HexagonISelDAGToDAGHVX.cpp revision 355940
11556Srgrimes//===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
250471Speter//
31556Srgrimes// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4262951Sjmmv// See https://llvm.org/LICENSE.txt for license information.
5262951Sjmmv// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
61556Srgrimes//
71556Srgrimes//===----------------------------------------------------------------------===//
8262951Sjmmv
9262951Sjmmv#include "Hexagon.h"
10262951Sjmmv#include "HexagonISelDAGToDAG.h"
11262951Sjmmv#include "HexagonISelLowering.h"
121556Srgrimes#include "HexagonTargetMachine.h"
13#include "llvm/ADT/SetVector.h"
14#include "llvm/CodeGen/MachineInstrBuilder.h"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/IR/Intrinsics.h"
17#include "llvm/Support/CommandLine.h"
18#include "llvm/Support/Debug.h"
19
20#include <deque>
21#include <map>
22#include <set>
23#include <utility>
24#include <vector>
25
26#define DEBUG_TYPE "hexagon-isel"
27
28using namespace llvm;
29
30namespace {
31
32// --------------------------------------------------------------------
33// Implementation of permutation networks.
34
35// Implementation of the node routing through butterfly networks:
36// - Forward delta.
37// - Reverse delta.
38// - Benes.
39//
40//
41// Forward delta network consists of log(N) steps, where N is the number
42// of inputs. In each step, an input can stay in place, or it can get
43// routed to another position[1]. The step after that consists of two
44// networks, each half in size in terms of the number of nodes. In those
45// terms, in the given step, an input can go to either the upper or the
46// lower network in the next step.
47//
48// [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
49// positions as long as there is no conflict.
50
51// Here's a delta network for 8 inputs, only the switching routes are
52// shown:
53//
54//         Steps:
55//         |- 1 ---------------|- 2 -----|- 3 -|
56//
57// Inp[0] ***                 ***       ***   *** Out[0]
58//           \               /   \     /   \ /
59//            \             /     \   /     X
60//             \           /       \ /     / \
61// Inp[1] ***   \         /   ***   X   ***   *** Out[1]
62//           \   \       /   /   \ / \ /
63//            \   \     /   /     X   X
64//             \   \   /   /     / \ / \
65// Inp[2] ***   \   \ /   /   ***   X   ***   *** Out[2]
66//           \   \   X   /   /     / \     \ /
67//            \   \ / \ /   /     /   \     X
68//             \   X   X   /     /     \   / \
69// Inp[3] ***   \ / \ / \ /   ***       ***   *** Out[3]
70//           \   X   X   X   /
71//            \ / \ / \ / \ /
72//             X   X   X   X
73//            / \ / \ / \ / \
74//           /   X   X   X   \
75// Inp[4] ***   / \ / \ / \   ***       ***   *** Out[4]
76//             /   X   X   \     \     /   \ /
77//            /   / \ / \   \     \   /     X
78//           /   /   X   \   \     \ /     / \
79// Inp[5] ***   /   / \   \   ***   X   ***   *** Out[5]
80//             /   /   \   \     \ / \ /
81//            /   /     \   \     X   X
82//           /   /       \   \   / \ / \
83// Inp[6] ***   /         \   ***   X   ***   *** Out[6]
84//             /           \       / \     \ /
85//            /             \     /   \     X
86//           /               \   /     \   / \
87// Inp[7] ***                 ***       ***   *** Out[7]
88//
89//
90// Reverse delta network is same as delta network, with the steps in
91// the opposite order.
92//
93//
94// Benes network is a forward delta network immediately followed by
95// a reverse delta network.
96
97enum class ColorKind { None, Red, Black };
98
99// Graph coloring utility used to partition nodes into two groups:
100// they will correspond to nodes routed to the upper and lower networks.
101struct Coloring {
102  using Node = int;
103  using MapType = std::map<Node, ColorKind>;
104  static constexpr Node Ignore = Node(-1);
105
106  Coloring(ArrayRef<Node> Ord) : Order(Ord) {
107    build();
108    if (!color())
109      Colors.clear();
110  }
111
112  const MapType &colors() const {
113    return Colors;
114  }
115
116  ColorKind other(ColorKind Color) {
117    if (Color == ColorKind::None)
118      return ColorKind::Red;
119    return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red;
120  }
121
122  LLVM_DUMP_METHOD void dump() const;
123
124private:
125  ArrayRef<Node> Order;
126  MapType Colors;
127  std::set<Node> Needed;
128
129  using NodeSet = std::set<Node>;
130  std::map<Node,NodeSet> Edges;
131
132  Node conj(Node Pos) {
133    Node Num = Order.size();
134    return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2;
135  }
136
137  ColorKind getColor(Node N) {
138    auto F = Colors.find(N);
139    return F != Colors.end() ? F->second : ColorKind::None;
140  }
141
142  std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes);
143
144  void build();
145  bool color();
146};
147} // namespace
148
149std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) {
150  auto Color = ColorKind::None;
151  for (Node N : Nodes) {
152    ColorKind ColorN = getColor(N);
153    if (ColorN == ColorKind::None)
154      continue;
155    if (Color == ColorKind::None)
156      Color = ColorN;
157    else if (Color != ColorKind::None && Color != ColorN)
158      return { false, ColorKind::None };
159  }
160  return { true, Color };
161}
162
163void Coloring::build() {
164  // Add Order[P] and Order[conj(P)] to Edges.
165  for (unsigned P = 0; P != Order.size(); ++P) {
166    Node I = Order[P];
167    if (I != Ignore) {
168      Needed.insert(I);
169      Node PC = Order[conj(P)];
170      if (PC != Ignore && PC != I)
171        Edges[I].insert(PC);
172    }
173  }
174  // Add I and conj(I) to Edges.
175  for (unsigned I = 0; I != Order.size(); ++I) {
176    if (!Needed.count(I))
177      continue;
178    Node C = conj(I);
179    // This will create an entry in the edge table, even if I is not
180    // connected to any other node. This is necessary, because it still
181    // needs to be colored.
182    NodeSet &Is = Edges[I];
183    if (Needed.count(C))
184      Is.insert(C);
185  }
186}
187
188bool Coloring::color() {
189  SetVector<Node> FirstQ;
190  auto Enqueue = [this,&FirstQ] (Node N) {
191    SetVector<Node> Q;
192    Q.insert(N);
193    for (unsigned I = 0; I != Q.size(); ++I) {
194      NodeSet &Ns = Edges[Q[I]];
195      Q.insert(Ns.begin(), Ns.end());
196    }
197    FirstQ.insert(Q.begin(), Q.end());
198  };
199  for (Node N : Needed)
200    Enqueue(N);
201
202  for (Node N : FirstQ) {
203    if (Colors.count(N))
204      continue;
205    NodeSet &Ns = Edges[N];
206    auto P = getUniqueColor(Ns);
207    if (!P.first)
208      return false;
209    Colors[N] = other(P.second);
210  }
211
212  // First, color nodes that don't have any dups.
213  for (auto E : Edges) {
214    Node N = E.first;
215    if (!Needed.count(conj(N)) || Colors.count(N))
216      continue;
217    auto P = getUniqueColor(E.second);
218    if (!P.first)
219      return false;
220    Colors[N] = other(P.second);
221  }
222
223  // Now, nodes that are still uncolored. Since the graph can be modified
224  // in this step, create a work queue.
225  std::vector<Node> WorkQ;
226  for (auto E : Edges) {
227    Node N = E.first;
228    if (!Colors.count(N))
229      WorkQ.push_back(N);
230  }
231
232  for (unsigned I = 0; I < WorkQ.size(); ++I) {
233    Node N = WorkQ[I];
234    NodeSet &Ns = Edges[N];
235    auto P = getUniqueColor(Ns);
236    if (P.first) {
237      Colors[N] = other(P.second);
238      continue;
239    }
240
241    // Coloring failed. Split this node.
242    Node C = conj(N);
243    ColorKind ColorN = other(ColorKind::None);
244    ColorKind ColorC = other(ColorN);
245    NodeSet &Cs = Edges[C];
246    NodeSet CopyNs = Ns;
247    for (Node M : CopyNs) {
248      ColorKind ColorM = getColor(M);
249      if (ColorM == ColorC) {
250        // Connect M with C, disconnect M from N.
251        Cs.insert(M);
252        Edges[M].insert(C);
253        Ns.erase(M);
254        Edges[M].erase(N);
255      }
256    }
257    Colors[N] = ColorN;
258    Colors[C] = ColorC;
259  }
260
261  // Explicitly assign "None" to all uncolored nodes.
262  for (unsigned I = 0; I != Order.size(); ++I)
263    if (Colors.count(I) == 0)
264      Colors[I] = ColorKind::None;
265
266  return true;
267}
268
269#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
270void Coloring::dump() const {
271  dbgs() << "{ Order:   {";
272  for (unsigned I = 0; I != Order.size(); ++I) {
273    Node P = Order[I];
274    if (P != Ignore)
275      dbgs() << ' ' << P;
276    else
277      dbgs() << " -";
278  }
279  dbgs() << " }\n";
280  dbgs() << "  Needed: {";
281  for (Node N : Needed)
282    dbgs() << ' ' << N;
283  dbgs() << " }\n";
284
285  dbgs() << "  Edges: {\n";
286  for (auto E : Edges) {
287    dbgs() << "    " << E.first << " -> {";
288    for (auto N : E.second)
289      dbgs() << ' ' << N;
290    dbgs() << " }\n";
291  }
292  dbgs() << "  }\n";
293
294  auto ColorKindToName = [](ColorKind C) {
295    switch (C) {
296    case ColorKind::None:
297      return "None";
298    case ColorKind::Red:
299      return "Red";
300    case ColorKind::Black:
301      return "Black";
302    }
303    llvm_unreachable("all ColorKinds should be handled by the switch above");
304  };
305
306  dbgs() << "  Colors: {\n";
307  for (auto C : Colors)
308    dbgs() << "    " << C.first << " -> " << ColorKindToName(C.second) << "\n";
309  dbgs() << "  }\n}\n";
310}
311#endif
312
313namespace {
314// Base class of for reordering networks. They don't strictly need to be
315// permutations, as outputs with repeated occurrences of an input element
316// are allowed.
