HexagonGenInsert.cpp revision 327952
1//===- HexagonGenInsert.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "BitTracker.h"
11#include "HexagonBitTracker.h"
12#include "HexagonInstrInfo.h"
13#include "HexagonRegisterInfo.h"
14#include "HexagonSubtarget.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/GraphTraits.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/TargetRegisterInfo.h"
32#include "llvm/IR/DebugLoc.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Timer.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40#include <cassert>
41#include <cstdint>
42#include <iterator>
43#include <utility>
44#include <vector>
45
46#define DEBUG_TYPE "hexinsert"
47
48using namespace llvm;
49
50static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
51  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
52// The distance cutoff is selected based on the precheckin-perf results:
53// cutoffs 20, 25, 35, and 40 are worse than 30.
54static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
55  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
56  "generation."));
57
58static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
59  cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
60static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
61  cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
62  "generation"));
63
64static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
65  cl::ZeroOrMore);
66static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
67  cl::ZeroOrMore);
68// Whether to construct constant values via "insert". Could eliminate constant
69// extenders, but often not practical.
70static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
71  cl::ZeroOrMore);
72
73// The preprocessor gets confused when the DEBUG macro is passed larger
74// chunks of code. Use this function to detect debugging.
75inline static bool isDebug() {
76#ifndef NDEBUG
77  return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
78#else
79  return false;
80#endif
81}
82
83namespace {
84
85  // Set of virtual registers, based on BitVector.
86  struct RegisterSet : private BitVector {
87    RegisterSet() = default;
88    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
89
90    using BitVector::clear;
91
92    unsigned find_first() const {
93      int First = BitVector::find_first();
94      if (First < 0)
95        return 0;
96      return x2v(First);
97    }
98
99    unsigned find_next(unsigned Prev) const {
100      int Next = BitVector::find_next(v2x(Prev));
101      if (Next < 0)
102        return 0;
103      return x2v(Next);
104    }
105
106    RegisterSet &insert(unsigned R) {
107      unsigned Idx = v2x(R);
108      ensure(Idx);
109      return static_cast<RegisterSet&>(BitVector::set(Idx));
110    }
111    RegisterSet &remove(unsigned R) {
112      unsigned Idx = v2x(R);
113      if (Idx >= size())
114        return *this;
115      return static_cast<RegisterSet&>(BitVector::reset(Idx));
116    }
117
118    RegisterSet &insert(const RegisterSet &Rs) {
119      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
120    }
121    RegisterSet &remove(const RegisterSet &Rs) {
122      return static_cast<RegisterSet&>(BitVector::reset(Rs));
123    }
124
125    reference operator[](unsigned R) {
126      unsigned Idx = v2x(R);
127      ensure(Idx);
128      return BitVector::operator[](Idx);
129    }
130    bool operator[](unsigned R) const {
131      unsigned Idx = v2x(R);
132      assert(Idx < size());
133      return BitVector::operator[](Idx);
134    }
135    bool has(unsigned R) const {
136      unsigned Idx = v2x(R);
137      if (Idx >= size())
138        return false;
139      return BitVector::test(Idx);
140    }
141
142    bool empty() const {
143      return !BitVector::any();
144    }
145    bool includes(const RegisterSet &Rs) const {
146      // A.BitVector::test(B)  <=>  A-B != {}
147      return !Rs.BitVector::test(*this);
148    }
149    bool intersects(const RegisterSet &Rs) const {
150      return BitVector::anyCommon(Rs);
151    }
152
153  private:
154    void ensure(unsigned Idx) {
155      if (size() <= Idx)
156        resize(std::max(Idx+1, 32U));
157    }
158
159    static inline unsigned v2x(unsigned v) {
160      return TargetRegisterInfo::virtReg2Index(v);
161    }
162
163    static inline unsigned x2v(unsigned x) {
164      return TargetRegisterInfo::index2VirtReg(x);
165    }
166  };
167
168  struct PrintRegSet {
169    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
170      : RS(S), TRI(RI) {}
171
172    friend raw_ostream &operator<< (raw_ostream &OS,
173          const PrintRegSet &P);
174
175  private:
176    const RegisterSet &RS;
177    const TargetRegisterInfo *TRI;
178  };
179
180  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
181    OS << '{';
182    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
183      OS << ' ' << printReg(R, P.TRI);
184    OS << " }";
185    return OS;
186  }
187
188  // A convenience class to associate unsigned numbers (such as virtual
189  // registers) with unsigned numbers.
190  struct UnsignedMap : public DenseMap<unsigned,unsigned> {
191    UnsignedMap() = default;
192
193  private:
194    using BaseType = DenseMap<unsigned, unsigned>;
195  };
196
197  // A utility to establish an ordering between virtual registers:
198  // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
199  // This is meant as a cache for the ordering of virtual registers defined
200  // by a potentially expensive comparison function, or obtained by a proce-
201  // dure that should not be repeated each time two registers are compared.
202  struct RegisterOrdering : public UnsignedMap {
203    RegisterOrdering() = default;
204
205    unsigned operator[](unsigned VR) const {
206      const_iterator F = find(VR);
207      assert(F != end());
208      return F->second;
209    }
210
211    // Add operator(), so that objects of this class can be used as
212    // comparators in std::sort et al.
213    bool operator() (unsigned VR1, unsigned VR2) const {
214      return operator[](VR1) < operator[](VR2);
215    }
216  };
217
218  // Ordering of bit values. This class does not have operator[], but
219  // is supplies a comparison operator() for use in std:: algorithms.
220  // The order is as follows:
221  // - 0 < 1 < ref
222  // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
223  //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
224  struct BitValueOrdering {
225    BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
226
227    bool operator() (const BitTracker::BitValue &V1,
228          const BitTracker::BitValue &V2) const;
229
230    const RegisterOrdering &BaseOrd;
231  };
232
233} // end anonymous namespace
234
235bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
236      const BitTracker::BitValue &V2) const {
237  if (V1 == V2)
238    return false;
239  // V1==0 => true, V2==0 => false
240  if (V1.is(0) || V2.is(0))
241    return V1.is(0);
242  // Neither of V1,V2 is 0, and V1!=V2.
243  // V2==1 => false, V1==1 => true
244  if (V2.is(1) || V1.is(1))
245    return !V2.is(1);
246  // Both V1,V2 are refs.
