1326938Sdim//===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
2326938Sdim//
3353358Sdim// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4353358Sdim// See https://llvm.org/LICENSE.txt for license information.
5353358Sdim// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6326938Sdim//
7326938Sdim//===----------------------------------------------------------------------===//
8326938Sdim
9326938Sdim#include "Hexagon.h"
10326938Sdim#include "HexagonISelDAGToDAG.h"
11326938Sdim#include "HexagonISelLowering.h"
12326938Sdim#include "HexagonTargetMachine.h"
13341825Sdim#include "llvm/ADT/SetVector.h"
14326938Sdim#include "llvm/CodeGen/MachineInstrBuilder.h"
15326938Sdim#include "llvm/CodeGen/SelectionDAGISel.h"
16326938Sdim#include "llvm/IR/Intrinsics.h"
17360784Sdim#include "llvm/IR/IntrinsicsHexagon.h"
18326938Sdim#include "llvm/Support/CommandLine.h"
19326938Sdim#include "llvm/Support/Debug.h"
20326938Sdim
21326938Sdim#include <deque>
22326938Sdim#include <map>
23326938Sdim#include <set>
24326938Sdim#include <utility>
25326938Sdim#include <vector>
26326938Sdim
27326938Sdim#define DEBUG_TYPE "hexagon-isel"
28326938Sdim
29326938Sdimusing namespace llvm;
30326938Sdim
31327330Sdimnamespace {
32327330Sdim
33326938Sdim// --------------------------------------------------------------------
34326938Sdim// Implementation of permutation networks.
35326938Sdim
36326938Sdim// Implementation of the node routing through butterfly networks:
37326938Sdim// - Forward delta.
38326938Sdim// - Reverse delta.
39326938Sdim// - Benes.
40326938Sdim//
41326938Sdim//
42326938Sdim// Forward delta network consists of log(N) steps, where N is the number
43326938Sdim// of inputs. In each step, an input can stay in place, or it can get
44326938Sdim// routed to another position[1]. The step after that consists of two
45326938Sdim// networks, each half in size in terms of the number of nodes. In those
46326938Sdim// terms, in the given step, an input can go to either the upper or the
47326938Sdim// lower network in the next step.
48326938Sdim//
49326938Sdim// [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
50326938Sdim// positions as long as there is no conflict.
51326938Sdim
52326938Sdim// Here's a delta network for 8 inputs, only the switching routes are
53326938Sdim// shown:
54326938Sdim//
55326938Sdim//         Steps:
56326938Sdim//         |- 1 ---------------|- 2 -----|- 3 -|
57326938Sdim//
58326938Sdim// Inp[0] ***                 ***       ***   *** Out[0]
59326938Sdim//           \               /   \     /   \ /
60326938Sdim//            \             /     \   /     X
61326938Sdim//             \           /       \ /     / \
62326938Sdim// Inp[1] ***   \         /   ***   X   ***   *** Out[1]
63326938Sdim//           \   \       /   /   \ / \ /
64326938Sdim//            \   \     /   /     X   X
65326938Sdim//             \   \   /   /     / \ / \
66326938Sdim// Inp[2] ***   \   \ /   /   ***   X   ***   *** Out[2]
67326938Sdim//           \   \   X   /   /     / \     \ /
68326938Sdim//            \   \ / \ /   /     /   \     X
69326938Sdim//             \   X   X   /     /     \   / \
70326938Sdim// Inp[3] ***   \ / \ / \ /   ***       ***   *** Out[3]
71326938Sdim//           \   X   X   X   /
72326938Sdim//            \ / \ / \ / \ /
73326938Sdim//             X   X   X   X
74326938Sdim//            / \ / \ / \ / \
75326938Sdim//           /   X   X   X   \
76326938Sdim// Inp[4] ***   / \ / \ / \   ***       ***   *** Out[4]
77326938Sdim//             /   X   X   \     \     /   \ /
78326938Sdim//            /   / \ / \   \     \   /     X
79326938Sdim//           /   /   X   \   \     \ /     / \
80326938Sdim// Inp[5] ***   /   / \   \   ***   X   ***   *** Out[5]
81326938Sdim//             /   /   \   \     \ / \ /
82326938Sdim//            /   /     \   \     X   X
83326938Sdim//           /   /       \   \   / \ / \
84326938Sdim// Inp[6] ***   /         \   ***   X   ***   *** Out[6]
85326938Sdim//             /           \       / \     \ /
86326938Sdim//            /             \     /   \     X
87326938Sdim//           /               \   /     \   / \
88326938Sdim// Inp[7] ***                 ***       ***   *** Out[7]
89326938Sdim//
90326938Sdim//
91326938Sdim// Reverse delta network is same as delta network, with the steps in
92326938Sdim// the opposite order.
93326938Sdim//
94326938Sdim//
95326938Sdim// Benes network is a forward delta network immediately followed by
96326938Sdim// a reverse delta network.
97326938Sdim
98341825Sdimenum class ColorKind { None, Red, Black };
99326938Sdim
100326938Sdim// Graph coloring utility used to partition nodes into two groups:
101326938Sdim// they will correspond to nodes routed to the upper and lower networks.
102326938Sdimstruct Coloring {
103326938Sdim  using Node = int;
104341825Sdim  using MapType = std::map<Node, ColorKind>;
105326938Sdim  static constexpr Node Ignore = Node(-1);
106326938Sdim
107326938Sdim  Coloring(ArrayRef<Node> Ord) : Order(Ord) {
108326938Sdim    build();
109326938Sdim    if (!color())
110326938Sdim      Colors.clear();
111326938Sdim  }
112326938Sdim
113326938Sdim  const MapType &colors() const {
114326938Sdim    return Colors;
115326938Sdim  }
116326938Sdim
117341825Sdim  ColorKind other(ColorKind Color) {
118341825Sdim    if (Color == ColorKind::None)
119341825Sdim      return ColorKind::Red;
120341825Sdim    return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red;
121326938Sdim  }
122326938Sdim
123344779Sdim  LLVM_DUMP_METHOD void dump() const;
124326938Sdim
125326938Sdimprivate:
126326938Sdim  ArrayRef<Node> Order;
127326938Sdim  MapType Colors;
128326938Sdim  std::set<Node> Needed;
129326938Sdim
130326938Sdim  using NodeSet = std::set<Node>;
131326938Sdim  std::map<Node,NodeSet> Edges;
132326938Sdim
133326938Sdim  Node conj(Node Pos) {
134326938Sdim    Node Num = Order.size();
135326938Sdim    return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2;
136326938Sdim  }
137326938Sdim
138341825Sdim  ColorKind getColor(Node N) {
139326938Sdim    auto F = Colors.find(N);
140341825Sdim    return F != Colors.end() ? F->second : ColorKind::None;
141326938Sdim  }
142326938Sdim
143341825Sdim  std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes);
144326938Sdim
145326938Sdim  void build();
146326938Sdim  bool color();
147326938Sdim};
148327330Sdim} // namespace
149326938Sdim
150341825Sdimstd::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) {
151341825Sdim  auto Color = ColorKind::None;
152326938Sdim  for (Node N : Nodes) {
153341825Sdim    ColorKind ColorN = getColor(N);
154341825Sdim    if (ColorN == ColorKind::None)
155326938Sdim      continue;
156341825Sdim    if (Color == ColorKind::None)
157326938Sdim      Color = ColorN;
158341825Sdim    else if (Color != ColorKind::None && Color != ColorN)
159341825Sdim      return { false, ColorKind::None };
160326938Sdim  }
161326938Sdim  return { true, Color };
162326938Sdim}
163326938Sdim
164326938Sdimvoid Coloring::build() {
165326938Sdim  // Add Order[P] and Order[conj(P)] to Edges.
166326938Sdim  for (unsigned P = 0; P != Order.size(); ++P) {
167326938Sdim    Node I = Order[P];
168326938Sdim    if (I != Ignore) {
169326938Sdim      Needed.insert(I);
170326938Sdim      Node PC = Order[conj(P)];
171326938Sdim      if (PC != Ignore && PC != I)
172326938Sdim        Edges[I].insert(PC);
173326938Sdim    }
174326938Sdim  }
175326938Sdim  // Add I and conj(I) to Edges.
176326938Sdim  for (unsigned I = 0; I != Order.size(); ++I) {
177326938Sdim    if (!Needed.count(I))
178326938Sdim      continue;
179326938Sdim    Node C = conj(I);
180326938Sdim    // This will create an entry in the edge table, even if I is not
181326938Sdim    // connected to any other node. This is necessary, because it still
182326938Sdim    // needs to be colored.
183326938Sdim    NodeSet &Is = Edges[I];
184326938Sdim    if (Needed.count(C))
185326938Sdim      Is.insert(C);
186326938Sdim  }
187326938Sdim}
188326938Sdim
189326938Sdimbool Coloring::color() {
190326938Sdim  SetVector<Node> FirstQ;
191326938Sdim  auto Enqueue = [this,&FirstQ] (Node N) {
192326938Sdim    SetVector<Node> Q;
193326938Sdim    Q.insert(N);
194326938Sdim    for (unsigned I = 0; I != Q.size(); ++I) {
195326938Sdim      NodeSet &Ns = Edges[Q[I]];
196326938Sdim      Q.insert(Ns.begin(), Ns.end());
197326938Sdim    }
198326938Sdim    FirstQ.insert(Q.begin(), Q.end());
199326938Sdim  };
200326938Sdim  for (Node N : Needed)
201326938Sdim    Enqueue(N);
202326938Sdim
203326938Sdim  for (Node N : FirstQ) {
204326938Sdim    if (Colors.count(N))
205326938Sdim      continue;
206326938Sdim    NodeSet &Ns = Edges[N];
207326938Sdim    auto P = getUniqueColor(Ns);
208326938Sdim    if (!P.first)
209326938Sdim      return false;
210326938Sdim    Colors[N] = other(P.second);
211326938Sdim  }
212326938Sdim
213326938Sdim  // First, color nodes that don't have any dups.
214326938Sdim  for (auto E : Edges) {
215326938Sdim    Node N = E.first;
216326938Sdim    if (!Needed.count(conj(N)) || Colors.count(N))
217326938Sdim      continue;
218326938Sdim    auto P = getUniqueColor(E.second);
219326938Sdim    if (!P.first)
220326938Sdim      return false;
221326938Sdim    Colors[N] = other(P.second);
222326938Sdim  }
223326938Sdim
224326938Sdim  // Now, nodes that are still uncolored. Since the graph can be modified
225326938Sdim  // in this step, create a work queue.
226326938Sdim  std::vector<Node> WorkQ;
227326938Sdim  for (auto E : Edges) {
228326938Sdim    Node N = E.first;
229326938Sdim    if (!Colors.count(N))
230326938Sdim      WorkQ.push_back(N);
231326938Sdim  }
232326938Sdim
233326938Sdim  for (unsigned I = 0; I < WorkQ.size(); ++I) {
234326938Sdim    Node N = WorkQ[I];
235326938Sdim    NodeSet &Ns = Edges[N];
236326938Sdim    auto P = getUniqueColor(Ns);
237326938Sdim    if (P.first) {
238326938Sdim      Colors[N] = other(P.second);
239326938Sdim      continue;
240326938Sdim    }
241326938Sdim
242326938Sdim    // Coloring failed. Split this node.
243326938Sdim    Node C = conj(N);
244341825Sdim    ColorKind ColorN = other(ColorKind::None);
245341825Sdim    ColorKind ColorC = other(ColorN);
246326938Sdim    NodeSet &Cs = Edges[C];
247326938Sdim    NodeSet CopyNs = Ns;
248326938Sdim    for (Node M : CopyNs) {
249341825Sdim      ColorKind ColorM = getColor(M);
250326938Sdim      if (ColorM == ColorC) {
251326938Sdim        // Connect M with C, disconnect M from N.
252326938Sdim        Cs.insert(M);
253326938Sdim        Edges[M].insert(C);
254326938Sdim        Ns.erase(M);
255326938Sdim        Edges[M].erase(N);
256326938Sdim      }
257326938Sdim    }
258326938Sdim    Colors[N] = ColorN;
259326938Sdim    Colors[C] = ColorC;
260326938Sdim  }
261326938Sdim
262341825Sdim  // Explicitly assign "None" to all uncolored nodes.
263326938Sdim  for (unsigned I = 0; I != Order.size(); ++I)
264326938Sdim    if (Colors.count(I) == 0)
265341825Sdim      Colors[I] = ColorKind::None;
266326938Sdim
267326938Sdim  return true;
268326938Sdim}
269326938Sdim
270344779Sdim#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
271326938Sdimvoid Coloring::dump() const {
272326938Sdim  dbgs() << "{ Order:   {";
273326938Sdim  for (unsigned I = 0; I != Order.size(); ++I) {
274326938Sdim    Node P = Order[I];
275326938Sdim    if (P != Ignore)
276326938Sdim      dbgs() << ' ' << P;
277326938Sdim    else
278326938Sdim      dbgs() << " -";
279326938Sdim  }
280326938Sdim  dbgs() << " }\n";
281326938Sdim  dbgs() << "  Needed: {";
282326938Sdim  for (Node N : Needed)
283326938Sdim    dbgs() << ' ' << N;
284326938Sdim  dbgs() << " }\n";
285326938Sdim
286326938Sdim  dbgs() << "  Edges: {\n";
287326938Sdim  for (auto E : Edges) {
288326938Sdim    dbgs() << "    " << E.first << " -> {";
289326938Sdim    for (auto N : E.second)
290326938Sdim      dbgs() << ' ' << N;
291326938Sdim    dbgs() << " }\n";
292326938Sdim  }
293326938Sdim  dbgs() << "  }\n";
294326938Sdim
295341825Sdim  auto ColorKindToName = [](ColorKind C) {
296341825Sdim    switch (C) {
297341825Sdim    case ColorKind::None:
298341825Sdim      return "None";
299341825Sdim    case ColorKind::Red:
300341825Sdim      return "Red";
301341825Sdim    case ColorKind::Black:
302341825Sdim      return "Black";
303341825Sdim    }
304341825Sdim    llvm_unreachable("all ColorKinds should be handled by the switch above");
305341825Sdim  };
306341825Sdim
307326938Sdim  dbgs() << "  Colors: {\n";
308326938Sdim  for (auto C : Colors)
309341825Sdim    dbgs() << "    " << C.first << " -> " << ColorKindToName(C.second) << "\n";
310326938Sdim  dbgs() << "  }\n}\n";
311326938Sdim}
312344779Sdim#endif
313326938Sdim
314327330Sdimnamespace {
315326938Sdim// Base class of for reordering networks. They don't strictly need to be
316326938Sdim// permutations, as outputs with repeated occurrences of an input element
317326938Sdim// are allowed.
