HexagonGenInsert.cpp revision 288943
1//===--- HexagonGenInsert.cpp ---------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexinsert"
11
12#include "llvm/Pass.h"
13#include "llvm/PassRegistry.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/PostOrderIterator.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Support/Timer.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30
31#include "Hexagon.h"
32#include "HexagonRegisterInfo.h"
33#include "HexagonTargetMachine.h"
34#include "HexagonBitTracker.h"
35
36#include <map>
37#include <vector>
38
39using namespace llvm;
40
41static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
42  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
43// The distance cutoff is selected based on the precheckin-perf results:
44// cutoffs 20, 25, 35, and 40 are worse than 30.
45static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
46  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
47  "generation."));
48
49static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
50  cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
51static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
52  cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
53  "generation"));
54
55static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
56  cl::ZeroOrMore);
57static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
58  cl::ZeroOrMore);
59// Whether to construct constant values via "insert". Could eliminate constant
60// extenders, but often not practical.
61static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
62  cl::ZeroOrMore);
63
64namespace {
65  // The preprocessor gets confused when the DEBUG macro is passed larger
66  // chunks of code. Use this function to detect debugging.
67  inline bool isDebug() {
68#ifndef NDEBUG
69    return ::llvm::DebugFlag && ::llvm::isCurrentDebugType(DEBUG_TYPE);
70#else
71    return false;
72#endif
73  }
74}
75
76
77namespace {
78  // Set of virtual registers, based on BitVector.
79  struct RegisterSet : private BitVector {
80    RegisterSet() : BitVector() {}
81    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
82    RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
83
84    using BitVector::clear;
85
86    unsigned find_first() const {
87      int First = BitVector::find_first();
88      if (First < 0)
89        return 0;
90      return x2v(First);
91    }
92
93    unsigned find_next(unsigned Prev) const {
94      int Next = BitVector::find_next(v2x(Prev));
95      if (Next < 0)
96        return 0;
97      return x2v(Next);
98    }
99
100    RegisterSet &insert(unsigned R) {
101      unsigned Idx = v2x(R);
102      ensure(Idx);
103      return static_cast<RegisterSet&>(BitVector::set(Idx));
104    }
105    RegisterSet &remove(unsigned R) {
106      unsigned Idx = v2x(R);
107      if (Idx >= size())
108        return *this;
109      return static_cast<RegisterSet&>(BitVector::reset(Idx));
110    }
111
112    RegisterSet &insert(const RegisterSet &Rs) {
113      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
114    }
115    RegisterSet &remove(const RegisterSet &Rs) {
116      return static_cast<RegisterSet&>(BitVector::reset(Rs));
117    }
118
119    reference operator[](unsigned R) {
120      unsigned Idx = v2x(R);
121      ensure(Idx);
122      return BitVector::operator[](Idx);
123    }
124    bool operator[](unsigned R) const {
125      unsigned Idx = v2x(R);
126      assert(Idx < size());
127      return BitVector::operator[](Idx);
128    }
129    bool has(unsigned R) const {
130      unsigned Idx = v2x(R);
131      if (Idx >= size())
132        return false;
133      return BitVector::test(Idx);
134    }
135
136    bool empty() const {
137      return !BitVector::any();
138    }
139    bool includes(const RegisterSet &Rs) const {
140      // A.BitVector::test(B)  <=>  A-B != {}
141      return !Rs.BitVector::test(*this);
142    }
143    bool intersects(const RegisterSet &Rs) const {
144      return BitVector::anyCommon(Rs);
145    }
146
147  private:
148    void ensure(unsigned Idx) {
149      if (size() <= Idx)
150        resize(std::max(Idx+1, 32U));
151    }
152    static inline unsigned v2x(unsigned v) {
153      return TargetRegisterInfo::virtReg2Index(v);
154    }
155    static inline unsigned x2v(unsigned x) {
156      return TargetRegisterInfo::index2VirtReg(x);
157    }
158  };
159
160
161  struct PrintRegSet {
162    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
163      : RS(S), TRI(RI) {}
164    friend raw_ostream &operator<< (raw_ostream &OS,
165          const PrintRegSet &P);
166  private:
167    const RegisterSet &RS;
168    const TargetRegisterInfo *TRI;
169  };
170
171  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
172    OS << '{';
173    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
174      OS << ' ' << PrintReg(R, P.TRI);
175    OS << " }";
176    return OS;
177  }
178}
179
180
181namespace {
182  // A convenience class to associate unsigned numbers (such as virtual
183  // registers) with unsigned numbers.
184  struct UnsignedMap : public DenseMap<unsigned,unsigned> {
185    UnsignedMap() : BaseType() {}
186  private:
187    typedef DenseMap<unsigned,unsigned> BaseType;
188  };
189
190  // A utility to establish an ordering between virtual registers:
191  // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
192  // This is meant as a cache for the ordering of virtual registers defined
193  // by a potentially expensive comparison function, or obtained by a proce-
194  // dure that should not be repeated each time two registers are compared.
195  struct RegisterOrdering : public UnsignedMap {
196    RegisterOrdering() : UnsignedMap() {}
197    unsigned operator[](unsigned VR) const {
198      const_iterator F = find(VR);
199      assert(F != end());
200      return F->second;
201    }
202    // Add operator(), so that objects of this class can be used as
203    // comparators in std::sort et al.
204    bool operator() (unsigned VR1, unsigned VR2) const {
205      return operator[](VR1) < operator[](VR2);
206    }
207  };
208}
209
210
211namespace {
212  // Ordering of bit values. This class does not have operator[], but
213  // is supplies a comparison operator() for use in std:: algorithms.
214  // The order is as follows:
215  // - 0 < 1 < ref
216  // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
217  //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
218  struct BitValueOrdering {
219    BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
220    bool operator() (const BitTracker::BitValue &V1,
221          const BitTracker::BitValue &V2) const;
222    const RegisterOrdering &BaseOrd;
223  };
224}
225
226
227bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
228      const BitTracker::BitValue &V2) const {
229  if (V1 == V2)
230    return false;
231  // V1==0 => true, V2==0 => false
232  if (V1.is(0) || V2.is(0))
233    return V1.is(0);
234  // Neither of V1,V2 is 0, and V1!=V2.
235  // V2==1 => false, V1==1 => true
236  if (V2.is(1) || V1.is(1))
237    return !V2.is(1);
238  // Both V1,V2 are refs.