247  unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
248  if (Ind1 != Ind2)
249    return Ind1 < Ind2;
250  // If V1.Pos==V2.Pos
251  assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
252  return V1.RefI.Pos < V2.RefI.Pos;
253}
254
255namespace {
256
257  // Cache for the BitTracker's cell map. Map lookup has a logarithmic
258  // complexity, this class will memoize the lookup results to reduce
259  // the access time for repeated lookups of the same cell.
260  struct CellMapShadow {
261    CellMapShadow(const BitTracker &T) : BT(T) {}
262
263    const BitTracker::RegisterCell &lookup(unsigned VR) {
264      unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
265      // Grow the vector to at least 32 elements.
266      if (RInd >= CVect.size())
267        CVect.resize(std::max(RInd+16, 32U), nullptr);
268      const BitTracker::RegisterCell *CP = CVect[RInd];
269      if (CP == nullptr)
270        CP = CVect[RInd] = &BT.lookup(VR);
271      return *CP;
272    }
273
274    const BitTracker &BT;
275
276  private:
277    using CellVectType = std::vector<const BitTracker::RegisterCell *>;
278
279    CellVectType CVect;
280  };
281
282  // Comparator class for lexicographic ordering of virtual registers
283  // according to the corresponding BitTracker::RegisterCell objects.
284  struct RegisterCellLexCompare {
285    RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
286      : BitOrd(BO), CM(M) {}
287
288    bool operator() (unsigned VR1, unsigned VR2) const;
289
290  private:
291    const BitValueOrdering &BitOrd;
292    CellMapShadow &CM;
293  };
294
295  // Comparator class for lexicographic ordering of virtual registers
296  // according to the specified bits of the corresponding BitTracker::
297  // RegisterCell objects.
298  // Specifically, this class will be used to compare bit B of a register
299  // cell for a selected virtual register R with bit N of any register
300  // other than R.
301  struct RegisterCellBitCompareSel {
302    RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
303          const BitValueOrdering &BO, CellMapShadow &M)
304      : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
305
306    bool operator() (unsigned VR1, unsigned VR2) const;
307
308  private:
309    const unsigned SelR, SelB;
310    const unsigned BitN;
311    const BitValueOrdering &BitOrd;
312    CellMapShadow &CM;
313  };
314
315} // end anonymous namespace
316
317bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
318  // Ordering of registers, made up from two given orderings:
319  // - the ordering of the register numbers, and
320  // - the ordering of register cells.
321  // Def. R1 < R2 if:
322  // - cell(R1) < cell(R2), or
323  // - cell(R1) == cell(R2), and index(R1) < index(R2).
324  //
325  // For register cells, the ordering is lexicographic, with index 0 being
326  // the most significant.
327  if (VR1 == VR2)
328    return false;
329
330  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
331  uint16_t W1 = RC1.width(), W2 = RC2.width();
332  for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
333    const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
334    if (V1 != V2)
335      return BitOrd(V1, V2);
336  }
337  // Cells are equal up until the common length.
338  if (W1 != W2)
339    return W1 < W2;
340
341  return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
342}
343
344bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
345  if (VR1 == VR2)
346    return false;
347  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
348  const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
349  uint16_t W1 = RC1.width(), W2 = RC2.width();
350  uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
351  uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
352  // If Bit1 exceeds the width of VR1, then:
353  // - return false, if at the same time Bit2 exceeds VR2, or
354  // - return true, otherwise.
355  // (I.e. "a bit value that does not exist is less than any bit value
356  // that does exist".)
357  if (W1 <= Bit1)
358    return Bit2 < W2;
359  // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
360  if (W2 <= Bit2)
361    return false;
362
363  const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
364  if (V1 != V2)
365    return BitOrd(V1, V2);
366  return false;
367}
368
369namespace {
370
371  class OrderedRegisterList {
372    using ListType = std::vector<unsigned>;
373
374  public:
375    OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
376
377    void insert(unsigned VR);
378    void remove(unsigned VR);
379
380    unsigned operator[](unsigned Idx) const {
381      assert(Idx < Seq.size());
382      return Seq[Idx];
383    }
384
385    unsigned size() const {
386      return Seq.size();
387    }
388
389    using iterator = ListType::iterator;
390    using const_iterator = ListType::const_iterator;
391
392    iterator begin() { return Seq.begin(); }
393    iterator end() { return Seq.end(); }
394    const_iterator begin() const { return Seq.begin(); }
395    const_iterator end() const { return Seq.end(); }
396
397    // Convenience function to convert an iterator to the corresponding index.