318326938Sdimstruct PermNetwork {
319326938Sdim  using Controls = std::vector<uint8_t>;
320326938Sdim  using ElemType = int;
321326938Sdim  static constexpr ElemType Ignore = ElemType(-1);
322326938Sdim
323326938Sdim  enum : uint8_t {
324326938Sdim    None,
325326938Sdim    Pass,
326326938Sdim    Switch
327326938Sdim  };
328326938Sdim  enum : uint8_t {
329326938Sdim    Forward,
330326938Sdim    Reverse
331326938Sdim  };
332326938Sdim
333326938Sdim  PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) {
334326938Sdim    Order.assign(Ord.data(), Ord.data()+Ord.size());
335326938Sdim    Log = 0;
336326938Sdim
337326938Sdim    unsigned S = Order.size();
338326938Sdim    while (S >>= 1)
339326938Sdim      ++Log;
340326938Sdim
341326938Sdim    Table.resize(Order.size());
342326938Sdim    for (RowType &Row : Table)
343326938Sdim      Row.resize(Mult*Log, None);
344326938Sdim  }
345326938Sdim
346326938Sdim  void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const {
347326938Sdim    unsigned Size = Order.size();
348326938Sdim    V.resize(Size);
349326938Sdim    for (unsigned I = 0; I != Size; ++I) {
350326938Sdim      unsigned W = 0;
351326938Sdim      for (unsigned L = 0; L != Log; ++L) {
352326938Sdim        unsigned C = ctl(I, StartAt+L) == Switch;
353326938Sdim        if (Dir == Forward)
354326938Sdim          W |= C << (Log-1-L);
355326938Sdim        else
356326938Sdim          W |= C << L;
357326938Sdim      }
358326938Sdim      assert(isUInt<8>(W));
359326938Sdim      V[I] = uint8_t(W);
360326938Sdim    }
361326938Sdim  }
362326938Sdim
363326938Sdim  uint8_t ctl(ElemType Pos, unsigned Step) const {
364326938Sdim    return Table[Pos][Step];
365326938Sdim  }
366326938Sdim  unsigned size() const {
367326938Sdim    return Order.size();
368326938Sdim  }
369326938Sdim  unsigned steps() const {
370326938Sdim    return Log;
371326938Sdim  }
372326938Sdim
373326938Sdimprotected:
374326938Sdim  unsigned Log;
375326938Sdim  std::vector<ElemType> Order;
376326938Sdim  using RowType = std::vector<uint8_t>;
377326938Sdim  std::vector<RowType> Table;
378326938Sdim};
379326938Sdim
380326938Sdimstruct ForwardDeltaNetwork : public PermNetwork {
381326938Sdim  ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
382326938Sdim
383326938Sdim  bool run(Controls &V) {
384326938Sdim    if (!route(Order.data(), Table.data(), size(), 0))
385326938Sdim      return false;
386326938Sdim    getControls(V, 0, Forward);
387326938Sdim    return true;
388326938Sdim  }
389326938Sdim
390326938Sdimprivate:
391326938Sdim  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
392326938Sdim};
393326938Sdim
394326938Sdimstruct ReverseDeltaNetwork : public PermNetwork {
395326938Sdim  ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
396326938Sdim
397326938Sdim  bool run(Controls &V) {
398326938Sdim    if (!route(Order.data(), Table.data(), size(), 0))
399326938Sdim      return false;
400326938Sdim    getControls(V, 0, Reverse);
401326938Sdim    return true;
402326938Sdim  }
403326938Sdim
404326938Sdimprivate:
405326938Sdim  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
406326938Sdim};
407326938Sdim
408326938Sdimstruct BenesNetwork : public PermNetwork {
409326938Sdim  BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {}
410326938Sdim
411326938Sdim  bool run(Controls &F, Controls &R) {
412326938Sdim    if (!route(Order.data(), Table.data(), size(), 0))
413326938Sdim      return false;
414326938Sdim
415326938Sdim    getControls(F, 0, Forward);
416326938Sdim    getControls(R, Log, Reverse);
417326938Sdim    return true;
418326938Sdim  }
419326938Sdim
420326938Sdimprivate:
421326938Sdim  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
422326938Sdim};
423327330Sdim} // namespace
424326938Sdim
425326938Sdimbool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
426326938Sdim                                unsigned Step) {
427326938Sdim  bool UseUp = false, UseDown = false;
428326938Sdim  ElemType Num = Size;
429326938Sdim
430326938Sdim  // Cannot use coloring here, because coloring is used to determine
431326938Sdim  // the "big" switch, i.e. the one that changes halves, and in a forward
432326938Sdim  // network, a color can be simultaneously routed to both halves in the
433326938Sdim  // step we're working on.
434326938Sdim  for (ElemType J = 0; J != Num; ++J) {
435326938Sdim    ElemType I = P[J];
436326938Sdim    // I is the position in the input,
437326938Sdim    // J is the position in the output.
438326938Sdim    if (I == Ignore)
439326938Sdim      continue;
440326938Sdim    uint8_t S;
441326938Sdim    if (I < Num/2)
442326938Sdim      S = (J < Num/2) ? Pass : Switch;
443326938Sdim    else
444326938Sdim      S = (J < Num/2) ? Switch : Pass;
445326938Sdim
446326938Sdim    // U is the element in the table that needs to be updated.
447326938Sdim    ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2);
448326938Sdim    if (U < Num/2)
449326938Sdim      UseUp = true;
450326938Sdim    else
451326938Sdim      UseDown = true;
452326938Sdim    if (T[U][Step] != S && T[U][Step] != None)
453326938Sdim      return false;
454326938Sdim    T[U][Step] = S;
455326938Sdim  }
456326938Sdim
457326938Sdim  for (ElemType J = 0; J != Num; ++J)
458326938Sdim    if (P[J] != Ignore && P[J] >= Num/2)
459326938Sdim      P[J] -= Num/2;
460326938Sdim
461326938Sdim  if (Step+1 < Log) {
462326938Sdim    if (UseUp   && !route(P,        T,        Size/2, Step+1))
463326938Sdim      return false;
464326938Sdim    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
465326938Sdim      return false;
466326938Sdim  }
467326938Sdim  return true;
468326938Sdim}
469326938Sdim
470326938Sdimbool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
471326938Sdim                                unsigned Step) {
472326938Sdim  unsigned Pets = Log-1 - Step;
473326938Sdim  bool UseUp = false, UseDown = false;
474326938Sdim  ElemType Num = Size;
475326938Sdim
476326938Sdim  // In this step half-switching occurs, so coloring can be used.
477326938Sdim  Coloring G({P,Size});
478326938Sdim  const Coloring::MapType &M = G.colors();
479326938Sdim  if (M.empty())
480326938Sdim    return false;
481326938Sdim
482341825Sdim  ColorKind ColorUp = ColorKind::None;
483326938Sdim  for (ElemType J = 0; J != Num; ++J) {
484326938Sdim    ElemType I = P[J];
485326938Sdim    // I is the position in the input,
486326938Sdim    // J is the position in the output.
487326938Sdim    if (I == Ignore)
488326938Sdim      continue;
489341825Sdim    ColorKind C = M.at(I);
490341825Sdim    if (C == ColorKind::None)
491326938Sdim      continue;
492326938Sdim    // During "Step", inputs cannot switch halves, so if the "up" color
493326938Sdim    // is still unknown, make sure that it is selected in such a way that
494326938Sdim    // "I" will stay in the same half.
495326938Sdim    bool InpUp = I < Num/2;
496341825Sdim    if (ColorUp == ColorKind::None)
497326938Sdim      ColorUp = InpUp ? C : G.other(C);
498326938Sdim    if ((C == ColorUp) != InpUp) {
499326938Sdim      // If I should go to a different half than where is it now, give up.
500326938Sdim      return false;
501326938Sdim    }
502326938Sdim
503326938Sdim    uint8_t S;
504326938Sdim    if (InpUp) {
505326938Sdim      S = (J < Num/2) ? Pass : Switch;
506326938Sdim      UseUp = true;
507326938Sdim    } else {
508326938Sdim      S = (J < Num/2) ? Switch : Pass;
509326938Sdim      UseDown = true;
510326938Sdim    }
511326938Sdim    T[J][Pets] = S;
512326938Sdim  }
513326938Sdim
514326938Sdim  // Reorder the working permutation according to the computed switch table
515326938Sdim  // for the last step (i.e. Pets).
516326938Sdim  for (ElemType J = 0, E = Size / 2; J != E; ++J) {
517326938Sdim    ElemType PJ = P[J];         // Current values of P[J]
518326938Sdim    ElemType PC = P[J+Size/2];  // and P[conj(J)]
519326938Sdim    ElemType QJ = PJ;           // New values of P[J]
520326938Sdim    ElemType QC = PC;           // and P[conj(J)]
521326938Sdim    if (T[J][Pets] == Switch)
522326938Sdim      QC = PJ;
523326938Sdim    if (T[J+Size/2][Pets] == Switch)
524326938Sdim      QJ = PC;
525326938Sdim    P[J] = QJ;
526326938Sdim    P[J+Size/2] = QC;
527326938Sdim  }
528326938Sdim
529326938Sdim  for (ElemType J = 0; J != Num; ++J)
530326938Sdim    if (P[J] != Ignore && P[J] >= Num/2)
531326938Sdim      P[J] -= Num/2;
532326938Sdim
533326938Sdim  if (Step+1 < Log) {
534326938Sdim    if (UseUp && !route(P, T, Size/2, Step+1))
535326938Sdim      return false;
536326938Sdim    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
537326938Sdim      return false;
538326938Sdim  }
539326938Sdim  return true;
540326938Sdim}
541326938Sdim
542326938Sdimbool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size,
543326938Sdim                         unsigned Step) {
544326938Sdim  Coloring G({P,Size});
545326938Sdim  const Coloring::MapType &M = G.colors();
546326938Sdim  if (M.empty())
547326938Sdim    return false;
548326938Sdim  ElemType Num = Size;
549326938Sdim
550326938Sdim  unsigned Pets = 2*Log-1 - Step;
551326938Sdim  bool UseUp = false, UseDown = false;
552326938Sdim
553326938Sdim  // Both assignments, i.e. Red->Up and Red->Down are valid, but they will
554326938Sdim  // result in different controls. Let's pick the one where the first
555326938Sdim  // control will be "Pass".
556341825Sdim  ColorKind ColorUp = ColorKind::None;
557326938Sdim  for (ElemType J = 0; J != Num; ++J) {
558326938Sdim    ElemType I = P[J];
559326938Sdim    if (I == Ignore)
560326938Sdim      continue;
561341825Sdim    ColorKind C = M.at(I);
562341825Sdim    if (C == ColorKind::None)
563326938Sdim      continue;
564341825Sdim    if (ColorUp == ColorKind::None) {
565341825Sdim      ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black;
566326938Sdim    }
567326938Sdim    unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2;
568326938Sdim    if (C == ColorUp) {
569326938Sdim      if (I < Num/2)
570326938Sdim        T[I][Step] = Pass;
571326938Sdim      else
572326938Sdim        T[CI][Step] = Switch;
573326938Sdim      T[J][Pets] = (J < Num/2) ? Pass : Switch;
574326938Sdim      UseUp = true;
575326938Sdim    } else { // Down
576326938Sdim      if (I < Num/2)
577326938Sdim        T[CI][Step] = Switch;
578326938Sdim      else
579326938Sdim        T[I][Step] = Pass;
580326938Sdim      T[J][Pets] = (J < Num/2) ? Switch : Pass;
581326938Sdim      UseDown = true;
582326938Sdim    }
583326938Sdim  }
584326938Sdim
585326938Sdim  // Reorder the working permutation according to the computed switch table
586326938Sdim  // for the last step (i.e. Pets).
587326938Sdim  for (ElemType J = 0; J != Num/2; ++J) {
588326938Sdim    ElemType PJ = P[J];         // Current values of P[J]
589326938Sdim    ElemType PC = P[J+Num/2];   // and P[conj(J)]
590326938Sdim    ElemType QJ = PJ;           // New values of P[J]
591326938Sdim    ElemType QC = PC;           // and P[conj(J)]
592326938Sdim    if (T[J][Pets] == Switch)
593326938Sdim      QC = PJ;
594326938Sdim    if (T[J+Num/2][Pets] == Switch)
595326938Sdim      QJ = PC;
596326938Sdim    P[J] = QJ;
597326938Sdim    P[J+Num/2] = QC;
598326938Sdim  }
599326938Sdim
600326938Sdim  for (ElemType J = 0; J != Num; ++J)
601326938Sdim    if (P[J] != Ignore && P[J] >= Num/2)
602326938Sdim      P[J] -= Num/2;
603326938Sdim
604326938Sdim  if (Step+1 < Log) {
605326938Sdim    if (UseUp && !route(P, T, Size/2, Step+1))
606326938Sdim      return false;
607326938Sdim    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
608326938Sdim      return false;
609326938Sdim  }
610326938Sdim  return true;
611326938Sdim}
612326938Sdim
613326938Sdim// --------------------------------------------------------------------
614326938Sdim// Support for building selection results (output instructions that are
615326938Sdim// parts of the final selection).