239  unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
240  if (Ind1 != Ind2)
241    return Ind1 < Ind2;
242  // If V1.Pos==V2.Pos
243  assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
244  return V1.RefI.Pos < V2.RefI.Pos;
245}
246
247
248namespace {
249  // Cache for the BitTracker's cell map. Map lookup has a logarithmic
250  // complexity, this class will memoize the lookup results to reduce
251  // the access time for repeated lookups of the same cell.
252  struct CellMapShadow {
253    CellMapShadow(const BitTracker &T) : BT(T) {}
254    const BitTracker::RegisterCell &lookup(unsigned VR) {
255      unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
256      // Grow the vector to at least 32 elements.
257      if (RInd >= CVect.size())
258        CVect.resize(std::max(RInd+16, 32U), 0);
259      const BitTracker::RegisterCell *CP = CVect[RInd];
260      if (CP == 0)
261        CP = CVect[RInd] = &BT.lookup(VR);
262      return *CP;
263    }
264
265    const BitTracker &BT;
266
267  private:
268    typedef std::vector<const BitTracker::RegisterCell*> CellVectType;
269    CellVectType CVect;
270  };
271}
272
273
274namespace {
275  // Comparator class for lexicographic ordering of virtual registers
276  // according to the corresponding BitTracker::RegisterCell objects.
277  struct RegisterCellLexCompare {
278    RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
279      : BitOrd(BO), CM(M) {}
280    bool operator() (unsigned VR1, unsigned VR2) const;
281  private:
282    const BitValueOrdering &BitOrd;
283    CellMapShadow &CM;
284  };
285
286  // Comparator class for lexicographic ordering of virtual registers
287  // according to the specified bits of the corresponding BitTracker::
288  // RegisterCell objects.
289  // Specifically, this class will be used to compare bit B of a register
290  // cell for a selected virtual register R with bit N of any register
291  // other than R.
292  struct RegisterCellBitCompareSel {
293    RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
294          const BitValueOrdering &BO, CellMapShadow &M)
295      : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
296    bool operator() (unsigned VR1, unsigned VR2) const;
297  private:
298    const unsigned SelR, SelB;
299    const unsigned BitN;
300    const BitValueOrdering &BitOrd;
301    CellMapShadow &CM;
302  };
303}
304
305
306bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
307  // Ordering of registers, made up from two given orderings:
308  // - the ordering of the register numbers, and
309  // - the ordering of register cells.
310  // Def. R1 < R2 if:
311  // - cell(R1) < cell(R2), or
312  // - cell(R1) == cell(R2), and index(R1) < index(R2).
313  //
314  // For register cells, the ordering is lexicographic, with index 0 being
315  // the most significant.
316  if (VR1 == VR2)
317    return false;
318
319  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
320  uint16_t W1 = RC1.width(), W2 = RC2.width();
321  for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
322    const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
323    if (V1 != V2)
324      return BitOrd(V1, V2);
325  }
326  // Cells are equal up until the common length.
327  if (W1 != W2)
328    return W1 < W2;
329
330  return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
331}
332
333
334bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
335  if (VR1 == VR2)
336    return false;
337  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
338  const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
339  uint16_t W1 = RC1.width(), W2 = RC2.width();
340  uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
341  uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
342  // If Bit1 exceeds the width of VR1, then:
343  // - return false, if at the same time Bit2 exceeds VR2, or
344  // - return true, otherwise.
345  // (I.e. "a bit value that does not exist is less than any bit value
346  // that does exist".)
347  if (W1 <= Bit1)
348    return Bit2 < W2;
349  // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
350  if (W2 <= Bit2)
351    return false;
352
353  const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
354  if (V1 != V2)
355    return BitOrd(V1, V2);
356  return false;
357}
358
359
360namespace {
361  class OrderedRegisterList {
362    typedef std::vector<unsigned> ListType;
363  public:
364    OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
365    void insert(unsigned VR);
366    void remove(unsigned VR);
367    unsigned operator[](unsigned Idx) const {
368      assert(Idx < Seq.size());
369      return Seq[Idx];
370    }
371    unsigned size() const {
372      return Seq.size();
373    }
374
375    typedef ListType::iterator iterator;
376    typedef ListType::const_iterator const_iterator;
377    iterator begin() { return Seq.begin(); }
378    iterator end() { return Seq.end(); }
379    const_iterator begin() const { return Seq.begin(); }
380    const_iterator end() const { return Seq.end(); }
381
382    // Convenience function to convert an iterator to the corresponding index.