398    unsigned idx(iterator It) const { return It-begin(); }
399
400  private:
401    ListType Seq;
402    const RegisterOrdering &Ord;
403  };
404
405  struct PrintORL {
406    PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
407      : RL(L), TRI(RI) {}
408
409    friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
410
411  private:
412    const OrderedRegisterList &RL;
413    const TargetRegisterInfo *TRI;
414  };
415
416  raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
417    OS << '(';
418    OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
419    for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
420      if (I != B)
421        OS << ", ";
422      OS << printReg(*I, P.TRI);
423    }
424    OS << ')';
425    return OS;
426  }
427
428} // end anonymous namespace
429
430void OrderedRegisterList::insert(unsigned VR) {
431  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
432  if (L == Seq.end())
433    Seq.push_back(VR);
434  else
435    Seq.insert(L, VR);
436}
437
438void OrderedRegisterList::remove(unsigned VR) {
439  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
440  assert(L != Seq.end());
441  Seq.erase(L);
442}
443
444namespace {
445
446  // A record of the insert form. The fields correspond to the operands
447  // of the "insert" instruction:
448  // ... = insert(SrcR, InsR, #Wdh, #Off)
449  struct IFRecord {
450    IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
451      : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
452
453    unsigned SrcR, InsR;
454    uint16_t Wdh, Off;
455  };
456
457  struct PrintIFR {
458    PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
459      : IFR(R), TRI(RI) {}
460
461  private:
462    friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
463
464    const IFRecord &IFR;
465    const TargetRegisterInfo *TRI;
466  };
467
468  raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
469    unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
470    OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
471       << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
472    return OS;
473  }
474
475  using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
476
477} // end anonymous namespace
478
479namespace llvm {
480
481  void initializeHexagonGenInsertPass(PassRegistry&);
482  FunctionPass *createHexagonGenInsert();
483
484} // end namespace llvm
485
486namespace {
487
488  class HexagonGenInsert : public MachineFunctionPass {
489  public:
490    static char ID;
491
492    HexagonGenInsert() : MachineFunctionPass(ID) {
493      initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
494    }
495
496    StringRef getPassName() const override {
497      return "Hexagon generate \"insert\" instructions";
498    }
499
500    void getAnalysisUsage(AnalysisUsage &AU) const override {
501      AU.addRequired<MachineDominatorTree>();
502      AU.addPreserved<MachineDominatorTree>();
503      MachineFunctionPass::getAnalysisUsage(AU);
504    }
505
506    bool runOnMachineFunction(MachineFunction &MF) override;
507
508  private:
509    using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
510
511    void buildOrderingMF(RegisterOrdering &RO) const;
512    void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
513    bool isIntClass(const TargetRegisterClass *RC) const;
514    bool isConstant(unsigned VR) const;
515    bool isSmallConstant(unsigned VR) const;
516    bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
517          uint16_t L, uint16_t S) const;
518    bool findSelfReference(unsigned VR) const;
519    bool findNonSelfReference(unsigned VR) const;
520    void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
521    void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
522    unsigned distance(const MachineBasicBlock *FromB,
523          const MachineBasicBlock *ToB, const UnsignedMap &RPO,
524          PairMapType &M) const;
525    unsigned distance(MachineBasicBlock::const_iterator FromI,
526          MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
527          PairMapType &M) const;
528    bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
529    void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
530    void findRemovableRegisters(unsigned VR, IFRecord IF,
531          RegisterSet &RMs) const;
532    void computeRemovableRegisters();
533
534    void pruneEmptyLists();
535    void pruneCoveredSets(unsigned VR);
536    void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
537    void pruneRegCopies(unsigned VR);
538    void pruneCandidates();
539    void selectCandidates();
540    bool generateInserts();
541
542    bool removeDeadCode(MachineDomTreeNode *N);
543
544    // IFRecord coupled with a set of potentially removable registers:
545    using IFListType = std::vector<IFRecordWithRegSet>;
546    using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
547
548    void dump_map() const;
549
550    const HexagonInstrInfo *HII = nullptr;
551    const HexagonRegisterInfo *HRI = nullptr;
552
553    MachineFunction *MFN;
554    MachineRegisterInfo *MRI;
555    MachineDominatorTree *MDT;
556    CellMapShadow *CMS;
557
558    RegisterOrdering BaseOrd;
559    RegisterOrdering CellOrd;
560    IFMapType IFMap;
561  };
562
563} // end anonymous namespace
564
565char HexagonGenInsert::ID = 0;
566
567void HexagonGenInsert::dump_map() const {
568  using iterator = IFMapType::const_iterator;
569
570  for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
571    dbgs() << "  " << printReg(I->first, HRI) << ":\n";
572    const IFListType &LL = I->second;
573    for (unsigned i = 0, n = LL.size(); i < n; ++i)
574      dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
575             << PrintRegSet(LL[i].second, HRI) << '\n';
576  }
577}
578
579void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
580  unsigned Index = 0;
581
582  using mf_iterator = MachineFunction::const_iterator;
583
584  for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
585    const MachineBasicBlock &B = *A;
586    if (!CMS->BT.reached(&B))
587      continue;
588
589    using mb_iterator = MachineBasicBlock::const_iterator;
590
591    for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
592      const MachineInstr *MI = &*I;
593      for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
594        const MachineOperand &MO = MI->getOperand(i);
595        if (MO.isReg() && MO.isDef()) {
596          unsigned R = MO.getReg();
597          assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
598          if (TargetRegisterInfo::isVirtualRegister(R))
599            RO.insert(std::make_pair(R, Index++));
600        }
601      }
602    }
603  }
604  // Since some virtual registers may have had their def and uses eliminated,
605  // they are no longer referenced in the code, and so they will not appear
606  // in the map.
607}
608
609void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
610      RegisterOrdering &RO) const {
611  // Create a vector of all virtual registers (collect them from the base
612  // ordering RB), and then sort it using the RegisterCell comparator.
613  BitValueOrdering BVO(RB);
614  RegisterCellLexCompare LexCmp(BVO, *CMS);
615
616  using SortableVectorType = std::vector<unsigned>;
617
618  SortableVectorType VRs;
619  for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
620    VRs.push_back(I->first);
621  std::sort(VRs.begin(), VRs.end(), LexCmp);
622  // Transfer the results to the outgoing register ordering.
623  for (unsigned i = 0, n = VRs.size(); i < n; ++i)
624    RO.insert(std::make_pair(VRs[i], i));
625}
626
627inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
628  return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
629}
630
631bool HexagonGenInsert::isConstant(unsigned VR) const {
632  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
633  uint16_t W = RC.width();
634  for (uint16_t i = 0; i < W; ++i) {
635    const BitTracker::BitValue &BV = RC[i];
636    if (BV.is(0) || BV.is(1))
637      continue;
638    return false;
639  }
640  return true;
641}
642
643bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
644  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
645  uint16_t W = RC.width();
646  if (W > 64)
647    return false;
648  uint64_t V = 0, B = 1;
649  for (uint16_t i = 0; i < W; ++i) {
650    const BitTracker::BitValue &BV = RC[i];
651    if (BV.is(1))
652      V |= B;
653    else if (!BV.is(0))
654      return false;
655    B <<= 1;
656  }
657
658  // For 32-bit registers, consider: Rd = #s16.
659  if (W == 32)
660    return isInt<16>(V);
661
662  // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
663  return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
664}
665
666bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
667      unsigned InsR, uint16_t L, uint16_t S) const {
668  const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
669  const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
670  const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
671  // Only integet (32-/64-bit) register classes.
672  if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
673    return false;
674  // The "source" register must be of the same class as DstR.
675  if (DstRC != SrcRC)
676    return false;
677  if (DstRC == InsRC)
678    return true;
679  // A 64-bit register can only be generated from other 64-bit registers.