317struct PermNetwork {
318  using Controls = std::vector<uint8_t>;
319  using ElemType = int;
320  static constexpr ElemType Ignore = ElemType(-1);
321
322  enum : uint8_t {
323    None,
324    Pass,
325    Switch
326  };
327  enum : uint8_t {
328    Forward,
329    Reverse
330  };
331
332  PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) {
333    Order.assign(Ord.data(), Ord.data()+Ord.size());
334    Log = 0;
335
336    unsigned S = Order.size();
337    while (S >>= 1)
338      ++Log;
339
340    Table.resize(Order.size());
341    for (RowType &Row : Table)
342      Row.resize(Mult*Log, None);
343  }
344
345  void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const {
346    unsigned Size = Order.size();
347    V.resize(Size);
348    for (unsigned I = 0; I != Size; ++I) {
349      unsigned W = 0;
350      for (unsigned L = 0; L != Log; ++L) {
351        unsigned C = ctl(I, StartAt+L) == Switch;
352        if (Dir == Forward)
353          W |= C << (Log-1-L);
354        else
355          W |= C << L;
356      }
357      assert(isUInt<8>(W));
358      V[I] = uint8_t(W);
359    }
360  }
361
362  uint8_t ctl(ElemType Pos, unsigned Step) const {
363    return Table[Pos][Step];
364  }
365  unsigned size() const {
366    return Order.size();
367  }
368  unsigned steps() const {
369    return Log;
370  }
371
372protected:
373  unsigned Log;
374  std::vector<ElemType> Order;
375  using RowType = std::vector<uint8_t>;
376  std::vector<RowType> Table;
377};
378
379struct ForwardDeltaNetwork : public PermNetwork {
380  ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
381
382  bool run(Controls &V) {
383    if (!route(Order.data(), Table.data(), size(), 0))
384      return false;
385    getControls(V, 0, Forward);
386    return true;
387  }
388
389private:
390  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
391};
392
393struct ReverseDeltaNetwork : public PermNetwork {
394  ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
395
396  bool run(Controls &V) {
397    if (!route(Order.data(), Table.data(), size(), 0))
398      return false;
399    getControls(V, 0, Reverse);
400    return true;
401  }
402
403private:
404  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
405};
406
407struct BenesNetwork : public PermNetwork {
408  BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {}
409
410  bool run(Controls &F, Controls &R) {
411    if (!route(Order.data(), Table.data(), size(), 0))
412      return false;
413
414    getControls(F, 0, Forward);
415    getControls(R, Log, Reverse);
416    return true;
417  }
418
419private:
420  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
421};
422} // namespace
423
424bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
425                                unsigned Step) {
426  bool UseUp = false, UseDown = false;
427  ElemType Num = Size;
428
429  // Cannot use coloring here, because coloring is used to determine
430  // the "big" switch, i.e. the one that changes halves, and in a forward
431  // network, a color can be simultaneously routed to both halves in the
432  // step we're working on.
433  for (ElemType J = 0; J != Num; ++J) {
434    ElemType I = P[J];
435    // I is the position in the input,
436    // J is the position in the output.
437    if (I == Ignore)
438      continue;
439    uint8_t S;
440    if (I < Num/2)
441      S = (J < Num/2) ? Pass : Switch;
442    else
443      S = (J < Num/2) ? Switch : Pass;
444
445    // U is the element in the table that needs to be updated.
446    ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2);
447    if (U < Num/2)
448      UseUp = true;
449    else
450      UseDown = true;
451    if (T[U][Step] != S && T[U][Step] != None)
452      return false;
453    T[U][Step] = S;
454  }
455
456  for (ElemType J = 0; J != Num; ++J)
457    if (P[J] != Ignore && P[J] >= Num/2)
458      P[J] -= Num/2;
459
460  if (Step+1 < Log) {
461    if (UseUp   && !route(P,        T,        Size/2, Step+1))
462      return false;
463    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
464      return false;
465  }
466  return true;
467}
468
469bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
470                                unsigned Step) {
471  unsigned Pets = Log-1 - Step;
472  bool UseUp = false, UseDown = false;
473  ElemType Num = Size;
474
475  // In this step half-switching occurs, so coloring can be used.
476  Coloring G({P,Size});
477  const Coloring::MapType &M = G.colors();
478  if (M.empty())
479    return false;
480
481  ColorKind ColorUp = ColorKind::None;
482  for (ElemType J = 0; J != Num; ++J) {
483    ElemType I = P[J];
484    // I is the position in the input,
485    // J is the position in the output.
486    if (I == Ignore)
487      continue;
488    ColorKind C = M.at(I);
489    if (C == ColorKind::None)
490      continue;
491    // During "Step", inputs cannot switch halves, so if the "up" color
492    // is still unknown, make sure that it is selected in such a way that
493    // "I" will stay in the same half.
494    bool InpUp = I < Num/2;
495    if (ColorUp == ColorKind::None)
496      ColorUp = InpUp ? C : G.other(C);
497    if ((C == ColorUp) != InpUp) {
498      // If I should go to a different half than where is it now, give up.
499      return false;
500    }
501
502    uint8_t S;
503    if (InpUp) {
504      S = (J < Num/2) ? Pass : Switch;
505      UseUp = true;
506    } else {
507      S = (J < Num/2) ? Switch : Pass;
508      UseDown = true;
509    }
510    T[J][Pets] = S;
511  }
512
513  // Reorder the working permutation according to the computed switch table
514  // for the last step (i.e. Pets).
515  for (ElemType J = 0, E = Size / 2; J != E; ++J) {
516    ElemType PJ = P[J];         // Current values of P[J]
517    ElemType PC = P[J+Size/2];  // and P[conj(J)]
518    ElemType QJ = PJ;           // New values of P[J]
519    ElemType QC = PC;           // and P[conj(J)]
520    if (T[J][Pets] == Switch)
521      QC = PJ;
522    if (T[J+Size/2][Pets] == Switch)
523      QJ = PC;
524    P[J] = QJ;
525    P[J+Size/2] = QC;
526  }
527
528  for (ElemType J = 0; J != Num; ++J)
529    if (P[J] != Ignore && P[J] >= Num/2)
530      P[J] -= Num/2;
531
532  if (Step+1 < Log) {
533    if (UseUp && !route(P, T, Size/2, Step+1))
534      return false;
535    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
536      return false;
537  }
538  return true;
539}
540
541bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size,
542                         unsigned Step) {
543  Coloring G({P,Size});
544  const Coloring::MapType &M = G.colors();
545  if (M.empty())
546    return false;
547  ElemType Num = Size;
548
549  unsigned Pets = 2*Log-1 - Step;
550  bool UseUp = false, UseDown = false;
551
552  // Both assignments, i.e. Red->Up and Red->Down are valid, but they will
553  // result in different controls. Let's pick the one where the first
554  // control will be "Pass".
555  ColorKind ColorUp = ColorKind::None;
556  for (ElemType J = 0; J != Num; ++J) {
557    ElemType I = P[J];
558    if (I == Ignore)
559      continue;
560    ColorKind C = M.at(I);
561    if (C == ColorKind::None)
562      continue;
563    if (ColorUp == ColorKind::None) {
564      ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black;
565    }
566    unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2;
567    if (C == ColorUp) {
568      if (I < Num/2)
569        T[I][Step] = Pass;
570      else
571        T[CI][Step] = Switch;
572      T[J][Pets] = (J < Num/2) ? Pass : Switch;
573      UseUp = true;
574    } else { // Down
575      if (I < Num/2)
576        T[CI][Step] = Switch;
577      else
578        T[I][Step] = Pass;
579      T[J][Pets] = (J < Num/2) ? Switch : Pass;
580      UseDown = true;
581    }
582  }
583
584  // Reorder the working permutation according to the computed switch table
585  // for the last step (i.e. Pets).
586  for (ElemType J = 0; J != Num/2; ++J) {
587    ElemType PJ = P[J];         // Current values of P[J]
588    ElemType PC = P[J+Num/2];   // and P[conj(J)]
589    ElemType QJ = PJ;           // New values of P[J]
590    ElemType QC = PC;           // and P[conj(J)]
591    if (T[J][Pets] == Switch)
592      QC = PJ;
593    if (T[J+Num/2][Pets] == Switch)
594      QJ = PC;
595    P[J] = QJ;
596    P[J+Num/2] = QC;
597  }
598
599  for (ElemType J = 0; J != Num; ++J)
600    if (P[J] != Ignore && P[J] >= Num/2)
601      P[J] -= Num/2;
602
603  if (Step+1 < Log) {
604    if (UseUp && !route(P, T, Size/2, Step+1))
605      return false;
606    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
607      return false;
608  }
609  return true;
610}
611
612// --------------------------------------------------------------------
613// Support for building selection results (output instructions that are
614// parts of the final selection).
615
616namespace {
617struct OpRef {
618  OpRef(SDValue V) : OpV(V) {}
619  bool isValue() const { return OpV.getNode() != nullptr; }
620  bool isValid() const { return isValue() || !(OpN & Invalid); }
621  static OpRef res(int N) { return OpRef(Whole | (N & Index)); }
622  static OpRef fail() { return OpRef(Invalid); }
623
624  static OpRef lo(const OpRef &R) {
625    assert(!R.isValue());
626    return OpRef(R.OpN & (Undef | Index | LoHalf));
627  }
628  static OpRef hi(const OpRef &R) {
629    assert(!R.isValue());
630    return OpRef(R.OpN & (Undef | Index | HiHalf));
631  }
632  static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); }
633
634  // Direct value.