383    unsigned idx(iterator It) const { return It-begin(); }
384  private:
385    ListType Seq;
386    const RegisterOrdering &Ord;
387  };
388
389
390  struct PrintORL {
391    PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
392      : RL(L), TRI(RI) {}
393    friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
394  private:
395    const OrderedRegisterList &RL;
396    const TargetRegisterInfo *TRI;
397  };
398
399  raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
400    OS << '(';
401    OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
402    for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
403      if (I != B)
404        OS << ", ";
405      OS << PrintReg(*I, P.TRI);
406    }
407    OS << ')';
408    return OS;
409  }
410}
411
412
413void OrderedRegisterList::insert(unsigned VR) {
414  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
415  if (L == Seq.end())
416    Seq.push_back(VR);
417  else
418    Seq.insert(L, VR);
419}
420
421
422void OrderedRegisterList::remove(unsigned VR) {
423  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
424  assert(L != Seq.end());
425  Seq.erase(L);
426}
427
428
429namespace {
430  // A record of the insert form. The fields correspond to the operands
431  // of the "insert" instruction:
432  // ... = insert(SrcR, InsR, #Wdh, #Off)
433  struct IFRecord {
434    IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
435      : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
436    unsigned SrcR, InsR;
437    uint16_t Wdh, Off;
438  };
439
440  struct PrintIFR {
441    PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
442      : IFR(R), TRI(RI) {}
443  private:
444    const IFRecord &IFR;
445    const TargetRegisterInfo *TRI;
446    friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
447  };
448
449  raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
450    unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
451    OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI)
452       << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
453    return OS;
454  }
455
456  typedef std::pair<IFRecord,RegisterSet> IFRecordWithRegSet;
457}
458
459
460namespace llvm {
461  void initializeHexagonGenInsertPass(PassRegistry&);
462  FunctionPass *createHexagonGenInsert();
463}
464
465
466namespace {
467  class HexagonGenInsert : public MachineFunctionPass {
468  public:
469    static char ID;
470    HexagonGenInsert() : MachineFunctionPass(ID), HII(0), HRI(0) {
471      initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
472    }
473    virtual const char *getPassName() const {
474      return "Hexagon generate \"insert\" instructions";
475    }
476    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
477      AU.addRequired<MachineDominatorTree>();
478      AU.addPreserved<MachineDominatorTree>();
479      MachineFunctionPass::getAnalysisUsage(AU);
480    }
481    virtual bool runOnMachineFunction(MachineFunction &MF);
482
483  private:
484    typedef DenseMap<std::pair<unsigned,unsigned>,unsigned> PairMapType;
485
486    void buildOrderingMF(RegisterOrdering &RO) const;
487    void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
488    bool isIntClass(const TargetRegisterClass *RC) const;
489    bool isConstant(unsigned VR) const;
490    bool isSmallConstant(unsigned VR) const;
491    bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
492          uint16_t L, uint16_t S) const;
493    bool findSelfReference(unsigned VR) const;
494    bool findNonSelfReference(unsigned VR) const;
495    void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
496    void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
497    unsigned distance(const MachineBasicBlock *FromB,
498          const MachineBasicBlock *ToB, const UnsignedMap &RPO,
499          PairMapType &M) const;
500    unsigned distance(MachineBasicBlock::const_iterator FromI,
501          MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
502          PairMapType &M) const;
503    bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
504    void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
505    void findRemovableRegisters(unsigned VR, IFRecord IF,
506          RegisterSet &RMs) const;
507    void computeRemovableRegisters();
508
509    void pruneEmptyLists();
510    void pruneCoveredSets(unsigned VR);
511    void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
512    void pruneRegCopies(unsigned VR);
513    void pruneCandidates();
514    void selectCandidates();
515    bool generateInserts();
516
517    bool removeDeadCode(MachineDomTreeNode *N);
518
519    // IFRecord coupled with a set of potentially removable registers:
520    typedef std::vector<IFRecordWithRegSet> IFListType;
521    typedef DenseMap<unsigned,IFListType> IFMapType;  // vreg -> IFListType
522
523    void dump_map() const;
524
525    const HexagonInstrInfo *HII;
526    const HexagonRegisterInfo *HRI;
527
528    MachineFunction *MFN;
529    MachineRegisterInfo *MRI;
530    MachineDominatorTree *MDT;
531    CellMapShadow *CMS;
532
533    RegisterOrdering BaseOrd;
534    RegisterOrdering CellOrd;
535    IFMapType IFMap;
536  };
537
538  char HexagonGenInsert::ID = 0;
539}
540
541
542void HexagonGenInsert::dump_map() const {
543  typedef IFMapType::const_iterator iterator;
544  for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
545    dbgs() << "  " << PrintReg(I->first, HRI) << ":\n";
546    const IFListType &LL = I->second;
547    for (unsigned i = 0, n = LL.size(); i < n; ++i)
548      dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
549             << PrintRegSet(LL[i].second, HRI) << '\n';
550  }
551}
552
553
554void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
555  unsigned Index = 0;
556  typedef MachineFunction::const_iterator mf_iterator;
557  for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
558    const MachineBasicBlock &B = *A;
559    if (!CMS->BT.reached(&B))
560      continue;
561    typedef MachineBasicBlock::const_iterator mb_iterator;
562    for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
563      const MachineInstr *MI = &*I;
564      for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
565        const MachineOperand &MO = MI->getOperand(i);
566        if (MO.isReg() && MO.isDef()) {
567          unsigned R = MO.getReg();
568          assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
569          if (TargetRegisterInfo::isVirtualRegister(R))
570            RO.insert(std::make_pair(R, Index++));
571        }
572      }
573    }
574  }
575  // Since some virtual registers may have had their def and uses eliminated,
576  // they are no longer referenced in the code, and so they will not appear
577  // in the map.
578}
579
580
581void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
582      RegisterOrdering &RO) const {
583  // Create a vector of all virtual registers (collect them from the base
584  // ordering RB), and then sort it using the RegisterCell comparator.
585  BitValueOrdering BVO(RB);
586  RegisterCellLexCompare LexCmp(BVO, *CMS);
587  typedef std::vector<unsigned> SortableVectorType;
588  SortableVectorType VRs;
589  for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
590    VRs.push_back(I->first);
591  std::sort(VRs.begin(), VRs.end(), LexCmp);
592  // Transfer the results to the outgoing register ordering.
593  for (unsigned i = 0, n = VRs.size(); i < n; ++i)
594    RO.insert(std::make_pair(VRs[i], i));
595}
596
597
598inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
599  return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
600}
601
602
603bool HexagonGenInsert::isConstant(unsigned VR) const {
604  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
605  uint16_t W = RC.width();
606  for (uint16_t i = 0; i < W; ++i) {
607    const BitTracker::BitValue &BV = RC[i];
608    if (BV.is(0) || BV.is(1))
609      continue;
610    return false;
611  }
612  return true;
613}
614
615
616bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
617  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
618  uint16_t W = RC.width();
619  if (W > 64)
620    return false;
621  uint64_t V = 0, B = 1;
622  for (uint16_t i = 0; i < W; ++i) {
623    const BitTracker::BitValue &BV = RC[i];
624    if (BV.is(1))
625      V |= B;
626    else if (!BV.is(0))
627      return false;
628    B <<= 1;
629  }
630
631  // For 32-bit registers, consider: Rd = #s16.
632  if (W == 32)
633    return isInt<16>(V);
634
635  // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
636  return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
637}
638
639
640bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
641      unsigned InsR, uint16_t L, uint16_t S) const {
642  const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
643  const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
644  const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
645  // Only integet (32-/64-bit) register classes.
646  if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
647    return false;
648  // The "source" register must be of the same class as DstR.
649  if (DstRC != SrcRC)
650    return false;
651  if (DstRC == InsRC)
652    return true;
653  // A 64-bit register can only be generated from other 64-bit registers.
654  if (DstRC == &Hexagon::DoubleRegsRegClass)
655    return false;
656  // Otherwise, the L and S cannot span 32-bit word boundary.
