HexagonGenInsert.cpp revision 344779
1//===- HexagonGenInsert.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "BitTracker.h"
11#include "HexagonBitTracker.h"
12#include "HexagonInstrInfo.h"
13#include "HexagonRegisterInfo.h"
14#include "HexagonSubtarget.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/GraphTraits.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/TargetRegisterInfo.h"
32#include "llvm/IR/DebugLoc.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Timer.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40#include <cassert>
41#include <cstdint>
42#include <iterator>
43#include <utility>
44#include <vector>
45
46#define DEBUG_TYPE "hexinsert"
47
48using namespace llvm;
49
50static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
51  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
52// The distance cutoff is selected based on the precheckin-perf results:
53// cutoffs 20, 25, 35, and 40 are worse than 30.
54static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
55  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
56  "generation."));
57
58// Limit the container sizes for extreme cases where we run out of memory.
59static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
60  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList"));
61static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
62  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap"));
63
64static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
65  cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
66static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
67  cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
68  "generation"));
69
70static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
71  cl::ZeroOrMore);
72static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
73  cl::ZeroOrMore);
74// Whether to construct constant values via "insert". Could eliminate constant
75// extenders, but often not practical.
76static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
77  cl::ZeroOrMore);
78
79// The preprocessor gets confused when the DEBUG macro is passed larger
80// chunks of code. Use this function to detect debugging.
81inline static bool isDebug() {
82#ifndef NDEBUG
83  return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
84#else
85  return false;
86#endif
87}
88
89namespace {
90
91  // Set of virtual registers, based on BitVector.
92  struct RegisterSet : private BitVector {
93    RegisterSet() = default;
94    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
95    RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
96
97    using BitVector::clear;
98
99    unsigned find_first() const {
100      int First = BitVector::find_first();
101      if (First < 0)
102        return 0;
103      return x2v(First);
104    }
105
106    unsigned find_next(unsigned Prev) const {
107      int Next = BitVector::find_next(v2x(Prev));
108      if (Next < 0)
109        return 0;
110      return x2v(Next);
111    }
112
113    RegisterSet &insert(unsigned R) {
114      unsigned Idx = v2x(R);
115      ensure(Idx);
116      return static_cast<RegisterSet&>(BitVector::set(Idx));
117    }
118    RegisterSet &remove(unsigned R) {
119      unsigned Idx = v2x(R);
120      if (Idx >= size())
121        return *this;
122      return static_cast<RegisterSet&>(BitVector::reset(Idx));
123    }
124
125    RegisterSet &insert(const RegisterSet &Rs) {
126      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
127    }
128    RegisterSet &remove(const RegisterSet &Rs) {
129      return static_cast<RegisterSet&>(BitVector::reset(Rs));
130    }
131
132    reference operator[](unsigned R) {
133      unsigned Idx = v2x(R);
134      ensure(Idx);
135      return BitVector::operator[](Idx);
136    }
137    bool operator[](unsigned R) const {
138      unsigned Idx = v2x(R);
139      assert(Idx < size());
140      return BitVector::operator[](Idx);
141    }
142    bool has(unsigned R) const {
143      unsigned Idx = v2x(R);
144      if (Idx >= size())
145        return false;
146      return BitVector::test(Idx);
147    }
148
149    bool empty() const {
150      return !BitVector::any();
151    }
152    bool includes(const RegisterSet &Rs) const {
153      // A.BitVector::test(B)  <=>  A-B != {}
154      return !Rs.BitVector::test(*this);
155    }
156    bool intersects(const RegisterSet &Rs) const {
157      return BitVector::anyCommon(Rs);
158    }
159
160  private:
161    void ensure(unsigned Idx) {
162      if (size() <= Idx)
163        resize(std::max(Idx+1, 32U));
164    }
165
166    static inline unsigned v2x(unsigned v) {
167      return TargetRegisterInfo::virtReg2Index(v);
168    }
169
170    static inline unsigned x2v(unsigned x) {
171      return TargetRegisterInfo::index2VirtReg(x);
172    }
173  };
174
175  struct PrintRegSet {
176    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
177      : RS(S), TRI(RI) {}
178
179    friend raw_ostream &operator<< (raw_ostream &OS,
180          const PrintRegSet &P);
181
182  private:
183    const RegisterSet &RS;
184    const TargetRegisterInfo *TRI;
185  };
186
187  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
188    OS << '{';
189    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
190      OS << ' ' << printReg(R, P.TRI);
191    OS << " }";
192    return OS;
193  }
194
195  // A convenience class to associate unsigned numbers (such as virtual
196  // registers) with unsigned numbers.