616326938Sdim
617327330Sdimnamespace {
618326938Sdimstruct OpRef {
619326938Sdim  OpRef(SDValue V) : OpV(V) {}
620326938Sdim  bool isValue() const { return OpV.getNode() != nullptr; }
621326938Sdim  bool isValid() const { return isValue() || !(OpN & Invalid); }
622326938Sdim  static OpRef res(int N) { return OpRef(Whole | (N & Index)); }
623326938Sdim  static OpRef fail() { return OpRef(Invalid); }
624326938Sdim
625326938Sdim  static OpRef lo(const OpRef &R) {
626326938Sdim    assert(!R.isValue());
627326938Sdim    return OpRef(R.OpN & (Undef | Index | LoHalf));
628326938Sdim  }
629326938Sdim  static OpRef hi(const OpRef &R) {
630326938Sdim    assert(!R.isValue());
631326938Sdim    return OpRef(R.OpN & (Undef | Index | HiHalf));
632326938Sdim  }
633326938Sdim  static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); }
634326938Sdim
635326938Sdim  // Direct value.
636326938Sdim  SDValue OpV = SDValue();
637326938Sdim
638326938Sdim  // Reference to the operand of the input node:
639326938Sdim  // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
640326938Sdim  // operand index:
641326938Sdim  // If bit 30 is set, it's the high half of the operand.
642326938Sdim  // If bit 29 is set, it's the low half of the operand.
643326938Sdim  unsigned OpN = 0;
644326938Sdim
645326938Sdim  enum : unsigned {
646326938Sdim    Invalid = 0x10000000,
647326938Sdim    LoHalf  = 0x20000000,
648326938Sdim    HiHalf  = 0x40000000,
649326938Sdim    Whole   = LoHalf | HiHalf,
650326938Sdim    Undef   = 0x80000000,
651326938Sdim    Index   = 0x0FFFFFFF,  // Mask of the index value.
652326938Sdim    IndexBits = 28,
653326938Sdim  };
654326938Sdim
655344779Sdim  LLVM_DUMP_METHOD
656326938Sdim  void print(raw_ostream &OS, const SelectionDAG &G) const;
657326938Sdim
658326938Sdimprivate:
659326938Sdim  OpRef(unsigned N) : OpN(N) {}
660326938Sdim};
661326938Sdim
662326938Sdimstruct NodeTemplate {
663326938Sdim  NodeTemplate() = default;
664326938Sdim  unsigned Opc = 0;
665326938Sdim  MVT Ty = MVT::Other;
666326938Sdim  std::vector<OpRef> Ops;
667326938Sdim
668344779Sdim  LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const;
669326938Sdim};
670326938Sdim
671326938Sdimstruct ResultStack {
672326938Sdim  ResultStack(SDNode *Inp)
673326938Sdim    : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {}
674326938Sdim  SDNode *InpNode;
675326938Sdim  MVT InpTy;
676326938Sdim  unsigned push(const NodeTemplate &Res) {
677326938Sdim    List.push_back(Res);
678326938Sdim    return List.size()-1;
679326938Sdim  }
680326938Sdim  unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) {
681326938Sdim    NodeTemplate Res;
682326938Sdim    Res.Opc = Opc;
683326938Sdim    Res.Ty = Ty;
684326938Sdim    Res.Ops = Ops;
685326938Sdim    return push(Res);
686326938Sdim  }
687326938Sdim  bool empty() const { return List.empty(); }
688326938Sdim  unsigned size() const { return List.size(); }
689326938Sdim  unsigned top() const { return size()-1; }
690326938Sdim  const NodeTemplate &operator[](unsigned I) const { return List[I]; }
691326938Sdim  unsigned reset(unsigned NewTop) {
692326938Sdim    List.resize(NewTop+1);
693326938Sdim    return NewTop;
694326938Sdim  }
695326938Sdim
696326938Sdim  using BaseType = std::vector<NodeTemplate>;
697326938Sdim  BaseType::iterator begin() { return List.begin(); }
698326938Sdim  BaseType::iterator end()   { return List.end(); }
699326938Sdim  BaseType::const_iterator begin() const { return List.begin(); }
700326938Sdim  BaseType::const_iterator end() const   { return List.end(); }
701326938Sdim
702326938Sdim  BaseType List;
703326938Sdim
704344779Sdim  LLVM_DUMP_METHOD
705326938Sdim  void print(raw_ostream &OS, const SelectionDAG &G) const;
706326938Sdim};
707327330Sdim} // namespace
708326938Sdim
709344779Sdim#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
710326938Sdimvoid OpRef::print(raw_ostream &OS, const SelectionDAG &G) const {
711326938Sdim  if (isValue()) {
712326938Sdim    OpV.getNode()->print(OS, &G);
713326938Sdim    return;
714326938Sdim  }
715326938Sdim  if (OpN & Invalid) {
716326938Sdim    OS << "invalid";
717326938Sdim    return;
718326938Sdim  }
719326938Sdim  if (OpN & Undef) {
720326938Sdim    OS << "undef";
721326938Sdim    return;
722326938Sdim  }
723326938Sdim  if ((OpN & Whole) != Whole) {
724326938Sdim    assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf);
725326938Sdim    if (OpN & LoHalf)
726326938Sdim      OS << "lo ";
727326938Sdim    else
728326938Sdim      OS << "hi ";
729326938Sdim  }
730326938Sdim  OS << '#' << SignExtend32(OpN & Index, IndexBits);
731326938Sdim}
732326938Sdim
733326938Sdimvoid NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const {
734326938Sdim  const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo();
735326938Sdim  OS << format("%8s", EVT(Ty).getEVTString().c_str()) << "  "
736326938Sdim     << TII.getName(Opc);
737326938Sdim  bool Comma = false;
738326938Sdim  for (const auto &R : Ops) {
739326938Sdim    if (Comma)
740326938Sdim      OS << ',';
741326938Sdim    Comma = true;
742326938Sdim    OS << ' ';
743326938Sdim    R.print(OS, G);
744326938Sdim  }
745326938Sdim}
746326938Sdim
747326938Sdimvoid ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const {
748326938Sdim  OS << "Input node:\n";
749326938Sdim#ifndef NDEBUG
750326938Sdim  InpNode->dumpr(&G);
751326938Sdim#endif
752326938Sdim  OS << "Result templates:\n";
753326938Sdim  for (unsigned I = 0, E = List.size(); I != E; ++I) {
754326938Sdim    OS << '[' << I << "] ";
755326938Sdim    List[I].print(OS, G);
756326938Sdim    OS << '\n';
757326938Sdim  }
758326938Sdim}
759344779Sdim#endif
760326938Sdim
761327330Sdimnamespace {
762326938Sdimstruct ShuffleMask {
763326938Sdim  ShuffleMask(ArrayRef<int> M) : Mask(M) {
764326938Sdim    for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
765326938Sdim      int M = Mask[I];
766326938Sdim      if (M == -1)
767326938Sdim        continue;
768326938Sdim      MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M);
769326938Sdim      MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M);
770326938Sdim    }
771326938Sdim  }
772326938Sdim
773326938Sdim  ArrayRef<int> Mask;
774326938Sdim  int MinSrc = -1, MaxSrc = -1;
775326938Sdim
776326938Sdim  ShuffleMask lo() const {
777326938Sdim    size_t H = Mask.size()/2;
778327134Sdim    return ShuffleMask(Mask.take_front(H));
779326938Sdim  }
780326938Sdim  ShuffleMask hi() const {
781326938Sdim    size_t H = Mask.size()/2;
782327134Sdim    return ShuffleMask(Mask.take_back(H));
783326938Sdim  }
784341825Sdim
785341825Sdim  void print(raw_ostream &OS) const {
786341825Sdim    OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {";
787341825Sdim    for (int M : Mask)
788341825Sdim      OS << ' ' << M;
789341825Sdim    OS << " }";
790341825Sdim  }
791326938Sdim};
792327330Sdim} // namespace
793326938Sdim
794326938Sdim// --------------------------------------------------------------------
795326938Sdim// The HvxSelector class.
796326938Sdim
797326938Sdimstatic const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) {
798326938Sdim  return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo());
799326938Sdim}
800326938Sdimstatic const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) {
801326938Sdim  return static_cast<const HexagonSubtarget&>(G.getSubtarget());
802326938Sdim}
803326938Sdim
804326938Sdimnamespace llvm {
805326938Sdim  struct HvxSelector {
806326938Sdim    const HexagonTargetLowering &Lower;
807326938Sdim    HexagonDAGToDAGISel &ISel;
808326938Sdim    SelectionDAG &DAG;
809326938Sdim    const HexagonSubtarget &HST;
810326938Sdim    const unsigned HwLen;
811326938Sdim
812326938Sdim    HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G)
813326938Sdim      : Lower(getHexagonLowering(G)),  ISel(HS), DAG(G),
814326938Sdim        HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {}
815326938Sdim
816326938Sdim    MVT getSingleVT(MVT ElemTy) const {
817326938Sdim      unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8);
818326938Sdim      return MVT::getVectorVT(ElemTy, NumElems);
819326938Sdim    }
820326938Sdim
821326938Sdim    MVT getPairVT(MVT ElemTy) const {
822326938Sdim      unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8);
823326938Sdim      return MVT::getVectorVT(ElemTy, NumElems);
824326938Sdim    }
825326938Sdim
826326938Sdim    void selectShuffle(SDNode *N);
827326938Sdim    void selectRor(SDNode *N);
828341825Sdim    void selectVAlign(SDNode *N);
829326938Sdim
830326938Sdim  private:
831326938Sdim    void materialize(const ResultStack &Results);
832326938Sdim
833326938Sdim    SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl);
834326938Sdim
835326938Sdim    enum : unsigned {
836326938Sdim      None,
837326938Sdim      PackMux,
838326938Sdim    };
839326938Sdim    OpRef concat(OpRef Va, OpRef Vb, ResultStack &Results);
840326938Sdim    OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
841326938Sdim                MutableArrayRef<int> NewMask, unsigned Options = None);
842326938Sdim    OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
843326938Sdim                MutableArrayRef<int> NewMask);
844326938Sdim    OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
845326938Sdim                ResultStack &Results);
846326938Sdim    OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
847326938Sdim                ResultStack &Results);
848326938Sdim
849326938Sdim    OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results);
850326938Sdim    OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
851326938Sdim    OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results);
852326938Sdim    OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
853326938Sdim
854326938Sdim    OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results);
855326938Sdim    OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
856326938Sdim    OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results);
857326938Sdim    OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results);
858326938Sdim
859326938Sdim    bool selectVectorConstants(SDNode *N);
860326938Sdim    bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy,
861326938Sdim                          SDValue Va, SDValue Vb, SDNode *N);
862326938Sdim
863326938Sdim  };
864326938Sdim}
865326938Sdim
866326938Sdimstatic void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL,
867326938Sdim                      MutableArrayRef<int> MaskR) {
868326938Sdim  unsigned VecLen = Mask.size();
869326938Sdim  assert(MaskL.size() == VecLen && MaskR.size() == VecLen);
870326938Sdim  for (unsigned I = 0; I != VecLen; ++I) {
871326938Sdim    int M = Mask[I];
872326938Sdim    if (M < 0) {
873326938Sdim      MaskL[I] = MaskR[I] = -1;
874326938Sdim    } else if (unsigned(M) < VecLen) {
875326938Sdim      MaskL[I] = M;
876326938Sdim      MaskR[I] = -1;
877326938Sdim    } else {
878326938Sdim      MaskL[I] = -1;
879326938Sdim      MaskR[I] = M-VecLen;
880326938Sdim    }
881326938Sdim  }
882326938Sdim}
883326938Sdim
884326938Sdimstatic std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc,
885326938Sdim                                         unsigned MaxLen) {
886326938Sdim  assert(A.size() > 0 && A.size() >= MaxLen);
887326938Sdim  int F = A[0];
888326938Sdim  int E = F;
889326938Sdim  for (unsigned I = 1; I != MaxLen; ++I) {
890326938Sdim    if (A[I] - E != Inc)
891326938Sdim      return { F, I };
892326938Sdim    E = A[I];
893326938Sdim  }
894326938Sdim  return { F, MaxLen };
895326938Sdim}
896326938Sdim
897326938Sdimstatic bool isUndef(ArrayRef<int> Mask) {
898326938Sdim  for (int Idx : Mask)
899326938Sdim    if (Idx != -1)
900326938Sdim      return false;
901326938Sdim  return true;
902326938Sdim}
903326938Sdim
904326938Sdimstatic bool isIdentity(ArrayRef<int> Mask) {
905326938Sdim  for (int I = 0, E = Mask.size(); I != E; ++I) {
906326938Sdim    int M = Mask[I];
907326938Sdim    if (M >= 0 && M != I)
908326938Sdim      return false;
909326938Sdim  }
910326938Sdim  return true;
911326938Sdim}
912326938Sdim
913326938Sdimstatic bool isPermutation(ArrayRef<int> Mask) {
914326938Sdim  // Check by adding all numbers only works if there is no overflow.
915326938Sdim  assert(Mask.size() < 0x00007FFF && "Sanity failure");
916326938Sdim  int Sum = 0;
917326938Sdim  for (int Idx : Mask) {
918326938Sdim    if (Idx == -1)
919326938Sdim      return false;
920326938Sdim    Sum += Idx;
921326938Sdim  }
922326938Sdim  int N = Mask.size();
923326938Sdim  return 2*Sum == N*(N-1);
924326938Sdim}
925326938Sdim
926326938Sdimbool HvxSelector::selectVectorConstants(SDNode *N) {
927341825Sdim  // Constant vectors are generated as loads from constant pools or as
928341825Sdim  // splats of a constant value. Since they are generated during the
929341825Sdim  // selection process, the main selection algorithm is not aware of them.