680  if (DstRC == &Hexagon::DoubleRegsRegClass)
681    return false;
682  // Otherwise, the L and S cannot span 32-bit word boundary.
683  if (S < 32 && S+L > 32)
684    return false;
685  return true;
686}
687
688bool HexagonGenInsert::findSelfReference(unsigned VR) const {
689  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
690  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
691    const BitTracker::BitValue &V = RC[i];
692    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
693      return true;
694  }
695  return false;
696}
697
698bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
699  BitTracker::RegisterCell RC = CMS->lookup(VR);
700  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
701    const BitTracker::BitValue &V = RC[i];
702    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
703      return true;
704  }
705  return false;
706}
707
708void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
709      RegisterSet &Defs) const {
710  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
711    const MachineOperand &MO = MI->getOperand(i);
712    if (!MO.isReg() || !MO.isDef())
713      continue;
714    unsigned R = MO.getReg();
715    if (!TargetRegisterInfo::isVirtualRegister(R))
716      continue;
717    Defs.insert(R);
718  }
719}
720
721void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
722      RegisterSet &Uses) const {
723  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
724    const MachineOperand &MO = MI->getOperand(i);
725    if (!MO.isReg() || !MO.isUse())
726      continue;
727    unsigned R = MO.getReg();
728    if (!TargetRegisterInfo::isVirtualRegister(R))
729      continue;
730    Uses.insert(R);
731  }
732}
733
734unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
735      const MachineBasicBlock *ToB, const UnsignedMap &RPO,
736      PairMapType &M) const {
737  // Forward distance from the end of a block to the beginning of it does
738  // not make sense. This function should not be called with FromB == ToB.
739  assert(FromB != ToB);
740
741  unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
742  // If we have already computed it, return the cached result.
743  PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
744  if (F != M.end())
745    return F->second;
746  unsigned ToRPO = RPO.lookup(ToN);
747
748  unsigned MaxD = 0;
749
750  using pred_iterator = MachineBasicBlock::const_pred_iterator;
751
752  for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
753    const MachineBasicBlock *PB = *I;
754    // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
755    // along that path will be 0, and we don't need to do any calculations
756    // on it.
757    if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
758      continue;
759    unsigned D = PB->size() + distance(FromB, PB, RPO, M);
760    if (D > MaxD)
761      MaxD = D;
762  }
763
764  // Memoize the result for later lookup.
765  M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
766  return MaxD;
767}
768
769unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
770      MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
771      PairMapType &M) const {
772  const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
773  if (FB == TB)
774    return std::distance(FromI, ToI);
775  unsigned D1 = std::distance(TB->begin(), ToI);
776  unsigned D2 = distance(FB, TB, RPO, M);
777  unsigned D3 = std::distance(FromI, FB->end());
778  return D1+D2+D3;
779}
780
781bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
782      OrderedRegisterList &AVs) {
783  if (isDebug()) {
784    dbgs() << __func__ << ": " << printReg(VR, HRI)
785           << "  AVs: " << PrintORL(AVs, HRI) << "\n";
786  }
787  if (AVs.size() == 0)
788    return false;
789
790  using iterator = OrderedRegisterList::iterator;
791
792  BitValueOrdering BVO(BaseOrd);
793  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
794  uint16_t W = RC.width();
795
796  using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
797  using RSListType = std::vector<RSRecord>;
798  // Have a map, with key being the matching prefix length, and the value
799  // being the list of pairs (R,S), where R's prefix matches VR at S.
800  // (DenseMap<uint16_t,RSListType> fails to instantiate.)
801  using LRSMapType = DenseMap<unsigned, RSListType>;
802  LRSMapType LM;
803
804  // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
805  // and find matching prefixes from AVs with the rotated RC. Such a prefix
806  // would match a string of bits (of length L) in RC starting at S.
807  for (uint16_t S = 0; S < W; ++S) {
808    iterator B = AVs.begin(), E = AVs.end();
809    // The registers in AVs are ordered according to the lexical order of
810    // the corresponding register cells. This means that the range of regis-
811    // ters in AVs that match a prefix of length L+1 will be contained in
812    // the range that matches a prefix of length L. This means that we can
813    // keep narrowing the search space as the prefix length goes up. This
814    // helps reduce the overall complexity of the search.
815    uint16_t L;
816    for (L = 0; L < W-S; ++L) {
817      // Compare against VR's bits starting at S, which emulates rotation
818      // of VR by S.
819      RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
820      iterator NewB = std::lower_bound(B, E, VR, RCB);
821      iterator NewE = std::upper_bound(NewB, E, VR, RCB);
822      // For the registers that are eliminated from the next range, L is
823      // the longest prefix matching VR at position S (their prefixes
824      // differ from VR at S+L). If L>0, record this information for later
825      // use.
826      if (L > 0) {
827        for (iterator I = B; I != NewB; ++I)
828          LM[L].push_back(std::make_pair(*I, S));
829        for (iterator I = NewE; I != E; ++I)
830          LM[L].push_back(std::make_pair(*I, S));
831      }
832      B = NewB, E = NewE;
833      if (B == E)
834        break;
835    }
836    // Record the final register range. If this range is non-empty, then
837    // L=W-S.
838    assert(B == E || L == W-S);
839    if (B != E) {
840      for (iterator I = B; I != E; ++I)
841        LM[L].push_back(std::make_pair(*I, S));
842      // If B!=E, then we found a range of registers whose prefixes cover the
843      // rest of VR from position S. There is no need to further advance S.
844      break;
845    }
846  }
847
848  if (isDebug()) {
849    dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
850    for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
851      dbgs() << "  L=" << I->first << ':';
852      const RSListType &LL = I->second;
853      for (unsigned i = 0, n = LL.size(); i < n; ++i)
854        dbgs() << " (" << printReg(LL[i].first, HRI) << ",@"
855               << LL[i].second << ')';
856      dbgs() << '\n';
857    }
858  }
859
860  bool Recorded = false;
861
862  for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
863    unsigned SrcR = *I;
864    int FDi = -1, LDi = -1;   // First/last different bit.
865    const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
866    uint16_t AW = AC.width();
867    for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
868      if (RC[i] == AC[i])
869        continue;
870      if (FDi == -1)
871        FDi = i;
872      LDi = i;
873    }
874    if (FDi == -1)
875      continue;  // TODO (future): Record identical registers.