635  SDValue OpV = SDValue();
636
637  // Reference to the operand of the input node:
638  // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
639  // operand index:
640  // If bit 30 is set, it's the high half of the operand.
641  // If bit 29 is set, it's the low half of the operand.
642  unsigned OpN = 0;
643
644  enum : unsigned {
645    Invalid = 0x10000000,
646    LoHalf  = 0x20000000,
647    HiHalf  = 0x40000000,
648    Whole   = LoHalf | HiHalf,
649    Undef   = 0x80000000,
650    Index   = 0x0FFFFFFF,  // Mask of the index value.
651    IndexBits = 28,
652  };
653
654  LLVM_DUMP_METHOD
655  void print(raw_ostream &OS, const SelectionDAG &G) const;
656
657private:
658  OpRef(unsigned N) : OpN(N) {}
659};
660
661struct NodeTemplate {
662  NodeTemplate() = default;
663  unsigned Opc = 0;
664  MVT Ty = MVT::Other;
665  std::vector<OpRef> Ops;
666
667  LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const;
668};
669
670struct ResultStack {
671  ResultStack(SDNode *Inp)
672    : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {}
673  SDNode *InpNode;
674  MVT InpTy;
675  unsigned push(const NodeTemplate &Res) {
676    List.push_back(Res);
677    return List.size()-1;
678  }
679  unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) {
680    NodeTemplate Res;
681    Res.Opc = Opc;
682    Res.Ty = Ty;
683    Res.Ops = Ops;
684    return push(Res);
685  }
686  bool empty() const { return List.empty(); }
687  unsigned size() const { return List.size(); }
688  unsigned top() const { return size()-1; }
689  const NodeTemplate &operator[](unsigned I) const { return List[I]; }
690  unsigned reset(unsigned NewTop) {
691    List.resize(NewTop+1);
692    return NewTop;
693  }
694
695  using BaseType = std::vector<NodeTemplate>;
696  BaseType::iterator begin() { return List.begin(); }
697  BaseType::iterator end()   { return List.end(); }
698  BaseType::const_iterator begin() const { return List.begin(); }
699  BaseType::const_iterator end() const   { return List.end(); }
700
701  BaseType List;
702
703  LLVM_DUMP_METHOD
704  void print(raw_ostream &OS, const SelectionDAG &G) const;
705};
706} // namespace
707
708#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
709void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const {
710  if (isValue()) {
711    OpV.getNode()->print(OS, &G);
712    return;
713  }
714  if (OpN & Invalid) {
715    OS << "invalid";
716    return;
717  }
718  if (OpN & Undef) {
719    OS << "undef";
720    return;
721  }
722  if ((OpN & Whole) != Whole) {
723    assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf);
724    if (OpN & LoHalf)
725      OS << "lo ";
726    else
727      OS << "hi ";
728  }
729  OS << '#' << SignExtend32(OpN & Index, IndexBits);
730}
731
732void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const {
733  const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo();
734  OS << format("%8s", EVT(Ty).getEVTString().c_str()) << "  "
735     << TII.getName(Opc);
736  bool Comma = false;
737  for (const auto &R : Ops) {
738    if (Comma)
739      OS << ',';
740    Comma = true;
741    OS << ' ';
742    R.print(OS, G);
743  }
744}
745
746void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const {
747  OS << "Input node:\n";
748#ifndef NDEBUG
749  InpNode->dumpr(&G);
750#endif
751  OS << "Result templates:\n";
752  for (unsigned I = 0, E = List.size(); I != E; ++I) {
753    OS << '[' << I << "] ";
754    List[I].print(OS, G);
755    OS << '\n';
756  }
757}
758#endif
759
760namespace {
761struct ShuffleMask {
762  ShuffleMask(ArrayRef<int> M) : Mask(M) {
763    for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
764      int M = Mask[I];
765      if (M == -1)
766        continue;
767      MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M);
768      MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M);
769    }
770  }
771
772  ArrayRef<int> Mask;
773  int MinSrc = -1, MaxSrc = -1;
774
775  ShuffleMask lo() const {
776    size_t H = Mask.size()/2;
777    return ShuffleMask(Mask.take_front(H));
778  }
779  ShuffleMask hi() const {
780    size_t H = Mask.size()/2;
781    return ShuffleMask(Mask.take_back(H));
782  }
783
784  void print(raw_ostream &OS) const {
785    OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {";
786    for (int M : Mask)
787      OS << ' ' << M;
788    OS << " }";
789  }
790};
791} // namespace
792
793// --------------------------------------------------------------------
794// The HvxSelector class.
795
796static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) {
797  return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo());
798}
799static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) {
800  return static_cast<const HexagonSubtarget&>(G.getSubtarget());
801}
802
803namespace llvm {
804  struct HvxSelector {
805    const HexagonTargetLowering &Lower;
806    HexagonDAGToDAGISel &ISel;
807    SelectionDAG &DAG;
808    const HexagonSubtarget &HST;
809    const unsigned HwLen;
810
811    HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G)
812      : Lower(getHexagonLowering(G)),  ISel(HS), DAG(G),
813        HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {}
814
815    MVT getSingleVT(MVT ElemTy) const {
816      unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8);
817      return MVT::getVectorVT(ElemTy, NumElems);
818    }
819
820    MVT getPairVT(MVT ElemTy) const {
821      unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8);
822      return MVT::getVectorVT(ElemTy, NumElems);
823    }
824
825    void selectShuffle(SDNode *N);
826    void selectRor(SDNode *N);
827    void selectVAlign(SDNode *N);
828
829  private:
830    void materialize(const ResultStack &Results);
831
832    SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl);
833
834    enum : unsigned {
835      None,
836      PackMux,
837    };
838    OpRef concat(OpRef Va, OpRef Vb, ResultStack &Results);
839    OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
840                MutableArrayRef<int> NewMask, unsigned Options = None);
841    OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
842                MutableArrayRef<int> NewMask);
843    OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
844                ResultStack &Results);
845    OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
846                ResultStack &Results);
847
848    OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results);
849    OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
850    OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results);
851    OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
852
853    OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results);
854    OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
855    OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results);
856    OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results);
857
858    bool selectVectorConstants(SDNode *N);
859    bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy,
860                          SDValue Va, SDValue Vb, SDNode *N);
861
862  };
863}
864
865static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL,
866                      MutableArrayRef<int> MaskR) {
867  unsigned VecLen = Mask.size();
868  assert(MaskL.size() == VecLen && MaskR.size() == VecLen);
869  for (unsigned I = 0; I != VecLen; ++I) {
870    int M = Mask[I];
871    if (M < 0) {
872      MaskL[I] = MaskR[I] = -1;
873    } else if (unsigned(M) < VecLen) {
874      MaskL[I] = M;
875      MaskR[I] = -1;
876    } else {
877      MaskL[I] = -1;
878      MaskR[I] = M-VecLen;
879    }
880  }
881}
882
883static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc,
884                                         unsigned MaxLen) {
885  assert(A.size() > 0 && A.size() >= MaxLen);
886  int F = A[0];
887  int E = F;
888  for (unsigned I = 1; I != MaxLen; ++I) {
889    if (A[I] - E != Inc)
890      return { F, I };
891    E = A[I];
892  }
893  return { F, MaxLen };
894}
895
896static bool isUndef(ArrayRef<int> Mask) {
897  for (int Idx : Mask)
898    if (Idx != -1)
899      return false;
900  return true;
901}
902
903static bool isIdentity(ArrayRef<int> Mask) {
904  for (int I = 0, E = Mask.size(); I != E; ++I) {
905    int M = Mask[I];
906    if (M >= 0 && M != I)
907      return false;
908  }
909  return true;
910}
911
912static bool isPermutation(ArrayRef<int> Mask) {
913  // Check by adding all numbers only works if there is no overflow.
914  assert(Mask.size() < 0x00007FFF && "Sanity failure");
915  int Sum = 0;
916  for (int Idx : Mask) {
917    if (Idx == -1)
918      return false;
919    Sum += Idx;
920  }
921  int N = Mask.size();
922  return 2*Sum == N*(N-1);
923}
924
925bool HvxSelector::selectVectorConstants(SDNode *N) {
926  // Constant vectors are generated as loads from constant pools or as
927  // splats of a constant value. Since they are generated during the
928  // selection process, the main selection algorithm is not aware of them.
929  // Select them directly here.
930  SmallVector<SDNode*,4> Nodes;
931  SetVector<SDNode*> WorkQ;
932
933  // The one-use test for VSPLATW's operand may fail due to dead nodes
934  // left over in the DAG.
935  DAG.RemoveDeadNodes();
936
937  // The DAG can change (due to CSE) during selection, so cache all the
938  // unselected nodes first to avoid traversing a mutating DAG.
939
940  auto IsNodeToSelect = [] (SDNode *N) {
941    if (N->isMachineOpcode())
942      return false;
943    switch (N->getOpcode()) {
944      case HexagonISD::VZERO:
945      case HexagonISD::VSPLATW:
946        return true;
947      case ISD::LOAD: {
948        SDValue Addr = cast<LoadSDNode>(N)->getBasePtr();
949        unsigned AddrOpc = Addr.getOpcode();
950        if (AddrOpc == HexagonISD::AT_PCREL || AddrOpc == HexagonISD::CP)
951          if (Addr.getOperand(0).getOpcode() == ISD::TargetConstantPool)
952            return true;
953      }
954      break;
955    }
956    // Make sure to select the operand of VSPLATW.