657  if (S < 32 && S+L > 32)
658    return false;
659  return true;
660}
661
662
663bool HexagonGenInsert::findSelfReference(unsigned VR) const {
664  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
665  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
666    const BitTracker::BitValue &V = RC[i];
667    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
668      return true;
669  }
670  return false;
671}
672
673
674bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
675  BitTracker::RegisterCell RC = CMS->lookup(VR);
676  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
677    const BitTracker::BitValue &V = RC[i];
678    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
679      return true;
680  }
681  return false;
682}
683
684
685void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
686      RegisterSet &Defs) const {
687  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
688    const MachineOperand &MO = MI->getOperand(i);
689    if (!MO.isReg() || !MO.isDef())
690      continue;
691    unsigned R = MO.getReg();
692    if (!TargetRegisterInfo::isVirtualRegister(R))
693      continue;
694    Defs.insert(R);
695  }
696}
697
698
699void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
700      RegisterSet &Uses) const {
701  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
702    const MachineOperand &MO = MI->getOperand(i);
703    if (!MO.isReg() || !MO.isUse())
704      continue;
705    unsigned R = MO.getReg();
706    if (!TargetRegisterInfo::isVirtualRegister(R))
707      continue;
708    Uses.insert(R);
709  }
710}
711
712
713unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
714      const MachineBasicBlock *ToB, const UnsignedMap &RPO,
715      PairMapType &M) const {
716  // Forward distance from the end of a block to the beginning of it does
717  // not make sense. This function should not be called with FromB == ToB.
718  assert(FromB != ToB);
719
720  unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
721  // If we have already computed it, return the cached result.
722  PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
723  if (F != M.end())
724    return F->second;
725  unsigned ToRPO = RPO.lookup(ToN);
726
727  unsigned MaxD = 0;
728  typedef MachineBasicBlock::const_pred_iterator pred_iterator;
729  for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
730    const MachineBasicBlock *PB = *I;
731    // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
732    // along that path will be 0, and we don't need to do any calculations
733    // on it.
734    if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
735      continue;
736    unsigned D = PB->size() + distance(FromB, PB, RPO, M);
737    if (D > MaxD)
738      MaxD = D;
739  }
740
741  // Memoize the result for later lookup.
742  M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
743  return MaxD;
744}
745
746
747unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
748      MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
749      PairMapType &M) const {
750  const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
751  if (FB == TB)
752    return std::distance(FromI, ToI);
753  unsigned D1 = std::distance(TB->begin(), ToI);
754  unsigned D2 = distance(FB, TB, RPO, M);
755  unsigned D3 = std::distance(FromI, FB->end());
756  return D1+D2+D3;
757}
758
759
760bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
761      OrderedRegisterList &AVs) {
762  if (isDebug()) {
763    dbgs() << LLVM_FUNCTION_NAME << ": " << PrintReg(VR, HRI)
764           << "  AVs: " << PrintORL(AVs, HRI) << "\n";
765  }
766  if (AVs.size() == 0)
767    return false;
768
769  typedef OrderedRegisterList::iterator iterator;
770  BitValueOrdering BVO(BaseOrd);
771  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
772  uint16_t W = RC.width();
773
774  typedef std::pair<unsigned,uint16_t> RSRecord;  // (reg,shift)
775  typedef std::vector<RSRecord> RSListType;
776  // Have a map, with key being the matching prefix length, and the value
777  // being the list of pairs (R,S), where R's prefix matches VR at S.
778  // (DenseMap<uint16_t,RSListType> fails to instantiate.)
779  typedef DenseMap<unsigned,RSListType> LRSMapType;
780  LRSMapType LM;
781
782  // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
783  // and find matching prefixes from AVs with the rotated RC. Such a prefix
784  // would match a string of bits (of length L) in RC starting at S.
785  for (uint16_t S = 0; S < W; ++S) {
786    iterator B = AVs.begin(), E = AVs.end();
787    // The registers in AVs are ordered according to the lexical order of
788    // the corresponding register cells. This means that the range of regis-
789    // ters in AVs that match a prefix of length L+1 will be contained in
790    // the range that matches a prefix of length L. This means that we can
791    // keep narrowing the search space as the prefix length goes up. This
792    // helps reduce the overall complexity of the search.
793    uint16_t L;
794    for (L = 0; L < W-S; ++L) {
795      // Compare against VR's bits starting at S, which emulates rotation
796      // of VR by S.
797      RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
798      iterator NewB = std::lower_bound(B, E, VR, RCB);
799      iterator NewE = std::upper_bound(NewB, E, VR, RCB);
800      // For the registers that are eliminated from the next range, L is
801      // the longest prefix matching VR at position S (their prefixes
802      // differ from VR at S+L). If L>0, record this information for later
803      // use.
804      if (L > 0) {
805        for (iterator I = B; I != NewB; ++I)
806          LM[L].push_back(std::make_pair(*I, S));
807        for (iterator I = NewE; I != E; ++I)
808          LM[L].push_back(std::make_pair(*I, S));
809      }
810      B = NewB, E = NewE;
811      if (B == E)
812        break;
813    }
814    // Record the final register range. If this range is non-empty, then
815    // L=W-S.
816    assert(B == E || L == W-S);
817    if (B != E) {
818      for (iterator I = B; I != E; ++I)
819        LM[L].push_back(std::make_pair(*I, S));
820      // If B!=E, then we found a range of registers whose prefixes cover the
821      // rest of VR from position S. There is no need to further advance S.
822      break;
823    }
824  }
825
826  if (isDebug()) {
827    dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n";
828    for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
829      dbgs() << "  L=" << I->first << ':';
830      const RSListType &LL = I->second;
831      for (unsigned i = 0, n = LL.size(); i < n; ++i)
832        dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@"
833               << LL[i].second << ')';
834      dbgs() << '\n';
835    }
836  }
837
838
839  bool Recorded = false;
840
841  for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
842    unsigned SrcR = *I;
843    int FDi = -1, LDi = -1;   // First/last different bit.
844    const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
845    uint16_t AW = AC.width();
846    for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
847      if (RC[i] == AC[i])
848        continue;
849      if (FDi == -1)
850        FDi = i;
851      LDi = i;
852    }
853    if (FDi == -1)
854      continue;  // TODO (future): Record identical registers.
855    // Look for a register whose prefix could patch the range [FD..LD]
856    // where VR and SrcR differ.