876    // Look for a register whose prefix could patch the range [FD..LD]
877    // where VR and SrcR differ.
878    uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
879    uint16_t MinL = LD-FD+1;
880    for (uint16_t L = MinL; L < W; ++L) {
881      LRSMapType::iterator F = LM.find(L);
882      if (F == LM.end())
883        continue;
884      RSListType &LL = F->second;
885      for (unsigned i = 0, n = LL.size(); i < n; ++i) {
886        uint16_t S = LL[i].second;
887        // MinL is the minimum length of the prefix. Any length above MinL
888        // allows some flexibility as to where the prefix can start:
889        // given the extra length EL=L-MinL, the prefix must start between
890        // max(0,FD-EL) and FD.
891        if (S > FD)   // Starts too late.
892          continue;
893        uint16_t EL = L-MinL;
894        uint16_t LowS = (EL < FD) ? FD-EL : 0;
895        if (S < LowS) // Starts too early.
896          continue;
897        unsigned InsR = LL[i].first;
898        if (!isValidInsertForm(VR, SrcR, InsR, L, S))
899          continue;
900        if (isDebug()) {
901          dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
902                 << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
903                 << S << ")\n";
904        }
905        IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
906        IFMap[VR].push_back(RR);
907        Recorded = true;
908      }
909    }
910  }
911
912  return Recorded;
913}
914
915void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
916      OrderedRegisterList &AVs) {
917  if (isDebug())
918    dbgs() << "visiting block " << printMBBReference(*B) << "\n";
919
920  // First, check if this block is reachable at all. If not, the bit tracker
921  // will not have any information about registers in it.
922  if (!CMS->BT.reached(B))
923    return;
924
925  bool DoConst = OptConst;
926  // Keep a separate set of registers defined in this block, so that we
927  // can remove them from the list of available registers once all DT
928  // successors have been processed.
929  RegisterSet BlockDefs, InsDefs;
930  for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
931    MachineInstr *MI = &*I;
932    InsDefs.clear();
933    getInstrDefs(MI, InsDefs);
934    // Leave those alone. They are more transparent than "insert".
935    bool Skip = MI->isCopy() || MI->isRegSequence();
936
937    if (!Skip) {
938      // Visit all defined registers, and attempt to find the corresponding
939      // "insert" representations.
940      for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
941        // Do not collect registers that are known to be compile-time cons-
942        // tants, unless requested.
943        if (!DoConst && isConstant(VR))
944          continue;
945        // If VR's cell contains a reference to VR, then VR cannot be defined
946        // via "insert". If VR is a constant that can be generated in a single
947        // instruction (without constant extenders), generating it via insert
948        // makes no sense.
949        if (findSelfReference(VR) || isSmallConstant(VR))
950          continue;
951
952        findRecordInsertForms(VR, AVs);
953      }
954    }
955
956    // Insert the defined registers into the list of available registers
957    // after they have been processed.
958    for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
959      AVs.insert(VR);
960    BlockDefs.insert(InsDefs);
961  }
962
963  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
964    MachineBasicBlock *SB = DTN->getBlock();
965    collectInBlock(SB, AVs);
966  }
967
968  for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
969    AVs.remove(VR);
970}
971
972void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
973      RegisterSet &RMs) const {
974  // For a given register VR and a insert form, find the registers that are
975  // used by the current definition of VR, and which would no longer be
976  // needed for it after the definition of VR is replaced with the insert
977  // form. These are the registers that could potentially become dead.
978  RegisterSet Regs[2];
979
980  unsigned S = 0;  // Register set selector.
981  Regs[S].insert(VR);
982
983  while (!Regs[S].empty()) {
984    // Breadth-first search.
985    unsigned OtherS = 1-S;
986    Regs[OtherS].clear();
987    for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
988      Regs[S].remove(R);
989      if (R == IF.SrcR || R == IF.InsR)
990        continue;
991      // Check if a given register has bits that are references to any other
992      // registers. This is to detect situations where the instruction that
993      // defines register R takes register Q as an operand, but R itself does
994      // not contain any bits from Q. Loads are examples of how this could
995      // happen:
996      //   R = load Q
997      // In this case (assuming we do not have any knowledge about the loaded
998      // value), we must not treat R as a "conveyance" of the bits from Q.
999      // (The information in BT about R's bits would have them as constants,
1000      // in case of zero-extending loads, or refs to R.)
1001      if (!findNonSelfReference(R))
1002        continue;
1003      RMs.insert(R);
1004      const MachineInstr *DefI = MRI->getVRegDef(R);
1005      assert(DefI);
1006      // Do not iterate past PHI nodes to avoid infinite loops. This can
1007      // make the final set a bit less accurate, but the removable register
1008      // sets are an approximation anyway.
1009      if (DefI->isPHI())
1010        continue;
1011      getInstrUses(DefI, Regs[OtherS]);
1012    }
1013    S = OtherS;
1014  }
1015  // The register VR is added to the list as a side-effect of the algorithm,
1016  // but it is not "potentially removable". A potentially removable register
1017  // is one that may become unused (dead) after conversion to the insert form
1018  // IF, and obviously VR (or its replacement) will not become dead by apply-
1019  // ing IF.
1020  RMs.remove(VR);
1021}
1022
1023void HexagonGenInsert::computeRemovableRegisters() {
1024  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1025    IFListType &LL = I->second;
1026    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1027      findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1028  }
1029}
1030
1031void HexagonGenInsert::pruneEmptyLists() {
1032  // Remove all entries from the map, where the register has no insert forms
1033  // associated with it.
1034  using IterListType = SmallVector<IFMapType::iterator, 16>;
1035  IterListType Prune;
1036  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1037    if (I->second.empty())
1038      Prune.push_back(I);
1039  }
1040  for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1041    IFMap.erase(Prune[i]);
1042}
1043
1044void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1045  IFMapType::iterator F = IFMap.find(VR);
1046  assert(F != IFMap.end());
1047  IFListType &LL = F->second;
1048
1049  // First, examine the IF candidates for register VR whose removable-regis-
1050  // ter sets are empty. This means that a given candidate will not help eli-
1051  // minate any registers, but since "insert" is not a constant-extendable
1052  // instruction, using such a candidate may reduce code size if the defini-
1053  // tion of VR is constant-extended.