197  struct UnsignedMap : public DenseMap<unsigned,unsigned> {
198    UnsignedMap() = default;
199
200  private:
201    using BaseType = DenseMap<unsigned, unsigned>;
202  };
203
204  // A utility to establish an ordering between virtual registers:
205  // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
206  // This is meant as a cache for the ordering of virtual registers defined
207  // by a potentially expensive comparison function, or obtained by a proce-
208  // dure that should not be repeated each time two registers are compared.
209  struct RegisterOrdering : public UnsignedMap {
210    RegisterOrdering() = default;
211
212    unsigned operator[](unsigned VR) const {
213      const_iterator F = find(VR);
214      assert(F != end());
215      return F->second;
216    }
217
218    // Add operator(), so that objects of this class can be used as
219    // comparators in std::sort et al.
220    bool operator() (unsigned VR1, unsigned VR2) const {
221      return operator[](VR1) < operator[](VR2);
222    }
223  };
224
225  // Ordering of bit values. This class does not have operator[], but
226  // is supplies a comparison operator() for use in std:: algorithms.
227  // The order is as follows:
228  // - 0 < 1 < ref
229  // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
230  //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
231  struct BitValueOrdering {
232    BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
233
234    bool operator() (const BitTracker::BitValue &V1,
235          const BitTracker::BitValue &V2) const;
236
237    const RegisterOrdering &BaseOrd;
238  };
239
240} // end anonymous namespace
241
242bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
243      const BitTracker::BitValue &V2) const {
244  if (V1 == V2)
245    return false;
246  // V1==0 => true, V2==0 => false
247  if (V1.is(0) || V2.is(0))
248    return V1.is(0);
249  // Neither of V1,V2 is 0, and V1!=V2.
250  // V2==1 => false, V1==1 => true
251  if (V2.is(1) || V1.is(1))
252    return !V2.is(1);
253  // Both V1,V2 are refs.
254  unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
255  if (Ind1 != Ind2)
256    return Ind1 < Ind2;
257  // If V1.Pos==V2.Pos
258  assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
259  return V1.RefI.Pos < V2.RefI.Pos;
260}
261
262namespace {
263
264  // Cache for the BitTracker's cell map. Map lookup has a logarithmic
265  // complexity, this class will memoize the lookup results to reduce
266  // the access time for repeated lookups of the same cell.
267  struct CellMapShadow {
268    CellMapShadow(const BitTracker &T) : BT(T) {}
269
270    const BitTracker::RegisterCell &lookup(unsigned VR) {
271      unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
272      // Grow the vector to at least 32 elements.
273      if (RInd >= CVect.size())
274        CVect.resize(std::max(RInd+16, 32U), nullptr);
275      const BitTracker::RegisterCell *CP = CVect[RInd];
276      if (CP == nullptr)
277        CP = CVect[RInd] = &BT.lookup(VR);
278      return *CP;
279    }
280
281    const BitTracker &BT;
282
283  private:
284    using CellVectType = std::vector<const BitTracker::RegisterCell *>;
285
286    CellVectType CVect;
287  };
288
289  // Comparator class for lexicographic ordering of virtual registers
290  // according to the corresponding BitTracker::RegisterCell objects.
291  struct RegisterCellLexCompare {
292    RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
293      : BitOrd(BO), CM(M) {}
294
295    bool operator() (unsigned VR1, unsigned VR2) const;
296
297  private:
298    const BitValueOrdering &BitOrd;
299    CellMapShadow &CM;
300  };
301
302  // Comparator class for lexicographic ordering of virtual registers
303  // according to the specified bits of the corresponding BitTracker::
304  // RegisterCell objects.
305  // Specifically, this class will be used to compare bit B of a register
306  // cell for a selected virtual register R with bit N of any register
307  // other than R.
308  struct RegisterCellBitCompareSel {
309    RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
310          const BitValueOrdering &BO, CellMapShadow &M)
311      : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
312
313    bool operator() (unsigned VR1, unsigned VR2) const;
314
315  private:
316    const unsigned SelR, SelB;
317    const unsigned BitN;
318    const BitValueOrdering &BitOrd;
319    CellMapShadow &CM;
320  };
321
322} // end anonymous namespace
323
324bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
325  // Ordering of registers, made up from two given orderings:
326  // - the ordering of the register numbers, and
327  // - the ordering of register cells.
328  // Def. R1 < R2 if:
329  // - cell(R1) < cell(R2), or
330  // - cell(R1) == cell(R2), and index(R1) < index(R2).
331  //
332  // For register cells, the ordering is lexicographic, with index 0 being
333  // the most significant.