930341825Sdim  // Select them directly here.
931341825Sdim  SmallVector<SDNode*,4> Nodes;
932341825Sdim  SetVector<SDNode*> WorkQ;
933327134Sdim
934341825Sdim  // The one-use test for VSPLATW's operand may fail due to dead nodes
935341825Sdim  // left over in the DAG.
936341825Sdim  DAG.RemoveDeadNodes();
937341825Sdim
938327134Sdim  // The DAG can change (due to CSE) during selection, so cache all the
939327134Sdim  // unselected nodes first to avoid traversing a mutating DAG.
940327134Sdim
941341825Sdim  auto IsNodeToSelect = [] (SDNode *N) {
942341825Sdim    if (N->isMachineOpcode())
943341825Sdim      return false;
944341825Sdim    switch (N->getOpcode()) {
945341825Sdim      case HexagonISD::VZERO:
946341825Sdim      case HexagonISD::VSPLATW:
947341825Sdim        return true;
948341825Sdim      case ISD::LOAD: {
949341825Sdim        SDValue Addr = cast<LoadSDNode>(N)->getBasePtr();
950341825Sdim        unsigned AddrOpc = Addr.getOpcode();
951341825Sdim        if (AddrOpc == HexagonISD::AT_PCREL || AddrOpc == HexagonISD::CP)
952341825Sdim          if (Addr.getOperand(0).getOpcode() == ISD::TargetConstantPool)
953341825Sdim            return true;
954341825Sdim      }
955341825Sdim      break;
956326938Sdim    }
957341825Sdim    // Make sure to select the operand of VSPLATW.
958341825Sdim    bool IsSplatOp = N->hasOneUse() &&
959341825Sdim                     N->use_begin()->getOpcode() == HexagonISD::VSPLATW;
960341825Sdim    return IsSplatOp;
961327134Sdim  };
962327134Sdim
963341825Sdim  WorkQ.insert(N);
964327134Sdim  for (unsigned i = 0; i != WorkQ.size(); ++i) {
965327134Sdim    SDNode *W = WorkQ[i];
966341825Sdim    if (IsNodeToSelect(W))
967341825Sdim      Nodes.push_back(W);
968327134Sdim    for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j)
969341825Sdim      WorkQ.insert(W->getOperand(j).getNode());
970326938Sdim  }
971326938Sdim
972341825Sdim  for (SDNode *L : Nodes)
973327134Sdim    ISel.Select(L);
974327134Sdim
975341825Sdim  return !Nodes.empty();
976326938Sdim}
977326938Sdim
978326938Sdimvoid HvxSelector::materialize(const ResultStack &Results) {
979326938Sdim  DEBUG_WITH_TYPE("isel", {
980326938Sdim    dbgs() << "Materializing\n";
981326938Sdim    Results.print(dbgs(), DAG);
982326938Sdim  });
983326938Sdim  if (Results.empty())
984326938Sdim    return;
985326938Sdim  const SDLoc &dl(Results.InpNode);
986326938Sdim  std::vector<SDValue> Output;
987326938Sdim
988326938Sdim  for (unsigned I = 0, E = Results.size(); I != E; ++I) {
989326938Sdim    const NodeTemplate &Node = Results[I];
990326938Sdim    std::vector<SDValue> Ops;
991326938Sdim    for (const OpRef &R : Node.Ops) {
992326938Sdim      assert(R.isValid());
993326938Sdim      if (R.isValue()) {
994326938Sdim        Ops.push_back(R.OpV);
995326938Sdim        continue;
996326938Sdim      }
997326938Sdim      if (R.OpN & OpRef::Undef) {
998326938Sdim        MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index);
999326938Sdim        Ops.push_back(ISel.selectUndef(dl, MVT(SVT)));
1000326938Sdim        continue;
1001326938Sdim      }
1002326938Sdim      // R is an index of a result.
1003326938Sdim      unsigned Part = R.OpN & OpRef::Whole;
1004326938Sdim      int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits);
1005326938Sdim      if (Idx < 0)
1006326938Sdim        Idx += I;
1007326938Sdim      assert(Idx >= 0 && unsigned(Idx) < Output.size());
1008326938Sdim      SDValue Op = Output[Idx];
1009326938Sdim      MVT OpTy = Op.getValueType().getSimpleVT();
1010326938Sdim      if (Part != OpRef::Whole) {
1011326938Sdim        assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf);
1012341825Sdim        MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(),
1013341825Sdim                                      OpTy.getVectorNumElements()/2);
1014341825Sdim        unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo
1015341825Sdim                                               : Hexagon::vsub_hi;
1016341825Sdim        Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op);
1017326938Sdim      }
1018326938Sdim      Ops.push_back(Op);
1019326938Sdim    } // for (Node : Results)
1020326938Sdim
1021326938Sdim    assert(Node.Ty != MVT::Other);
1022326938Sdim    SDNode *ResN = (Node.Opc == TargetOpcode::COPY)
1023326938Sdim                      ? Ops.front().getNode()
1024326938Sdim                      : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops);
1025326938Sdim    Output.push_back(SDValue(ResN, 0));
1026326938Sdim  }
1027326938Sdim
1028326938Sdim  SDNode *OutN = Output.back().getNode();
1029326938Sdim  SDNode *InpN = Results.InpNode;
1030326938Sdim  DEBUG_WITH_TYPE("isel", {
1031326938Sdim    dbgs() << "Generated node:\n";
1032326938Sdim    OutN->dumpr(&DAG);
1033326938Sdim  });
1034326938Sdim
1035326938Sdim  ISel.ReplaceNode(InpN, OutN);
1036326938Sdim  selectVectorConstants(OutN);
1037326938Sdim  DAG.RemoveDeadNodes();
1038326938Sdim}
1039326938Sdim
1040326938SdimOpRef HvxSelector::concat(OpRef Lo, OpRef Hi, ResultStack &Results) {
1041326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1042326938Sdim  const SDLoc &dl(Results.InpNode);
1043326938Sdim  Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), {
1044326938Sdim    DAG.getTargetConstant(Hexagon::HvxWRRegClassID, dl, MVT::i32),
1045326938Sdim    Lo, DAG.getTargetConstant(Hexagon::vsub_lo, dl, MVT::i32),
1046326938Sdim    Hi, DAG.getTargetConstant(Hexagon::vsub_hi, dl, MVT::i32),
1047326938Sdim  });
1048326938Sdim  return OpRef::res(Results.top());
1049326938Sdim}
1050326938Sdim
1051326938Sdim// Va, Vb are single vectors, SM can be arbitrarily long.
1052326938SdimOpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb,
1053326938Sdim                         ResultStack &Results, MutableArrayRef<int> NewMask,
1054326938Sdim                         unsigned Options) {
1055326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1056326938Sdim  if (!Va.isValid() || !Vb.isValid())
1057326938Sdim    return OpRef::fail();
1058326938Sdim
1059326938Sdim  int VecLen = SM.Mask.size();
1060326938Sdim  MVT Ty = getSingleVT(MVT::i8);
1061326938Sdim
1062341825Sdim  auto IsExtSubvector = [] (ShuffleMask M) {
1063341825Sdim    assert(M.MinSrc >= 0 && M.MaxSrc >= 0);
1064341825Sdim    for (int I = 0, E = M.Mask.size(); I != E; ++I) {
1065341825Sdim      if (M.Mask[I] >= 0 && M.Mask[I]-I != M.MinSrc)
1066341825Sdim        return false;
1067341825Sdim    }
1068341825Sdim    return true;
1069341825Sdim  };
1070341825Sdim
1071326938Sdim  if (SM.MaxSrc - SM.MinSrc < int(HwLen)) {
1072341825Sdim    if (SM.MinSrc == 0 || SM.MinSrc == int(HwLen) || !IsExtSubvector(SM)) {
1073341825Sdim      // If the mask picks elements from only one of the operands, return
1074341825Sdim      // that operand, and update the mask to use index 0 to refer to the
1075341825Sdim      // first element of that operand.
1076341825Sdim      // If the mask extracts a subvector, it will be handled below, so
1077341825Sdim      // skip it here.
1078341825Sdim      if (SM.MaxSrc < int(HwLen)) {
1079341825Sdim        memcpy(NewMask.data(), SM.Mask.data(), sizeof(int)*VecLen);
1080341825Sdim        return Va;
1081341825Sdim      }
1082341825Sdim      if (SM.MinSrc >= int(HwLen)) {
1083341825Sdim        for (int I = 0; I != VecLen; ++I) {
1084341825Sdim          int M = SM.Mask[I];
1085341825Sdim          if (M != -1)
1086341825Sdim            M -= HwLen;
1087341825Sdim          NewMask[I] = M;
1088341825Sdim        }
1089341825Sdim        return Vb;
1090341825Sdim      }
1091341825Sdim    }
1092341825Sdim    int MinSrc = SM.MinSrc;
1093326938Sdim    if (SM.MaxSrc < int(HwLen)) {
1094341825Sdim      Vb = Va;
1095341825Sdim    } else if (SM.MinSrc > int(HwLen)) {
1096341825Sdim      Va = Vb;
1097341825Sdim      MinSrc = SM.MinSrc - HwLen;
1098326938Sdim    }
1099326938Sdim    const SDLoc &dl(Results.InpNode);
1100341825Sdim    if (isUInt<3>(MinSrc) || isUInt<3>(HwLen-MinSrc)) {
1101341825Sdim      bool IsRight = isUInt<3>(MinSrc); // Right align.
1102341825Sdim      SDValue S = DAG.getTargetConstant(IsRight ? MinSrc : HwLen-MinSrc,
1103341825Sdim                                        dl, MVT::i32);
1104341825Sdim      unsigned Opc = IsRight ? Hexagon::V6_valignbi
1105341825Sdim                             : Hexagon::V6_vlalignbi;
1106341825Sdim      Results.push(Opc, Ty, {Vb, Va, S});
1107326938Sdim    } else {
1108341825Sdim      SDValue S = DAG.getTargetConstant(MinSrc, dl, MVT::i32);
1109326938Sdim      Results.push(Hexagon::A2_tfrsi, MVT::i32, {S});
1110326938Sdim      unsigned Top = Results.top();
1111326938Sdim      Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(Top)});
1112326938Sdim    }
1113326938Sdim    for (int I = 0; I != VecLen; ++I) {
1114326938Sdim      int M = SM.Mask[I];
1115326938Sdim      if (M != -1)
1116326938Sdim        M -= SM.MinSrc;
1117326938Sdim      NewMask[I] = M;
1118326938Sdim    }
1119326938Sdim    return OpRef::res(Results.top());
1120326938Sdim  }
1121326938Sdim
1122326938Sdim  if (Options & PackMux) {
1123326938Sdim    // If elements picked from Va and Vb have all different (source) indexes
1124326938Sdim    // (relative to the start of the argument), do a mux, and update the mask.
1125326938Sdim    BitVector Picked(HwLen);
1126326938Sdim    SmallVector<uint8_t,128> MuxBytes(HwLen);
1127326938Sdim    bool CanMux = true;
1128326938Sdim    for (int I = 0; I != VecLen; ++I) {
1129326938Sdim      int M = SM.Mask[I];
1130326938Sdim      if (M == -1)
1131326938Sdim        continue;
1132326938Sdim      if (M >= int(HwLen))
1133326938Sdim        M -= HwLen;
1134326938Sdim      else
1135326938Sdim        MuxBytes[M] = 0xFF;
1136326938Sdim      if (Picked[M]) {
1137326938Sdim        CanMux = false;
1138326938Sdim        break;
1139326938Sdim      }
1140326938Sdim      NewMask[I] = M;
1141326938Sdim    }
1142326938Sdim    if (CanMux)
1143326938Sdim      return vmuxs(MuxBytes, Va, Vb, Results);
1144326938Sdim  }
1145326938Sdim
1146326938Sdim  return OpRef::fail();
1147326938Sdim}
1148326938Sdim
1149326938SdimOpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb,
1150326938Sdim                         ResultStack &Results, MutableArrayRef<int> NewMask) {
1151326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1152326938Sdim  unsigned HalfMask = 0;
1153326938Sdim  unsigned LogHw = Log2_32(HwLen);
1154326938Sdim  for (int M : SM.Mask) {
1155326938Sdim    if (M == -1)
1156326938Sdim      continue;
1157326938Sdim    HalfMask |= (1u << (M >> LogHw));
1158326938Sdim  }
1159326938Sdim
1160326938Sdim  if (HalfMask == 0)
1161326938Sdim    return OpRef::undef(getPairVT(MVT::i8));
1162326938Sdim
1163326938Sdim  // If more than two halves are used, bail.
1164326938Sdim  // TODO: be more aggressive here?