1054  // If there exists a candidate with a non-empty set, the ones with empty
1055  // sets will not be used and can be removed.
1056  MachineInstr *DefVR = MRI->getVRegDef(VR);
1057  bool DefEx = HII->isConstExtended(*DefVR);
1058  bool HasNE = false;
1059  for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1060    if (LL[i].second.empty())
1061      continue;
1062    HasNE = true;
1063    break;
1064  }
1065  if (!DefEx || HasNE) {
1066    // The definition of VR is not constant-extended, or there is a candidate
1067    // with a non-empty set. Remove all candidates with empty sets.
1068    auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1069      return IR.second.empty();
1070    };
1071    auto End = llvm::remove_if(LL, IsEmpty);
1072    if (End != LL.end())
1073      LL.erase(End, LL.end());
1074  } else {
1075    // The definition of VR is constant-extended, and all candidates have
1076    // empty removable-register sets. Pick the maximum candidate, and remove
1077    // all others. The "maximum" does not have any special meaning here, it
1078    // is only so that the candidate that will remain on the list is selec-
1079    // ted deterministically.
1080    IFRecord MaxIF = LL[0].first;
1081    for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1082      // If LL[MaxI] < LL[i], then MaxI = i.
1083      const IFRecord &IF = LL[i].first;
1084      unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1085      unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1086      if (M0 > R0)
1087        continue;
1088      if (M0 == R0) {
1089        if (M1 > R1)
1090          continue;
1091        if (M1 == R1) {
1092          if (MaxIF.Wdh > IF.Wdh)
1093            continue;
1094          if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1095            continue;
1096        }
1097      }
1098      // MaxIF < IF.
1099      MaxIF = IF;
1100    }
1101    // Remove everything except the maximum candidate. All register sets
1102    // are empty, so no need to preserve anything.
1103    LL.clear();
1104    LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1105  }
1106
1107  // Now, remove those whose sets of potentially removable registers are
1108  // contained in another IF candidate for VR. For example, given these
1109  // candidates for %45,
1110  //   %45:
1111  //     (%44,%41,#9,#8), { %42 }
1112  //     (%43,%41,#9,#8), { %42 %44 }
1113  // remove the first one, since it is contained in the second one.
1114  for (unsigned i = 0, n = LL.size(); i < n; ) {
1115    const RegisterSet &RMi = LL[i].second;
1116    unsigned j = 0;
1117    while (j < n) {
1118      if (j != i && LL[j].second.includes(RMi))
1119        break;
1120      j++;
1121    }
1122    if (j == n) {   // RMi not contained in anything else.
1123      i++;
1124      continue;
1125    }
1126    LL.erase(LL.begin()+i);
1127    n = LL.size();
1128  }
1129}
1130
1131void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1132      PairMapType &M) {
1133  IFMapType::iterator F = IFMap.find(VR);
1134  assert(F != IFMap.end());
1135  IFListType &LL = F->second;
1136  unsigned Cutoff = VRegDistCutoff;
1137  const MachineInstr *DefV = MRI->getVRegDef(VR);
1138
1139  for (unsigned i = LL.size(); i > 0; --i) {
1140    unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1141    const MachineInstr *DefS = MRI->getVRegDef(SR);
1142    const MachineInstr *DefI = MRI->getVRegDef(IR);
1143    unsigned DSV = distance(DefS, DefV, RPO, M);
1144    if (DSV < Cutoff) {
1145      unsigned DIV = distance(DefI, DefV, RPO, M);
1146      if (DIV < Cutoff)
1147        continue;
1148    }
1149    LL.erase(LL.begin()+(i-1));
1150  }
1151}
1152
1153void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1154  IFMapType::iterator F = IFMap.find(VR);
1155  assert(F != IFMap.end());
1156  IFListType &LL = F->second;
1157
1158  auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1159    return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1160  };
1161  auto End = llvm::remove_if(LL, IsCopy);
1162  if (End != LL.end())
1163    LL.erase(End, LL.end());
1164}
1165
1166void HexagonGenInsert::pruneCandidates() {
1167  // Remove candidates that are not beneficial, regardless of the final
1168  // selection method.
1169  // First, remove candidates whose potentially removable set is a subset
1170  // of another candidate's set.
1171  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1172    pruneCoveredSets(I->first);
1173
1174  UnsignedMap RPO;
1175
1176  using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1177
1178  RPOTType RPOT(MFN);
1179  unsigned RPON = 0;
1180  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1181    RPO[(*I)->getNumber()] = RPON++;
1182
1183  PairMapType Memo; // Memoization map for distance calculation.
1184  // Remove candidates that would use registers defined too far away.
1185  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1186    pruneUsesTooFar(I->first, RPO, Memo);
1187
1188  pruneEmptyLists();
1189
1190  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1191    pruneRegCopies(I->first);
1192}
1193
1194namespace {
1195
1196  // Class for comparing IF candidates for registers that have multiple of
1197  // them. The smaller the candidate, according to this ordering, the better.
1198  // First, compare the number of zeros in the associated potentially remova-
1199  // ble register sets. "Zero" indicates that the register is very likely to
1200  // become dead after this transformation.
1201  // Second, compare "averages", i.e. use-count per size. The lower wins.
1202  // After that, it does not really matter which one is smaller. Resolve
1203  // the tie in some deterministic way.
1204  struct IFOrdering {
1205    IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1206      : UseC(UC), BaseOrd(BO) {}
1207
1208    bool operator() (const IFRecordWithRegSet &A,
1209                     const IFRecordWithRegSet &B) const;
1210
1211  private:
1212    void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1213          unsigned &Sum) const;
1214
1215    const UnsignedMap &UseC;
1216    const RegisterOrdering &BaseOrd;
1217  };
1218
1219} // end anonymous namespace
1220
1221bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1222      const IFRecordWithRegSet &B) const {
1223  unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1224  unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1225  stats(A.second, SizeA, ZeroA, SumA);
1226  stats(B.second, SizeB, ZeroB, SumB);
1227
1228  // We will pick the minimum element. The more zeros, the better.
1229  if (ZeroA != ZeroB)
1230    return ZeroA > ZeroB;
1231  // Compare SumA/SizeA with SumB/SizeB, lower is better.
