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
2136    return true;
2137
2138  return false;
2139}
2140
2141/// Symmetrical. See if these two instructions are fit for duplex pair.
2142bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
2143      const MachineInstr &MIb) const {
2144  HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
2145  HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
2146  return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2147}
2148
2149bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const {
2150  if (MI.mayLoadOrStore() || MI.isCompare())
2151    return true;
2152
2153  // Multiply
2154  unsigned SchedClass = MI.getDesc().getSchedClass();
2155  return is_TC4x(SchedClass) || is_TC3x(SchedClass);
2156}
2157
2158bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2159  return (Opcode == Hexagon::ENDLOOP0 ||
2160          Opcode == Hexagon::ENDLOOP1);
2161}
2162
2163bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2164  switch(OpType) {
2165  case MachineOperand::MO_MachineBasicBlock:
2166  case MachineOperand::MO_GlobalAddress:
2167  case MachineOperand::MO_ExternalSymbol:
2168  case MachineOperand::MO_JumpTableIndex:
2169  case MachineOperand::MO_ConstantPoolIndex:
2170  case MachineOperand::MO_BlockAddress:
2171    return true;
2172  default:
2173    return false;
2174  }
2175}
2176
2177bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
2178  const MCInstrDesc &MID = MI.getDesc();
2179  const uint64_t F = MID.TSFlags;
2180  if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
2181    return true;
2182
2183  // TODO: This is largely obsolete now. Will need to be removed
2184  // in consecutive patches.
2185  switch (MI.getOpcode()) {
2186    // PS_fi and PS_fia remain special cases.
2187    case Hexagon::PS_fi:
2188    case Hexagon::PS_fia:
2189      return true;
2190    default:
2191      return false;
2192  }
2193  return  false;
2194}
2195
2196// This returns true in two cases:
2197// - The OP code itself indicates that this is an extended instruction.
2198// - One of MOs has been marked with HMOTF_ConstExtended flag.
2199bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
2200  // First check if this is permanently extended op code.
2201  const uint64_t F = MI.getDesc().TSFlags;
2202  if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
2203    return true;
2204  // Use MO operand flags to determine if one of MI's operands
2205  // has HMOTF_ConstExtended flag set.
2206  for (const MachineOperand &MO : MI.operands())
2207    if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2208      return true;
2209  return  false;
2210}
2211
2212bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
2213  unsigned Opcode = MI.getOpcode();
2214  const uint64_t F = get(Opcode).TSFlags;
2215  return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2216}
2217
2218// No V60 HVX VMEM with A_INDIRECT.
2219bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
2220      const MachineInstr &J) const {
2221  if (!isHVXVec(I))
2222    return false;
2223  if (!I.mayLoad() && !I.mayStore())
2224    return false;
2225  return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2226}
2227
2228bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
2229  switch (MI.getOpcode()) {
2230  case Hexagon::J2_callr:
2231  case Hexagon::J2_callrf:
2232  case Hexagon::J2_callrt:
2233  case Hexagon::PS_call_nr:
2234    return true;
2235  }
2236  return false;
2237}
2238
2239bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
2240  switch (MI.getOpcode()) {
2241  case Hexagon::L4_return:
2242  case Hexagon::L4_return_t:
2243  case Hexagon::L4_return_f:
2244  case Hexagon::L4_return_fnew_pnt:
2245  case Hexagon::L4_return_fnew_pt:
2246  case Hexagon::L4_return_tnew_pnt:
2247  case Hexagon::L4_return_tnew_pt:
2248    return true;
2249  }
2250  return false;
2251}
2252
2253bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
2254  switch (MI.getOpcode()) {
2255  case Hexagon::J2_jumpr:
2256  case Hexagon::J2_jumprt:
2257  case Hexagon::J2_jumprf:
2258  case Hexagon::J2_jumprtnewpt:
2259  case Hexagon::J2_jumprfnewpt:
2260  case Hexagon::J2_jumprtnew:
2261  case Hexagon::J2_jumprfnew:
2262    return true;
2263  }
2264  return false;
2265}
2266
2267// Return true if a given MI can accommodate given offset.
2268// Use abs estimate as oppose to the exact number.
2269// TODO: This will need to be changed to use MC level
2270// definition of instruction extendable field size.
2271bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
2272      unsigned offset) const {
2273  // This selection of jump instructions matches to that what
2274  // analyzeBranch can parse, plus NVJ.
2275  if (isNewValueJump(MI)) // r9:2
2276    return isInt<11>(offset);
2277
2278  switch (MI.getOpcode()) {
2279  // Still missing Jump to address condition on register value.
2280  default:
2281    return false;
2282  case Hexagon::J2_jump: // bits<24> dst; // r22:2
2283  case Hexagon::J2_call:
2284  case Hexagon::PS_call_nr:
2285    return isInt<24>(offset);
2286  case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2287  case Hexagon::J2_jumpf:
2288  case Hexagon::J2_jumptnew:
2289  case Hexagon::J2_jumptnewpt:
2290  case Hexagon::J2_jumpfnew:
2291  case Hexagon::J2_jumpfnewpt:
2292  case Hexagon::J2_callt:
2293  case Hexagon::J2_callf:
2294    return isInt<17>(offset);
2295  case Hexagon::J2_loop0i:
2296  case Hexagon::J2_loop0iext:
2297  case Hexagon::J2_loop0r:
2298  case Hexagon::J2_loop0rext:
2299  case Hexagon::J2_loop1i:
2300  case Hexagon::J2_loop1iext:
2301  case Hexagon::J2_loop1r:
2302  case Hexagon::J2_loop1rext:
2303    return isInt<9>(offset);
2304  // TODO: Add all the compound branches here. Can we do this in Relation model?
2305  case Hexagon::J4_cmpeqi_tp0_jump_nt:
2306  case Hexagon::J4_cmpeqi_tp1_jump_nt:
2307  case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2308  case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2309    return isInt<11>(offset);
2310  }
2311}
2312
2313bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
2314      const MachineInstr &ESMI) const {
2315  bool isLate = isLateResultInstr(LRMI);
2316  bool isEarly = isEarlySourceInstr(ESMI);
2317
2318  LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR  " : " --  "));
2319  LLVM_DEBUG(LRMI.dump());
2320  LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES  " : " --  "));
2321  LLVM_DEBUG(ESMI.dump());
2322
2323  if (isLate && isEarly) {
2324    LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2325    return true;
2326  }
2327
2328  return false;
2329}
2330
2331bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const {
2332  switch (MI.getOpcode()) {
2333  case TargetOpcode::EXTRACT_SUBREG:
2334  case TargetOpcode::INSERT_SUBREG:
2335  case TargetOpcode::SUBREG_TO_REG:
2336  case TargetOpcode::REG_SEQUENCE:
2337  case TargetOpcode::IMPLICIT_DEF:
2338  case TargetOpcode::COPY:
2339  case TargetOpcode::INLINEASM:
2340  case TargetOpcode::PHI:
2341    return false;
2342  default:
2343    break;
2344  }
2345
2346  unsigned SchedClass = MI.getDesc().getSchedClass();
2347  return !is_TC1(SchedClass);
2348}
2349
2350bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
2351  // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2352  // resource, but all operands can be received late like an ALU instruction.
2353  return getType(MI) == HexagonII::TypeCVI_VX_LATE;
2354}
2355
2356bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
2357  unsigned Opcode = MI.getOpcode();
2358  return Opcode == Hexagon::J2_loop0i    ||
2359         Opcode == Hexagon::J2_loop0r    ||
2360         Opcode == Hexagon::J2_loop0iext ||
2361         Opcode == Hexagon::J2_loop0rext ||
2362         Opcode == Hexagon::J2_loop1i    ||
2363         Opcode == Hexagon::J2_loop1r    ||
2364         Opcode == Hexagon::J2_loop1iext ||
2365         Opcode == Hexagon::J2_loop1rext;
2366}
2367
2368bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
2369  switch (MI.getOpcode()) {
2370    default: return false;
2371    case Hexagon::L4_iadd_memopw_io:
2372    case Hexagon::L4_isub_memopw_io:
2373    case Hexagon::L4_add_memopw_io:
2374    case Hexagon::L4_sub_memopw_io:
2375    case Hexagon::L4_and_memopw_io:
2376    case Hexagon::L4_or_memopw_io:
2377    case Hexagon::L4_iadd_memoph_io:
2378    case Hexagon::L4_isub_memoph_io:
2379    case Hexagon::L4_add_memoph_io:
2380    case Hexagon::L4_sub_memoph_io:
2381    case Hexagon::L4_and_memoph_io:
2382    case Hexagon::L4_or_memoph_io:
2383    case Hexagon::L4_iadd_memopb_io:
2384    case Hexagon::L4_isub_memopb_io:
2385    case Hexagon::L4_add_memopb_io:
2386    case Hexagon::L4_sub_memopb_io:
2387    case Hexagon::L4_and_memopb_io:
2388    case Hexagon::L4_or_memopb_io:
2389    case Hexagon::L4_ior_memopb_io:
2390    case Hexagon::L4_ior_memoph_io:
2391    case Hexagon::L4_ior_memopw_io:
2392    case Hexagon::L4_iand_memopb_io:
2393    case Hexagon::L4_iand_memoph_io:
2394    case Hexagon::L4_iand_memopw_io:
2395    return true;
2396  }
2397  return false;
2398}
2399
2400bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
2401  const uint64_t F = MI.getDesc().TSFlags;
2402  return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2403}
2404
2405bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2406  const uint64_t F = get(Opcode).TSFlags;
2407  return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2408}
2409
2410bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
2411  return isNewValueJump(MI) || isNewValueStore(MI);
2412}
2413
2414bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
2415  return isNewValue(MI) && MI.isBranch();
2416}
2417
2418bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2419  return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2420}
2421
2422bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
2423  const uint64_t F = MI.getDesc().TSFlags;
2424  return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2425}
2426
2427bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2428  const uint64_t F = get(Opcode).TSFlags;
2429  return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2430}
2431
2432// Returns true if a particular operand is extendable for an instruction.