334  if (VR1 == VR2)
335    return false;
336
337  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
338  uint16_t W1 = RC1.width(), W2 = RC2.width();
339  for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
340    const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
341    if (V1 != V2)
342      return BitOrd(V1, V2);
343  }
344  // Cells are equal up until the common length.
345  if (W1 != W2)
346    return W1 < W2;
347
348  return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
349}
350
351bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
352  if (VR1 == VR2)
353    return false;
354  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
355  const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
356  uint16_t W1 = RC1.width(), W2 = RC2.width();
357  uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
358  uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
359  // If Bit1 exceeds the width of VR1, then:
360  // - return false, if at the same time Bit2 exceeds VR2, or
361  // - return true, otherwise.
362  // (I.e. "a bit value that does not exist is less than any bit value
363  // that does exist".)
364  if (W1 <= Bit1)
365    return Bit2 < W2;
366  // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
367  if (W2 <= Bit2)
368    return false;
369
370  const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
371  if (V1 != V2)
372    return BitOrd(V1, V2);
373  return false;
374}
375
376namespace {
377
378  class OrderedRegisterList {
379    using ListType = std::vector<unsigned>;
380    const unsigned MaxSize;
381
382  public:
383    OrderedRegisterList(const RegisterOrdering &RO)
384      : MaxSize(MaxORLSize), Ord(RO) {}
385
386    void insert(unsigned VR);
387    void remove(unsigned VR);
388
389    unsigned operator[](unsigned Idx) const {
390      assert(Idx < Seq.size());
391      return Seq[Idx];
392    }
393
394    unsigned size() const {
395      return Seq.size();
396    }
397
398    using iterator = ListType::iterator;
399    using const_iterator = ListType::const_iterator;
400
401    iterator begin() { return Seq.begin(); }
402    iterator end() { return Seq.end(); }
403    const_iterator begin() const { return Seq.begin(); }
404    const_iterator end() const { return Seq.end(); }
405
406    // Convenience function to convert an iterator to the corresponding index.
407    unsigned idx(iterator It) const { return It-begin(); }
408
409  private:
410    ListType Seq;
411    const RegisterOrdering &Ord;
412  };
413
414  struct PrintORL {
415    PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
416      : RL(L), TRI(RI) {}
417
418    friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
419
420  private:
421    const OrderedRegisterList &RL;
422    const TargetRegisterInfo *TRI;
423  };
424
425  raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
426    OS << '(';
427    OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
428    for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
429      if (I != B)
430        OS << ", ";
431      OS << printReg(*I, P.TRI);
432    }
433    OS << ')';
434    return OS;
435  }
436
437} // end anonymous namespace
438
439void OrderedRegisterList::insert(unsigned VR) {
440  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
441  if (L == Seq.end())
442    Seq.push_back(VR);
443  else
444    Seq.insert(L, VR);
445
446  unsigned S = Seq.size();
447  if (S > MaxSize)
448    Seq.resize(MaxSize);
449  assert(Seq.size() <= MaxSize);
450}
451
452void OrderedRegisterList::remove(unsigned VR) {
453  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
454  if (L != Seq.end())
455    Seq.erase(L);
456}
457
458namespace {
459
460  // A record of the insert form. The fields correspond to the operands
461  // of the "insert" instruction:
462  // ... = insert(SrcR, InsR, #Wdh, #Off)
463  struct IFRecord {
464    IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
465      : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
466
467    unsigned SrcR, InsR;
468    uint16_t Wdh, Off;
469  };
470
471  struct PrintIFR {
472    PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
473      : IFR(R), TRI(RI) {}
474
475  private:
476    friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
477
478    const IFRecord &IFR;
479    const TargetRegisterInfo *TRI;
480  };
481
482  raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
483    unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
484    OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
485       << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
486    return OS;
487  }
488
489  using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
490
491} // end anonymous namespace
492
493namespace llvm {
494
495  void initializeHexagonGenInsertPass(PassRegistry&);
496  FunctionPass *createHexagonGenInsert();
497
498} // end namespace llvm
499
500namespace {
501
502  class HexagonGenInsert : public MachineFunctionPass {
503  public:
504    static char ID;
505
506    HexagonGenInsert() : MachineFunctionPass(ID) {
507      initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
508    }
509
510    StringRef getPassName() const override {
511      return "Hexagon generate \"insert\" instructions";
512    }
513
514    void getAnalysisUsage(AnalysisUsage &AU) const override {
515      AU.addRequired<MachineDominatorTree>();
516      AU.addPreserved<MachineDominatorTree>();
517      MachineFunctionPass::getAnalysisUsage(AU);
518    }
519