957    bool IsSplatOp = N->hasOneUse() &&
958                     N->use_begin()->getOpcode() == HexagonISD::VSPLATW;
959    return IsSplatOp;
960  };
961
962  WorkQ.insert(N);
963  for (unsigned i = 0; i != WorkQ.size(); ++i) {
964    SDNode *W = WorkQ[i];
965    if (IsNodeToSelect(W))
966      Nodes.push_back(W);
967    for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j)
968      WorkQ.insert(W->getOperand(j).getNode());
969  }
970
971  for (SDNode *L : Nodes)
972    ISel.Select(L);
973
974  return !Nodes.empty();
975}
976
977void HvxSelector::materialize(const ResultStack &Results) {
978  DEBUG_WITH_TYPE("isel", {
979    dbgs() << "Materializing\n";
980    Results.print(dbgs(), DAG);
981  });
982  if (Results.empty())
983    return;
984  const SDLoc &dl(Results.InpNode);
985  std::vector<SDValue> Output;
986
987  for (unsigned I = 0, E = Results.size(); I != E; ++I) {
988    const NodeTemplate &Node = Results[I];
989    std::vector<SDValue> Ops;
990    for (const OpRef &R : Node.Ops) {
991      assert(R.isValid());
992      if (R.isValue()) {
993        Ops.push_back(R.OpV);
994        continue;
995      }
996      if (R.OpN & OpRef::Undef) {
997        MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index);
998        Ops.push_back(ISel.selectUndef(dl, MVT(SVT)));
999        continue;
1000      }
1001      // R is an index of a result.
1002      unsigned Part = R.OpN & OpRef::Whole;
1003      int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits);
1004      if (Idx < 0)
1005        Idx += I;
1006      assert(Idx >= 0 && unsigned(Idx) < Output.size());
1007      SDValue Op = Output[Idx];
1008      MVT OpTy = Op.getValueType().getSimpleVT();
1009      if (Part != OpRef::Whole) {
1010        assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf);
1011        MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(),
1012                                      OpTy.getVectorNumElements()/2);
1013        unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo
1014                                               : Hexagon::vsub_hi;
1015        Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op);
1016      }
1017      Ops.push_back(Op);
1018    } // for (Node : Results)
1019
1020    assert(Node.Ty != MVT::Other);
1021    SDNode *ResN = (Node.Opc == TargetOpcode::COPY)
1022                      ? Ops.front().getNode()
1023                      : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops);
1024    Output.push_back(SDValue(ResN, 0));
1025  }
1026
1027  SDNode *OutN = Output.back().getNode();
1028  SDNode *InpN = Results.InpNode;
1029  DEBUG_WITH_TYPE("isel", {
1030    dbgs() << "Generated node:\n";
1031    OutN->dumpr(&DAG);
1032  });
1033
1034  ISel.ReplaceNode(InpN, OutN);
1035  selectVectorConstants(OutN);
1036  DAG.RemoveDeadNodes();
1037}
1038
1039OpRef HvxSelector::concat(OpRef Lo, OpRef Hi, ResultStack &Results) {
1040  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1041  const SDLoc &dl(Results.InpNode);
1042  Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), {
1043    DAG.getTargetConstant(Hexagon::HvxWRRegClassID, dl, MVT::i32),
1044    Lo, DAG.getTargetConstant(Hexagon::vsub_lo, dl, MVT::i32),
1045    Hi, DAG.getTargetConstant(Hexagon::vsub_hi, dl, MVT::i32),
1046  });
1047  return OpRef::res(Results.top());
1048}
1049
1050// Va, Vb are single vectors, SM can be arbitrarily long.
1051OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb,
1052                         ResultStack &Results, MutableArrayRef<int> NewMask,
1053                         unsigned Options) {
1054  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1055  if (!Va.isValid() || !Vb.isValid())
1056    return OpRef::fail();
1057
1058  int VecLen = SM.Mask.size();
1059  MVT Ty = getSingleVT(MVT::i8);
1060
1061  auto IsExtSubvector = [] (ShuffleMask M) {
1062    assert(M.MinSrc >= 0 && M.MaxSrc >= 0);
1063    for (int I = 0, E = M.Mask.size(); I != E; ++I) {
1064      if (M.Mask[I] >= 0 && M.Mask[I]-I != M.MinSrc)
1065        return false;
1066    }
1067    return true;
1068  };
1069
1070  if (SM.MaxSrc - SM.MinSrc < int(HwLen)) {
1071    if (SM.MinSrc == 0 || SM.MinSrc == int(HwLen) || !IsExtSubvector(SM)) {
1072      // If the mask picks elements from only one of the operands, return
1073      // that operand, and update the mask to use index 0 to refer to the
1074      // first element of that operand.
1075      // If the mask extracts a subvector, it will be handled below, so
1076      // skip it here.
1077      if (SM.MaxSrc < int(HwLen)) {
1078        memcpy(NewMask.data(), SM.Mask.data(), sizeof(int)*VecLen);
1079        return Va;
1080      }
1081      if (SM.MinSrc >= int(HwLen)) {
1082        for (int I = 0; I != VecLen; ++I) {
1083          int M = SM.Mask[I];
1084          if (M != -1)
1085            M -= HwLen;
1086          NewMask[I] = M;
1087        }
1088        return Vb;
1089      }
1090    }
1091    int MinSrc = SM.MinSrc;
1092    if (SM.MaxSrc < int(HwLen)) {
1093      Vb = Va;
1094    } else if (SM.MinSrc > int(HwLen)) {
1095      Va = Vb;
1096      MinSrc = SM.MinSrc - HwLen;
1097    }
1098    const SDLoc &dl(Results.InpNode);
1099    if (isUInt<3>(MinSrc) || isUInt<3>(HwLen-MinSrc)) {
1100      bool IsRight = isUInt<3>(MinSrc); // Right align.
1101      SDValue S = DAG.getTargetConstant(IsRight ? MinSrc : HwLen-MinSrc,
1102                                        dl, MVT::i32);
1103      unsigned Opc = IsRight ? Hexagon::V6_valignbi
1104                             : Hexagon::V6_vlalignbi;
1105      Results.push(Opc, Ty, {Vb, Va, S});
1106    } else {
1107      SDValue S = DAG.getTargetConstant(MinSrc, dl, MVT::i32);
1108      Results.push(Hexagon::A2_tfrsi, MVT::i32, {S});
1109      unsigned Top = Results.top();
1110      Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(Top)});
1111    }
1112    for (int I = 0; I != VecLen; ++I) {
1113      int M = SM.Mask[I];
1114      if (M != -1)
1115        M -= SM.MinSrc;
1116      NewMask[I] = M;
1117    }
1118    return OpRef::res(Results.top());
1119  }
1120
1121  if (Options & PackMux) {
1122    // If elements picked from Va and Vb have all different (source) indexes
1123    // (relative to the start of the argument), do a mux, and update the mask.
1124    BitVector Picked(HwLen);
1125    SmallVector<uint8_t,128> MuxBytes(HwLen);
1126    bool CanMux = true;
1127    for (int I = 0; I != VecLen; ++I) {
1128      int M = SM.Mask[I];
1129      if (M == -1)
1130        continue;
1131      if (M >= int(HwLen))
1132        M -= HwLen;
1133      else
1134        MuxBytes[M] = 0xFF;
1135      if (Picked[M]) {
1136        CanMux = false;
1137        break;
1138      }
1139      NewMask[I] = M;
1140    }
1141    if (CanMux)
1142      return vmuxs(MuxBytes, Va, Vb, Results);
1143  }
1144
1145  return OpRef::fail();
1146}
1147
1148OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb,
1149                         ResultStack &Results, MutableArrayRef<int> NewMask) {
1150  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1151  unsigned HalfMask = 0;
1152  unsigned LogHw = Log2_32(HwLen);
1153  for (int M : SM.Mask) {
1154    if (M == -1)
1155      continue;
1156    HalfMask |= (1u << (M >> LogHw));
1157  }
1158
1159  if (HalfMask == 0)
1160    return OpRef::undef(getPairVT(MVT::i8));
1161
1162  // If more than two halves are used, bail.
1163  // TODO: be more aggressive here?