2433bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
2434    unsigned OperandNum) const {
2435  const uint64_t F = MI.getDesc().TSFlags;
2436  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2437          == OperandNum;
2438}
2439
2440bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
2441  const uint64_t F = MI.getDesc().TSFlags;
2442  assert(isPredicated(MI));
2443  return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2444}
2445
2446bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2447  const uint64_t F = get(Opcode).TSFlags;
2448  assert(isPredicated(Opcode));
2449  return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2450}
2451
2452bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
2453  const uint64_t F = MI.getDesc().TSFlags;
2454  return !((F >> HexagonII::PredicatedFalsePos) &
2455           HexagonII::PredicatedFalseMask);
2456}
2457
2458bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2459  const uint64_t F = get(Opcode).TSFlags;
2460  // Make sure that the instruction is predicated.
2461  assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2462  return !((F >> HexagonII::PredicatedFalsePos) &
2463           HexagonII::PredicatedFalseMask);
2464}
2465
2466bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2467  const uint64_t F = get(Opcode).TSFlags;
2468  return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2469}
2470
2471bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2472  const uint64_t F = get(Opcode).TSFlags;
2473  return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2474}
2475
2476bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2477  const uint64_t F = get(Opcode).TSFlags;
2478  assert(get(Opcode).isBranch() &&
2479         (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2480  return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2481}
2482
2483bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
2484  return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2485         MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2486         MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2487         MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2488}
2489
2490bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
2491  switch (MI.getOpcode()) {
2492  // Byte
2493  case Hexagon::L2_loadrb_io:
2494  case Hexagon::L4_loadrb_ur:
2495  case Hexagon::L4_loadrb_ap:
2496  case Hexagon::L2_loadrb_pr:
2497  case Hexagon::L2_loadrb_pbr:
2498  case Hexagon::L2_loadrb_pi:
2499  case Hexagon::L2_loadrb_pci:
2500  case Hexagon::L2_loadrb_pcr:
2501  case Hexagon::L2_loadbsw2_io:
2502  case Hexagon::L4_loadbsw2_ur:
2503  case Hexagon::L4_loadbsw2_ap:
2504  case Hexagon::L2_loadbsw2_pr:
2505  case Hexagon::L2_loadbsw2_pbr:
2506  case Hexagon::L2_loadbsw2_pi:
2507  case Hexagon::L2_loadbsw2_pci:
2508  case Hexagon::L2_loadbsw2_pcr:
2509  case Hexagon::L2_loadbsw4_io:
2510  case Hexagon::L4_loadbsw4_ur:
2511  case Hexagon::L4_loadbsw4_ap:
2512  case Hexagon::L2_loadbsw4_pr:
2513  case Hexagon::L2_loadbsw4_pbr:
2514  case Hexagon::L2_loadbsw4_pi:
2515  case Hexagon::L2_loadbsw4_pci:
2516  case Hexagon::L2_loadbsw4_pcr:
2517  case Hexagon::L4_loadrb_rr:
2518  case Hexagon::L2_ploadrbt_io:
2519  case Hexagon::L2_ploadrbt_pi:
2520  case Hexagon::L2_ploadrbf_io:
2521  case Hexagon::L2_ploadrbf_pi:
2522  case Hexagon::L2_ploadrbtnew_io:
2523  case Hexagon::L2_ploadrbfnew_io:
2524  case Hexagon::L4_ploadrbt_rr:
2525  case Hexagon::L4_ploadrbf_rr:
2526  case Hexagon::L4_ploadrbtnew_rr:
2527  case Hexagon::L4_ploadrbfnew_rr:
2528  case Hexagon::L2_ploadrbtnew_pi:
2529  case Hexagon::L2_ploadrbfnew_pi:
2530  case Hexagon::L4_ploadrbt_abs:
2531  case Hexagon::L4_ploadrbf_abs:
2532  case Hexagon::L4_ploadrbtnew_abs:
2533  case Hexagon::L4_ploadrbfnew_abs:
2534  case Hexagon::L2_loadrbgp:
2535  // Half
2536  case Hexagon::L2_loadrh_io:
2537  case Hexagon::L4_loadrh_ur:
2538  case Hexagon::L4_loadrh_ap:
2539  case Hexagon::L2_loadrh_pr:
2540  case Hexagon::L2_loadrh_pbr:
2541  case Hexagon::L2_loadrh_pi:
2542  case Hexagon::L2_loadrh_pci:
2543  case Hexagon::L2_loadrh_pcr:
2544  case Hexagon::L4_loadrh_rr:
2545  case Hexagon::L2_ploadrht_io:
2546  case Hexagon::L2_ploadrht_pi:
2547  case Hexagon::L2_ploadrhf_io:
2548  case Hexagon::L2_ploadrhf_pi:
2549  case Hexagon::L2_ploadrhtnew_io:
2550  case Hexagon::L2_ploadrhfnew_io:
2551  case Hexagon::L4_ploadrht_rr:
2552  case Hexagon::L4_ploadrhf_rr:
2553  case Hexagon::L4_ploadrhtnew_rr:
2554  case Hexagon::L4_ploadrhfnew_rr:
2555  case Hexagon::L2_ploadrhtnew_pi:
2556  case Hexagon::L2_ploadrhfnew_pi:
2557  case Hexagon::L4_ploadrht_abs:
2558  case Hexagon::L4_ploadrhf_abs:
2559  case Hexagon::L4_ploadrhtnew_abs:
2560  case Hexagon::L4_ploadrhfnew_abs:
2561  case Hexagon::L2_loadrhgp:
2562    return true;
2563  default:
2564    return false;
2565  }
2566}
2567
2568bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
2569  const uint64_t F = MI.getDesc().TSFlags;
2570  return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2571}
2572
2573bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
2574  switch (MI.getOpcode()) {
2575  case Hexagon::STriw_pred:
2576  case Hexagon::LDriw_pred:
2577    return true;
2578  default:
2579    return false;
2580  }
2581}
2582
2583bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
2584  if (!MI.isBranch())
2585    return false;
2586
2587  for (auto &Op : MI.operands())
2588    if (Op.isGlobal() || Op.isSymbol())
2589      return true;
2590  return false;
2591}
2592
2593// Returns true when SU has a timing class TC1.
2594bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
2595  unsigned SchedClass = MI.getDesc().getSchedClass();
2596  return is_TC1(SchedClass);
2597}
2598
2599bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
2600  unsigned SchedClass = MI.getDesc().getSchedClass();
2601  return is_TC2(SchedClass);
2602}
2603
2604bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
2605  unsigned SchedClass = MI.getDesc().getSchedClass();
2606  return is_TC2early(SchedClass);
2607}
2608
2609bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
2610  unsigned SchedClass = MI.getDesc().getSchedClass();
2611  return is_TC4x(SchedClass);
2612}
2613
2614// Schedule this ASAP.
2615bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
2616      const MachineInstr &MI2) const {
2617  if (mayBeCurLoad(MI1)) {
2618    // if (result of SU is used in Next) return true;
2619    Register DstReg = MI1.getOperand(0).getReg();
2620    int N = MI2.getNumOperands();
2621    for (int I = 0; I < N; I++)
2622      if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2623        return true;
2624  }
2625  if (mayBeNewStore(MI2))
2626    if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2627      if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2628          MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2629        return true;
2630  return false;
2631}
2632
2633bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
2634  const uint64_t V = getType(MI);
2635  return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2636}
2637
2638// Check if the Offset is a valid auto-inc imm by Load/Store Type.
2639bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
2640  int Size = VT.getSizeInBits() / 8;
2641  if (Offset % Size != 0)
2642    return false;
2643  int Count = Offset / Size;
2644
2645  switch (VT.getSimpleVT().SimpleTy) {
2646    // For scalars the auto-inc is s4
2647    case MVT::i8:
2648    case MVT::i16:
2649    case MVT::i32:
2650    case MVT::i64:
2651    case MVT::f32:
2652    case MVT::f64:
2653    case MVT::v2i16:
2654    case MVT::v2i32:
2655    case MVT::v4i8:
2656    case MVT::v4i16:
2657    case MVT::v8i8:
2658      return isInt<4>(Count);
2659    // For HVX vectors the auto-inc is s3
2660    case MVT::v64i8:
2661    case MVT::v32i16:
2662    case MVT::v16i32:
2663    case MVT::v8i64:
2664    case MVT::v128i8:
2665    case MVT::v64i16:
2666    case MVT::v32i32:
2667    case MVT::v16i64:
2668      return isInt<3>(Count);
2669    default:
2670      break;
2671  }
2672
2673  llvm_unreachable("Not an valid type!");
2674}
2675
2676bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2677      const TargetRegisterInfo *TRI, bool Extend) const {
2678  // This function is to check whether the "Offset" is in the correct range of
2679  // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2680  // inserted to calculate the final address. Due to this reason, the function
2681  // assumes that the "Offset" has correct alignment.
2682  // We used to assert if the offset was not properly aligned, however,
2683  // there are cases where a misaligned pointer recast can cause this
2684  // problem, and we need to allow for it. The front end warns of such
2685  // misaligns with respect to load size.