857    uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
858    uint16_t MinL = LD-FD+1;
859    for (uint16_t L = MinL; L < W; ++L) {
860      LRSMapType::iterator F = LM.find(L);
861      if (F == LM.end())
862        continue;
863      RSListType &LL = F->second;
864      for (unsigned i = 0, n = LL.size(); i < n; ++i) {
865        uint16_t S = LL[i].second;
866        // MinL is the minimum length of the prefix. Any length above MinL
867        // allows some flexibility as to where the prefix can start:
868        // given the extra length EL=L-MinL, the prefix must start between
869        // max(0,FD-EL) and FD.
870        if (S > FD)   // Starts too late.
871          continue;
872        uint16_t EL = L-MinL;
873        uint16_t LowS = (EL < FD) ? FD-EL : 0;
874        if (S < LowS) // Starts too early.
875          continue;
876        unsigned InsR = LL[i].first;
877        if (!isValidInsertForm(VR, SrcR, InsR, L, S))
878          continue;
879        if (isDebug()) {
880          dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI)
881                 << ',' << PrintReg(InsR, HRI) << ",#" << L << ",#"
882                 << S << ")\n";
883        }
884        IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
885        IFMap[VR].push_back(RR);
886        Recorded = true;
887      }
888    }
889  }
890
891  return Recorded;
892}
893
894
895void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
896      OrderedRegisterList &AVs) {
897  if (isDebug())
898    dbgs() << "visiting block BB#" << B->getNumber() << "\n";
899
900  // First, check if this block is reachable at all. If not, the bit tracker
901  // will not have any information about registers in it.
902  if (!CMS->BT.reached(B))
903    return;
904
905  bool DoConst = OptConst;
906  // Keep a separate set of registers defined in this block, so that we
907  // can remove them from the list of available registers once all DT
908  // successors have been processed.
909  RegisterSet BlockDefs, InsDefs;
910  for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
911    MachineInstr *MI = &*I;
912    InsDefs.clear();
913    getInstrDefs(MI, InsDefs);
914    // Leave those alone. They are more transparent than "insert".
915    bool Skip = MI->isCopy() || MI->isRegSequence();
916
917    if (!Skip) {
918      // Visit all defined registers, and attempt to find the corresponding
919      // "insert" representations.
920      for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
921        // Do not collect registers that are known to be compile-time cons-
922        // tants, unless requested.
923        if (!DoConst && isConstant(VR))
924          continue;
925        // If VR's cell contains a reference to VR, then VR cannot be defined
926        // via "insert". If VR is a constant that can be generated in a single
927        // instruction (without constant extenders), generating it via insert
928        // makes no sense.
929        if (findSelfReference(VR) || isSmallConstant(VR))
930          continue;
931
932        findRecordInsertForms(VR, AVs);
933      }
934    }
935
936    // Insert the defined registers into the list of available registers
937    // after they have been processed.
938    for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
939      AVs.insert(VR);
940    BlockDefs.insert(InsDefs);
941  }
942
943  MachineDomTreeNode *N = MDT->getNode(B);
944  typedef GraphTraits<MachineDomTreeNode*> GTN;
945  typedef GTN::ChildIteratorType ChildIter;
946  for (ChildIter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
947    MachineBasicBlock *SB = (*I)->getBlock();
948    collectInBlock(SB, AVs);
949  }
950
951  for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
952    AVs.remove(VR);
953}
954
955
956void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
957      RegisterSet &RMs) const {
958  // For a given register VR and a insert form, find the registers that are
959  // used by the current definition of VR, and which would no longer be
960  // needed for it after the definition of VR is replaced with the insert
961  // form. These are the registers that could potentially become dead.
962  RegisterSet Regs[2];
963
964  unsigned S = 0;  // Register set selector.
965  Regs[S].insert(VR);
966
967  while (!Regs[S].empty()) {
968    // Breadth-first search.
969    unsigned OtherS = 1-S;
970    Regs[OtherS].clear();
971    for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
972      Regs[S].remove(R);
973      if (R == IF.SrcR || R == IF.InsR)
974        continue;
975      // Check if a given register has bits that are references to any other
976      // registers. This is to detect situations where the instruction that
977      // defines register R takes register Q as an operand, but R itself does
978      // not contain any bits from Q. Loads are examples of how this could
979      // happen:
980      //   R = load Q
981      // In this case (assuming we do not have any knowledge about the loaded
982      // value), we must not treat R as a "conveyance" of the bits from Q.
983      // (The information in BT about R's bits would have them as constants,
984      // in case of zero-extending loads, or refs to R.)
985      if (!findNonSelfReference(R))
986        continue;
987      RMs.insert(R);
988      const MachineInstr *DefI = MRI->getVRegDef(R);
989      assert(DefI);
990      // Do not iterate past PHI nodes to avoid infinite loops. This can
991      // make the final set a bit less accurate, but the removable register
992      // sets are an approximation anyway.
993      if (DefI->isPHI())
994        continue;
995      getInstrUses(DefI, Regs[OtherS]);
996    }
997    S = OtherS;
998  }
999  // The register VR is added to the list as a side-effect of the algorithm,
1000  // but it is not "potentially removable". A potentially removable register
1001  // is one that may become unused (dead) after conversion to the insert form
1002  // IF, and obviously VR (or its replacement) will not become dead by apply-
1003  // ing IF.
1004  RMs.remove(VR);
1005}
1006
1007
1008void HexagonGenInsert::computeRemovableRegisters() {
1009  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1010    IFListType &LL = I->second;
1011    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1012      findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1013  }
1014}
1015
1016
1017void HexagonGenInsert::pruneEmptyLists() {
1018  // Remove all entries from the map, where the register has no insert forms
1019  // associated with it.
1020  typedef SmallVector<IFMapType::iterator,16> IterListType;
1021  IterListType Prune;
1022  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1023    if (I->second.size() == 0)
1024      Prune.push_back(I);
1025  }
1026  for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1027    IFMap.erase(Prune[i]);
1028}
1029
1030
1031void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1032  IFMapType::iterator F = IFMap.find(VR);
1033  assert(F != IFMap.end());
1034  IFListType &LL = F->second;
1035
1036  // First, examine the IF candidates for register VR whose removable-regis-
1037  // ter sets are empty. This means that a given candidate will not help eli-
1038  // minate any registers, but since "insert" is not a constant-extendable
1039  // instruction, using such a candidate may reduce code size if the defini-
1040  // tion of VR is constant-extended.