1164  if (countPopulation(HalfMask) > 2)
1165    return OpRef::fail();
1166
1167  MVT HalfTy = getSingleVT(MVT::i8);
1168
1169  OpRef Inp[2] = { Va, Vb };
1170  OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) };
1171
1172  uint8_t HalfIdx[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
1173  unsigned Idx = 0;
1174  for (unsigned I = 0; I != 4; ++I) {
1175    if ((HalfMask & (1u << I)) == 0)
1176      continue;
1177    assert(Idx < 2);
1178    OpRef Op = Inp[I/2];
1179    Out[Idx] = (I & 1) ? OpRef::hi(Op) : OpRef::lo(Op);
1180    HalfIdx[I] = Idx++;
1181  }
1182
1183  int VecLen = SM.Mask.size();
1184  for (int I = 0; I != VecLen; ++I) {
1185    int M = SM.Mask[I];
1186    if (M >= 0) {
1187      uint8_t Idx = HalfIdx[M >> LogHw];
1188      assert(Idx == 0 || Idx == 1);
1189      M = (M & (HwLen-1)) + HwLen*Idx;
1190    }
1191    NewMask[I] = M;
1192  }
1193
1194  return concat(Out[0], Out[1], Results);
1195}
1196
1197OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1198                         ResultStack &Results) {
1199  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1200  MVT ByteTy = getSingleVT(MVT::i8);
1201  MVT BoolTy = MVT::getVectorVT(MVT::i1, 8*HwLen); // XXX
1202  const SDLoc &dl(Results.InpNode);
1203  SDValue B = getVectorConstant(Bytes, dl);
1204  Results.push(Hexagon::V6_vd0, ByteTy, {});
1205  Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)});
1206  Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va});
1207  return OpRef::res(Results.top());
1208}
1209
1210OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1211                         ResultStack &Results) {
1212  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1213  size_t S = Bytes.size() / 2;
1214  OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results);
1215  OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results);
1216  return concat(L, H, Results);
1217}
1218
1219OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1220  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1221  unsigned VecLen = SM.Mask.size();
1222  assert(HwLen == VecLen);
1223  (void)VecLen;
1224  assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); }));
1225
1226  if (isIdentity(SM.Mask))
1227    return Va;
1228  if (isUndef(SM.Mask))
1229    return OpRef::undef(getSingleVT(MVT::i8));
1230
1231  OpRef P = perfect(SM, Va, Results);
1232  if (P.isValid())
1233    return P;
1234  return butterfly(SM, Va, Results);
1235}
1236
1237OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb,
1238                           ResultStack &Results) {
1239  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1240  if (isUndef(SM.Mask))
1241    return OpRef::undef(getSingleVT(MVT::i8));
1242
1243  OpRef C = contracting(SM, Va, Vb, Results);
1244  if (C.isValid())
1245    return C;
1246
1247  int VecLen = SM.Mask.size();
1248  SmallVector<int,128> NewMask(VecLen);
1249  OpRef P = packs(SM, Va, Vb, Results, NewMask);
1250  if (P.isValid())
1251    return shuffs1(ShuffleMask(NewMask), P, Results);
1252
1253  SmallVector<int,128> MaskL(VecLen), MaskR(VecLen);
1254  splitMask(SM.Mask, MaskL, MaskR);
1255
1256  OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results);
1257  OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results);
1258  if (!L.isValid() || !R.isValid())
1259    return OpRef::fail();
1260
1261  SmallVector<uint8_t,128> Bytes(VecLen);
1262  for (int I = 0; I != VecLen; ++I) {
1263    if (MaskL[I] != -1)
1264      Bytes[I] = 0xFF;
1265  }
1266  return vmuxs(Bytes, L, R, Results);
1267}
1268
1269OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1270  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1271  int VecLen = SM.Mask.size();
1272
1273  if (isIdentity(SM.Mask))
1274    return Va;
1275  if (isUndef(SM.Mask))
1276    return OpRef::undef(getPairVT(MVT::i8));
1277
1278  SmallVector<int,128> PackedMask(VecLen);
1279  OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask);
1280  if (P.isValid()) {
1281    ShuffleMask PM(PackedMask);
1282    OpRef E = expanding(PM, P, Results);
1283    if (E.isValid())
1284      return E;
1285
1286    OpRef L = shuffs1(PM.lo(), P, Results);
1287    OpRef H = shuffs1(PM.hi(), P, Results);
1288    if (L.isValid() && H.isValid())
1289      return concat(L, H, Results);
1290  }
1291
1292  OpRef R = perfect(SM, Va, Results);
1293  if (R.isValid())
1294    return R;
1295  // TODO commute the mask and try the opposite order of the halves.
1296
1297  OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results);
1298  OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results);
1299  if (L.isValid() && H.isValid())
1300    return concat(L, H, Results);
1301
1302  return OpRef::fail();
1303}
1304
1305OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb,
1306                           ResultStack &Results) {
1307  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1308  if (isUndef(SM.Mask))
1309    return OpRef::undef(getPairVT(MVT::i8));
1310
1311  int VecLen = SM.Mask.size();
1312  SmallVector<int,256> PackedMask(VecLen);
1313  OpRef P = packp(SM, Va, Vb, Results, PackedMask);
1314  if (P.isValid())
1315    return shuffp1(ShuffleMask(PackedMask), P, Results);
1316
1317  SmallVector<int,256> MaskL(VecLen), MaskR(VecLen);
1318  splitMask(SM.Mask, MaskL, MaskR);
1319
1320  OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results);
1321  OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results);
1322  if (!L.isValid() || !R.isValid())
1323    return OpRef::fail();
1324
1325  // Mux the results.
1326  SmallVector<uint8_t,256> Bytes(VecLen);
1327  for (int I = 0; I != VecLen; ++I) {
1328    if (MaskL[I] != -1)
1329      Bytes[I] = 0xFF;
1330  }
1331  return vmuxp(Bytes, L, R, Results);
1332}
1333
1334namespace {
1335  struct Deleter : public SelectionDAG::DAGNodeDeletedListener {
1336    template <typename T>
1337    Deleter(SelectionDAG &D, T &C)
1338      : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) {
1339                                                  C.erase(N);
1340                                                }) {}
1341  };
1342
1343  template <typename T>
1344  struct NullifyingVector : public T {
1345    DenseMap<SDNode*, SDNode**> Refs;
1346    NullifyingVector(T &&V) : T(V) {
1347      for (unsigned i = 0, e = T::size(); i != e; ++i) {
1348        SDNode *&N = T::operator[](i);
1349        Refs[N] = &N;
1350      }
1351    }
1352    void erase(SDNode *N) {
1353      auto F = Refs.find(N);
1354      if (F != Refs.end())
1355        *F->second = nullptr;
1356    }
1357  };
1358}
1359
1360bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl,
1361                                   MVT ResTy, SDValue Va, SDValue Vb,
1362                                   SDNode *N) {
1363  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1364  MVT ElemTy = ResTy.getVectorElementType();
1365  assert(ElemTy == MVT::i8);
1366  unsigned VecLen = Mask.size();
1367  bool HavePairs = (2*HwLen == VecLen);
1368  MVT SingleTy = getSingleVT(MVT::i8);
1369
1370  // The prior attempts to handle this shuffle may have left a bunch of
1371  // dead nodes in the DAG (such as constants). These nodes will be added
1372  // at the end of DAG's node list, which at that point had already been
1373  // sorted topologically. In the main selection loop, the node list is
1374  // traversed backwards from the root node, which means that any new
1375  // nodes (from the end of the list) will not be visited.
1376  // Scalarization will replace the shuffle node with the scalarized
1377  // expression, and if that expression reused any if the leftoever (dead)
1378  // nodes, these nodes would not be selected (since the "local" selection
1379  // only visits nodes that are not in AllNodes).
1380  // To avoid this issue, remove all dead nodes from the DAG now.
1381  DAG.RemoveDeadNodes();
1382  DenseSet<SDNode*> AllNodes;
1383  for (SDNode &S : DAG.allnodes())
1384    AllNodes.insert(&S);
1385
1386  Deleter DUA(DAG, AllNodes);
1387
1388  SmallVector<SDValue,128> Ops;
1389  LLVMContext &Ctx = *DAG.getContext();
1390  MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT();
1391  for (int I : Mask) {
1392    if (I < 0) {
1393      Ops.push_back(ISel.selectUndef(dl, LegalTy));
1394      continue;
1395    }
1396    SDValue Vec;
1397    unsigned M = I;
1398    if (M < VecLen) {
1399      Vec = Va;
1400    } else {
1401      Vec = Vb;
1402      M -= VecLen;
1403    }
1404    if (HavePairs) {
1405      if (M < HwLen) {
1406        Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec);
1407      } else {
1408        Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec);
1409        M -= HwLen;
1410      }
1411    }
1412    SDValue Idx = DAG.getConstant(M, dl, MVT::i32);
1413    SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx});
1414    SDValue L = Lower.LowerOperation(Ex, DAG);
1415    assert(L.getNode());
1416    Ops.push_back(L);
1417  }
1418
1419  SDValue LV;
1420  if (2*HwLen == VecLen) {
1421    SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen});
1422    SDValue L0 = Lower.LowerOperation(B0, DAG);
1423    SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen});
1424    SDValue L1 = Lower.LowerOperation(B1, DAG);
1425    // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
1426    // functions may expect to be called only for illegal operations, so
1427    // make sure that they are not called for legal ones. Develop a better
1428    // mechanism for dealing with this.
1429    LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1});
1430  } else {
1431    SDValue BV = DAG.getBuildVector(ResTy, dl, Ops);
1432    LV = Lower.LowerOperation(BV, DAG);
1433  }
1434
1435  assert(!N->use_empty());
1436  ISel.ReplaceNode(N, LV.getNode());
1437
1438  if (AllNodes.count(LV.getNode())) {
1439    DAG.RemoveDeadNodes();
1440    return true;
1441  }
1442
1443  // The lowered build-vector node will now need to be selected. It needs
1444  // to be done here because this node and its submodes are not included
1445  // in the main selection loop.
1446  // Implement essentially the same topological ordering algorithm as is
1447  // used in SelectionDAGISel.
1448
1449  SetVector<SDNode*> SubNodes, TmpQ;
1450  std::map<SDNode*,unsigned> NumOps;
1451
1452  SubNodes.insert(LV.getNode());
1453  for (unsigned I = 0; I != SubNodes.size(); ++I) {
1454    unsigned OpN = 0;
1455    SDNode *S = SubNodes[I];
1456    for (SDValue Op : S->ops()) {
1457      if (AllNodes.count(Op.getNode()))
1458        continue;
1459      SubNodes.insert(Op.getNode());
1460      ++OpN;
1461    }
1462    NumOps.insert({S, OpN});
1463    if (OpN == 0)
1464      TmpQ.insert(S);
1465  }
1466
1467  for (unsigned I = 0; I != TmpQ.size(); ++I) {
1468    SDNode *S = TmpQ[I];
1469    for (SDNode *U : S->uses()) {
1470      if (!SubNodes.count(U))
1471        continue;
1472      auto F = NumOps.find(U);
1473      assert(F != NumOps.end());
1474      assert(F->second > 0);
1475      if (!--F->second)
1476        TmpQ.insert(F->first);
1477    }
1478  }
1479  assert(SubNodes.size() == TmpQ.size());
1480  NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector());
1481
1482  Deleter DUQ(DAG, Queue);
1483  for (SDNode *S : reverse(Queue))
1484    if (S != nullptr)
1485      ISel.Select(S);
1486
1487  DAG.RemoveDeadNodes();
1488  return true;
1489}
1490
1491OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb,
1492                               ResultStack &Results) {
1493  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1494  if (!Va.isValid() || !Vb.isValid())
1495    return OpRef::fail();
1496
1497  // Contracting shuffles, i.e. instructions that always discard some bytes
1498  // from the operand vectors.