2686  switch (Opcode) {
2687  case Hexagon::PS_vstorerq_ai:
2688  case Hexagon::PS_vstorerv_ai:
2689  case Hexagon::PS_vstorerw_ai:
2690  case Hexagon::PS_vstorerw_nt_ai:
2691  case Hexagon::PS_vloadrq_ai:
2692  case Hexagon::PS_vloadrv_ai:
2693  case Hexagon::PS_vloadrw_ai:
2694  case Hexagon::PS_vloadrw_nt_ai:
2695  case Hexagon::V6_vL32b_ai:
2696  case Hexagon::V6_vS32b_ai:
2697  case Hexagon::V6_vL32b_nt_ai:
2698  case Hexagon::V6_vS32b_nt_ai:
2699  case Hexagon::V6_vL32Ub_ai:
2700  case Hexagon::V6_vS32Ub_ai: {
2701    unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2702    assert(isPowerOf2_32(VectorSize));
2703    if (Offset & (VectorSize-1))
2704      return false;
2705    return isInt<4>(Offset >> Log2_32(VectorSize));
2706  }
2707
2708  case Hexagon::J2_loop0i:
2709  case Hexagon::J2_loop1i:
2710    return isUInt<10>(Offset);
2711
2712  case Hexagon::S4_storeirb_io:
2713  case Hexagon::S4_storeirbt_io:
2714  case Hexagon::S4_storeirbf_io:
2715    return isUInt<6>(Offset);
2716
2717  case Hexagon::S4_storeirh_io:
2718  case Hexagon::S4_storeirht_io:
2719  case Hexagon::S4_storeirhf_io:
2720    return isShiftedUInt<6,1>(Offset);
2721
2722  case Hexagon::S4_storeiri_io:
2723  case Hexagon::S4_storeirit_io:
2724  case Hexagon::S4_storeirif_io:
2725    return isShiftedUInt<6,2>(Offset);
2726  }
2727
2728  if (Extend)
2729    return true;
2730
2731  switch (Opcode) {
2732  case Hexagon::L2_loadri_io:
2733  case Hexagon::S2_storeri_io:
2734    return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2735      (Offset <= Hexagon_MEMW_OFFSET_MAX);
2736
2737  case Hexagon::L2_loadrd_io:
2738  case Hexagon::S2_storerd_io:
2739    return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2740      (Offset <= Hexagon_MEMD_OFFSET_MAX);
2741
2742  case Hexagon::L2_loadrh_io:
2743  case Hexagon::L2_loadruh_io:
2744  case Hexagon::S2_storerh_io:
2745  case Hexagon::S2_storerf_io:
2746    return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2747      (Offset <= Hexagon_MEMH_OFFSET_MAX);
2748
2749  case Hexagon::L2_loadrb_io:
2750  case Hexagon::L2_loadrub_io:
2751  case Hexagon::S2_storerb_io:
2752    return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2753      (Offset <= Hexagon_MEMB_OFFSET_MAX);
2754
2755  case Hexagon::A2_addi:
2756    return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2757      (Offset <= Hexagon_ADDI_OFFSET_MAX);
2758
2759  case Hexagon::L4_iadd_memopw_io:
2760  case Hexagon::L4_isub_memopw_io:
2761  case Hexagon::L4_add_memopw_io:
2762  case Hexagon::L4_sub_memopw_io:
2763  case Hexagon::L4_and_memopw_io:
2764  case Hexagon::L4_or_memopw_io:
2765    return (0 <= Offset && Offset <= 255);
2766
2767  case Hexagon::L4_iadd_memoph_io:
2768  case Hexagon::L4_isub_memoph_io:
2769  case Hexagon::L4_add_memoph_io:
2770  case Hexagon::L4_sub_memoph_io:
2771  case Hexagon::L4_and_memoph_io:
2772  case Hexagon::L4_or_memoph_io:
2773    return (0 <= Offset && Offset <= 127);
2774
2775  case Hexagon::L4_iadd_memopb_io:
2776  case Hexagon::L4_isub_memopb_io:
2777  case Hexagon::L4_add_memopb_io:
2778  case Hexagon::L4_sub_memopb_io:
2779  case Hexagon::L4_and_memopb_io:
2780  case Hexagon::L4_or_memopb_io:
2781    return (0 <= Offset && Offset <= 63);
2782
2783  // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2784  // any size. Later pass knows how to handle it.
2785  case Hexagon::STriw_pred:
2786  case Hexagon::LDriw_pred:
2787  case Hexagon::STriw_ctr:
2788  case Hexagon::LDriw_ctr:
2789    return true;
2790
2791  case Hexagon::PS_fi:
2792  case Hexagon::PS_fia:
2793  case Hexagon::INLINEASM:
2794    return true;
2795
2796  case Hexagon::L2_ploadrbt_io:
2797  case Hexagon::L2_ploadrbf_io:
2798  case Hexagon::L2_ploadrubt_io:
2799  case Hexagon::L2_ploadrubf_io:
2800  case Hexagon::S2_pstorerbt_io:
2801  case Hexagon::S2_pstorerbf_io:
2802    return isUInt<6>(Offset);
2803
2804  case Hexagon::L2_ploadrht_io:
2805  case Hexagon::L2_ploadrhf_io:
2806  case Hexagon::L2_ploadruht_io:
2807  case Hexagon::L2_ploadruhf_io:
2808  case Hexagon::S2_pstorerht_io:
2809  case Hexagon::S2_pstorerhf_io:
2810    return isShiftedUInt<6,1>(Offset);
2811
2812  case Hexagon::L2_ploadrit_io:
2813  case Hexagon::L2_ploadrif_io:
2814  case Hexagon::S2_pstorerit_io:
2815  case Hexagon::S2_pstorerif_io:
2816    return isShiftedUInt<6,2>(Offset);
2817
2818  case Hexagon::L2_ploadrdt_io:
2819  case Hexagon::L2_ploadrdf_io:
2820  case Hexagon::S2_pstorerdt_io:
2821  case Hexagon::S2_pstorerdf_io:
2822    return isShiftedUInt<6,3>(Offset);
2823  } // switch
2824
2825  llvm_unreachable("No offset range is defined for this opcode. "
2826                   "Please define it in the above switch statement!");
2827}
2828
2829bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
2830  return isHVXVec(MI) && isAccumulator(MI);
2831}
2832
2833bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
2834  const uint64_t F = get(MI.getOpcode()).TSFlags;
2835  const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2836  return
2837    V == HexagonII::TypeCVI_VA         ||
2838    V == HexagonII::TypeCVI_VA_DV;
2839}
2840
2841bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
2842      const MachineInstr &ConsMI) const {
2843  if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2844    return true;
2845
2846  if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2847    return true;
2848
2849  if (mayBeNewStore(ConsMI))
2850    return true;
2851
2852  return false;
2853}
2854
2855bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
2856  switch (MI.getOpcode()) {
2857  // Byte
2858  case Hexagon::L2_loadrub_io:
2859  case Hexagon::L4_loadrub_ur:
2860  case Hexagon::L4_loadrub_ap:
2861  case Hexagon::L2_loadrub_pr:
2862  case Hexagon::L2_loadrub_pbr:
2863  case Hexagon::L2_loadrub_pi:
2864  case Hexagon::L2_loadrub_pci:
2865  case Hexagon::L2_loadrub_pcr:
2866  case Hexagon::L2_loadbzw2_io:
2867  case Hexagon::L4_loadbzw2_ur:
2868  case Hexagon::L4_loadbzw2_ap:
2869  case Hexagon::L2_loadbzw2_pr:
2870  case Hexagon::L2_loadbzw2_pbr:
2871  case Hexagon::L2_loadbzw2_pi:
2872  case Hexagon::L2_loadbzw2_pci:
2873  case Hexagon::L2_loadbzw2_pcr:
2874  case Hexagon::L2_loadbzw4_io:
2875  case Hexagon::L4_loadbzw4_ur:
2876  case Hexagon::L4_loadbzw4_ap:
2877  case Hexagon::L2_loadbzw4_pr:
2878  case Hexagon::L2_loadbzw4_pbr:
2879  case Hexagon::L2_loadbzw4_pi:
2880  case Hexagon::L2_loadbzw4_pci:
2881  case Hexagon::L2_loadbzw4_pcr:
2882  case Hexagon::L4_loadrub_rr:
2883  case Hexagon::L2_ploadrubt_io:
2884  case Hexagon::L2_ploadrubt_pi:
2885  case Hexagon::L2_ploadrubf_io:
2886  case Hexagon::L2_ploadrubf_pi:
2887  case Hexagon::L2_ploadrubtnew_io:
2888  case Hexagon::L2_ploadrubfnew_io:
2889  case Hexagon::L4_ploadrubt_rr:
2890  case Hexagon::L4_ploadrubf_rr:
2891  case Hexagon::L4_ploadrubtnew_rr:
2892  case Hexagon::L4_ploadrubfnew_rr:
2893  case Hexagon::L2_ploadrubtnew_pi:
2894  case Hexagon::L2_ploadrubfnew_pi:
2895  case Hexagon::L4_ploadrubt_abs:
2896  case Hexagon::L4_ploadrubf_abs:
2897  case Hexagon::L4_ploadrubtnew_abs:
2898  case Hexagon::L4_ploadrubfnew_abs:
2899  case Hexagon::L2_loadrubgp:
2900  // Half
2901  case Hexagon::L2_loadruh_io:
2902  case Hexagon::L4_loadruh_ur:
2903  case Hexagon::L4_loadruh_ap:
2904  case Hexagon::L2_loadruh_pr:
2905  case Hexagon::L2_loadruh_pbr:
2906  case Hexagon::L2_loadruh_pi:
2907  case Hexagon::L2_loadruh_pci:
2908  case Hexagon::L2_loadruh_pcr:
2909  case Hexagon::L4_loadruh_rr:
2910  case Hexagon::L2_ploadruht_io:
2911  case Hexagon::L2_ploadruht_pi:
2912  case Hexagon::L2_ploadruhf_io:
2913  case Hexagon::L2_ploadruhf_pi:
2914  case Hexagon::L2_ploadruhtnew_io:
2915  case Hexagon::L2_ploadruhfnew_io:
2916  case Hexagon::L4_ploadruht_rr:
2917  case Hexagon::L4_ploadruhf_rr:
2918  case Hexagon::L4_ploadruhtnew_rr:
2919  case Hexagon::L4_ploadruhfnew_rr:
2920  case Hexagon::L2_ploadruhtnew_pi:
2921  case Hexagon::L2_ploadruhfnew_pi:
2922  case Hexagon::L4_ploadruht_abs:
2923  case Hexagon::L4_ploadruhf_abs:
2924  case Hexagon::L4_ploadruhtnew_abs:
2925  case Hexagon::L4_ploadruhfnew_abs:
2926  case Hexagon::L2_loadruhgp:
2927    return true;
2928  default:
2929    return false;
2930  }
2931}
2932
2933// Add latency to instruction.
2934bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
2935      const MachineInstr &MI2) const {
2936  if (isHVXVec(MI1) && isHVXVec(MI2))
2937    if (!isVecUsableNextPacket(MI1, MI2))
2938      return true;
2939  return false;
2940}
2941
2942/// Get the base register and byte offset of a load/store instr.
2943bool HexagonInstrInfo::getMemOperandWithOffset(
2944    const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
2945    const TargetRegisterInfo *TRI) const {
2946  unsigned AccessSize = 0;
2947  BaseOp = getBaseAndOffset(LdSt, Offset, AccessSize);
2948  return BaseOp != nullptr && BaseOp->isReg();
2949}
2950
2951/// Can these instructions execute at the same time in a bundle.