1165326938Sdim  if (countPopulation(HalfMask) > 2)
1166326938Sdim    return OpRef::fail();
1167326938Sdim
1168326938Sdim  MVT HalfTy = getSingleVT(MVT::i8);
1169326938Sdim
1170326938Sdim  OpRef Inp[2] = { Va, Vb };
1171326938Sdim  OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) };
1172326938Sdim
1173326938Sdim  uint8_t HalfIdx[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
1174326938Sdim  unsigned Idx = 0;
1175326938Sdim  for (unsigned I = 0; I != 4; ++I) {
1176326938Sdim    if ((HalfMask & (1u << I)) == 0)
1177326938Sdim      continue;
1178326938Sdim    assert(Idx < 2);
1179326938Sdim    OpRef Op = Inp[I/2];
1180326938Sdim    Out[Idx] = (I & 1) ? OpRef::hi(Op) : OpRef::lo(Op);
1181326938Sdim    HalfIdx[I] = Idx++;
1182326938Sdim  }
1183326938Sdim
1184326938Sdim  int VecLen = SM.Mask.size();
1185326938Sdim  for (int I = 0; I != VecLen; ++I) {
1186326938Sdim    int M = SM.Mask[I];
1187326938Sdim    if (M >= 0) {
1188326938Sdim      uint8_t Idx = HalfIdx[M >> LogHw];
1189326938Sdim      assert(Idx == 0 || Idx == 1);
1190326938Sdim      M = (M & (HwLen-1)) + HwLen*Idx;
1191326938Sdim    }
1192326938Sdim    NewMask[I] = M;
1193326938Sdim  }
1194326938Sdim
1195326938Sdim  return concat(Out[0], Out[1], Results);
1196326938Sdim}
1197326938Sdim
1198326938SdimOpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1199326938Sdim                         ResultStack &Results) {
1200326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1201326938Sdim  MVT ByteTy = getSingleVT(MVT::i8);
1202326938Sdim  MVT BoolTy = MVT::getVectorVT(MVT::i1, 8*HwLen); // XXX
1203326938Sdim  const SDLoc &dl(Results.InpNode);
1204326938Sdim  SDValue B = getVectorConstant(Bytes, dl);
1205326938Sdim  Results.push(Hexagon::V6_vd0, ByteTy, {});
1206326938Sdim  Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)});
1207326938Sdim  Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va});
1208326938Sdim  return OpRef::res(Results.top());
1209326938Sdim}
1210326938Sdim
1211326938SdimOpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1212326938Sdim                         ResultStack &Results) {
1213326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1214326938Sdim  size_t S = Bytes.size() / 2;
1215327134Sdim  OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results);
1216327134Sdim  OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results);
1217326938Sdim  return concat(L, H, Results);
1218326938Sdim}
1219326938Sdim
1220326938SdimOpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1221326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1222326938Sdim  unsigned VecLen = SM.Mask.size();
1223326938Sdim  assert(HwLen == VecLen);
1224326938Sdim  (void)VecLen;
1225326938Sdim  assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); }));
1226326938Sdim
1227326938Sdim  if (isIdentity(SM.Mask))
1228326938Sdim    return Va;
1229326938Sdim  if (isUndef(SM.Mask))
1230326938Sdim    return OpRef::undef(getSingleVT(MVT::i8));
1231326938Sdim
1232326938Sdim  OpRef P = perfect(SM, Va, Results);
1233326938Sdim  if (P.isValid())
1234326938Sdim    return P;
1235326938Sdim  return butterfly(SM, Va, Results);
1236326938Sdim}
1237326938Sdim
1238326938SdimOpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb,
1239326938Sdim                           ResultStack &Results) {
1240326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1241326938Sdim  if (isUndef(SM.Mask))
1242326938Sdim    return OpRef::undef(getSingleVT(MVT::i8));
1243326938Sdim
1244326938Sdim  OpRef C = contracting(SM, Va, Vb, Results);
1245326938Sdim  if (C.isValid())
1246326938Sdim    return C;
1247326938Sdim
1248326938Sdim  int VecLen = SM.Mask.size();
1249326938Sdim  SmallVector<int,128> NewMask(VecLen);
1250326938Sdim  OpRef P = packs(SM, Va, Vb, Results, NewMask);
1251326938Sdim  if (P.isValid())
1252326938Sdim    return shuffs1(ShuffleMask(NewMask), P, Results);
1253326938Sdim
1254326938Sdim  SmallVector<int,128> MaskL(VecLen), MaskR(VecLen);
1255326938Sdim  splitMask(SM.Mask, MaskL, MaskR);
1256326938Sdim
1257326938Sdim  OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results);
1258326938Sdim  OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results);
1259326938Sdim  if (!L.isValid() || !R.isValid())
1260326938Sdim    return OpRef::fail();
1261326938Sdim
1262326938Sdim  SmallVector<uint8_t,128> Bytes(VecLen);
1263326938Sdim  for (int I = 0; I != VecLen; ++I) {
1264326938Sdim    if (MaskL[I] != -1)
1265326938Sdim      Bytes[I] = 0xFF;
1266326938Sdim  }
1267326938Sdim  return vmuxs(Bytes, L, R, Results);
1268326938Sdim}
1269326938Sdim
1270326938SdimOpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1271326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1272326938Sdim  int VecLen = SM.Mask.size();
1273326938Sdim
1274326938Sdim  if (isIdentity(SM.Mask))
1275326938Sdim    return Va;
1276326938Sdim  if (isUndef(SM.Mask))
1277326938Sdim    return OpRef::undef(getPairVT(MVT::i8));
1278326938Sdim
1279326938Sdim  SmallVector<int,128> PackedMask(VecLen);
1280326938Sdim  OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask);
1281326938Sdim  if (P.isValid()) {
1282326938Sdim    ShuffleMask PM(PackedMask);
1283326938Sdim    OpRef E = expanding(PM, P, Results);
1284326938Sdim    if (E.isValid())
1285326938Sdim      return E;
1286326938Sdim
1287326938Sdim    OpRef L = shuffs1(PM.lo(), P, Results);
1288326938Sdim    OpRef H = shuffs1(PM.hi(), P, Results);
1289326938Sdim    if (L.isValid() && H.isValid())
1290326938Sdim      return concat(L, H, Results);
1291326938Sdim  }
1292326938Sdim
1293326938Sdim  OpRef R = perfect(SM, Va, Results);
1294326938Sdim  if (R.isValid())
1295326938Sdim    return R;
1296326938Sdim  // TODO commute the mask and try the opposite order of the halves.
1297326938Sdim
1298326938Sdim  OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results);
1299326938Sdim  OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results);
1300326938Sdim  if (L.isValid() && H.isValid())
1301326938Sdim    return concat(L, H, Results);
1302326938Sdim
1303326938Sdim  return OpRef::fail();
1304326938Sdim}
1305326938Sdim
1306326938SdimOpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb,
1307326938Sdim                           ResultStack &Results) {
1308326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1309326938Sdim  if (isUndef(SM.Mask))
1310326938Sdim    return OpRef::undef(getPairVT(MVT::i8));
1311326938Sdim
1312326938Sdim  int VecLen = SM.Mask.size();
1313326938Sdim  SmallVector<int,256> PackedMask(VecLen);
1314326938Sdim  OpRef P = packp(SM, Va, Vb, Results, PackedMask);
1315326938Sdim  if (P.isValid())
1316326938Sdim    return shuffp1(ShuffleMask(PackedMask), P, Results);
1317326938Sdim
1318326938Sdim  SmallVector<int,256> MaskL(VecLen), MaskR(VecLen);
1319341825Sdim  splitMask(SM.Mask, MaskL, MaskR);
1320341825Sdim
1321326938Sdim  OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results);
1322326938Sdim  OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results);
1323326938Sdim  if (!L.isValid() || !R.isValid())
1324326938Sdim    return OpRef::fail();
1325326938Sdim
1326326938Sdim  // Mux the results.
1327326938Sdim  SmallVector<uint8_t,256> Bytes(VecLen);
1328326938Sdim  for (int I = 0; I != VecLen; ++I) {
1329326938Sdim    if (MaskL[I] != -1)
1330326938Sdim      Bytes[I] = 0xFF;
1331326938Sdim  }
1332326938Sdim  return vmuxp(Bytes, L, R, Results);
1333326938Sdim}
1334326938Sdim
1335344779Sdimnamespace {
1336344779Sdim  struct Deleter : public SelectionDAG::DAGNodeDeletedListener {
1337344779Sdim    template <typename T>
1338344779Sdim    Deleter(SelectionDAG &D, T &C)
1339344779Sdim      : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) {
1340344779Sdim                                                  C.erase(N);
1341344779Sdim                                                }) {}
1342344779Sdim  };
1343344779Sdim
1344344779Sdim  template <typename T>
1345344779Sdim  struct NullifyingVector : public T {
1346344779Sdim    DenseMap<SDNode*, SDNode**> Refs;
1347344779Sdim    NullifyingVector(T &&V) : T(V) {
1348344779Sdim      for (unsigned i = 0, e = T::size(); i != e; ++i) {
1349344779Sdim        SDNode *&N = T::operator[](i);
1350344779Sdim        Refs[N] = &N;
1351344779Sdim      }
1352344779Sdim    }
1353344779Sdim    void erase(SDNode *N) {
1354344779Sdim      auto F = Refs.find(N);
1355344779Sdim      if (F != Refs.end())
1356344779Sdim        *F->second = nullptr;
1357344779Sdim    }
1358344779Sdim  };
1359344779Sdim}
1360344779Sdim
1361326938Sdimbool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl,
1362326938Sdim                                   MVT ResTy, SDValue Va, SDValue Vb,
1363326938Sdim                                   SDNode *N) {
1364326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1365326938Sdim  MVT ElemTy = ResTy.getVectorElementType();
1366326938Sdim  assert(ElemTy == MVT::i8);
1367326938Sdim  unsigned VecLen = Mask.size();
1368326938Sdim  bool HavePairs = (2*HwLen == VecLen);
1369326938Sdim  MVT SingleTy = getSingleVT(MVT::i8);
1370326938Sdim
1371344779Sdim  // The prior attempts to handle this shuffle may have left a bunch of
1372344779Sdim  // dead nodes in the DAG (such as constants). These nodes will be added
1373344779Sdim  // at the end of DAG's node list, which at that point had already been
1374344779Sdim  // sorted topologically. In the main selection loop, the node list is
1375344779Sdim  // traversed backwards from the root node, which means that any new
1376344779Sdim  // nodes (from the end of the list) will not be visited.
1377344779Sdim  // Scalarization will replace the shuffle node with the scalarized
1378344779Sdim  // expression, and if that expression reused any if the leftoever (dead)
1379344779Sdim  // nodes, these nodes would not be selected (since the "local" selection
1380344779Sdim  // only visits nodes that are not in AllNodes).
1381344779Sdim  // To avoid this issue, remove all dead nodes from the DAG now.
1382344779Sdim  DAG.RemoveDeadNodes();
1383344779Sdim  DenseSet<SDNode*> AllNodes;
1384344779Sdim  for (SDNode &S : DAG.allnodes())
1385344779Sdim    AllNodes.insert(&S);
1386344779Sdim
1387344779Sdim  Deleter DUA(DAG, AllNodes);
1388344779Sdim
1389326938Sdim  SmallVector<SDValue,128> Ops;
1390344779Sdim  LLVMContext &Ctx = *DAG.getContext();
1391344779Sdim  MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT();
1392326938Sdim  for (int I : Mask) {
1393326938Sdim    if (I < 0) {
1394344779Sdim      Ops.push_back(ISel.selectUndef(dl, LegalTy));
1395326938Sdim      continue;
1396326938Sdim    }
1397326938Sdim    SDValue Vec;
1398326938Sdim    unsigned M = I;
1399326938Sdim    if (M < VecLen) {
1400326938Sdim      Vec = Va;
1401326938Sdim    } else {
1402326938Sdim      Vec = Vb;
1403326938Sdim      M -= VecLen;
1404326938Sdim    }
1405326938Sdim    if (HavePairs) {
1406326938Sdim      if (M < HwLen) {
1407326938Sdim        Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec);
1408326938Sdim      } else {
1409326938Sdim        Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec);
1410326938Sdim        M -= HwLen;
1411326938Sdim      }
1412326938Sdim    }
1413326938Sdim    SDValue Idx = DAG.getConstant(M, dl, MVT::i32);
1414344779Sdim    SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx});
1415326938Sdim    SDValue L = Lower.LowerOperation(Ex, DAG);
1416326938Sdim    assert(L.getNode());
1417326938Sdim    Ops.push_back(L);
1418326938Sdim  }
1419326938Sdim
1420326938Sdim  SDValue LV;
1421326938Sdim  if (2*HwLen == VecLen) {
1422326938Sdim    SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen});
1423326938Sdim    SDValue L0 = Lower.LowerOperation(B0, DAG);
1424326938Sdim    SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen});
1425326938Sdim    SDValue L1 = Lower.LowerOperation(B1, DAG);
1426326938Sdim    // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
1427326938Sdim    // functions may expect to be called only for illegal operations, so
1428326938Sdim    // make sure that they are not called for legal ones. Develop a better
1429326938Sdim    // mechanism for dealing with this.
1430326938Sdim    LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1});
1431326938Sdim  } else {
1432326938Sdim    SDValue BV = DAG.getBuildVector(ResTy, dl, Ops);
1433326938Sdim    LV = Lower.LowerOperation(BV, DAG);
1434326938Sdim  }
1435326938Sdim
1436326938Sdim  assert(!N->use_empty());
1437326938Sdim  ISel.ReplaceNode(N, LV.getNode());
1438326938Sdim
1439344779Sdim  if (AllNodes.count(LV.getNode())) {
1440344779Sdim    DAG.RemoveDeadNodes();
1441344779Sdim    return true;
1442344779Sdim  }
1443344779Sdim
1444344779Sdim  // The lowered build-vector node will now need to be selected. It needs
1445344779Sdim  // to be done here because this node and its submodes are not included
1446344779Sdim  // in the main selection loop.
1447344779Sdim  // Implement essentially the same topological ordering algorithm as is
1448344779Sdim  // used in SelectionDAGISel.