520    bool runOnMachineFunction(MachineFunction &MF) override;
521
522  private:
523    using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
524
525    void buildOrderingMF(RegisterOrdering &RO) const;
526    void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
527    bool isIntClass(const TargetRegisterClass *RC) const;
528    bool isConstant(unsigned VR) const;
529    bool isSmallConstant(unsigned VR) const;
530    bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
531          uint16_t L, uint16_t S) const;
532    bool findSelfReference(unsigned VR) const;
533    bool findNonSelfReference(unsigned VR) const;
534    void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
535    void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
536    unsigned distance(const MachineBasicBlock *FromB,
537          const MachineBasicBlock *ToB, const UnsignedMap &RPO,
538          PairMapType &M) const;
539    unsigned distance(MachineBasicBlock::const_iterator FromI,
540          MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
541          PairMapType &M) const;
542    bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
543    void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
544    void findRemovableRegisters(unsigned VR, IFRecord IF,
545          RegisterSet &RMs) const;
546    void computeRemovableRegisters();
547
548    void pruneEmptyLists();
549    void pruneCoveredSets(unsigned VR);
550    void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
551    void pruneRegCopies(unsigned VR);
552    void pruneCandidates();
553    void selectCandidates();
554    bool generateInserts();
555
556    bool removeDeadCode(MachineDomTreeNode *N);
557
558    // IFRecord coupled with a set of potentially removable registers:
559    using IFListType = std::vector<IFRecordWithRegSet>;
560    using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
561
562    void dump_map() const;
563
564    const HexagonInstrInfo *HII = nullptr;
565    const HexagonRegisterInfo *HRI = nullptr;
566
567    MachineFunction *MFN;
568    MachineRegisterInfo *MRI;
569    MachineDominatorTree *MDT;
570    CellMapShadow *CMS;
571
572    RegisterOrdering BaseOrd;
573    RegisterOrdering CellOrd;
574    IFMapType IFMap;
575  };
576
577} // end anonymous namespace
578
579char HexagonGenInsert::ID = 0;
580
581void HexagonGenInsert::dump_map() const {
582  using iterator = IFMapType::const_iterator;
583
584  for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
585    dbgs() << "  " << printReg(I->first, HRI) << ":\n";
586    const IFListType &LL = I->second;
587    for (unsigned i = 0, n = LL.size(); i < n; ++i)
588      dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
589             << PrintRegSet(LL[i].second, HRI) << '\n';
590  }
591}
592
593void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
594  unsigned Index = 0;
595
596  using mf_iterator = MachineFunction::const_iterator;
597
598  for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
599    const MachineBasicBlock &B = *A;
600    if (!CMS->BT.reached(&B))
601      continue;
602
603    using mb_iterator = MachineBasicBlock::const_iterator;
604
605    for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
606      const MachineInstr *MI = &*I;
607      for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
608        const MachineOperand &MO = MI->getOperand(i);
609        if (MO.isReg() && MO.isDef()) {
610          unsigned R = MO.getReg();
611          assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
612          if (TargetRegisterInfo::isVirtualRegister(R))
613            RO.insert(std::make_pair(R, Index++));
614        }
615      }
616    }
617  }
618  // Since some virtual registers may have had their def and uses eliminated,
619  // they are no longer referenced in the code, and so they will not appear
620  // in the map.
621}
622
623void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
624      RegisterOrdering &RO) const {
625  // Create a vector of all virtual registers (collect them from the base
626  // ordering RB), and then sort it using the RegisterCell comparator.
627  BitValueOrdering BVO(RB);
628  RegisterCellLexCompare LexCmp(BVO, *CMS);
629
630  using SortableVectorType = std::vector<unsigned>;
631
632  SortableVectorType VRs;
633  for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
634    VRs.push_back(I->first);
635  llvm::sort(VRs, LexCmp);
636  // Transfer the results to the outgoing register ordering.
637  for (unsigned i = 0, n = VRs.size(); i < n; ++i)
638    RO.insert(std::make_pair(VRs[i], i));
639}
640
641inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
642  return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
643}
644
645bool HexagonGenInsert::isConstant(unsigned VR) const {
646  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
647  uint16_t W = RC.width();
648  for (uint16_t i = 0; i < W; ++i) {
649    const BitTracker::BitValue &BV = RC[i];
650    if (BV.is(0) || BV.is(1))
651      continue;
652    return false;
653  }
654  return true;
655}
656
657bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
658  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
659  uint16_t W = RC.width();
660  if (W > 64)
661    return false;
662  uint64_t V = 0, B = 1;
663  for (uint16_t i = 0; i < W; ++i) {
664    const BitTracker::BitValue &BV = RC[i];
665    if (BV.is(1))
666      V |= B;
667    else if (!BV.is(0))
668      return false;
669    B <<= 1;
670  }
671
672  // For 32-bit registers, consider: Rd = #s16.