2952bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
2953      const MachineInstr &Second) const {
2954  if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
2955    const MachineOperand &Op = Second.getOperand(0);
2956    if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
2957      return true;
2958  }
2959  if (DisableNVSchedule)
2960    return false;
2961  if (mayBeNewStore(Second)) {
2962    // Make sure the definition of the first instruction is the value being
2963    // stored.
2964    const MachineOperand &Stored =
2965      Second.getOperand(Second.getNumOperands() - 1);
2966    if (!Stored.isReg())
2967      return false;
2968    for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
2969      const MachineOperand &Op = First.getOperand(i);
2970      if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
2971        return true;
2972    }
2973  }
2974  return false;
2975}
2976
2977bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
2978  unsigned Opc = CallMI.getOpcode();
2979  return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
2980}
2981
2982bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2983  for (auto &I : *B)
2984    if (I.isEHLabel())
2985      return true;
2986  return false;
2987}
2988
2989// Returns true if an instruction can be converted into a non-extended
2990// equivalent instruction.
2991bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
2992  short NonExtOpcode;
2993  // Check if the instruction has a register form that uses register in place
2994  // of the extended operand, if so return that as the non-extended form.
2995  if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
2996    return true;
2997
2998  if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
2999    // Check addressing mode and retrieve non-ext equivalent instruction.
3000
3001    switch (getAddrMode(MI)) {
3002    case HexagonII::Absolute:
3003      // Load/store with absolute addressing mode can be converted into
3004      // base+offset mode.
3005      NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
3006      break;
3007    case HexagonII::BaseImmOffset:
3008      // Load/store with base+offset addressing mode can be converted into
3009      // base+register offset addressing mode. However left shift operand should
3010      // be set to 0.
3011      NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
3012      break;
3013    case HexagonII::BaseLongOffset:
3014      NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
3015      break;
3016    default:
3017      return false;
3018    }
3019    if (NonExtOpcode < 0)
3020      return false;
3021    return true;
3022  }
3023  return false;
3024}
3025
3026bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
3027  return Hexagon::getRealHWInstr(MI.getOpcode(),
3028                                 Hexagon::InstrType_Pseudo) >= 0;
3029}
3030
3031bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
3032      const {
3033  MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3034  while (I != E) {
3035    if (I->isBarrier())
3036      return true;
3037    ++I;
3038  }
3039  return false;
3040}
3041
3042// Returns true, if a LD insn can be promoted to a cur load.
3043bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
3044  const uint64_t F = MI.getDesc().TSFlags;
3045  return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
3046         Subtarget.hasV60Ops();
3047}
3048
3049// Returns true, if a ST insn can be promoted to a new-value store.
3050bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
3051  if (MI.mayStore() && !Subtarget.useNewValueStores())
3052    return false;
3053
3054  const uint64_t F = MI.getDesc().TSFlags;
3055  return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
3056}
3057
3058bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
3059      const MachineInstr &ConsMI) const {
3060  // There is no stall when ProdMI is not a V60 vector.
3061  if (!isHVXVec(ProdMI))
3062    return false;
3063
3064  // There is no stall when ProdMI and ConsMI are not dependent.
3065  if (!isDependent(ProdMI, ConsMI))
3066    return false;
3067
3068  // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3069  // are scheduled in consecutive packets.
3070  if (isVecUsableNextPacket(ProdMI, ConsMI))
3071    return false;
3072
3073  return true;
3074}
3075
3076bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
3077      MachineBasicBlock::const_instr_iterator BII) const {
3078  // There is no stall when I is not a V60 vector.
3079  if (!isHVXVec(MI))
3080    return false;
3081
3082  MachineBasicBlock::const_instr_iterator MII = BII;
3083  MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3084
3085  if (!MII->isBundle())
3086    return producesStall(*MII, MI);
3087
3088  for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3089    const MachineInstr &J = *MII;
3090    if (producesStall(J, MI))
3091      return true;
3092  }
3093  return false;
3094}
3095
3096bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
3097      unsigned PredReg) const {
3098  for (const MachineOperand &MO : MI.operands()) {
3099    // Predicate register must be explicitly defined.
3100    if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3101      return false;
3102    if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3103      return false;
3104  }
3105
3106  // Instruction that produce late predicate cannot be used as sources of
3107  // dot-new.
3108  switch (MI.getOpcode()) {
3109    case Hexagon::A4_addp_c:
3110    case Hexagon::A4_subp_c:
3111    case Hexagon::A4_tlbmatch:
3112    case Hexagon::A5_ACS:
3113    case Hexagon::F2_sfinvsqrta:
3114    case Hexagon::F2_sfrecipa:
3115    case Hexagon::J2_endloop0:
3116    case Hexagon::J2_endloop01:
3117    case Hexagon::J2_ploop1si:
3118    case Hexagon::J2_ploop1sr:
3119    case Hexagon::J2_ploop2si:
3120    case Hexagon::J2_ploop2sr:
3121    case Hexagon::J2_ploop3si:
3122    case Hexagon::J2_ploop3sr:
3123    case Hexagon::S2_cabacdecbin:
3124    case Hexagon::S2_storew_locked:
3125    case Hexagon::S4_stored_locked:
3126      return false;
3127  }
3128  return true;
3129}
3130
3131bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3132  return Opcode == Hexagon::J2_jumpt      ||
3133         Opcode == Hexagon::J2_jumptpt    ||
3134         Opcode == Hexagon::J2_jumpf      ||
3135         Opcode == Hexagon::J2_jumpfpt    ||
3136         Opcode == Hexagon::J2_jumptnew   ||
3137         Opcode == Hexagon::J2_jumpfnew   ||
3138         Opcode == Hexagon::J2_jumptnewpt ||
3139         Opcode == Hexagon::J2_jumpfnewpt;
3140}
3141
3142bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
3143  if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3144    return false;
3145  return !isPredicatedTrue(Cond[0].getImm());
3146}
3147
3148unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
3149  const uint64_t F = MI.getDesc().TSFlags;
3150  return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
3151}
3152
3153// Returns the base register in a memory access (load/store). The offset is
3154// returned in Offset and the access size is returned in AccessSize.
3155// If the base operand has a subregister or the offset field does not contain
3156// an immediate value, return nullptr.
3157MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
3158                                                   int64_t &Offset,
3159                                                   unsigned &AccessSize) const {
3160  // Return if it is not a base+offset type instruction or a MemOp.
3161  if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
3162      getAddrMode(MI) != HexagonII::BaseLongOffset &&
3163      !isMemOp(MI) && !isPostIncrement(MI))
3164    return nullptr;
3165
3166  AccessSize = getMemAccessSize(MI);
3167
3168  unsigned BasePos = 0, OffsetPos = 0;
3169  if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3170    return nullptr;
3171
3172  // Post increment updates its EA after the mem access,
3173  // so we need to treat its offset as zero.
3174  if (isPostIncrement(MI)) {
3175    Offset = 0;
3176  } else {
3177    const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3178    if (!OffsetOp.isImm())
3179      return nullptr;
3180    Offset = OffsetOp.getImm();
3181  }
3182
3183  const MachineOperand &BaseOp = MI.getOperand(BasePos);
3184  if (BaseOp.getSubReg() != 0)
3185    return nullptr;
3186  return &const_cast<MachineOperand&>(BaseOp);
3187}
3188
3189/// Return the position of the base and offset operands for this instruction.
3190bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
3191      unsigned &BasePos, unsigned &OffsetPos) const {
3192  if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI))
3193    return false;
3194
3195  // Deal with memops first.
3196  if (isMemOp(MI)) {
3197    BasePos = 0;
3198    OffsetPos = 1;
3199  } else if (MI.mayStore()) {
3200    BasePos = 0;
3201    OffsetPos = 1;
3202  } else if (MI.mayLoad()) {
3203    BasePos = 1;
3204    OffsetPos = 2;
3205  } else
3206    return false;
3207
3208  if (isPredicated(MI)) {
3209    BasePos++;
3210    OffsetPos++;
3211  }
3212  if (isPostIncrement(MI)) {
3213    BasePos++;
3214    OffsetPos++;
3215  }
3216
3217  if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3218    return false;
3219
3220  return true;
3221}
3222
3223// Inserts branching instructions in reverse order of their occurrence.
3224// e.g. jump_t t1 (i1)
3225// jump t2        (i2)
3226// Jumpers = {i2, i1}
3227SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
3228      MachineBasicBlock& MBB) const {
3229  SmallVector<MachineInstr*, 2> Jumpers;
3230  // If the block has no terminators, it just falls into the block after it.
3231  MachineBasicBlock::instr_iterator I = MBB.instr_end();
3232  if (I == MBB.instr_begin())
3233    return Jumpers;
3234
3235  // A basic block may looks like this:
3236  //
3237  //  [   insn
3238  //     EH_LABEL
3239  //      insn
3240  //      insn
3241  //      insn
3242  //     EH_LABEL
3243  //      insn     ]
3244  //
3245  // It has two succs but does not have a terminator
3246  // Don't know how to handle it.
3247  do {
3248    --I;
3249    if (I->isEHLabel())
3250      return Jumpers;
3251  } while (I != MBB.instr_begin());
3252
3253  I = MBB.instr_end();
3254  --I;
3255
3256  while (I->isDebugInstr()) {
3257    if (I == MBB.instr_begin())
3258      return Jumpers;
3259    --I;
3260  }
3261  if (!isUnpredicatedTerminator(*I))
3262    return Jumpers;
3263
3264  // Get the last instruction in the block.
3265  MachineInstr *LastInst = &*I;
3266  Jumpers.push_back(LastInst);
3267  MachineInstr *SecondLastInst = nullptr;
3268  // Find one more terminator if present.
3269  do {
3270    if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3271      if (!SecondLastInst) {
3272        SecondLastInst = &*I;
3273        Jumpers.push_back(SecondLastInst);
3274      } else // This is a third branch.
3275        return Jumpers;
3276    }
3277    if (I == MBB.instr_begin())
3278      break;
3279    --I;
3280  } while (true);
3281  return Jumpers;
3282}
3283
3284// Returns Operand Index for the constant extended instruction.
3285unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
3286  const uint64_t F = MI.getDesc().TSFlags;
3287  return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
3288}
3289
3290// See if instruction could potentially be a duplex candidate.
3291// If so, return its group. Zero otherwise.