1232  uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1233  if (AvgA != AvgB)
1234    return AvgA < AvgB;
1235
1236  // The sets compare identical so far. Resort to comparing the IF records.
1237  // The actual values don't matter, this is only for determinism.
1238  unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1239  if (OSA != OSB)
1240    return OSA < OSB;
1241  unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1242  if (OIA != OIB)
1243    return OIA < OIB;
1244  if (A.first.Wdh != B.first.Wdh)
1245    return A.first.Wdh < B.first.Wdh;
1246  return A.first.Off < B.first.Off;
1247}
1248
1249void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1250      unsigned &Sum) const {
1251  for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1252    UnsignedMap::const_iterator F = UseC.find(R);
1253    assert(F != UseC.end());
1254    unsigned UC = F->second;
1255    if (UC == 0)
1256      Zero++;
1257    Sum += UC;
1258    Size++;
1259  }
1260}
1261
1262void HexagonGenInsert::selectCandidates() {
1263  // Some registers may have multiple valid candidates. Pick the best one
1264  // (or decide not to use any).
1265
1266  // Compute the "removability" measure of R:
1267  // For each potentially removable register R, record the number of regis-
1268  // ters with IF candidates, where R appears in at least one set.
1269  RegisterSet AllRMs;
1270  UnsignedMap UseC, RemC;
1271  IFMapType::iterator End = IFMap.end();
1272
1273  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1274    const IFListType &LL = I->second;
1275    RegisterSet TT;
1276    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1277      TT.insert(LL[i].second);
1278    for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1279      RemC[R]++;
1280    AllRMs.insert(TT);
1281  }
1282
1283  for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1284    using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1285    using InstrSet = SmallSet<const MachineInstr *, 16>;
1286
1287    InstrSet UIs;
1288    // Count as the number of instructions in which R is used, not the
1289    // number of operands.
1290    use_iterator E = MRI->use_nodbg_end();
1291    for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1292      UIs.insert(I->getParent());
1293    unsigned C = UIs.size();
1294    // Calculate a measure, which is the number of instructions using R,
1295    // minus the "removability" count computed earlier.
1296    unsigned D = RemC[R];
1297    UseC[R] = (C > D) ? C-D : 0;  // doz
1298  }
1299
1300  bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1301  if (!SelectAll0 && !SelectHas0)
1302    SelectAll0 = true;
1303
1304  // The smaller the number UseC for a given register R, the "less used"
1305  // R is aside from the opportunities for removal offered by generating
1306  // "insert" instructions.
1307  // Iterate over the IF map, and for those registers that have multiple
1308  // candidates, pick the minimum one according to IFOrdering.
1309  IFOrdering IFO(UseC, BaseOrd);
1310  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1311    IFListType &LL = I->second;
1312    if (LL.empty())
1313      continue;
1314    // Get the minimum element, remember it and clear the list. If the
1315    // element found is adequate, we will put it back on the list, other-
1316    // wise the list will remain empty, and the entry for this register
1317    // will be removed (i.e. this register will not be replaced by insert).
1318    IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1319    assert(MinI != LL.end());
1320    IFRecordWithRegSet M = *MinI;
1321    LL.clear();
1322
1323    // We want to make sure that this replacement will have a chance to be
1324    // beneficial, and that means that we want to have indication that some
1325    // register will be removed. The most likely registers to be eliminated
1326    // are the use operands in the definition of I->first. Accept/reject a
1327    // candidate based on how many of its uses it can potentially eliminate.
1328
1329    RegisterSet Us;
1330    const MachineInstr *DefI = MRI->getVRegDef(I->first);
1331    getInstrUses(DefI, Us);
1332    bool Accept = false;
1333
1334    if (SelectAll0) {
1335      bool All0 = true;
1336      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1337        if (UseC[R] == 0)
1338          continue;
1339        All0 = false;
1340        break;
1341      }
1342      Accept = All0;
1343    } else if (SelectHas0) {
1344      bool Has0 = false;
1345      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1346        if (UseC[R] != 0)
1347          continue;
1348        Has0 = true;
1349        break;
1350      }
1351      Accept = Has0;
1352    }
1353    if (Accept)
1354      LL.push_back(M);
1355  }
1356
1357  // Remove candidates that add uses of removable registers, unless the
1358  // removable registers are among replacement candidates.
1359  // Recompute the removable registers, since some candidates may have
1360  // been eliminated.
1361  AllRMs.clear();
1362  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1363    const IFListType &LL = I->second;
1364    if (!LL.empty())
1365      AllRMs.insert(LL[0].second);
1366  }
1367  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1368    IFListType &LL = I->second;
1369    if (LL.empty())
1370      continue;
1371    unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1372    if (AllRMs[SR] || AllRMs[IR])
1373      LL.clear();
1374  }
1375
1376  pruneEmptyLists();
1377}
1378
1379bool HexagonGenInsert::generateInserts() {
1380  // Create a new register for each one from IFMap, and store them in the
1381  // map.
1382  UnsignedMap RegMap;
1383  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1384    unsigned VR = I->first;
1385    const TargetRegisterClass *RC = MRI->getRegClass(VR);
1386    unsigned NewVR = MRI->createVirtualRegister(RC);
1387    RegMap[VR] = NewVR;
1388  }
1389
1390  // We can generate the "insert" instructions using potentially stale re-
1391  // gisters: SrcR and InsR for a given VR may be among other registers that
1392  // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1393  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1394    MachineInstr *MI = MRI->getVRegDef(I->first);
1395    MachineBasicBlock &B = *MI->getParent();
1396    DebugLoc DL = MI->getDebugLoc();
1397    unsigned NewR = RegMap[I->first];
1398    bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1399    const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1400                               : HII->get(Hexagon::S2_insertp);
1401    IFRecord IF = I->second[0].first;
1402    unsigned Wdh = IF.Wdh, Off = IF.Off;
1403    unsigned InsS = 0;
1404    if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1405      InsS = Hexagon::isub_lo;
1406      if (Off >= 32) {
1407        InsS = Hexagon::isub_hi;
1408        Off -= 32;
1409      }
1410    }
1411    // Advance to the proper location for inserting instructions. This could
1412    // be B.end().