1041  // If there exists a candidate with a non-empty set, the ones with empty
1042  // sets will not be used and can be removed.
1043  MachineInstr *DefVR = MRI->getVRegDef(VR);
1044  bool DefEx = HII->isConstExtended(DefVR);
1045  bool HasNE = false;
1046  for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1047    if (LL[i].second.empty())
1048      continue;
1049    HasNE = true;
1050    break;
1051  }
1052  if (!DefEx || HasNE) {
1053    // The definition of VR is not constant-extended, or there is a candidate
1054    // with a non-empty set. Remove all candidates with empty sets.
1055    auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1056      return IR.second.empty();
1057    };
1058    auto End = std::remove_if(LL.begin(), LL.end(), IsEmpty);
1059    if (End != LL.end())
1060      LL.erase(End, LL.end());
1061  } else {
1062    // The definition of VR is constant-extended, and all candidates have
1063    // empty removable-register sets. Pick the maximum candidate, and remove
1064    // all others. The "maximum" does not have any special meaning here, it
1065    // is only so that the candidate that will remain on the list is selec-
1066    // ted deterministically.
1067    IFRecord MaxIF = LL[0].first;
1068    for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1069      // If LL[MaxI] < LL[i], then MaxI = i.
1070      const IFRecord &IF = LL[i].first;
1071      unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1072      unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1073      if (M0 > R0)
1074        continue;
1075      if (M0 == R0) {
1076        if (M1 > R1)
1077          continue;
1078        if (M1 == R1) {
1079          if (MaxIF.Wdh > IF.Wdh)
1080            continue;
1081          if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1082            continue;
1083        }
1084      }
1085      // MaxIF < IF.
1086      MaxIF = IF;
1087    }
1088    // Remove everything except the maximum candidate. All register sets
1089    // are empty, so no need to preserve anything.
1090    LL.clear();
1091    LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1092  }
1093
1094  // Now, remove those whose sets of potentially removable registers are
1095  // contained in another IF candidate for VR. For example, given these
1096  // candidates for vreg45,
1097  //   %vreg45:
1098  //     (%vreg44,%vreg41,#9,#8), { %vreg42 }
1099  //     (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 }
1100  // remove the first one, since it is contained in the second one.
1101  for (unsigned i = 0, n = LL.size(); i < n; ) {
1102    const RegisterSet &RMi = LL[i].second;
1103    unsigned j = 0;
1104    while (j < n) {
1105      if (j != i && LL[j].second.includes(RMi))
1106        break;
1107      j++;
1108    }
1109    if (j == n) {   // RMi not contained in anything else.
1110      i++;
1111      continue;
1112    }
1113    LL.erase(LL.begin()+i);
1114    n = LL.size();
1115  }
1116}
1117
1118
1119void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1120      PairMapType &M) {
1121  IFMapType::iterator F = IFMap.find(VR);
1122  assert(F != IFMap.end());
1123  IFListType &LL = F->second;
1124  unsigned Cutoff = VRegDistCutoff;
1125  const MachineInstr *DefV = MRI->getVRegDef(VR);
1126
1127  for (unsigned i = LL.size(); i > 0; --i) {
1128    unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1129    const MachineInstr *DefS = MRI->getVRegDef(SR);
1130    const MachineInstr *DefI = MRI->getVRegDef(IR);
1131    unsigned DSV = distance(DefS, DefV, RPO, M);
1132    if (DSV < Cutoff) {
1133      unsigned DIV = distance(DefI, DefV, RPO, M);
1134      if (DIV < Cutoff)
1135        continue;
1136    }
1137    LL.erase(LL.begin()+(i-1));
1138  }
1139}
1140
1141
1142void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1143  IFMapType::iterator F = IFMap.find(VR);
1144  assert(F != IFMap.end());
1145  IFListType &LL = F->second;
1146
1147  auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1148    return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1149  };
1150  auto End = std::remove_if(LL.begin(), LL.end(), IsCopy);
1151  if (End != LL.end())
1152    LL.erase(End, LL.end());
1153}
1154
1155
1156void HexagonGenInsert::pruneCandidates() {
1157  // Remove candidates that are not beneficial, regardless of the final
1158  // selection method.
1159  // First, remove candidates whose potentially removable set is a subset
1160  // of another candidate's set.
1161  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1162    pruneCoveredSets(I->first);
1163
1164  UnsignedMap RPO;
1165  typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
1166  RPOTType RPOT(MFN);
1167  unsigned RPON = 0;
1168  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1169    RPO[(*I)->getNumber()] = RPON++;
1170
1171  PairMapType Memo; // Memoization map for distance calculation.
1172  // Remove candidates that would use registers defined too far away.
1173  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1174    pruneUsesTooFar(I->first, RPO, Memo);
1175
1176  pruneEmptyLists();
1177
1178  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1179    pruneRegCopies(I->first);
1180}
1181
1182
1183namespace {
1184  // Class for comparing IF candidates for registers that have multiple of
1185  // them. The smaller the candidate, according to this ordering, the better.
1186  // First, compare the number of zeros in the associated potentially remova-
1187  // ble register sets. "Zero" indicates that the register is very likely to
1188  // become dead after this transformation.
1189  // Second, compare "averages", i.e. use-count per size. The lower wins.
1190  // After that, it does not really matter which one is smaller. Resolve
1191  // the tie in some deterministic way.
1192  struct IFOrdering {
1193    IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1194      : UseC(UC), BaseOrd(BO) {}
1195    bool operator() (const IFRecordWithRegSet &A,
1196          const IFRecordWithRegSet &B) const;
1197  private:
1198    void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1199          unsigned &Sum) const;
1200    const UnsignedMap &UseC;
1201    const RegisterOrdering &BaseOrd;
1202  };
1203}
1204
1205
1206bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1207      const IFRecordWithRegSet &B) const {
1208  unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1209  unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1210  stats(A.second, SizeA, ZeroA, SumA);
1211  stats(B.second, SizeB, ZeroB, SumB);
1212
1213  // We will pick the minimum element. The more zeros, the better.
1214  if (ZeroA != ZeroB)
1215    return ZeroA > ZeroB;
1216  // Compare SumA/SizeA with SumB/SizeB, lower is better.