3292HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
3293      const MachineInstr &MI) const {
3294  unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3295
3296  switch (MI.getOpcode()) {
3297  default:
3298    return HexagonII::HCG_None;
3299  //
3300  // Compound pairs.
3301  // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3302  // "Rd16=#U6 ; jump #r9:2"
3303  // "Rd16=Rs16 ; jump #r9:2"
3304  //
3305  case Hexagon::C2_cmpeq:
3306  case Hexagon::C2_cmpgt:
3307  case Hexagon::C2_cmpgtu:
3308    DstReg = MI.getOperand(0).getReg();
3309    Src1Reg = MI.getOperand(1).getReg();
3310    Src2Reg = MI.getOperand(2).getReg();
3311    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3312        (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3313        isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3314      return HexagonII::HCG_A;
3315    break;
3316  case Hexagon::C2_cmpeqi:
3317  case Hexagon::C2_cmpgti:
3318  case Hexagon::C2_cmpgtui:
3319    // P0 = cmp.eq(Rs,#u2)
3320    DstReg = MI.getOperand(0).getReg();
3321    SrcReg = MI.getOperand(1).getReg();
3322    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3323        (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3324        isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3325        ((isUInt<5>(MI.getOperand(2).getImm())) ||
3326         (MI.getOperand(2).getImm() == -1)))
3327      return HexagonII::HCG_A;
3328    break;
3329  case Hexagon::A2_tfr:
3330    // Rd = Rs
3331    DstReg = MI.getOperand(0).getReg();
3332    SrcReg = MI.getOperand(1).getReg();
3333    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3334      return HexagonII::HCG_A;
3335    break;
3336  case Hexagon::A2_tfrsi:
3337    // Rd = #u6
3338    // Do not test for #u6 size since the const is getting extended
3339    // regardless and compound could be formed.
3340    DstReg = MI.getOperand(0).getReg();
3341    if (isIntRegForSubInst(DstReg))
3342      return HexagonII::HCG_A;
3343    break;
3344  case Hexagon::S2_tstbit_i:
3345    DstReg = MI.getOperand(0).getReg();
3346    Src1Reg = MI.getOperand(1).getReg();
3347    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3348        (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3349        MI.getOperand(2).isImm() &&
3350        isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3351      return HexagonII::HCG_A;
3352    break;
3353  // The fact that .new form is used pretty much guarantees
3354  // that predicate register will match. Nevertheless,
3355  // there could be some false positives without additional
3356  // checking.
3357  case Hexagon::J2_jumptnew:
3358  case Hexagon::J2_jumpfnew:
3359  case Hexagon::J2_jumptnewpt:
3360  case Hexagon::J2_jumpfnewpt:
3361    Src1Reg = MI.getOperand(0).getReg();
3362    if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3363        (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3364      return HexagonII::HCG_B;
3365    break;
3366  // Transfer and jump:
3367  // Rd=#U6 ; jump #r9:2
3368  // Rd=Rs ; jump #r9:2
3369  // Do not test for jump range here.
3370  case Hexagon::J2_jump:
3371  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3372  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3373    return HexagonII::HCG_C;
3374  }
3375
3376  return HexagonII::HCG_None;
3377}
3378
3379// Returns -1 when there is no opcode found.
3380unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
3381      const MachineInstr &GB) const {
3382  assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
3383  assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
3384  if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3385      (GB.getOpcode() != Hexagon::J2_jumptnew))
3386    return -1u;
3387  Register DestReg = GA.getOperand(0).getReg();
3388  if (!GB.readsRegister(DestReg))
3389    return -1u;
3390  if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3391    return -1u;
3392  // The value compared against must be either u5 or -1.
3393  const MachineOperand &CmpOp = GA.getOperand(2);
3394  if (!CmpOp.isImm())
3395    return -1u;
3396  int V = CmpOp.getImm();
3397  if (V == -1)
3398    return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3399                                  : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3400  if (!isUInt<5>(V))
3401    return -1u;
3402  return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3403                                : Hexagon::J4_cmpeqi_tp1_jump_nt;
3404}
3405
3406int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3407  enum Hexagon::PredSense inPredSense;
3408  inPredSense = invertPredicate ? Hexagon::PredSense_false :
3409                                  Hexagon::PredSense_true;
3410  int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3411  if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3412    return CondOpcode;
3413
3414  llvm_unreachable("Unexpected predicable instruction");
3415}
3416
3417// Return the cur value instruction for a given store.
3418int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
3419  switch (MI.getOpcode()) {
3420  default: llvm_unreachable("Unknown .cur type");
3421  case Hexagon::V6_vL32b_pi:
3422    return Hexagon::V6_vL32b_cur_pi;
3423  case Hexagon::V6_vL32b_ai:
3424    return Hexagon::V6_vL32b_cur_ai;
3425  case Hexagon::V6_vL32b_nt_pi:
3426    return Hexagon::V6_vL32b_nt_cur_pi;
3427  case Hexagon::V6_vL32b_nt_ai:
3428    return Hexagon::V6_vL32b_nt_cur_ai;
3429  }
3430  return 0;
3431}
3432
3433// Return the regular version of the .cur instruction.
3434int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
3435  switch (MI.getOpcode()) {
3436  default: llvm_unreachable("Unknown .cur type");
3437  case Hexagon::V6_vL32b_cur_pi:
3438    return Hexagon::V6_vL32b_pi;
3439  case Hexagon::V6_vL32b_cur_ai:
3440    return Hexagon::V6_vL32b_ai;
3441  case Hexagon::V6_vL32b_nt_cur_pi:
3442    return Hexagon::V6_vL32b_nt_pi;
3443  case Hexagon::V6_vL32b_nt_cur_ai:
3444    return Hexagon::V6_vL32b_nt_ai;
3445  }
3446  return 0;
3447}
3448
3449// The diagram below shows the steps involved in the conversion of a predicated
3450// store instruction to its .new predicated new-value form.
3451//
3452// Note: It doesn't include conditional new-value stores as they can't be
3453// converted to .new predicate.
3454//
3455//               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3456//                ^           ^
3457//               /             \ (not OK. it will cause new-value store to be
3458//              /               X conditional on p0.new while R2 producer is
3459//             /                 \ on p0)
3460//            /                   \.
3461//     p.new store                 p.old NV store
3462// [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
3463//            ^                  ^
3464//             \                /
3465//              \              /
3466//               \            /
3467//                 p.old store
3468//             [if (p0)memw(R0+#0)=R2]
3469//
3470// The following set of instructions further explains the scenario where
3471// conditional new-value store becomes invalid when promoted to .new predicate
3472// form.
3473//
3474// { 1) if (p0) r0 = add(r1, r2)
3475//   2) p0 = cmp.eq(r3, #0) }
3476//
3477//   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
3478// the first two instructions because in instr 1, r0 is conditional on old value
3479// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3480// is not valid for new-value stores.
3481// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3482// from the "Conditional Store" list. Because a predicated new value store
3483// would NOT be promoted to a double dot new store. See diagram below:
3484// This function returns yes for those stores that are predicated but not
3485// yet promoted to predicate dot new instructions.
3486//
3487//                          +---------------------+
3488//                    /-----| if (p0) memw(..)=r0 |---------\~
3489//                   ||     +---------------------+         ||
3490//          promote  ||       /\       /\                   ||  promote
3491//                   ||      /||\     /||\                  ||
3492//                  \||/    demote     ||                  \||/
3493//                   \/       ||       ||                   \/
3494//       +-------------------------+   ||   +-------------------------+
3495//       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
3496//       +-------------------------+   ||   +-------------------------+
3497//                        ||           ||         ||
3498//                        ||         demote      \||/
3499//                      promote        ||         \/ NOT possible
3500//                        ||           ||         /\~
3501//                       \||/          ||        /||\~
3502//                        \/           ||         ||
3503//                      +-----------------------------+
3504//                      | if (p0.new) memw(..)=r0.new |
3505//                      +-----------------------------+
3506//                           Double Dot New Store
3507//
3508// Returns the most basic instruction for the .new predicated instructions and
3509// new-value stores.
3510// For example, all of the following instructions will be converted back to the
3511// same instruction:
3512// 1) if (p0.new) memw(R0+#0) = R1.new  --->
3513// 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
3514// 3) if (p0.new) memw(R0+#0) = R1      --->
3515//
3516// To understand the translation of instruction 1 to its original form, consider
3517// a packet with 3 instructions.
3518// { p0 = cmp.eq(R0,R1)
3519//   if (p0.new) R2 = add(R3, R4)
3520//   R5 = add (R3, R1)
3521// }
3522// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3523//
3524// This instruction can be part of the previous packet only if both p0 and R2
3525// are promoted to .new values. This promotion happens in steps, first
3526// predicate register is promoted to .new and in the next iteration R2 is
3527// promoted. Therefore, in case of dependence check failure (due to R5) during
3528// next iteration, it should be converted back to its most basic form.
3529
3530// Return the new value instruction for a given store.
3531int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
3532  int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3533  if (NVOpcode >= 0) // Valid new-value store instruction.
3534    return NVOpcode;
3535
3536  switch (MI.getOpcode()) {
3537  default:
3538    report_fatal_error(std::string("Unknown .new type: ") +
3539      std::to_string(MI.getOpcode()));
3540  case Hexagon::S4_storerb_ur:
3541    return Hexagon::S4_storerbnew_ur;
3542
3543  case Hexagon::S2_storerb_pci:
3544    return Hexagon::S2_storerb_pci;
3545
3546  case Hexagon::S2_storeri_pci:
3547    return Hexagon::S2_storeri_pci;
3548
3549  case Hexagon::S2_storerh_pci:
3550    return Hexagon::S2_storerh_pci;
3551
3552  case Hexagon::S2_storerd_pci:
3553    return Hexagon::S2_storerd_pci;
3554
3555  case Hexagon::S2_storerf_pci:
3556    return Hexagon::S2_storerf_pci;
3557
3558  case Hexagon::V6_vS32b_ai:
3559    return Hexagon::V6_vS32b_new_ai;
3560
3561  case Hexagon::V6_vS32b_pi:
3562    return Hexagon::V6_vS32b_new_pi;
3563  }
3564  return 0;
3565}
3566
3567// Returns the opcode to use when converting MI, which is a conditional jump,
3568// into a conditional instruction which uses the .new value of the predicate.
3569// We also use branch probabilities to add a hint to the jump.