1499  //
1500  // V6_vshuff{e,o}b
1501  // V6_vdealb4w
1502  // V6_vpack{e,o}{b,h}
1503
1504  int VecLen = SM.Mask.size();
1505  std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1506  MVT ResTy = getSingleVT(MVT::i8);
1507
1508  // The following shuffles only work for bytes and halfwords. This requires
1509  // the strip length to be 1 or 2.
1510  if (Strip.second != 1 && Strip.second != 2)
1511    return OpRef::fail();
1512
1513  // The patterns for the shuffles, in terms of the starting offsets of the
1514  // consecutive strips (L = length of the strip, N = VecLen):
1515  //
1516  // vpacke:    0, 2L, 4L ... N+0, N+2L, N+4L ...      L = 1 or 2
1517  // vpacko:    L, 3L, 5L ... N+L, N+3L, N+5L ...      L = 1 or 2
1518  //
1519  // vshuffe:   0, N+0, 2L, N+2L, 4L ...               L = 1 or 2
1520  // vshuffo:   L, N+L, 3L, N+3L, 5L ...               L = 1 or 2
1521  //
1522  // vdealb4w:  0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ...
1523
1524  // The value of the element in the mask following the strip will decide
1525  // what kind of a shuffle this can be.
1526  int NextInMask = SM.Mask[Strip.second];
1527
1528  // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask
1529  // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would
1530  // satisfy this.
1531  if (NextInMask < VecLen) {
1532    // vpack{e,o} or vdealb4w
1533    if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) {
1534      int N = VecLen;
1535      // Check if this is vdealb4w (L=1).
1536      for (int I = 0; I != N/4; ++I)
1537        if (SM.Mask[I] != 4*I)
1538          return OpRef::fail();
1539      for (int I = 0; I != N/4; ++I)
1540        if (SM.Mask[I+N/4] != 2 + 4*I)
1541          return OpRef::fail();
1542      for (int I = 0; I != N/4; ++I)
1543        if (SM.Mask[I+N/2] != N + 4*I)
1544          return OpRef::fail();
1545      for (int I = 0; I != N/4; ++I)
1546        if (SM.Mask[I+3*N/4] != N+2 + 4*I)
1547          return OpRef::fail();
1548      // Matched mask for vdealb4w.
1549      Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va});
1550      return OpRef::res(Results.top());
1551    }
1552
1553    // Check if this is vpack{e,o}.
1554    int N = VecLen;
1555    int L = Strip.second;
1556    // Check if the first strip starts at 0 or at L.
1557    if (Strip.first != 0 && Strip.first != L)
1558      return OpRef::fail();
1559    // Examine the rest of the mask.
1560    for (int I = L; I < N; I += L) {
1561      auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1562      // Check whether the mask element at the beginning of each strip
1563      // increases by 2L each time.
1564      if (S.first - Strip.first != 2*I)
1565        return OpRef::fail();
1566      // Check whether each strip is of the same length.
1567      if (S.second != unsigned(L))
1568        return OpRef::fail();
1569    }
1570
1571    // Strip.first == 0  =>  vpacke
1572    // Strip.first == L  =>  vpacko
1573    assert(Strip.first == 0 || Strip.first == L);
1574    using namespace Hexagon;
1575    NodeTemplate Res;
1576    Res.Opc = Strip.second == 1 // Number of bytes.
1577                  ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob)
1578                  : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh);
1579    Res.Ty = ResTy;
1580    Res.Ops = { Vb, Va };
1581    Results.push(Res);
1582    return OpRef::res(Results.top());
1583  }
1584
1585  // Check if this is vshuff{e,o}.
1586  int N = VecLen;
1587  int L = Strip.second;
1588  std::pair<int,unsigned> PrevS = Strip;
1589  bool Flip = false;
1590  for (int I = L; I < N; I += L) {
1591    auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1592    if (S.second != PrevS.second)
1593      return OpRef::fail();
1594    int Diff = Flip ? PrevS.first - S.first + 2*L
1595                    : S.first - PrevS.first;
1596    if (Diff != N)
1597      return OpRef::fail();
1598    Flip ^= true;
1599    PrevS = S;
1600  }
1601  // Strip.first == 0  =>  vshuffe
1602  // Strip.first == L  =>  vshuffo
1603  assert(Strip.first == 0 || Strip.first == L);
1604  using namespace Hexagon;
1605  NodeTemplate Res;
1606  Res.Opc = Strip.second == 1 // Number of bytes.
1607                ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob)
1608                : (Strip.first == 0 ?  V6_vshufeh :  V6_vshufoh);
1609  Res.Ty = ResTy;
1610  Res.Ops = { Vb, Va };
1611  Results.push(Res);
1612  return OpRef::res(Results.top());
1613}
1614
1615OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1616  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1617  // Expanding shuffles (using all elements and inserting into larger vector):
1618  //
1619  // V6_vunpacku{b,h} [*]
1620  //
1621  // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
1622  //
1623  // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
1624  // they are not shuffles.
1625  //
1626  // The argument is a single vector.
1627
1628  int VecLen = SM.Mask.size();
1629  assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type");
1630
1631  std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1632
1633  // The patterns for the unpacks, in terms of the starting offsets of the
1634  // consecutive strips (L = length of the strip, N = VecLen):
1635  //
1636  // vunpacku:  0, -1, L, -1, 2L, -1 ...
1637
1638  if (Strip.first != 0)
1639    return OpRef::fail();
1640
1641  // The vunpackus only handle byte and half-word.
1642  if (Strip.second != 1 && Strip.second != 2)
1643    return OpRef::fail();
1644
1645  int N = VecLen;
1646  int L = Strip.second;
1647
1648  // First, check the non-ignored strips.
1649  for (int I = 2*L; I < 2*N; I += 2*L) {
1650    auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1651    if (S.second != unsigned(L))
1652      return OpRef::fail();
1653    if (2*S.first != I)
1654      return OpRef::fail();
1655  }
1656  // Check the -1s.
1657  for (int I = L; I < 2*N; I += 2*L) {
1658    auto S = findStrip(SM.Mask.drop_front(I), 0, N-I);
1659    if (S.first != -1 || S.second != unsigned(L))
1660      return OpRef::fail();
1661  }
1662
1663  unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub
1664                                   : Hexagon::V6_vunpackuh;
1665  Results.push(Opc, getPairVT(MVT::i8), {Va});
1666  return OpRef::res(Results.top());
1667}
1668
1669OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1670  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1671  // V6_vdeal{b,h}
1672  // V6_vshuff{b,h}
1673
1674  // V6_vshufoe{b,h}  those are quivalent to vshuffvdd(..,{1,2})
1675  // V6_vshuffvdd (V6_vshuff)
1676  // V6_dealvdd (V6_vdeal)
1677
1678  int VecLen = SM.Mask.size();
1679  assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8);
1680  unsigned LogLen = Log2_32(VecLen);
1681  unsigned HwLog = Log2_32(HwLen);
1682  // The result length must be the same as the length of a single vector,
1683  // or a vector pair.
1684  assert(LogLen == HwLog || LogLen == HwLog+1);
1685  bool Extend = (LogLen == HwLog);
1686
1687  if (!isPermutation(SM.Mask))
1688    return OpRef::fail();
1689
1690  SmallVector<unsigned,8> Perm(LogLen);
1691
1692  // Check if this could be a perfect shuffle, or a combination of perfect
1693  // shuffles.
1694  //
1695  // Consider this permutation (using hex digits to make the ASCII diagrams
1696  // easier to read):
1697  //   { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
1698  // This is a "deal" operation: divide the input into two halves, and
1699  // create the output by picking elements by alternating between these two
1700  // halves:
1701  //   0 1 2 3 4 5 6 7    -->    0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F  [*]
1702  //   8 9 A B C D E F
1703  //
1704  // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
1705  // a somwehat different mechanism that could be used to perform shuffle/
1706  // deal operations: a 2x2 transpose.
1707  // Consider the halves of inputs again, they can be interpreted as a 2x8
1708  // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
1709  // together. Now, when considering 2 elements at a time, it will be a 2x4
1710  // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
1711  //   01 23  45 67
1712  //   89 AB  CD EF
1713  // With groups of 4, this will become a single 2x2 matrix, and so on.
1714  //
1715  // The 2x2 transpose instruction works by transposing each of the 2x2
1716  // matrices (or "sub-matrices"), given a specific group size. For example,
1717  // if the group size is 1 (i.e. each element is its own group), there
1718  // will be four transposes of the four 2x2 matrices that form the 2x8.
1719  // For example, with the inputs as above, the result will be:
1720  //   0 8  2 A  4 C  6 E
1721  //   1 9  3 B  5 D  7 F
1722  // Now, this result can be tranposed again, but with the group size of 2:
1723  //   08 19  4C 5D
1724  //   2A 3B  6E 7F
1725  // If we then transpose that result, but with the group size of 4, we get:
1726  //   0819 2A3B
1727  //   4C5D 6E7F
1728  // If we concatenate these two rows, it will be
1729  //   0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
1730  // which is the same as the "deal" [*] above.
1731  //
1732  // In general, a "deal" of individual elements is a series of 2x2 transposes,
1733  // with changing group size. HVX has two instructions:
1734  //   Vdd = V6_vdealvdd Vu, Vv, Rt
1735  //   Vdd = V6_shufvdd  Vu, Vv, Rt
1736  // that perform exactly that. The register Rt controls which transposes are
1737  // going to happen: a bit at position n (counting from 0) indicates that a
1738  // transpose with a group size of 2^n will take place. If multiple bits are
1739  // set, multiple transposes will happen: vdealvdd will perform them starting
1740  // with the largest group size, vshuffvdd will do them in the reverse order.