1217  uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1218  if (AvgA != AvgB)
1219    return AvgA < AvgB;
1220
1221  // The sets compare identical so far. Resort to comparing the IF records.
1222  // The actual values don't matter, this is only for determinism.
1223  unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1224  if (OSA != OSB)
1225    return OSA < OSB;
1226  unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1227  if (OIA != OIB)
1228    return OIA < OIB;
1229  if (A.first.Wdh != B.first.Wdh)
1230    return A.first.Wdh < B.first.Wdh;
1231  return A.first.Off < B.first.Off;
1232}
1233
1234
1235void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1236      unsigned &Sum) const {
1237  for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1238    UnsignedMap::const_iterator F = UseC.find(R);
1239    assert(F != UseC.end());
1240    unsigned UC = F->second;
1241    if (UC == 0)
1242      Zero++;
1243    Sum += UC;
1244    Size++;
1245  }
1246}
1247
1248
1249void HexagonGenInsert::selectCandidates() {
1250  // Some registers may have multiple valid candidates. Pick the best one
1251  // (or decide not to use any).
1252
1253  // Compute the "removability" measure of R:
1254  // For each potentially removable register R, record the number of regis-
1255  // ters with IF candidates, where R appears in at least one set.
1256  RegisterSet AllRMs;
1257  UnsignedMap UseC, RemC;
1258  IFMapType::iterator End = IFMap.end();
1259
1260  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1261    const IFListType &LL = I->second;
1262    RegisterSet TT;
1263    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1264      TT.insert(LL[i].second);
1265    for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1266      RemC[R]++;
1267    AllRMs.insert(TT);
1268  }
1269
1270  for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1271    typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
1272    typedef SmallSet<const MachineInstr*,16> InstrSet;
1273    InstrSet UIs;
1274    // Count as the number of instructions in which R is used, not the
1275    // number of operands.
1276    use_iterator E = MRI->use_nodbg_end();
1277    for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1278      UIs.insert(I->getParent());
1279    unsigned C = UIs.size();
1280    // Calculate a measure, which is the number of instructions using R,
1281    // minus the "removability" count computed earlier.
1282    unsigned D = RemC[R];
1283    UseC[R] = (C > D) ? C-D : 0;  // doz
1284  }
1285
1286
1287  bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1288  if (!SelectAll0 && !SelectHas0)
1289    SelectAll0 = true;
1290
1291  // The smaller the number UseC for a given register R, the "less used"
1292  // R is aside from the opportunities for removal offered by generating
1293  // "insert" instructions.
1294  // Iterate over the IF map, and for those registers that have multiple
1295  // candidates, pick the minimum one according to IFOrdering.
1296  IFOrdering IFO(UseC, BaseOrd);
1297  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1298    IFListType &LL = I->second;
1299    if (LL.empty())
1300      continue;
1301    // Get the minimum element, remember it and clear the list. If the
1302    // element found is adequate, we will put it back on the list, other-
1303    // wise the list will remain empty, and the entry for this register
1304    // will be removed (i.e. this register will not be replaced by insert).
1305    IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1306    assert(MinI != LL.end());
1307    IFRecordWithRegSet M = *MinI;
1308    LL.clear();
1309
1310    // We want to make sure that this replacement will have a chance to be
1311    // beneficial, and that means that we want to have indication that some
1312    // register will be removed. The most likely registers to be eliminated
1313    // are the use operands in the definition of I->first. Accept/reject a
1314    // candidate based on how many of its uses it can potentially eliminate.
1315
1316    RegisterSet Us;
1317    const MachineInstr *DefI = MRI->getVRegDef(I->first);
1318    getInstrUses(DefI, Us);
1319    bool Accept = false;
1320
1321    if (SelectAll0) {
1322      bool All0 = true;
1323      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1324        if (UseC[R] == 0)
1325          continue;
1326        All0 = false;
1327        break;
1328      }
1329      Accept = All0;
1330    } else if (SelectHas0) {
1331      bool Has0 = false;
1332      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1333        if (UseC[R] != 0)
1334          continue;
1335        Has0 = true;
1336        break;
1337      }
1338      Accept = Has0;
1339    }
1340    if (Accept)
1341      LL.push_back(M);
1342  }
1343
1344  // Remove candidates that add uses of removable registers, unless the
1345  // removable registers are among replacement candidates.
1346  // Recompute the removable registers, since some candidates may have
1347  // been eliminated.
1348  AllRMs.clear();
1349  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1350    const IFListType &LL = I->second;
1351    if (LL.size() > 0)
1352      AllRMs.insert(LL[0].second);
1353  }
1354  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1355    IFListType &LL = I->second;
1356    if (LL.size() == 0)
1357      continue;
1358    unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1359    if (AllRMs[SR] || AllRMs[IR])
1360      LL.clear();
1361  }
1362
1363  pruneEmptyLists();
1364}
1365
1366
1367bool HexagonGenInsert::generateInserts() {
1368  // Create a new register for each one from IFMap, and store them in the
1369  // map.
1370  UnsignedMap RegMap;
1371  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1372    unsigned VR = I->first;
1373    const TargetRegisterClass *RC = MRI->getRegClass(VR);
1374    unsigned NewVR = MRI->createVirtualRegister(RC);
1375    RegMap[VR] = NewVR;
1376  }
1377
1378  // We can generate the "insert" instructions using potentially stale re-
1379  // gisters: SrcR and InsR for a given VR may be among other registers that
1380  // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1381  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1382    MachineInstr *MI = MRI->getVRegDef(I->first);
1383    MachineBasicBlock &B = *MI->getParent();
1384    DebugLoc DL = MI->getDebugLoc();
1385    unsigned NewR = RegMap[I->first];
1386    bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1387    const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1388                               : HII->get(Hexagon::S2_insertp);
1389    IFRecord IF = I->second[0].first;
1390    unsigned Wdh = IF.Wdh, Off = IF.Off;
1391    unsigned InsS = 0;
1392    if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1393      InsS = Hexagon::subreg_loreg;
1394      if (Off >= 32) {
1395        InsS = Hexagon::subreg_hireg;
1396        Off -= 32;
1397      }
1398    }
1399    // Advance to the proper location for inserting instructions. This could
1400    // be B.end().