3570// If MBPI is null, all edges will be treated as equally likely for the
3571// purposes of establishing a predication hint.
3572int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
3573      const MachineBranchProbabilityInfo *MBPI) const {
3574  // We assume that block can have at most two successors.
3575  const MachineBasicBlock *Src = MI.getParent();
3576  const MachineOperand &BrTarget = MI.getOperand(1);
3577  bool Taken = false;
3578  const BranchProbability OneHalf(1, 2);
3579
3580  auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3581                                    const MachineBasicBlock *Dst) {
3582    if (MBPI)
3583      return MBPI->getEdgeProbability(Src, Dst);
3584    return BranchProbability(1, Src->succ_size());
3585  };
3586
3587  if (BrTarget.isMBB()) {
3588    const MachineBasicBlock *Dst = BrTarget.getMBB();
3589    Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3590  } else {
3591    // The branch target is not a basic block (most likely a function).
3592    // Since BPI only gives probabilities for targets that are basic blocks,
3593    // try to identify another target of this branch (potentially a fall-
3594    // -through) and check the probability of that target.
3595    //
3596    // The only handled branch combinations are:
3597    // - one conditional branch,
3598    // - one conditional branch followed by one unconditional branch.
3599    // Otherwise, assume not-taken.
3600    assert(MI.isConditionalBranch());
3601    const MachineBasicBlock &B = *MI.getParent();
3602    bool SawCond = false, Bad = false;
3603    for (const MachineInstr &I : B) {
3604      if (!I.isBranch())
3605        continue;
3606      if (I.isConditionalBranch()) {
3607        SawCond = true;
3608        if (&I != &MI) {
3609          Bad = true;
3610          break;
3611        }
3612      }
3613      if (I.isUnconditionalBranch() && !SawCond) {
3614        Bad = true;
3615        break;
3616      }
3617    }
3618    if (!Bad) {
3619      MachineBasicBlock::const_instr_iterator It(MI);
3620      MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3621      if (NextIt == B.instr_end()) {
3622        // If this branch is the last, look for the fall-through block.
3623        for (const MachineBasicBlock *SB : B.successors()) {
3624          if (!B.isLayoutSuccessor(SB))
3625            continue;
3626          Taken = getEdgeProbability(Src, SB) < OneHalf;
3627          break;
3628        }
3629      } else {
3630        assert(NextIt->isUnconditionalBranch());
3631        // Find the first MBB operand and assume it's the target.
3632        const MachineBasicBlock *BT = nullptr;
3633        for (const MachineOperand &Op : NextIt->operands()) {
3634          if (!Op.isMBB())
3635            continue;
3636          BT = Op.getMBB();
3637          break;
3638        }
3639        Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3640      }
3641    } // if (!Bad)
3642  }
3643
3644  // The Taken flag should be set to something reasonable by this point.
3645
3646  switch (MI.getOpcode()) {
3647  case Hexagon::J2_jumpt:
3648    return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3649  case Hexagon::J2_jumpf:
3650    return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3651
3652  default:
3653    llvm_unreachable("Unexpected jump instruction.");
3654  }
3655}
3656
3657// Return .new predicate version for an instruction.
3658int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
3659      const MachineBranchProbabilityInfo *MBPI) const {
3660  switch (MI.getOpcode()) {
3661  // Condtional Jumps
3662  case Hexagon::J2_jumpt:
3663  case Hexagon::J2_jumpf:
3664    return getDotNewPredJumpOp(MI, MBPI);
3665  }
3666
3667  int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3668  if (NewOpcode >= 0)
3669    return NewOpcode;
3670  return 0;
3671}
3672
3673int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
3674  int NewOp = MI.getOpcode();
3675  if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3676    NewOp = Hexagon::getPredOldOpcode(NewOp);
3677    // All Hexagon architectures have prediction bits on dot-new branches,
3678    // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3679    // to pick the right opcode when converting back to dot-old.
3680    if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
3681      switch (NewOp) {
3682      case Hexagon::J2_jumptpt:
3683        NewOp = Hexagon::J2_jumpt;
3684        break;
3685      case Hexagon::J2_jumpfpt:
3686        NewOp = Hexagon::J2_jumpf;
3687        break;
3688      case Hexagon::J2_jumprtpt:
3689        NewOp = Hexagon::J2_jumprt;
3690        break;
3691      case Hexagon::J2_jumprfpt:
3692        NewOp = Hexagon::J2_jumprf;
3693        break;
3694      }
3695    }
3696    assert(NewOp >= 0 &&
3697           "Couldn't change predicate new instruction to its old form.");
3698  }
3699
3700  if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3701    NewOp = Hexagon::getNonNVStore(NewOp);
3702    assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3703  }
3704
3705  if (Subtarget.hasV60Ops())
3706    return NewOp;
3707
3708  // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3709  switch (NewOp) {
3710  case Hexagon::J2_jumpfpt:
3711    return Hexagon::J2_jumpf;
3712  case Hexagon::J2_jumptpt:
3713    return Hexagon::J2_jumpt;
3714  case Hexagon::J2_jumprfpt:
3715    return Hexagon::J2_jumprf;
3716  case Hexagon::J2_jumprtpt:
3717    return Hexagon::J2_jumprt;
3718  }
3719  return NewOp;
3720}
3721
3722// See if instruction could potentially be a duplex candidate.
3723// If so, return its group. Zero otherwise.
3724HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3725      const MachineInstr &MI) const {
3726  unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3727  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3728
3729  switch (MI.getOpcode()) {
3730  default:
3731    return HexagonII::HSIG_None;
3732  //
3733  // Group L1:
3734  //
3735  // Rd = memw(Rs+#u4:2)
3736  // Rd = memub(Rs+#u4:0)
3737  case Hexagon::L2_loadri_io:
3738    DstReg = MI.getOperand(0).getReg();
3739    SrcReg = MI.getOperand(1).getReg();
3740    // Special case this one from Group L2.
3741    // Rd = memw(r29+#u5:2)
3742    if (isIntRegForSubInst(DstReg)) {
3743      if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3744          HRI.getStackRegister() == SrcReg &&
3745          MI.getOperand(2).isImm() &&
3746          isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3747        return HexagonII::HSIG_L2;
3748      // Rd = memw(Rs+#u4:2)
3749      if (isIntRegForSubInst(SrcReg) &&
3750          (MI.getOperand(2).isImm() &&
3751          isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3752        return HexagonII::HSIG_L1;
3753    }
3754    break;
3755  case Hexagon::L2_loadrub_io:
3756    // Rd = memub(Rs+#u4:0)
3757    DstReg = MI.getOperand(0).getReg();
3758    SrcReg = MI.getOperand(1).getReg();
3759    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3760        MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3761      return HexagonII::HSIG_L1;
3762    break;
3763  //
3764  // Group L2:
3765  //
3766  // Rd = memh/memuh(Rs+#u3:1)
3767  // Rd = memb(Rs+#u3:0)
3768  // Rd = memw(r29+#u5:2) - Handled above.
3769  // Rdd = memd(r29+#u5:3)
3770  // deallocframe
3771  // [if ([!]p0[.new])] dealloc_return
3772  // [if ([!]p0[.new])] jumpr r31
3773  case Hexagon::L2_loadrh_io:
3774  case Hexagon::L2_loadruh_io:
3775    // Rd = memh/memuh(Rs+#u3:1)
3776    DstReg = MI.getOperand(0).getReg();
3777    SrcReg = MI.getOperand(1).getReg();
3778    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3779        MI.getOperand(2).isImm() &&
3780        isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3781      return HexagonII::HSIG_L2;
3782    break;
3783  case Hexagon::L2_loadrb_io:
3784    // Rd = memb(Rs+#u3:0)
3785    DstReg = MI.getOperand(0).getReg();
3786    SrcReg = MI.getOperand(1).getReg();
3787    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3788        MI.getOperand(2).isImm() &&
3789        isUInt<3>(MI.getOperand(2).getImm()))
3790      return HexagonII::HSIG_L2;
3791    break;
3792  case Hexagon::L2_loadrd_io:
3793    // Rdd = memd(r29+#u5:3)
3794    DstReg = MI.getOperand(0).getReg();
3795    SrcReg = MI.getOperand(1).getReg();
3796    if (isDblRegForSubInst(DstReg, HRI) &&
3797        Hexagon::IntRegsRegClass.contains(SrcReg) &&
3798        HRI.getStackRegister() == SrcReg &&
3799        MI.getOperand(2).isImm() &&
3800        isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3801      return HexagonII::HSIG_L2;
3802    break;
3803  // dealloc_return is not documented in Hexagon Manual, but marked
3804  // with A_SUBINSN attribute in iset_v4classic.py.
3805  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3806  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3807  case Hexagon::L4_return:
3808  case Hexagon::L2_deallocframe:
3809    return HexagonII::HSIG_L2;
3810  case Hexagon::EH_RETURN_JMPR:
3811  case Hexagon::PS_jmpret:
3812  case Hexagon::SL2_jumpr31:
3813    // jumpr r31
3814    // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3815    DstReg = MI.getOperand(0).getReg();
3816    if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3817      return HexagonII::HSIG_L2;
3818    break;
3819  case Hexagon::PS_jmprett:
3820  case Hexagon::PS_jmpretf:
3821  case Hexagon::PS_jmprettnewpt:
3822  case Hexagon::PS_jmpretfnewpt:
3823  case Hexagon::PS_jmprettnew:
3824  case Hexagon::PS_jmpretfnew:
3825  case Hexagon::SL2_jumpr31_t:
3826  case Hexagon::SL2_jumpr31_f:
3827  case Hexagon::SL2_jumpr31_tnew:
3828    DstReg = MI.getOperand(1).getReg();
3829    SrcReg = MI.getOperand(0).getReg();
3830    // [if ([!]p0[.new])] jumpr r31
3831    if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3832        (Hexagon::P0 == SrcReg)) &&
3833        (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3834      return HexagonII::HSIG_L2;
3835    break;
3836  case Hexagon::L4_return_t:
3837  case Hexagon::L4_return_f:
3838  case Hexagon::L4_return_tnew_pnt:
3839  case Hexagon::L4_return_fnew_pnt:
3840  case Hexagon::L4_return_tnew_pt:
3841  case Hexagon::L4_return_fnew_pt:
3842    // [if ([!]p0[.new])] dealloc_return
3843    SrcReg = MI.getOperand(0).getReg();
3844    if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3845      return HexagonII::HSIG_L2;
3846    break;
3847  //
3848  // Group S1:
3849  //
3850  // memw(Rs+#u4:2) = Rt
3851  // memb(Rs+#u4:0) = Rt
3852  case Hexagon::S2_storeri_io:
3853    // Special case this one from Group S2.