1741  //
1742  // The main observation is that each 2x2 transpose corresponds to swapping
1743  // columns of bits in the binary representation of the values.
1744  //
1745  // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
1746  // in a given column. The * denote the columns that will be swapped.
1747  // The transpose with the group size 2^n corresponds to swapping columns
1748  // 3 (the highest log) and log2(n):
1749  //
1750  //     3 2 1 0         0 2 1 3         0 2 3 1
1751  //     *     *             * *           * *
1752  //  0  0 0 0 0      0  0 0 0 0      0  0 0 0 0      0  0 0 0 0
1753  //  1  0 0 0 1      8  1 0 0 0      8  1 0 0 0      8  1 0 0 0
1754  //  2  0 0 1 0      2  0 0 1 0      1  0 0 0 1      1  0 0 0 1
1755  //  3  0 0 1 1      A  1 0 1 0      9  1 0 0 1      9  1 0 0 1
1756  //  4  0 1 0 0      4  0 1 0 0      4  0 1 0 0      2  0 0 1 0
1757  //  5  0 1 0 1      C  1 1 0 0      C  1 1 0 0      A  1 0 1 0
1758  //  6  0 1 1 0      6  0 1 1 0      5  0 1 0 1      3  0 0 1 1
1759  //  7  0 1 1 1      E  1 1 1 0      D  1 1 0 1      B  1 0 1 1
1760  //  8  1 0 0 0      1  0 0 0 1      2  0 0 1 0      4  0 1 0 0
1761  //  9  1 0 0 1      9  1 0 0 1      A  1 0 1 0      C  1 1 0 0
1762  //  A  1 0 1 0      3  0 0 1 1      3  0 0 1 1      5  0 1 0 1
1763  //  B  1 0 1 1      B  1 0 1 1      B  1 0 1 1      D  1 1 0 1
1764  //  C  1 1 0 0      5  0 1 0 1      6  0 1 1 0      6  0 1 1 0
1765  //  D  1 1 0 1      D  1 1 0 1      E  1 1 1 0      E  1 1 1 0
1766  //  E  1 1 1 0      7  0 1 1 1      7  0 1 1 1      7  0 1 1 1
1767  //  F  1 1 1 1      F  1 1 1 1      F  1 1 1 1      F  1 1 1 1
1768
1769  auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) {
1770    unsigned X = Mask[0] ^ Mask[Num/2];
1771    // Check that the first half has the X's bits clear.
1772    if ((Mask[0] & X) != 0)
1773      return 0u;
1774    for (unsigned I = 1; I != Num/2; ++I) {
1775      if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X)
1776        return 0u;
1777      if ((Mask[I] & X) != 0)
1778        return 0u;
1779    }
1780    return X;
1781  };
1782
1783  // Create a vector of log2's for each column: Perm[i] corresponds to
1784  // the i-th bit (lsb is 0).
1785  assert(VecLen > 2);
1786  for (unsigned I = VecLen; I >= 2; I >>= 1) {
1787    // Examine the initial segment of Mask of size I.
1788    unsigned X = XorPow2(SM.Mask, I);
1789    if (!isPowerOf2_32(X))
1790      return OpRef::fail();
1791    // Check the other segments of Mask.
1792    for (int J = I; J < VecLen; J += I) {
1793      if (XorPow2(SM.Mask.slice(J, I), I) != X)
1794        return OpRef::fail();
1795    }
1796    Perm[Log2_32(X)] = Log2_32(I)-1;
1797  }
1798
1799  // Once we have Perm, represent it as cycles. Denote the maximum log2
1800  // (equal to log2(VecLen)-1) as M. The cycle containing M can then be
1801  // written as (M a1 a2 a3 ... an). That cycle can be broken up into
1802  // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
1803  // order being from left to right. Any (contiguous) segment where the
1804  // values ai, ai+1...aj are either all increasing or all decreasing,
1805  // can be implemented via a single vshuffvdd/vdealvdd respectively.
1806  //
1807  // If there is a cycle (a1 a2 ... an) that does not involve M, it can
1808  // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
1809  // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
1810  // can be used to generate a sequence of vshuffvdd/vdealvdd.
1811  //
1812  // Example:
1813  // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
1814  // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
1815  //   (4 0 1)(4 0)(4 2 3)(4 2).
1816  // It can then be expanded into swaps as
1817  //   (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
1818  // and broken up into "increasing" segments as
1819  //   [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
1820  // This is equivalent to
1821  //   (4 0 1)(4 0 2 3)(4 2),
1822  // which can be implemented as 3 vshufvdd instructions.
1823
1824  using CycleType = SmallVector<unsigned,8>;
1825  std::set<CycleType> Cycles;
1826  std::set<unsigned> All;
1827
1828  for (unsigned I : Perm)
1829    All.insert(I);
1830
1831  // If the cycle contains LogLen-1, move it to the front of the cycle.
1832  // Otherwise, return the cycle unchanged.
1833  auto canonicalize = [LogLen](const CycleType &C) -> CycleType {
1834    unsigned LogPos, N = C.size();
1835    for (LogPos = 0; LogPos != N; ++LogPos)
1836      if (C[LogPos] == LogLen-1)
1837        break;
1838    if (LogPos == N)
1839      return C;
1840
1841    CycleType NewC(C.begin()+LogPos, C.end());
1842    NewC.append(C.begin(), C.begin()+LogPos);
1843    return NewC;
1844  };
1845
1846  auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) {
1847    // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
1848    // for bytes zero is included, for halfwords is not.
1849    if (Cs.size() != 1)
1850      return 0u;
1851    const CycleType &C = *Cs.begin();
1852    if (C[0] != Len-1)
1853      return 0u;
1854    int D = Len - C.size();
1855    if (D != 0 && D != 1)
1856      return 0u;
1857
1858    bool IsDeal = true, IsShuff = true;
1859    for (unsigned I = 1; I != Len-D; ++I) {
1860      if (C[I] != Len-1-I)
1861        IsDeal = false;
1862      if (C[I] != I-(1-D))  // I-1, I
1863        IsShuff = false;
1864    }
1865    // At most one, IsDeal or IsShuff, can be non-zero.
1866    assert(!(IsDeal || IsShuff) || IsDeal != IsShuff);
1867    static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh };
1868    static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh };
1869    return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0);
1870  };
1871
1872  while (!All.empty()) {
1873    unsigned A = *All.begin();
1874    All.erase(A);
1875    CycleType C;
1876    C.push_back(A);
1877    for (unsigned B = Perm[A]; B != A; B = Perm[B]) {
1878      C.push_back(B);
1879      All.erase(B);
1880    }
1881    if (C.size() <= 1)
1882      continue;
1883    Cycles.insert(canonicalize(C));
1884  }
1885
1886  MVT SingleTy = getSingleVT(MVT::i8);
1887  MVT PairTy = getPairVT(MVT::i8);
1888
1889  // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
1890  if (unsigned(VecLen) == HwLen) {
1891    if (unsigned SingleOpc = pfs(Cycles, LogLen)) {
1892      Results.push(SingleOpc, SingleTy, {Va});
1893      return OpRef::res(Results.top());
1894    }
1895  }
1896
1897  SmallVector<unsigned,8> SwapElems;
1898  if (HwLen == unsigned(VecLen))
1899    SwapElems.push_back(LogLen-1);
1900
1901  for (const CycleType &C : Cycles) {
1902    unsigned First = (C[0] == LogLen-1) ? 1 : 0;
1903    SwapElems.append(C.begin()+First, C.end());
1904    if (First == 0)
1905      SwapElems.push_back(C[0]);
1906  }
1907
1908  const SDLoc &dl(Results.InpNode);
1909  OpRef Arg = !Extend ? Va
1910                      : concat(Va, OpRef::undef(SingleTy), Results);
1911
1912  for (unsigned I = 0, E = SwapElems.size(); I != E; ) {
1913    bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1];
1914    unsigned S = (1u << SwapElems[I]);
1915    if (I < E-1) {
1916      while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1]))
1917        S |= 1u << SwapElems[I];
1918      // The above loop will not add a bit for the final SwapElems[I+1],
1919      // so add it here.
1920      S |= 1u << SwapElems[I];
1921    }
1922    ++I;
1923
1924    NodeTemplate Res;
1925    Results.push(Hexagon::A2_tfrsi, MVT::i32,
1926                 { DAG.getTargetConstant(S, dl, MVT::i32) });
1927    Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd;
1928    Res.Ty = PairTy;
1929    Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) };
1930    Results.push(Res);
1931    Arg = OpRef::res(Results.top());
1932  }
1933
1934  return !Extend ? Arg : OpRef::lo(Arg);
1935}
1936
1937OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1938  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1939  // Butterfly shuffles.
1940  //
1941  // V6_vdelta
1942  // V6_vrdelta
1943  // V6_vror
1944
1945  // The assumption here is that all elements picked by Mask are in the
1946  // first operand to the vector_shuffle. This assumption is enforced
1947  // by the caller.
1948
1949  MVT ResTy = getSingleVT(MVT::i8);
1950  PermNetwork::Controls FC, RC;
1951  const SDLoc &dl(Results.InpNode);
1952  int VecLen = SM.Mask.size();
1953
1954  for (int M : SM.Mask) {
1955    if (M != -1 && M >= VecLen)
1956      return OpRef::fail();
1957  }
1958
1959  // Try the deltas/benes for both single vectors and vector pairs.
1960  ForwardDeltaNetwork FN(SM.Mask);
1961  if (FN.run(FC)) {
1962    SDValue Ctl = getVectorConstant(FC, dl);
1963    Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)});
1964    return OpRef::res(Results.top());
1965  }
1966
1967  // Try reverse delta.