1449344779Sdim
1450344779Sdim  SetVector<SDNode*> SubNodes, TmpQ;
1451344779Sdim  std::map<SDNode*,unsigned> NumOps;
1452344779Sdim
1453344779Sdim  SubNodes.insert(LV.getNode());
1454326938Sdim  for (unsigned I = 0; I != SubNodes.size(); ++I) {
1455344779Sdim    unsigned OpN = 0;
1456344779Sdim    SDNode *S = SubNodes[I];
1457344779Sdim    for (SDValue Op : S->ops()) {
1458344779Sdim      if (AllNodes.count(Op.getNode()))
1459344779Sdim        continue;
1460344779Sdim      SubNodes.insert(Op.getNode());
1461344779Sdim      ++OpN;
1462344779Sdim    }
1463344779Sdim    NumOps.insert({S, OpN});
1464344779Sdim    if (OpN == 0)
1465344779Sdim      TmpQ.insert(S);
1466326938Sdim  }
1467344779Sdim
1468344779Sdim  for (unsigned I = 0; I != TmpQ.size(); ++I) {
1469344779Sdim    SDNode *S = TmpQ[I];
1470344779Sdim    for (SDNode *U : S->uses()) {
1471344779Sdim      if (!SubNodes.count(U))
1472344779Sdim        continue;
1473344779Sdim      auto F = NumOps.find(U);
1474344779Sdim      assert(F != NumOps.end());
1475344779Sdim      assert(F->second > 0);
1476344779Sdim      if (!--F->second)
1477344779Sdim        TmpQ.insert(F->first);
1478344779Sdim    }
1479326938Sdim  }
1480344779Sdim  assert(SubNodes.size() == TmpQ.size());
1481344779Sdim  NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector());
1482326938Sdim
1483344779Sdim  Deleter DUQ(DAG, Queue);
1484344779Sdim  for (SDNode *S : reverse(Queue))
1485344779Sdim    if (S != nullptr)
1486344779Sdim      ISel.Select(S);
1487344779Sdim
1488326938Sdim  DAG.RemoveDeadNodes();
1489326938Sdim  return true;
1490326938Sdim}
1491326938Sdim
1492326938SdimOpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb,
1493326938Sdim                               ResultStack &Results) {
1494326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1495326938Sdim  if (!Va.isValid() || !Vb.isValid())
1496326938Sdim    return OpRef::fail();
1497326938Sdim
1498326938Sdim  // Contracting shuffles, i.e. instructions that always discard some bytes
1499326938Sdim  // from the operand vectors.
1500326938Sdim  //
1501326938Sdim  // V6_vshuff{e,o}b
1502326938Sdim  // V6_vdealb4w
1503326938Sdim  // V6_vpack{e,o}{b,h}
1504326938Sdim
1505326938Sdim  int VecLen = SM.Mask.size();
1506326938Sdim  std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1507326938Sdim  MVT ResTy = getSingleVT(MVT::i8);
1508326938Sdim
1509326938Sdim  // The following shuffles only work for bytes and halfwords. This requires
1510326938Sdim  // the strip length to be 1 or 2.
1511326938Sdim  if (Strip.second != 1 && Strip.second != 2)
1512326938Sdim    return OpRef::fail();
1513326938Sdim
1514326938Sdim  // The patterns for the shuffles, in terms of the starting offsets of the
1515326938Sdim  // consecutive strips (L = length of the strip, N = VecLen):
1516326938Sdim  //
1517326938Sdim  // vpacke:    0, 2L, 4L ... N+0, N+2L, N+4L ...      L = 1 or 2
1518326938Sdim  // vpacko:    L, 3L, 5L ... N+L, N+3L, N+5L ...      L = 1 or 2
1519326938Sdim  //
1520326938Sdim  // vshuffe:   0, N+0, 2L, N+2L, 4L ...               L = 1 or 2
1521326938Sdim  // vshuffo:   L, N+L, 3L, N+3L, 5L ...               L = 1 or 2
1522326938Sdim  //
1523326938Sdim  // vdealb4w:  0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ...
1524326938Sdim
1525326938Sdim  // The value of the element in the mask following the strip will decide
1526326938Sdim  // what kind of a shuffle this can be.
1527326938Sdim  int NextInMask = SM.Mask[Strip.second];
1528326938Sdim
1529326938Sdim  // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask
1530326938Sdim  // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would
1531326938Sdim  // satisfy this.
1532326938Sdim  if (NextInMask < VecLen) {
1533326938Sdim    // vpack{e,o} or vdealb4w
1534326938Sdim    if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) {
1535326938Sdim      int N = VecLen;
1536326938Sdim      // Check if this is vdealb4w (L=1).
1537326938Sdim      for (int I = 0; I != N/4; ++I)
1538326938Sdim        if (SM.Mask[I] != 4*I)
1539326938Sdim          return OpRef::fail();
1540326938Sdim      for (int I = 0; I != N/4; ++I)
1541326938Sdim        if (SM.Mask[I+N/4] != 2 + 4*I)
1542326938Sdim          return OpRef::fail();
1543326938Sdim      for (int I = 0; I != N/4; ++I)
1544326938Sdim        if (SM.Mask[I+N/2] != N + 4*I)
1545326938Sdim          return OpRef::fail();
1546326938Sdim      for (int I = 0; I != N/4; ++I)
1547326938Sdim        if (SM.Mask[I+3*N/4] != N+2 + 4*I)
1548326938Sdim          return OpRef::fail();
1549326938Sdim      // Matched mask for vdealb4w.
1550326938Sdim      Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va});
1551326938Sdim      return OpRef::res(Results.top());
1552326938Sdim    }
1553326938Sdim
1554326938Sdim    // Check if this is vpack{e,o}.
1555326938Sdim    int N = VecLen;
1556326938Sdim    int L = Strip.second;
1557326938Sdim    // Check if the first strip starts at 0 or at L.
1558326938Sdim    if (Strip.first != 0 && Strip.first != L)
1559326938Sdim      return OpRef::fail();
1560326938Sdim    // Examine the rest of the mask.
1561326938Sdim    for (int I = L; I < N; I += L) {
1562327134Sdim      auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1563326938Sdim      // Check whether the mask element at the beginning of each strip
1564326938Sdim      // increases by 2L each time.
1565326938Sdim      if (S.first - Strip.first != 2*I)
1566326938Sdim        return OpRef::fail();
1567326938Sdim      // Check whether each strip is of the same length.
1568326938Sdim      if (S.second != unsigned(L))
1569326938Sdim        return OpRef::fail();
1570326938Sdim    }
1571326938Sdim
1572326938Sdim    // Strip.first == 0  =>  vpacke
1573326938Sdim    // Strip.first == L  =>  vpacko
1574326938Sdim    assert(Strip.first == 0 || Strip.first == L);
1575326938Sdim    using namespace Hexagon;
1576326938Sdim    NodeTemplate Res;
1577326938Sdim    Res.Opc = Strip.second == 1 // Number of bytes.
1578326938Sdim                  ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob)
1579326938Sdim                  : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh);
1580326938Sdim    Res.Ty = ResTy;
1581326938Sdim    Res.Ops = { Vb, Va };
1582326938Sdim    Results.push(Res);
1583326938Sdim    return OpRef::res(Results.top());
1584326938Sdim  }
1585326938Sdim
1586326938Sdim  // Check if this is vshuff{e,o}.
1587326938Sdim  int N = VecLen;
1588326938Sdim  int L = Strip.second;
1589326938Sdim  std::pair<int,unsigned> PrevS = Strip;
1590326938Sdim  bool Flip = false;
1591326938Sdim  for (int I = L; I < N; I += L) {
1592327134Sdim    auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1593326938Sdim    if (S.second != PrevS.second)
1594326938Sdim      return OpRef::fail();
1595326938Sdim    int Diff = Flip ? PrevS.first - S.first + 2*L
1596326938Sdim                    : S.first - PrevS.first;
1597326938Sdim    if (Diff != N)
1598326938Sdim      return OpRef::fail();
1599326938Sdim    Flip ^= true;
1600326938Sdim    PrevS = S;
1601326938Sdim  }
1602326938Sdim  // Strip.first == 0  =>  vshuffe
1603326938Sdim  // Strip.first == L  =>  vshuffo
1604326938Sdim  assert(Strip.first == 0 || Strip.first == L);
1605326938Sdim  using namespace Hexagon;
1606326938Sdim  NodeTemplate Res;
1607326938Sdim  Res.Opc = Strip.second == 1 // Number of bytes.
1608326938Sdim                ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob)
1609326938Sdim                : (Strip.first == 0 ?  V6_vshufeh :  V6_vshufoh);
1610326938Sdim  Res.Ty = ResTy;
1611326938Sdim  Res.Ops = { Vb, Va };
1612326938Sdim  Results.push(Res);
1613326938Sdim  return OpRef::res(Results.top());
1614326938Sdim}
1615326938Sdim
1616326938SdimOpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1617326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1618326938Sdim  // Expanding shuffles (using all elements and inserting into larger vector):
1619326938Sdim  //
1620326938Sdim  // V6_vunpacku{b,h} [*]
1621326938Sdim  //
1622326938Sdim  // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
1623326938Sdim  //
1624326938Sdim  // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
1625326938Sdim  // they are not shuffles.
1626326938Sdim  //
1627326938Sdim  // The argument is a single vector.
1628326938Sdim
1629326938Sdim  int VecLen = SM.Mask.size();
1630326938Sdim  assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type");
1631326938Sdim
1632326938Sdim  std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1633326938Sdim
1634326938Sdim  // The patterns for the unpacks, in terms of the starting offsets of the
1635326938Sdim  // consecutive strips (L = length of the strip, N = VecLen):
1636326938Sdim  //
1637326938Sdim  // vunpacku:  0, -1, L, -1, 2L, -1 ...
1638326938Sdim
1639326938Sdim  if (Strip.first != 0)
1640326938Sdim    return OpRef::fail();
1641326938Sdim
1642326938Sdim  // The vunpackus only handle byte and half-word.
1643326938Sdim  if (Strip.second != 1 && Strip.second != 2)
1644326938Sdim    return OpRef::fail();
1645326938Sdim
1646326938Sdim  int N = VecLen;
1647326938Sdim  int L = Strip.second;
1648326938Sdim
1649326938Sdim  // First, check the non-ignored strips.
1650326938Sdim  for (int I = 2*L; I < 2*N; I += 2*L) {
1651327134Sdim    auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1652326938Sdim    if (S.second != unsigned(L))
1653326938Sdim      return OpRef::fail();
1654326938Sdim    if (2*S.first != I)
1655326938Sdim      return OpRef::fail();
1656326938Sdim  }
1657326938Sdim  // Check the -1s.
1658326938Sdim  for (int I = L; I < 2*N; I += 2*L) {
1659327134Sdim    auto S = findStrip(SM.Mask.drop_front(I), 0, N-I);
1660326938Sdim    if (S.first != -1 || S.second != unsigned(L))
1661326938Sdim      return OpRef::fail();
1662326938Sdim  }
1663326938Sdim
1664326938Sdim  unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub
1665326938Sdim                                   : Hexagon::V6_vunpackuh;
1666326938Sdim  Results.push(Opc, getPairVT(MVT::i8), {Va});
1667326938Sdim  return OpRef::res(Results.top());
1668326938Sdim}
1669326938Sdim
1670326938SdimOpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1671326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1672326938Sdim  // V6_vdeal{b,h}
1673326938Sdim  // V6_vshuff{b,h}
1674326938Sdim
1675326938Sdim  // V6_vshufoe{b,h}  those are quivalent to vshuffvdd(..,{1,2})
1676326938Sdim  // V6_vshuffvdd (V6_vshuff)
1677326938Sdim  // V6_dealvdd (V6_vdeal)
1678326938Sdim
1679326938Sdim  int VecLen = SM.Mask.size();
1680326938Sdim  assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8);
1681326938Sdim  unsigned LogLen = Log2_32(VecLen);
1682326938Sdim  unsigned HwLog = Log2_32(HwLen);
1683326938Sdim  // The result length must be the same as the length of a single vector,
1684326938Sdim  // or a vector pair.
1685326938Sdim  assert(LogLen == HwLog || LogLen == HwLog+1);
1686326938Sdim  bool Extend = (LogLen == HwLog);
1687326938Sdim
1688326938Sdim  if (!isPermutation(SM.Mask))
1689326938Sdim    return OpRef::fail();
1690326938Sdim
1691326938Sdim  SmallVector<unsigned,8> Perm(LogLen);
1692326938Sdim
1693326938Sdim  // Check if this could be a perfect shuffle, or a combination of perfect
1694326938Sdim  // shuffles.
1695326938Sdim  //
1696326938Sdim  // Consider this permutation (using hex digits to make the ASCII diagrams
1697326938Sdim  // easier to read):
1698326938Sdim  //   { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
1699326938Sdim  // This is a "deal" operation: divide the input into two halves, and
1700326938Sdim  // create the output by picking elements by alternating between these two
1701326938Sdim  // halves:
1702326938Sdim  //   0 1 2 3 4 5 6 7    -->    0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F  [*]
1703326938Sdim  //   8 9 A B C D E F
1704326938Sdim  //
1705326938Sdim  // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
1706326938Sdim  // a somwehat different mechanism that could be used to perform shuffle/
1707326938Sdim  // deal operations: a 2x2 transpose.
1708326938Sdim  // Consider the halves of inputs again, they can be interpreted as a 2x8
1709326938Sdim  // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
1710326938Sdim  // together. Now, when considering 2 elements at a time, it will be a 2x4
1711326938Sdim  // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
1712326938Sdim  //   01 23  45 67
1713326938Sdim  //   89 AB  CD EF
1714326938Sdim  // With groups of 4, this will become a single 2x2 matrix, and so on.
1715326938Sdim  //
1716326938Sdim  // The 2x2 transpose instruction works by transposing each of the 2x2
1717326938Sdim  // matrices (or "sub-matrices"), given a specific group size. For example,
1718326938Sdim  // if the group size is 1 (i.e. each element is its own group), there
1719326938Sdim  // will be four transposes of the four 2x2 matrices that form the 2x8.
1720326938Sdim  // For example, with the inputs as above, the result will be:
1721326938Sdim  //   0 8  2 A  4 C  6 E
1722326938Sdim  //   1 9  3 B  5 D  7 F
1723326938Sdim  // Now, this result can be tranposed again, but with the group size of 2:
1724326938Sdim  //   08 19  4C 5D
1725326938Sdim  //   2A 3B  6E 7F
1726326938Sdim  // If we then transpose that result, but with the group size of 4, we get:
1727326938Sdim  //   0819 2A3B
1728326938Sdim  //   4C5D 6E7F
1729326938Sdim  // If we concatenate these two rows, it will be
1730326938Sdim  //   0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
1731326938Sdim  // which is the same as the "deal" [*] above.