3854    // memw(r29+#u5:2) = Rt
3855    Src1Reg = MI.getOperand(0).getReg();
3856    Src2Reg = MI.getOperand(2).getReg();
3857    if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3858        isIntRegForSubInst(Src2Reg) &&
3859        HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3860        isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
3861      return HexagonII::HSIG_S2;
3862    // memw(Rs+#u4:2) = Rt
3863    if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3864        MI.getOperand(1).isImm() &&
3865        isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
3866      return HexagonII::HSIG_S1;
3867    break;
3868  case Hexagon::S2_storerb_io:
3869    // memb(Rs+#u4:0) = Rt
3870    Src1Reg = MI.getOperand(0).getReg();
3871    Src2Reg = MI.getOperand(2).getReg();
3872    if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3873        MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
3874      return HexagonII::HSIG_S1;
3875    break;
3876  //
3877  // Group S2:
3878  //
3879  // memh(Rs+#u3:1) = Rt
3880  // memw(r29+#u5:2) = Rt
3881  // memd(r29+#s6:3) = Rtt
3882  // memw(Rs+#u4:2) = #U1
3883  // memb(Rs+#u4) = #U1
3884  // allocframe(#u5:3)
3885  case Hexagon::S2_storerh_io:
3886    // memh(Rs+#u3:1) = Rt
3887    Src1Reg = MI.getOperand(0).getReg();
3888    Src2Reg = MI.getOperand(2).getReg();
3889    if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3890        MI.getOperand(1).isImm() &&
3891        isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
3892      return HexagonII::HSIG_S1;
3893    break;
3894  case Hexagon::S2_storerd_io:
3895    // memd(r29+#s6:3) = Rtt
3896    Src1Reg = MI.getOperand(0).getReg();
3897    Src2Reg = MI.getOperand(2).getReg();
3898    if (isDblRegForSubInst(Src2Reg, HRI) &&
3899        Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3900        HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3901        isShiftedInt<6,3>(MI.getOperand(1).getImm()))
3902      return HexagonII::HSIG_S2;
3903    break;
3904  case Hexagon::S4_storeiri_io:
3905    // memw(Rs+#u4:2) = #U1
3906    Src1Reg = MI.getOperand(0).getReg();
3907    if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
3908        isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
3909        MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3910      return HexagonII::HSIG_S2;
3911    break;
3912  case Hexagon::S4_storeirb_io:
3913    // memb(Rs+#u4) = #U1
3914    Src1Reg = MI.getOperand(0).getReg();
3915    if (isIntRegForSubInst(Src1Reg) &&
3916        MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
3917        MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3918      return HexagonII::HSIG_S2;
3919    break;
3920  case Hexagon::S2_allocframe:
3921    if (MI.getOperand(2).isImm() &&
3922        isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3923      return HexagonII::HSIG_S1;
3924    break;
3925  //
3926  // Group A:
3927  //
3928  // Rx = add(Rx,#s7)
3929  // Rd = Rs
3930  // Rd = #u6
3931  // Rd = #-1
3932  // if ([!]P0[.new]) Rd = #0
3933  // Rd = add(r29,#u6:2)
3934  // Rx = add(Rx,Rs)
3935  // P0 = cmp.eq(Rs,#u2)
3936  // Rdd = combine(#0,Rs)
3937  // Rdd = combine(Rs,#0)
3938  // Rdd = combine(#u2,#U2)
3939  // Rd = add(Rs,#1)
3940  // Rd = add(Rs,#-1)
3941  // Rd = sxth/sxtb/zxtb/zxth(Rs)
3942  // Rd = and(Rs,#1)
3943  case Hexagon::A2_addi:
3944    DstReg = MI.getOperand(0).getReg();
3945    SrcReg = MI.getOperand(1).getReg();
3946    if (isIntRegForSubInst(DstReg)) {
3947      // Rd = add(r29,#u6:2)
3948      if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3949        HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
3950        isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
3951        return HexagonII::HSIG_A;
3952      // Rx = add(Rx,#s7)
3953      if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
3954          isInt<7>(MI.getOperand(2).getImm()))
3955        return HexagonII::HSIG_A;
3956      // Rd = add(Rs,#1)
3957      // Rd = add(Rs,#-1)
3958      if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3959          ((MI.getOperand(2).getImm() == 1) ||
3960          (MI.getOperand(2).getImm() == -1)))
3961        return HexagonII::HSIG_A;
3962    }
3963    break;
3964  case Hexagon::A2_add:
3965    // Rx = add(Rx,Rs)
3966    DstReg = MI.getOperand(0).getReg();
3967    Src1Reg = MI.getOperand(1).getReg();
3968    Src2Reg = MI.getOperand(2).getReg();
3969    if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3970        isIntRegForSubInst(Src2Reg))
3971      return HexagonII::HSIG_A;
3972    break;
3973  case Hexagon::A2_andir:
3974    // Same as zxtb.
3975    // Rd16=and(Rs16,#255)
3976    // Rd16=and(Rs16,#1)
3977    DstReg = MI.getOperand(0).getReg();
3978    SrcReg = MI.getOperand(1).getReg();
3979    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3980        MI.getOperand(2).isImm() &&
3981        ((MI.getOperand(2).getImm() == 1) ||
3982        (MI.getOperand(2).getImm() == 255)))
3983      return HexagonII::HSIG_A;
3984    break;
3985  case Hexagon::A2_tfr:
3986    // Rd = Rs
3987    DstReg = MI.getOperand(0).getReg();
3988    SrcReg = MI.getOperand(1).getReg();
3989    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3990      return HexagonII::HSIG_A;
3991    break;
3992  case Hexagon::A2_tfrsi:
3993    // Rd = #u6
3994    // Do not test for #u6 size since the const is getting extended
3995    // regardless and compound could be formed.
3996    // Rd = #-1
3997    DstReg = MI.getOperand(0).getReg();
3998    if (isIntRegForSubInst(DstReg))
3999      return HexagonII::HSIG_A;
4000    break;
4001  case Hexagon::C2_cmoveit:
4002  case Hexagon::C2_cmovenewit:
4003  case Hexagon::C2_cmoveif:
4004  case Hexagon::C2_cmovenewif:
4005    // if ([!]P0[.new]) Rd = #0
4006    // Actual form:
4007    // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
4008    DstReg = MI.getOperand(0).getReg();
4009    SrcReg = MI.getOperand(1).getReg();
4010    if (isIntRegForSubInst(DstReg) &&
4011        Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
4012        MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
4013      return HexagonII::HSIG_A;
4014    break;
4015  case Hexagon::C2_cmpeqi:
4016    // P0 = cmp.eq(Rs,#u2)
4017    DstReg = MI.getOperand(0).getReg();
4018    SrcReg = MI.getOperand(1).getReg();
4019    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
4020        Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
4021        MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
4022      return HexagonII::HSIG_A;
4023    break;
4024  case Hexagon::A2_combineii:
4025  case Hexagon::A4_combineii:
4026    // Rdd = combine(#u2,#U2)
4027    DstReg = MI.getOperand(0).getReg();
4028    if (isDblRegForSubInst(DstReg, HRI) &&
4029        ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
4030        (MI.getOperand(1).isGlobal() &&
4031        isUInt<2>(MI.getOperand(1).getOffset()))) &&
4032        ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
4033        (MI.getOperand(2).isGlobal() &&
4034        isUInt<2>(MI.getOperand(2).getOffset()))))
4035      return HexagonII::HSIG_A;
4036    break;
4037  case Hexagon::A4_combineri:
4038    // Rdd = combine(Rs,#0)
4039    DstReg = MI.getOperand(0).getReg();
4040    SrcReg = MI.getOperand(1).getReg();
4041    if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4042        ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
4043        (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4044      return HexagonII::HSIG_A;
4045    break;
4046  case Hexagon::A4_combineir:
4047    // Rdd = combine(#0,Rs)
4048    DstReg = MI.getOperand(0).getReg();
4049    SrcReg = MI.getOperand(2).getReg();
4050    if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4051        ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4052        (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4053      return HexagonII::HSIG_A;
4054    break;
4055  case Hexagon::A2_sxtb:
4056  case Hexagon::A2_sxth:
4057  case Hexagon::A2_zxtb:
4058  case Hexagon::A2_zxth:
4059    // Rd = sxth/sxtb/zxtb/zxth(Rs)
4060    DstReg = MI.getOperand(0).getReg();
4061    SrcReg = MI.getOperand(1).getReg();
4062    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4063      return HexagonII::HSIG_A;
4064    break;
4065  }
4066
4067  return HexagonII::HSIG_None;
4068}
4069
4070short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
4071  return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4072}
4073
4074unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4075      const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4076  // Default to one cycle for no itinerary. However, an "empty" itinerary may
4077  // still have a MinLatency property, which getStageLatency checks.
4078  if (!ItinData)
4079    return getInstrLatency(ItinData, MI);
4080
4081  if (MI.isTransient())
4082    return 0;
4083  return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4084}
4085
4086/// getOperandLatency - Compute and return the use operand latency of a given
4087/// pair of def and use.
4088/// In most cases, the static scheduling itinerary was enough to determine the
4089/// operand latency. But it may not be possible for instructions with variable
4090/// number of defs / uses.
4091///
4092/// This is a raw interface to the itinerary that may be directly overriden by
4093/// a target. Use computeOperandLatency to get the best estimate of latency.
4094int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4095                                        const MachineInstr &DefMI,
4096                                        unsigned DefIdx,
4097                                        const MachineInstr &UseMI,
4098                                        unsigned UseIdx) const {
4099  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4100
4101  // Get DefIdx and UseIdx for super registers.