1413    MachineBasicBlock::iterator At = MI;
1414    if (MI->isPHI())
1415      At = B.getFirstNonPHI();
1416
1417    BuildMI(B, At, DL, D, NewR)
1418      .addReg(IF.SrcR)
1419      .addReg(IF.InsR, 0, InsS)
1420      .addImm(Wdh)
1421      .addImm(Off);
1422
1423    MRI->clearKillFlags(IF.SrcR);
1424    MRI->clearKillFlags(IF.InsR);
1425  }
1426
1427  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1428    MachineInstr *DefI = MRI->getVRegDef(I->first);
1429    MRI->replaceRegWith(I->first, RegMap[I->first]);
1430    DefI->eraseFromParent();
1431  }
1432
1433  return true;
1434}
1435
1436bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1437  bool Changed = false;
1438
1439  for (auto *DTN : children<MachineDomTreeNode*>(N))
1440    Changed |= removeDeadCode(DTN);
1441
1442  MachineBasicBlock *B = N->getBlock();
1443  std::vector<MachineInstr*> Instrs;
1444  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1445    Instrs.push_back(&*I);
1446
1447  for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1448    MachineInstr *MI = *I;
1449    unsigned Opc = MI->getOpcode();
1450    // Do not touch lifetime markers. This is why the target-independent DCE
1451    // cannot be used.
1452    if (Opc == TargetOpcode::LIFETIME_START ||
1453        Opc == TargetOpcode::LIFETIME_END)
1454      continue;
1455    bool Store = false;
1456    if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1457      continue;
1458
1459    bool AllDead = true;
1460    SmallVector<unsigned,2> Regs;
1461    for (const MachineOperand &MO : MI->operands()) {
1462      if (!MO.isReg() || !MO.isDef())
1463        continue;
1464      unsigned R = MO.getReg();
1465      if (!TargetRegisterInfo::isVirtualRegister(R) ||
1466          !MRI->use_nodbg_empty(R)) {
1467        AllDead = false;
1468        break;
1469      }
1470      Regs.push_back(R);
1471    }
1472    if (!AllDead)
1473      continue;
1474
1475    B->erase(MI);
1476    for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1477      MRI->markUsesInDebugValueAsUndef(Regs[I]);
1478    Changed = true;
1479  }
1480
1481  return Changed;
1482}
1483
1484bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1485  if (skipFunction(MF.getFunction()))
1486    return false;
1487
1488  bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1489  bool Changed = false;
1490
1491  // Sanity check: one, but not both.
1492  assert(!OptSelectAll0 || !OptSelectHas0);
1493
1494  IFMap.clear();
1495  BaseOrd.clear();
1496  CellOrd.clear();
1497
1498  const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1499  HII = ST.getInstrInfo();
1500  HRI = ST.getRegisterInfo();
1501  MFN = &MF;
1502  MRI = &MF.getRegInfo();
1503  MDT = &getAnalysis<MachineDominatorTree>();
1504
1505  // Clean up before any further processing, so that dead code does not
1506  // get used in a newly generated "insert" instruction. Have a custom
1507  // version of DCE that preserves lifetime markers. Without it, merging
1508  // of stack objects can fail to recognize and merge disjoint objects
1509  // leading to unnecessary stack growth.
1510  Changed = removeDeadCode(MDT->getRootNode());
1511
1512  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1513  BitTracker BTLoc(HE, MF);
1514  BTLoc.trace(isDebug());
1515  BTLoc.run();
1516  CellMapShadow MS(BTLoc);
1517  CMS = &MS;
1518
1519  buildOrderingMF(BaseOrd);
1520  buildOrderingBT(BaseOrd, CellOrd);
1521
1522  if (isDebug()) {
1523    dbgs() << "Cell ordering:\n";
1524    for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1525        I != E; ++I) {
1526      unsigned VR = I->first, Pos = I->second;
1527      dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1528    }
1529  }
1530
1531  // Collect candidates for conversion into the insert forms.
1532  MachineBasicBlock *RootB = MDT->getRoot();
1533  OrderedRegisterList AvailR(CellOrd);
1534
1535  const char *const TGName = "hexinsert";
1536  const char *const TGDesc = "Generate Insert Instructions";
1537
1538  {
1539    NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1540                        TimingDetail);
1541    collectInBlock(RootB, AvailR);
1542    // Complete the information gathered in IFMap.
1543    computeRemovableRegisters();
1544  }
1545
1546  if (isDebug()) {
1547    dbgs() << "Candidates after collection:\n";
1548    dump_map();
1549  }
1550
1551  if (IFMap.empty())
1552    return Changed;
1553
1554  {
1555    NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1556    pruneCandidates();
1557  }
1558
1559  if (isDebug()) {
1560    dbgs() << "Candidates after pruning:\n";
1561    dump_map();
1562  }
1563
1564  if (IFMap.empty())
1565    return Changed;
1566
1567  {
1568    NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1569    selectCandidates();
1570  }
1571
1572  if (isDebug()) {
1573    dbgs() << "Candidates after selection:\n";
1574    dump_map();
1575  }
1576
1577  // Filter out vregs beyond the cutoff.
1578  if (VRegIndexCutoff.getPosition()) {
1579    unsigned Cutoff = VRegIndexCutoff;
1580
1581    using IterListType = SmallVector<IFMapType::iterator, 16>;
1582
1583    IterListType Out;
1584    for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1585      unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1586      if (Idx >= Cutoff)
1587        Out.push_back(I);
1588    }
1589    for (unsigned i = 0, n = Out.size(); i < n; ++i)
1590      IFMap.erase(Out[i]);
1591  }
1592  if (IFMap.empty())
1593    return Changed;
1594
1595  {
1596    NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1597                        TimingDetail);
1598    generateInserts();
1599  }
1600
1601  return true;
1602}
1603
1604FunctionPass *llvm::createHexagonGenInsert() {
1605  return new HexagonGenInsert();
1606}
1607
1608//===----------------------------------------------------------------------===//
1609//                         Public Constructor Functions
1610//===----------------------------------------------------------------------===//
1611
1612INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1613  "Hexagon generate \"insert\" instructions", false, false)
1614INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1615INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1616  "Hexagon generate \"insert\" instructions", false, false)
1617