1732326938Sdim  //
1733326938Sdim  // In general, a "deal" of individual elements is a series of 2x2 transposes,
1734326938Sdim  // with changing group size. HVX has two instructions:
1735326938Sdim  //   Vdd = V6_vdealvdd Vu, Vv, Rt
1736326938Sdim  //   Vdd = V6_shufvdd  Vu, Vv, Rt
1737326938Sdim  // that perform exactly that. The register Rt controls which transposes are
1738326938Sdim  // going to happen: a bit at position n (counting from 0) indicates that a
1739326938Sdim  // transpose with a group size of 2^n will take place. If multiple bits are
1740326938Sdim  // set, multiple transposes will happen: vdealvdd will perform them starting
1741326938Sdim  // with the largest group size, vshuffvdd will do them in the reverse order.
1742326938Sdim  //
1743326938Sdim  // The main observation is that each 2x2 transpose corresponds to swapping
1744326938Sdim  // columns of bits in the binary representation of the values.
1745326938Sdim  //
1746326938Sdim  // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
1747326938Sdim  // in a given column. The * denote the columns that will be swapped.
1748326938Sdim  // The transpose with the group size 2^n corresponds to swapping columns
1749326938Sdim  // 3 (the highest log) and log2(n):
1750326938Sdim  //
1751326938Sdim  //     3 2 1 0         0 2 1 3         0 2 3 1
1752326938Sdim  //     *     *             * *           * *
1753326938Sdim  //  0  0 0 0 0      0  0 0 0 0      0  0 0 0 0      0  0 0 0 0
1754326938Sdim  //  1  0 0 0 1      8  1 0 0 0      8  1 0 0 0      8  1 0 0 0
1755326938Sdim  //  2  0 0 1 0      2  0 0 1 0      1  0 0 0 1      1  0 0 0 1
1756326938Sdim  //  3  0 0 1 1      A  1 0 1 0      9  1 0 0 1      9  1 0 0 1
1757326938Sdim  //  4  0 1 0 0      4  0 1 0 0      4  0 1 0 0      2  0 0 1 0
1758326938Sdim  //  5  0 1 0 1      C  1 1 0 0      C  1 1 0 0      A  1 0 1 0
1759326938Sdim  //  6  0 1 1 0      6  0 1 1 0      5  0 1 0 1      3  0 0 1 1
1760326938Sdim  //  7  0 1 1 1      E  1 1 1 0      D  1 1 0 1      B  1 0 1 1
1761326938Sdim  //  8  1 0 0 0      1  0 0 0 1      2  0 0 1 0      4  0 1 0 0
1762326938Sdim  //  9  1 0 0 1      9  1 0 0 1      A  1 0 1 0      C  1 1 0 0
1763326938Sdim  //  A  1 0 1 0      3  0 0 1 1      3  0 0 1 1      5  0 1 0 1
1764326938Sdim  //  B  1 0 1 1      B  1 0 1 1      B  1 0 1 1      D  1 1 0 1
1765326938Sdim  //  C  1 1 0 0      5  0 1 0 1      6  0 1 1 0      6  0 1 1 0
1766326938Sdim  //  D  1 1 0 1      D  1 1 0 1      E  1 1 1 0      E  1 1 1 0
1767326938Sdim  //  E  1 1 1 0      7  0 1 1 1      7  0 1 1 1      7  0 1 1 1
1768326938Sdim  //  F  1 1 1 1      F  1 1 1 1      F  1 1 1 1      F  1 1 1 1
1769326938Sdim
1770326938Sdim  auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) {
1771326938Sdim    unsigned X = Mask[0] ^ Mask[Num/2];
1772326938Sdim    // Check that the first half has the X's bits clear.
1773326938Sdim    if ((Mask[0] & X) != 0)
1774326938Sdim      return 0u;
1775326938Sdim    for (unsigned I = 1; I != Num/2; ++I) {
1776326938Sdim      if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X)
1777326938Sdim        return 0u;
1778326938Sdim      if ((Mask[I] & X) != 0)
1779326938Sdim        return 0u;
1780326938Sdim    }
1781326938Sdim    return X;
1782326938Sdim  };
1783326938Sdim
1784326938Sdim  // Create a vector of log2's for each column: Perm[i] corresponds to
1785326938Sdim  // the i-th bit (lsb is 0).
1786326938Sdim  assert(VecLen > 2);
1787326938Sdim  for (unsigned I = VecLen; I >= 2; I >>= 1) {
1788326938Sdim    // Examine the initial segment of Mask of size I.
1789326938Sdim    unsigned X = XorPow2(SM.Mask, I);
1790326938Sdim    if (!isPowerOf2_32(X))
1791326938Sdim      return OpRef::fail();
1792326938Sdim    // Check the other segments of Mask.
1793327134Sdim    for (int J = I; J < VecLen; J += I) {
1794327134Sdim      if (XorPow2(SM.Mask.slice(J, I), I) != X)
1795326938Sdim        return OpRef::fail();
1796326938Sdim    }
1797326938Sdim    Perm[Log2_32(X)] = Log2_32(I)-1;
1798326938Sdim  }
1799326938Sdim
1800326938Sdim  // Once we have Perm, represent it as cycles. Denote the maximum log2
1801326938Sdim  // (equal to log2(VecLen)-1) as M. The cycle containing M can then be
1802326938Sdim  // written as (M a1 a2 a3 ... an). That cycle can be broken up into
1803326938Sdim  // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
1804326938Sdim  // order being from left to right. Any (contiguous) segment where the
1805326938Sdim  // values ai, ai+1...aj are either all increasing or all decreasing,
1806326938Sdim  // can be implemented via a single vshuffvdd/vdealvdd respectively.
1807326938Sdim  //
1808326938Sdim  // If there is a cycle (a1 a2 ... an) that does not involve M, it can
1809326938Sdim  // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
1810326938Sdim  // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
1811326938Sdim  // can be used to generate a sequence of vshuffvdd/vdealvdd.
1812326938Sdim  //
1813326938Sdim  // Example:
1814326938Sdim  // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
1815326938Sdim  // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
1816326938Sdim  //   (4 0 1)(4 0)(4 2 3)(4 2).
1817326938Sdim  // It can then be expanded into swaps as
1818326938Sdim  //   (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
1819326938Sdim  // and broken up into "increasing" segments as
1820326938Sdim  //   [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
1821326938Sdim  // This is equivalent to
1822326938Sdim  //   (4 0 1)(4 0 2 3)(4 2),
1823326938Sdim  // which can be implemented as 3 vshufvdd instructions.
1824326938Sdim
1825326938Sdim  using CycleType = SmallVector<unsigned,8>;
1826326938Sdim  std::set<CycleType> Cycles;
1827326938Sdim  std::set<unsigned> All;
1828326938Sdim
1829326938Sdim  for (unsigned I : Perm)
1830326938Sdim    All.insert(I);
1831326938Sdim
1832326938Sdim  // If the cycle contains LogLen-1, move it to the front of the cycle.
1833326938Sdim  // Otherwise, return the cycle unchanged.
1834326938Sdim  auto canonicalize = [LogLen](const CycleType &C) -> CycleType {
1835326938Sdim    unsigned LogPos, N = C.size();
1836326938Sdim    for (LogPos = 0; LogPos != N; ++LogPos)
1837326938Sdim      if (C[LogPos] == LogLen-1)
1838326938Sdim        break;
1839326938Sdim    if (LogPos == N)
1840326938Sdim      return C;
1841326938Sdim
1842326938Sdim    CycleType NewC(C.begin()+LogPos, C.end());
1843326938Sdim    NewC.append(C.begin(), C.begin()+LogPos);
1844326938Sdim    return NewC;
1845326938Sdim  };
1846326938Sdim
1847326938Sdim  auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) {
1848326938Sdim    // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
1849326938Sdim    // for bytes zero is included, for halfwords is not.
1850326938Sdim    if (Cs.size() != 1)
1851326938Sdim      return 0u;
1852326938Sdim    const CycleType &C = *Cs.begin();
1853326938Sdim    if (C[0] != Len-1)
1854326938Sdim      return 0u;
1855326938Sdim    int D = Len - C.size();
1856326938Sdim    if (D != 0 && D != 1)
1857326938Sdim      return 0u;
1858326938Sdim
1859326938Sdim    bool IsDeal = true, IsShuff = true;
1860326938Sdim    for (unsigned I = 1; I != Len-D; ++I) {
1861326938Sdim      if (C[I] != Len-1-I)
1862326938Sdim        IsDeal = false;
1863326938Sdim      if (C[I] != I-(1-D))  // I-1, I
1864326938Sdim        IsShuff = false;
1865326938Sdim    }
1866326938Sdim    // At most one, IsDeal or IsShuff, can be non-zero.
1867326938Sdim    assert(!(IsDeal || IsShuff) || IsDeal != IsShuff);
1868326938Sdim    static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh };
1869326938Sdim    static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh };
1870326938Sdim    return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0);
1871326938Sdim  };
1872326938Sdim
1873326938Sdim  while (!All.empty()) {
1874326938Sdim    unsigned A = *All.begin();
1875326938Sdim    All.erase(A);
1876326938Sdim    CycleType C;
1877326938Sdim    C.push_back(A);
1878326938Sdim    for (unsigned B = Perm[A]; B != A; B = Perm[B]) {
1879326938Sdim      C.push_back(B);
1880326938Sdim      All.erase(B);
1881326938Sdim    }
1882326938Sdim    if (C.size() <= 1)
1883326938Sdim      continue;
1884326938Sdim    Cycles.insert(canonicalize(C));
1885326938Sdim  }
1886326938Sdim
1887326938Sdim  MVT SingleTy = getSingleVT(MVT::i8);
1888326938Sdim  MVT PairTy = getPairVT(MVT::i8);
1889326938Sdim
1890326938Sdim  // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
1891326938Sdim  if (unsigned(VecLen) == HwLen) {
1892326938Sdim    if (unsigned SingleOpc = pfs(Cycles, LogLen)) {
1893326938Sdim      Results.push(SingleOpc, SingleTy, {Va});
1894326938Sdim      return OpRef::res(Results.top());
1895326938Sdim    }
1896326938Sdim  }
1897326938Sdim
1898326938Sdim  SmallVector<unsigned,8> SwapElems;
1899326938Sdim  if (HwLen == unsigned(VecLen))
1900326938Sdim    SwapElems.push_back(LogLen-1);
1901326938Sdim
1902326938Sdim  for (const CycleType &C : Cycles) {
1903326938Sdim    unsigned First = (C[0] == LogLen-1) ? 1 : 0;
1904326938Sdim    SwapElems.append(C.begin()+First, C.end());
1905326938Sdim    if (First == 0)
1906326938Sdim      SwapElems.push_back(C[0]);
1907326938Sdim  }
1908326938Sdim
1909326938Sdim  const SDLoc &dl(Results.InpNode);
1910326938Sdim  OpRef Arg = !Extend ? Va
1911326938Sdim                      : concat(Va, OpRef::undef(SingleTy), Results);
1912326938Sdim
1913326938Sdim  for (unsigned I = 0, E = SwapElems.size(); I != E; ) {
1914326938Sdim    bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1];
1915326938Sdim    unsigned S = (1u << SwapElems[I]);
1916326938Sdim    if (I < E-1) {
1917326938Sdim      while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1]))
1918326938Sdim        S |= 1u << SwapElems[I];
1919326938Sdim      // The above loop will not add a bit for the final SwapElems[I+1],
1920326938Sdim      // so add it here.
1921326938Sdim      S |= 1u << SwapElems[I];
1922326938Sdim    }
1923326938Sdim    ++I;
1924326938Sdim
1925326938Sdim    NodeTemplate Res;
1926326938Sdim    Results.push(Hexagon::A2_tfrsi, MVT::i32,
1927326938Sdim                 { DAG.getTargetConstant(S, dl, MVT::i32) });
1928326938Sdim    Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd;
1929326938Sdim    Res.Ty = PairTy;
1930326938Sdim    Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) };
1931326938Sdim    Results.push(Res);
1932326938Sdim    Arg = OpRef::res(Results.top());
1933326938Sdim  }
1934326938Sdim
1935326938Sdim  return !Extend ? Arg : OpRef::lo(Arg);
1936326938Sdim}
1937326938Sdim
1938326938SdimOpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1939326938Sdim  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1940326938Sdim  // Butterfly shuffles.
1941326938Sdim  //
1942326938Sdim  // V6_vdelta
1943326938Sdim  // V6_vrdelta
1944326938Sdim  // V6_vror
1945326938Sdim
1946326938Sdim  // The assumption here is that all elements picked by Mask are in the
1947326938Sdim  // first operand to the vector_shuffle. This assumption is enforced
1948326938Sdim  // by the caller.
1949326938Sdim
1950326938Sdim  MVT ResTy = getSingleVT(MVT::i8);
1951326938Sdim  PermNetwork::Controls FC, RC;
1952326938Sdim  const SDLoc &dl(Results.InpNode);
1953326938Sdim  int VecLen = SM.Mask.size();
1954326938Sdim
1955326938Sdim  for (int M : SM.Mask) {
1956326938Sdim    if (M != -1 && M >= VecLen)
1957326938Sdim      return OpRef::fail();
1958326938Sdim  }
1959326938Sdim
1960326938Sdim  // Try the deltas/benes for both single vectors and vector pairs.
1961326938Sdim  ForwardDeltaNetwork FN(SM.Mask);
1962326938Sdim  if (FN.run(FC)) {
1963326938Sdim    SDValue Ctl = getVectorConstant(FC, dl);
1964326938Sdim    Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)});
1965326938Sdim    return OpRef::res(Results.top());
1966326938Sdim  }
1967326938Sdim
1968326938Sdim  // Try reverse delta.