4102  const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4103
4104  if (DefMO.isReg() && Register::isPhysicalRegister(DefMO.getReg())) {
4105    if (DefMO.isImplicit()) {
4106      for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
4107        int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
4108        if (Idx != -1) {
4109          DefIdx = Idx;
4110          break;
4111        }
4112      }
4113    }
4114
4115    const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4116    if (UseMO.isImplicit()) {
4117      for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
4118        int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
4119        if (Idx != -1) {
4120          UseIdx = Idx;
4121          break;
4122        }
4123      }
4124    }
4125  }
4126
4127  int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
4128                                                   UseMI, UseIdx);
4129  if (!Latency)
4130    // We should never have 0 cycle latency between two instructions unless
4131    // they can be packetized together. However, this decision can't be made
4132    // here.
4133    Latency = 1;
4134  return Latency;
4135}
4136
4137// inverts the predication logic.
4138// p -> NotP
4139// NotP -> P
4140bool HexagonInstrInfo::getInvertedPredSense(
4141      SmallVectorImpl<MachineOperand> &Cond) const {
4142  if (Cond.empty())
4143    return false;
4144  unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4145  Cond[0].setImm(Opc);
4146  return true;
4147}
4148
4149unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
4150  int InvPredOpcode;
4151  InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4152                                        : Hexagon::getTruePredOpcode(Opc);
4153  if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4154    return InvPredOpcode;
4155
4156  llvm_unreachable("Unexpected predicated instruction");
4157}
4158
4159// Returns the max value that doesn't need to be extended.
4160int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
4161  const uint64_t F = MI.getDesc().TSFlags;
4162  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4163                    & HexagonII::ExtentSignedMask;
4164  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4165                    & HexagonII::ExtentBitsMask;
4166
4167  if (isSigned) // if value is signed
4168    return ~(-1U << (bits - 1));
4169  else
4170    return ~(-1U << bits);
4171}
4172
4173
4174bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const {
4175  switch (MI.getOpcode()) {
4176  case Hexagon::L2_loadrbgp:
4177  case Hexagon::L2_loadrdgp:
4178  case Hexagon::L2_loadrhgp:
4179  case Hexagon::L2_loadrigp:
4180  case Hexagon::L2_loadrubgp:
4181  case Hexagon::L2_loadruhgp:
4182  case Hexagon::S2_storerbgp:
4183  case Hexagon::S2_storerbnewgp:
4184  case Hexagon::S2_storerhgp:
4185  case Hexagon::S2_storerhnewgp:
4186  case Hexagon::S2_storerigp:
4187  case Hexagon::S2_storerinewgp:
4188  case Hexagon::S2_storerdgp:
4189  case Hexagon::S2_storerfgp:
4190    return true;
4191  }
4192  const uint64_t F = MI.getDesc().TSFlags;
4193  unsigned addrMode =
4194    ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
4195  // Disallow any base+offset instruction. The assembler does not yet reorder
4196  // based up any zero offset instruction.
4197  return (addrMode == HexagonII::BaseRegOffset ||
4198          addrMode == HexagonII::BaseImmOffset ||
4199          addrMode == HexagonII::BaseLongOffset);
4200}
4201
4202unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
4203  using namespace HexagonII;
4204
4205  const uint64_t F = MI.getDesc().TSFlags;
4206  unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4207  unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4208  if (Size != 0)
4209    return Size;
4210
4211  // Handle vector access sizes.
4212  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4213  switch (S) {
4214    case HexagonII::HVXVectorAccess:
4215      return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4216    default:
4217      llvm_unreachable("Unexpected instruction");
4218  }
4219}
4220
4221// Returns the min value that doesn't need to be extended.
4222int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
4223  const uint64_t F = MI.getDesc().TSFlags;
4224  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4225                    & HexagonII::ExtentSignedMask;
4226  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4227                    & HexagonII::ExtentBitsMask;
4228
4229  if (isSigned) // if value is signed
4230    return -1U << (bits - 1);
4231  else
4232    return 0;
4233}
4234
4235// Returns opcode of the non-extended equivalent instruction.
4236short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
4237  // Check if the instruction has a register form that uses register in place
4238  // of the extended operand, if so return that as the non-extended form.
4239  short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4240    if (NonExtOpcode >= 0)
4241      return NonExtOpcode;
4242
4243  if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4244    // Check addressing mode and retrieve non-ext equivalent instruction.
4245    switch (getAddrMode(MI)) {
4246    case HexagonII::Absolute:
4247      return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4248    case HexagonII::BaseImmOffset:
4249      return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4250    case HexagonII::BaseLongOffset:
4251      return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4252
4253    default:
4254      return -1;
4255    }
4256  }
4257  return -1;
4258}
4259
4260bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
4261      unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4262  if (Cond.empty())
4263    return false;
4264  assert(Cond.size() == 2);
4265  if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4266    LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4267    return false;
4268  }
4269  PredReg = Cond[1].getReg();
4270  PredRegPos = 1;
4271  // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4272  PredRegFlags = 0;
4273  if (Cond[1].isImplicit())
4274    PredRegFlags = RegState::Implicit;
4275  if (Cond[1].isUndef())
4276    PredRegFlags |= RegState::Undef;
4277  return true;
4278}
4279
4280short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
4281  return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4282}
4283
4284short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
4285  return Hexagon::getRegForm(MI.getOpcode());
4286}
4287
4288// Return the number of bytes required to encode the instruction.
4289// Hexagon instructions are fixed length, 4 bytes, unless they
4290// use a constant extender, which requires another 4 bytes.
4291// For debug instructions and prolog labels, return 0.
4292unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
4293  if (MI.isDebugInstr() || MI.isPosition())
4294    return 0;
4295
4296  unsigned Size = MI.getDesc().getSize();
4297  if (!Size)
4298    // Assume the default insn size in case it cannot be determined
4299    // for whatever reason.
4300    Size = HEXAGON_INSTR_SIZE;
4301
4302  if (isConstExtended(MI) || isExtended(MI))
4303    Size += HEXAGON_INSTR_SIZE;
4304
4305  // Try and compute number of instructions in asm.
4306  if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4307    const MachineBasicBlock &MBB = *MI.getParent();
4308    const MachineFunction *MF = MBB.getParent();
4309    const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4310
4311    // Count the number of register definitions to find the asm string.
4312    unsigned NumDefs = 0;
4313    for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4314         ++NumDefs)
4315      assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4316
4317    assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4318    // Disassemble the AsmStr and approximate number of instructions.
4319    const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4320    Size = getInlineAsmLength(AsmStr, *MAI);
4321  }
4322
4323  return Size;
4324}
4325
4326uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
4327  const uint64_t F = MI.getDesc().TSFlags;
4328  return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
4329}
4330
4331unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
4332  const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4333  const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4334
4335  return IS.getUnits();
4336}
4337
4338// Calculate size of the basic block without debug instructions.
4339unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
4340  return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4341}
4342
4343unsigned HexagonInstrInfo::nonDbgBundleSize(
4344      MachineBasicBlock::const_iterator BundleHead) const {
4345  assert(BundleHead->isBundle() && "Not a bundle header");
4346  auto MII = BundleHead.getInstrIterator();
4347  // Skip the bundle header.
4348  return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4349}
4350
4351/// immediateExtend - Changes the instruction in place to one using an immediate
4352/// extender.
4353void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
4354  assert((isExtendable(MI)||isConstExtended(MI)) &&
4355                               "Instruction must be extendable");
4356  // Find which operand is extendable.
4357  short ExtOpNum = getCExtOpNum(MI);
4358  MachineOperand &MO = MI.getOperand(ExtOpNum);
4359  // This needs to be something we understand.
4360  assert((MO.isMBB() || MO.isImm()) &&
4361         "Branch with unknown extendable field type");
4362  // Mark given operand as extended.
4363  MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
4364}
4365
4366bool HexagonInstrInfo::invertAndChangeJumpTarget(
4367      MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4368  LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4369                    << printMBBReference(*NewTarget);
4370             MI.dump(););
4371  assert(MI.isBranch());
4372  unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4373  int TargetPos = MI.getNumOperands() - 1;
4374  // In general branch target is the last operand,
4375  // but some implicit defs added at the end might change it.
4376  while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4377    --TargetPos;
4378  assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4379  MI.getOperand(TargetPos).setMBB(NewTarget);
4380  if (EnableBranchPrediction && isPredicatedNew(MI)) {
4381    NewOpcode = reversePrediction(NewOpcode);
4382  }
4383  MI.setDesc(get(NewOpcode));
4384  return true;
4385}
4386
4387void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
4388  /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4389  MachineFunction::iterator A = MF.begin();
4390  MachineBasicBlock &B = *A;
4391  MachineBasicBlock::iterator I = B.begin();
4392  DebugLoc DL = I->getDebugLoc();
4393  MachineInstr *NewMI;
4394
4395  for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4396       insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4397    NewMI = BuildMI(B, I, DL, get(insn));
4398    LLVM_DEBUG(dbgs() << "\n"
4399                      << getName(NewMI->getOpcode())
4400                      << "  Class: " << NewMI->getDesc().getSchedClass());
4401    NewMI->eraseFromParent();
4402  }
4403  /* --- The code above is used to generate complete set of Hexagon Insn --- */
4404}
4405
4406// inverts the predication logic.
4407// p -> NotP
4408// NotP -> P
4409bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
4410  LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4411  MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4412  return true;
4413}
4414
4415// Reverse the branch prediction.
4416unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4417  int PredRevOpcode = -1;
4418  if (isPredictedTaken(Opcode))
4419    PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4420  else
4421    PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4422  assert(PredRevOpcode > 0);
4423  return PredRevOpcode;
4424}
4425
4426// TODO: Add more rigorous validation.
4427bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
4428      const {
4429  return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4430}
4431
4432void HexagonInstrInfo::
4433setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const {
4434  assert(MIB->isBundle());
4435  MachineOperand &Operand = MIB->getOperand(0);
4436  if (Operand.isImm())
4437    Operand.setImm(Operand.getImm() | memShufDisabledMask);
4438  else
4439    MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4440}
4441
4442bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const {
4443  assert(MIB.isBundle());
4444  const MachineOperand &Operand = MIB.getOperand(0);
4445  return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4446}
4447
4448// Addressing mode relations.
4449short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
4450  return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4451}
4452
4453short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
4454  return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4455}
4456
4457short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const {
4458  return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4459}
4460
4461short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
4462  return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4463}
4464
4465short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const {
4466  return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4467}
4468
4469short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
4470  return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4471}
4472
4473short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
4474  return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4475}
4476
4477short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
4478  return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
4479}
4480