1401    MachineBasicBlock::iterator At = MI;
1402    if (MI->isPHI())
1403      At = B.getFirstNonPHI();
1404
1405    BuildMI(B, At, DL, D, NewR)
1406      .addReg(IF.SrcR)
1407      .addReg(IF.InsR, 0, InsS)
1408      .addImm(Wdh)
1409      .addImm(Off);
1410
1411    MRI->clearKillFlags(IF.SrcR);
1412    MRI->clearKillFlags(IF.InsR);
1413  }
1414
1415  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1416    MachineInstr *DefI = MRI->getVRegDef(I->first);
1417    MRI->replaceRegWith(I->first, RegMap[I->first]);
1418    DefI->eraseFromParent();
1419  }
1420
1421  return true;
1422}
1423
1424
1425bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1426  bool Changed = false;
1427  typedef GraphTraits<MachineDomTreeNode*> GTN;
1428  for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1429    Changed |= removeDeadCode(*I);
1430
1431  MachineBasicBlock *B = N->getBlock();
1432  std::vector<MachineInstr*> Instrs;
1433  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1434    Instrs.push_back(&*I);
1435
1436  for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1437    MachineInstr *MI = *I;
1438    unsigned Opc = MI->getOpcode();
1439    // Do not touch lifetime markers. This is why the target-independent DCE
1440    // cannot be used.
1441    if (Opc == TargetOpcode::LIFETIME_START ||
1442        Opc == TargetOpcode::LIFETIME_END)
1443      continue;
1444    bool Store = false;
1445    if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1446      continue;
1447
1448    bool AllDead = true;
1449    SmallVector<unsigned,2> Regs;
1450    for (ConstMIOperands Op(MI); Op.isValid(); ++Op) {
1451      if (!Op->isReg() || !Op->isDef())
1452        continue;
1453      unsigned R = Op->getReg();
1454      if (!TargetRegisterInfo::isVirtualRegister(R) ||
1455          !MRI->use_nodbg_empty(R)) {
1456        AllDead = false;
1457        break;
1458      }
1459      Regs.push_back(R);
1460    }
1461    if (!AllDead)
1462      continue;
1463
1464    B->erase(MI);
1465    for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1466      MRI->markUsesInDebugValueAsUndef(Regs[I]);
1467    Changed = true;
1468  }
1469
1470  return Changed;
1471}
1472
1473
1474bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1475  bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1476  bool Changed = false;
1477  TimerGroup __G("hexinsert");
1478  NamedRegionTimer __T("hexinsert", Timing && !TimingDetail);
1479
1480  // Sanity check: one, but not both.
1481  assert(!OptSelectAll0 || !OptSelectHas0);
1482
1483  IFMap.clear();
1484  BaseOrd.clear();
1485  CellOrd.clear();
1486
1487  const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1488  HII = ST.getInstrInfo();
1489  HRI = ST.getRegisterInfo();
1490  MFN = &MF;
1491  MRI = &MF.getRegInfo();
1492  MDT = &getAnalysis<MachineDominatorTree>();
1493
1494  // Clean up before any further processing, so that dead code does not
1495  // get used in a newly generated "insert" instruction. Have a custom
1496  // version of DCE that preserves lifetime markers. Without it, merging
1497  // of stack objects can fail to recognize and merge disjoint objects
1498  // leading to unnecessary stack growth.
1499  Changed |= removeDeadCode(MDT->getRootNode());
1500
1501  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1502  BitTracker BTLoc(HE, MF);
1503  BTLoc.trace(isDebug());
1504  BTLoc.run();
1505  CellMapShadow MS(BTLoc);
1506  CMS = &MS;
1507
1508  buildOrderingMF(BaseOrd);
1509  buildOrderingBT(BaseOrd, CellOrd);
1510
1511  if (isDebug()) {
1512    dbgs() << "Cell ordering:\n";
1513    for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1514        I != E; ++I) {
1515      unsigned VR = I->first, Pos = I->second;
1516      dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n";
1517    }
1518  }
1519
1520  // Collect candidates for conversion into the insert forms.
1521  MachineBasicBlock *RootB = MDT->getRoot();
1522  OrderedRegisterList AvailR(CellOrd);
1523
1524  {
1525    NamedRegionTimer _T("collection", "hexinsert", TimingDetail);
1526    collectInBlock(RootB, AvailR);
1527    // Complete the information gathered in IFMap.
1528    computeRemovableRegisters();
1529  }
1530
1531  if (isDebug()) {
1532    dbgs() << "Candidates after collection:\n";
1533    dump_map();
1534  }
1535
1536  if (IFMap.empty())
1537    return false;
1538
1539  {
1540    NamedRegionTimer _T("pruning", "hexinsert", TimingDetail);
1541    pruneCandidates();
1542  }
1543
1544  if (isDebug()) {
1545    dbgs() << "Candidates after pruning:\n";
1546    dump_map();
1547  }
1548
1549  if (IFMap.empty())
1550    return false;
1551
1552  {
1553    NamedRegionTimer _T("selection", "hexinsert", TimingDetail);
1554    selectCandidates();
1555  }
1556
1557  if (isDebug()) {
1558    dbgs() << "Candidates after selection:\n";
1559    dump_map();
1560  }
1561
1562  // Filter out vregs beyond the cutoff.
1563  if (VRegIndexCutoff.getPosition()) {
1564    unsigned Cutoff = VRegIndexCutoff;
1565    typedef SmallVector<IFMapType::iterator,16> IterListType;
1566    IterListType Out;
1567    for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1568      unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1569      if (Idx >= Cutoff)
1570        Out.push_back(I);
1571    }
1572    for (unsigned i = 0, n = Out.size(); i < n; ++i)
1573      IFMap.erase(Out[i]);
1574  }
1575
1576  {
1577    NamedRegionTimer _T("generation", "hexinsert", TimingDetail);
1578    Changed = generateInserts();
1579  }
1580
1581  return Changed;
1582}
1583
1584
1585FunctionPass *llvm::createHexagonGenInsert() {
1586  return new HexagonGenInsert();
1587}
1588
1589
1590//===----------------------------------------------------------------------===//
1591//                         Public Constructor Functions
1592//===----------------------------------------------------------------------===//
1593
1594INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1595  "Hexagon generate \"insert\" instructions", false, false)
1596INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1597INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1598  "Hexagon generate \"insert\" instructions", false, false)
1599