1969326938Sdim  ReverseDeltaNetwork RN(SM.Mask);
1970326938Sdim  if (RN.run(RC)) {
1971326938Sdim    SDValue Ctl = getVectorConstant(RC, dl);
1972326938Sdim    Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)});
1973326938Sdim    return OpRef::res(Results.top());
1974326938Sdim  }
1975326938Sdim
1976326938Sdim  // Do Benes.
1977326938Sdim  BenesNetwork BN(SM.Mask);
1978326938Sdim  if (BN.run(FC, RC)) {
1979326938Sdim    SDValue CtlF = getVectorConstant(FC, dl);
1980326938Sdim    SDValue CtlR = getVectorConstant(RC, dl);
1981326938Sdim    Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)});
1982326938Sdim    Results.push(Hexagon::V6_vrdelta, ResTy,
1983326938Sdim                 {OpRef::res(-1), OpRef(CtlR)});
1984326938Sdim    return OpRef::res(Results.top());
1985326938Sdim  }
1986326938Sdim
1987326938Sdim  return OpRef::fail();
1988326938Sdim}
1989326938Sdim
1990326938SdimSDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data,
1991326938Sdim                                       const SDLoc &dl) {
1992326938Sdim  SmallVector<SDValue, 128> Elems;
1993326938Sdim  for (uint8_t C : Data)
1994326938Sdim    Elems.push_back(DAG.getConstant(C, dl, MVT::i8));
1995326938Sdim  MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size());
1996326938Sdim  SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
1997326938Sdim  SDValue LV = Lower.LowerOperation(BV, DAG);
1998326938Sdim  DAG.RemoveDeadNode(BV.getNode());
1999326938Sdim  return LV;
2000326938Sdim}
2001326938Sdim
2002326938Sdimvoid HvxSelector::selectShuffle(SDNode *N) {
2003326938Sdim  DEBUG_WITH_TYPE("isel", {
2004326938Sdim    dbgs() << "Starting " << __func__ << " on node:\n";
2005326938Sdim    N->dump(&DAG);
2006326938Sdim  });
2007326938Sdim  MVT ResTy = N->getValueType(0).getSimpleVT();
2008326938Sdim  // Assume that vector shuffles operate on vectors of bytes.
2009326938Sdim  assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8);
2010326938Sdim
2011326938Sdim  auto *SN = cast<ShuffleVectorSDNode>(N);
2012326938Sdim  std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end());
2013326938Sdim  // This shouldn't really be necessary. Is it?
2014326938Sdim  for (int &Idx : Mask)
2015326938Sdim    if (Idx != -1 && Idx < 0)
2016326938Sdim      Idx = -1;
2017326938Sdim
2018326938Sdim  unsigned VecLen = Mask.size();
2019326938Sdim  bool HavePairs = (2*HwLen == VecLen);
2020326938Sdim  assert(ResTy.getSizeInBits() / 8 == VecLen);
2021326938Sdim
2022326938Sdim  // Vd = vector_shuffle Va, Vb, Mask
2023326938Sdim  //
2024326938Sdim
2025326938Sdim  bool UseLeft = false, UseRight = false;
2026326938Sdim  for (unsigned I = 0; I != VecLen; ++I) {
2027326938Sdim    if (Mask[I] == -1)
2028326938Sdim      continue;
2029326938Sdim    unsigned Idx = Mask[I];
2030326938Sdim    assert(Idx < 2*VecLen);
2031326938Sdim    if (Idx < VecLen)
2032326938Sdim      UseLeft = true;
2033326938Sdim    else
2034326938Sdim      UseRight = true;
2035326938Sdim  }
2036326938Sdim
2037326938Sdim  DEBUG_WITH_TYPE("isel", {
2038326938Sdim    dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft="
2039326938Sdim           << UseLeft << " UseRight=" << UseRight << " HavePairs="
2040326938Sdim           << HavePairs << '\n';
2041326938Sdim  });
2042326938Sdim  // If the mask is all -1's, generate "undef".
2043326938Sdim  if (!UseLeft && !UseRight) {
2044326938Sdim    ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode());
2045326938Sdim    return;
2046326938Sdim  }
2047326938Sdim
2048326938Sdim  SDValue Vec0 = N->getOperand(0);
2049326938Sdim  SDValue Vec1 = N->getOperand(1);
2050326938Sdim  ResultStack Results(SN);
2051326938Sdim  Results.push(TargetOpcode::COPY, ResTy, {Vec0});
2052326938Sdim  Results.push(TargetOpcode::COPY, ResTy, {Vec1});
2053326938Sdim  OpRef Va = OpRef::res(Results.top()-1);
2054326938Sdim  OpRef Vb = OpRef::res(Results.top());
2055326938Sdim
2056326938Sdim  OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results)
2057326938Sdim                         : shuffp2(ShuffleMask(Mask), Va, Vb, Results);
2058326938Sdim
2059326938Sdim  bool Done = Res.isValid();
2060326938Sdim  if (Done) {
2061326938Sdim    // Make sure that Res is on the stack before materializing.
2062326938Sdim    Results.push(TargetOpcode::COPY, ResTy, {Res});
2063326938Sdim    materialize(Results);
2064326938Sdim  } else {
2065326938Sdim    Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N);
2066326938Sdim  }
2067326938Sdim
2068326938Sdim  if (!Done) {
2069326938Sdim#ifndef NDEBUG
2070326938Sdim    dbgs() << "Unhandled shuffle:\n";
2071326938Sdim    SN->dumpr(&DAG);
2072326938Sdim#endif
2073326938Sdim    llvm_unreachable("Failed to select vector shuffle");
2074326938Sdim  }
2075326938Sdim}
2076326938Sdim
2077326938Sdimvoid HvxSelector::selectRor(SDNode *N) {
2078326938Sdim  // If this is a rotation by less than 8, use V6_valignbi.
2079326938Sdim  MVT Ty = N->getValueType(0).getSimpleVT();
2080326938Sdim  const SDLoc &dl(N);
2081326938Sdim  SDValue VecV = N->getOperand(0);
2082326938Sdim  SDValue RotV = N->getOperand(1);
2083326938Sdim  SDNode *NewN = nullptr;
2084326938Sdim
2085326938Sdim  if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) {
2086341825Sdim    unsigned S = CN->getZExtValue() % HST.getVectorLength();
2087341825Sdim    if (S == 0) {
2088326938Sdim      NewN = VecV.getNode();
2089326938Sdim    } else if (isUInt<3>(S)) {
2090326938Sdim      SDValue C = DAG.getTargetConstant(S, dl, MVT::i32);
2091326938Sdim      NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty,
2092326938Sdim                                {VecV, VecV, C});
2093326938Sdim    }
2094326938Sdim  }
2095326938Sdim
2096326938Sdim  if (!NewN)
2097326938Sdim    NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV});
2098326938Sdim
2099326938Sdim  ISel.ReplaceNode(N, NewN);
2100341825Sdim}
2101341825Sdim
2102341825Sdimvoid HvxSelector::selectVAlign(SDNode *N) {
2103341825Sdim  SDValue Vv = N->getOperand(0);
2104341825Sdim  SDValue Vu = N->getOperand(1);
2105341825Sdim  SDValue Rt = N->getOperand(2);
2106341825Sdim  SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N),
2107341825Sdim                                    N->getValueType(0), {Vv, Vu, Rt});
2108341825Sdim  ISel.ReplaceNode(N, NewN);
2109326938Sdim  DAG.RemoveDeadNode(N);
2110326938Sdim}
2111326938Sdim
2112326938Sdimvoid HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) {
2113326938Sdim  HvxSelector(*this, *CurDAG).selectShuffle(N);
2114326938Sdim}
2115326938Sdim
2116326938Sdimvoid HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) {
2117326938Sdim  HvxSelector(*this, *CurDAG).selectRor(N);
2118326938Sdim}
2119326938Sdim
2120341825Sdimvoid HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) {
2121341825Sdim  HvxSelector(*this, *CurDAG).selectVAlign(N);
2122341825Sdim}
2123341825Sdim
2124326938Sdimvoid HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) {
2125326938Sdim  const SDLoc &dl(N);
2126326938Sdim  SDValue Chain = N->getOperand(0);
2127326938Sdim  SDValue Address = N->getOperand(2);
2128326938Sdim  SDValue Predicate = N->getOperand(3);
2129326938Sdim  SDValue Base = N->getOperand(4);
2130326938Sdim  SDValue Modifier = N->getOperand(5);
2131326938Sdim  SDValue Offset = N->getOperand(6);
2132326938Sdim
2133326938Sdim  unsigned Opcode;
2134326938Sdim  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2135326938Sdim  switch (IntNo) {
2136326938Sdim  default:
2137326938Sdim    llvm_unreachable("Unexpected HVX gather intrinsic.");
2138326938Sdim  case Intrinsic::hexagon_V6_vgathermhq:
2139326938Sdim  case Intrinsic::hexagon_V6_vgathermhq_128B:
2140326938Sdim    Opcode = Hexagon::V6_vgathermhq_pseudo;
2141326938Sdim    break;
2142326938Sdim  case Intrinsic::hexagon_V6_vgathermwq:
2143326938Sdim  case Intrinsic::hexagon_V6_vgathermwq_128B:
2144326938Sdim    Opcode = Hexagon::V6_vgathermwq_pseudo;
2145326938Sdim    break;
2146326938Sdim  case Intrinsic::hexagon_V6_vgathermhwq:
2147326938Sdim  case Intrinsic::hexagon_V6_vgathermhwq_128B:
2148326938Sdim    Opcode = Hexagon::V6_vgathermhwq_pseudo;
2149326938Sdim    break;
2150326938Sdim  }
2151326938Sdim
2152326938Sdim  SDVTList VTs = CurDAG->getVTList(MVT::Other);
2153326938Sdim  SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain };
2154326938Sdim  SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2155326938Sdim
2156344779Sdim  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2157344779Sdim  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2158326938Sdim
2159341825Sdim  ReplaceNode(N, Result);
2160326938Sdim}
2161326938Sdim
2162326938Sdimvoid HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) {
2163326938Sdim  const SDLoc &dl(N);
2164326938Sdim  SDValue Chain = N->getOperand(0);
2165326938Sdim  SDValue Address = N->getOperand(2);
2166326938Sdim  SDValue Base = N->getOperand(3);
2167326938Sdim  SDValue Modifier = N->getOperand(4);
2168326938Sdim  SDValue Offset = N->getOperand(5);
2169326938Sdim
2170326938Sdim  unsigned Opcode;
2171326938Sdim  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2172326938Sdim  switch (IntNo) {
2173326938Sdim  default:
2174326938Sdim    llvm_unreachable("Unexpected HVX gather intrinsic.");
2175326938Sdim  case Intrinsic::hexagon_V6_vgathermh:
2176326938Sdim  case Intrinsic::hexagon_V6_vgathermh_128B:
2177326938Sdim    Opcode = Hexagon::V6_vgathermh_pseudo;
2178326938Sdim    break;
2179326938Sdim  case Intrinsic::hexagon_V6_vgathermw:
2180326938Sdim  case Intrinsic::hexagon_V6_vgathermw_128B:
2181326938Sdim    Opcode = Hexagon::V6_vgathermw_pseudo;
2182326938Sdim    break;
2183326938Sdim  case Intrinsic::hexagon_V6_vgathermhw:
2184326938Sdim  case Intrinsic::hexagon_V6_vgathermhw_128B:
2185326938Sdim    Opcode = Hexagon::V6_vgathermhw_pseudo;
2186326938Sdim    break;
2187326938Sdim  }
2188326938Sdim
2189326938Sdim  SDVTList VTs = CurDAG->getVTList(MVT::Other);
2190326938Sdim  SDValue Ops[] = { Address, Base, Modifier, Offset, Chain };
2191326938Sdim  SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2192326938Sdim
2193344779Sdim  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2194344779Sdim  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2195326938Sdim
2196341825Sdim  ReplaceNode(N, Result);
2197326938Sdim}
2198326938Sdim
2199326938Sdimvoid HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) {
2200326938Sdim  unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2201326938Sdim  SDNode *Result;
2202326938Sdim  switch (IID) {
2203326938Sdim  case Intrinsic::hexagon_V6_vaddcarry: {
2204326938Sdim    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2205326938Sdim                                    N->getOperand(3) };
2206326938Sdim    SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1);
2207326938Sdim    Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2208326938Sdim    break;
2209326938Sdim  }
2210326938Sdim  case Intrinsic::hexagon_V6_vaddcarry_128B: {
2211326938Sdim    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2212326938Sdim                                    N->getOperand(3) };
2213326938Sdim    SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1);
2214326938Sdim    Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2215326938Sdim    break;
2216326938Sdim  }
2217326938Sdim  case Intrinsic::hexagon_V6_vsubcarry: {
2218326938Sdim    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2219326938Sdim                                    N->getOperand(3) };
2220326938Sdim    SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1);
2221326938Sdim    Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2222326938Sdim    break;
2223326938Sdim  }
2224326938Sdim  case Intrinsic::hexagon_V6_vsubcarry_128B: {
2225326938Sdim    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2226326938Sdim                                    N->getOperand(3) };
2227326938Sdim    SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1);
2228326938Sdim    Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2229326938Sdim    break;
2230326938Sdim  }
2231326938Sdim  default:
2232326938Sdim    llvm_unreachable("Unexpected HVX dual output intrinsic.");
2233326938Sdim  }
2234326938Sdim  ReplaceUses(N, Result);
2235326938Sdim  ReplaceUses(SDValue(N, 0), SDValue(Result, 0));
2236326938Sdim  ReplaceUses(SDValue(N, 1), SDValue(Result, 1));
2237326938Sdim  CurDAG->RemoveDeadNode(N);
2238326938Sdim}
2239