1968  ReverseDeltaNetwork RN(SM.Mask);
1969  if (RN.run(RC)) {
1970    SDValue Ctl = getVectorConstant(RC, dl);
1971    Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)});
1972    return OpRef::res(Results.top());
1973  }
1974
1975  // Do Benes.
1976  BenesNetwork BN(SM.Mask);
1977  if (BN.run(FC, RC)) {
1978    SDValue CtlF = getVectorConstant(FC, dl);
1979    SDValue CtlR = getVectorConstant(RC, dl);
1980    Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)});
1981    Results.push(Hexagon::V6_vrdelta, ResTy,
1982                 {OpRef::res(-1), OpRef(CtlR)});
1983    return OpRef::res(Results.top());
1984  }
1985
1986  return OpRef::fail();
1987}
1988
1989SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data,
1990                                       const SDLoc &dl) {
1991  SmallVector<SDValue, 128> Elems;
1992  for (uint8_t C : Data)
1993    Elems.push_back(DAG.getConstant(C, dl, MVT::i8));
1994  MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size());
1995  SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
1996  SDValue LV = Lower.LowerOperation(BV, DAG);
1997  DAG.RemoveDeadNode(BV.getNode());
1998  return LV;
1999}
2000
2001void HvxSelector::selectShuffle(SDNode *N) {
2002  DEBUG_WITH_TYPE("isel", {
2003    dbgs() << "Starting " << __func__ << " on node:\n";
2004    N->dump(&DAG);
2005  });
2006  MVT ResTy = N->getValueType(0).getSimpleVT();
2007  // Assume that vector shuffles operate on vectors of bytes.
2008  assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8);
2009
2010  auto *SN = cast<ShuffleVectorSDNode>(N);
2011  std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end());
2012  // This shouldn't really be necessary. Is it?
2013  for (int &Idx : Mask)
2014    if (Idx != -1 && Idx < 0)
2015      Idx = -1;
2016
2017  unsigned VecLen = Mask.size();
2018  bool HavePairs = (2*HwLen == VecLen);
2019  assert(ResTy.getSizeInBits() / 8 == VecLen);
2020
2021  // Vd = vector_shuffle Va, Vb, Mask
2022  //
2023
2024  bool UseLeft = false, UseRight = false;
2025  for (unsigned I = 0; I != VecLen; ++I) {
2026    if (Mask[I] == -1)
2027      continue;
2028    unsigned Idx = Mask[I];
2029    assert(Idx < 2*VecLen);
2030    if (Idx < VecLen)
2031      UseLeft = true;
2032    else
2033      UseRight = true;
2034  }
2035
2036  DEBUG_WITH_TYPE("isel", {
2037    dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft="
2038           << UseLeft << " UseRight=" << UseRight << " HavePairs="
2039           << HavePairs << '\n';
2040  });
2041  // If the mask is all -1's, generate "undef".
2042  if (!UseLeft && !UseRight) {
2043    ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode());
2044    return;
2045  }
2046
2047  SDValue Vec0 = N->getOperand(0);
2048  SDValue Vec1 = N->getOperand(1);
2049  ResultStack Results(SN);
2050  Results.push(TargetOpcode::COPY, ResTy, {Vec0});
2051  Results.push(TargetOpcode::COPY, ResTy, {Vec1});
2052  OpRef Va = OpRef::res(Results.top()-1);
2053  OpRef Vb = OpRef::res(Results.top());
2054
2055  OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results)
2056                         : shuffp2(ShuffleMask(Mask), Va, Vb, Results);
2057
2058  bool Done = Res.isValid();
2059  if (Done) {
2060    // Make sure that Res is on the stack before materializing.
2061    Results.push(TargetOpcode::COPY, ResTy, {Res});
2062    materialize(Results);
2063  } else {
2064    Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N);
2065  }
2066
2067  if (!Done) {
2068#ifndef NDEBUG
2069    dbgs() << "Unhandled shuffle:\n";
2070    SN->dumpr(&DAG);
2071#endif
2072    llvm_unreachable("Failed to select vector shuffle");
2073  }
2074}
2075
2076void HvxSelector::selectRor(SDNode *N) {
2077  // If this is a rotation by less than 8, use V6_valignbi.
2078  MVT Ty = N->getValueType(0).getSimpleVT();
2079  const SDLoc &dl(N);
2080  SDValue VecV = N->getOperand(0);
2081  SDValue RotV = N->getOperand(1);
2082  SDNode *NewN = nullptr;
2083
2084  if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) {
2085    unsigned S = CN->getZExtValue() % HST.getVectorLength();
2086    if (S == 0) {
2087      NewN = VecV.getNode();
2088    } else if (isUInt<3>(S)) {
2089      SDValue C = DAG.getTargetConstant(S, dl, MVT::i32);
2090      NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty,
2091                                {VecV, VecV, C});
2092    }
2093  }
2094
2095  if (!NewN)
2096    NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV});
2097
2098  ISel.ReplaceNode(N, NewN);
2099}
2100
2101void HvxSelector::selectVAlign(SDNode *N) {
2102  SDValue Vv = N->getOperand(0);
2103  SDValue Vu = N->getOperand(1);
2104  SDValue Rt = N->getOperand(2);
2105  SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N),
2106                                    N->getValueType(0), {Vv, Vu, Rt});
2107  ISel.ReplaceNode(N, NewN);
2108  DAG.RemoveDeadNode(N);
2109}
2110
2111void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) {
2112  HvxSelector(*this, *CurDAG).selectShuffle(N);
2113}
2114
2115void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) {
2116  HvxSelector(*this, *CurDAG).selectRor(N);
2117}
2118
2119void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) {
2120  HvxSelector(*this, *CurDAG).selectVAlign(N);
2121}
2122
2123void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) {
2124  const SDLoc &dl(N);
2125  SDValue Chain = N->getOperand(0);
2126  SDValue Address = N->getOperand(2);
2127  SDValue Predicate = N->getOperand(3);
2128  SDValue Base = N->getOperand(4);
2129  SDValue Modifier = N->getOperand(5);
2130  SDValue Offset = N->getOperand(6);
2131
2132  unsigned Opcode;
2133  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2134  switch (IntNo) {
2135  default:
2136    llvm_unreachable("Unexpected HVX gather intrinsic.");
2137  case Intrinsic::hexagon_V6_vgathermhq:
2138  case Intrinsic::hexagon_V6_vgathermhq_128B:
2139    Opcode = Hexagon::V6_vgathermhq_pseudo;
2140    break;
2141  case Intrinsic::hexagon_V6_vgathermwq:
2142  case Intrinsic::hexagon_V6_vgathermwq_128B:
2143    Opcode = Hexagon::V6_vgathermwq_pseudo;
2144    break;
2145  case Intrinsic::hexagon_V6_vgathermhwq:
2146  case Intrinsic::hexagon_V6_vgathermhwq_128B:
2147    Opcode = Hexagon::V6_vgathermhwq_pseudo;
2148    break;
2149  }
2150
2151  SDVTList VTs = CurDAG->getVTList(MVT::Other);
2152  SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain };
2153  SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2154
2155  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2156  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2157
2158  ReplaceNode(N, Result);
2159}
2160
2161void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) {
2162  const SDLoc &dl(N);
2163  SDValue Chain = N->getOperand(0);
2164  SDValue Address = N->getOperand(2);
2165  SDValue Base = N->getOperand(3);
2166  SDValue Modifier = N->getOperand(4);
2167  SDValue Offset = N->getOperand(5);
2168
2169  unsigned Opcode;
2170  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2171  switch (IntNo) {
2172  default:
2173    llvm_unreachable("Unexpected HVX gather intrinsic.");
2174  case Intrinsic::hexagon_V6_vgathermh:
2175  case Intrinsic::hexagon_V6_vgathermh_128B:
2176    Opcode = Hexagon::V6_vgathermh_pseudo;
2177    break;
2178  case Intrinsic::hexagon_V6_vgathermw:
2179  case Intrinsic::hexagon_V6_vgathermw_128B:
2180    Opcode = Hexagon::V6_vgathermw_pseudo;
2181    break;
2182  case Intrinsic::hexagon_V6_vgathermhw:
2183  case Intrinsic::hexagon_V6_vgathermhw_128B:
2184    Opcode = Hexagon::V6_vgathermhw_pseudo;
2185    break;
2186  }
2187
2188  SDVTList VTs = CurDAG->getVTList(MVT::Other);
2189  SDValue Ops[] = { Address, Base, Modifier, Offset, Chain };
2190  SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2191
2192  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2193  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2194
2195  ReplaceNode(N, Result);
2196}
2197
2198void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) {
2199  unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2200  SDNode *Result;
2201  switch (IID) {
2202  case Intrinsic::hexagon_V6_vaddcarry: {
2203    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2204                                    N->getOperand(3) };
2205    SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1);
2206    Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2207    break;
2208  }
2209  case Intrinsic::hexagon_V6_vaddcarry_128B: {
2210    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2211                                    N->getOperand(3) };
2212    SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1);
2213    Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2214    break;
2215  }
2216  case Intrinsic::hexagon_V6_vsubcarry: {
2217    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2218                                    N->getOperand(3) };
2219    SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1);
2220    Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2221    break;
2222  }
2223  case Intrinsic::hexagon_V6_vsubcarry_128B: {
2224    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2225                                    N->getOperand(3) };
2226    SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1);
2227    Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2228    break;
2229  }
2230  default:
2231    llvm_unreachable("Unexpected HVX dual output intrinsic.");
2232  }
2233  ReplaceUses(N, Result);
2234  ReplaceUses(SDValue(N, 0), SDValue(Result, 0));
2235  ReplaceUses(SDValue(N, 1), SDValue(Result, 1));
2236  CurDAG->RemoveDeadNode(N);
2237}
2238