673  if (W == 32)
674    return isInt<16>(V);
675
676  // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
677  return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
678}
679
680bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
681      unsigned InsR, uint16_t L, uint16_t S) const {
682  const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
683  const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
684  const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
685  // Only integet (32-/64-bit) register classes.
686  if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
687    return false;
688  // The "source" register must be of the same class as DstR.
689  if (DstRC != SrcRC)
690    return false;
691  if (DstRC == InsRC)
692    return true;
693  // A 64-bit register can only be generated from other 64-bit registers.
694  if (DstRC == &Hexagon::DoubleRegsRegClass)
695    return false;
696  // Otherwise, the L and S cannot span 32-bit word boundary.
697  if (S < 32 && S+L > 32)
698    return false;
699  return true;
700}
701
702bool HexagonGenInsert::findSelfReference(unsigned VR) const {
703  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
704  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
705    const BitTracker::BitValue &V = RC[i];
706    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
707      return true;
708  }
709  return false;
710}
711
712bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
713  BitTracker::RegisterCell RC = CMS->lookup(VR);
714  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
715    const BitTracker::BitValue &V = RC[i];
716    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
717      return true;
718  }
719  return false;
720}
721
722void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
723      RegisterSet &Defs) const {
724  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
725    const MachineOperand &MO = MI->getOperand(i);
726    if (!MO.isReg() || !MO.isDef())
727      continue;
728    unsigned R = MO.getReg();
729    if (!TargetRegisterInfo::isVirtualRegister(R))
730      continue;
731    Defs.insert(R);
732  }
733}
734
735void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
736      RegisterSet &Uses) const {
737  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
738    const MachineOperand &MO = MI->getOperand(i);
739    if (!MO.isReg() || !MO.isUse())
740      continue;
741    unsigned R = MO.getReg();
742    if (!TargetRegisterInfo::isVirtualRegister(R))
743      continue;
744    Uses.insert(R);
745  }
746}
747
748unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
749      const MachineBasicBlock *ToB, const UnsignedMap &RPO,
750      PairMapType &M) const {
751  // Forward distance from the end of a block to the beginning of it does
752  // not make sense. This function should not be called with FromB == ToB.
753  assert(FromB != ToB);
754
755  unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
756  // If we have already computed it, return the cached result.
757  PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
758  if (F != M.end())
759    return F->second;
760  unsigned ToRPO = RPO.lookup(ToN);
761
762  unsigned MaxD = 0;
763
764  using pred_iterator = MachineBasicBlock::const_pred_iterator;
765
766  for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
767    const MachineBasicBlock *PB = *I;
768    // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
769    // along that path will be 0, and we don't need to do any calculations
770    // on it.
771    if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
772      continue;
773    unsigned D = PB->size() + distance(FromB, PB, RPO, M);
774    if (D > MaxD)
775      MaxD = D;
776  }
777
778  // Memoize the result for later lookup.
779  M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
780  return MaxD;
781}
782
783unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
784      MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
785      PairMapType &M) const {
786  const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
787  if (FB == TB)
788    return std::distance(FromI, ToI);
789  unsigned D1 = std::distance(TB->begin(), ToI);
790  unsigned D2 = distance(FB, TB, RPO, M);
791  unsigned D3 = std::distance(FromI, FB->end());
792  return D1+D2+D3;
793}
794
795bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
796      OrderedRegisterList &AVs) {
797  if (isDebug()) {
798    dbgs() << __func__ << ": " << printReg(VR, HRI)
799           << "  AVs: " << PrintORL(AVs, HRI) << "\n";
800  }
801  if (AVs.size() == 0)
802    return false;
803
804  using iterator = OrderedRegisterList::iterator;
805
806  BitValueOrdering BVO(BaseOrd);
807  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
808  uint16_t W = RC.width();
809
810  using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
811  using RSListType = std::vector<RSRecord>;
812  // Have a map, with key being the matching prefix length, and the value
813  // being the list of pairs (R,S), where R's prefix matches VR at S.
814  // (DenseMap<uint16_t,RSListType> fails to instantiate.)
815  using LRSMapType = DenseMap<unsigned, RSListType>;
816  LRSMapType LM;
817
818  // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
819  // and find matching prefixes from AVs with the rotated RC. Such a prefix
820  // would match a string of bits (of length L) in RC starting at S.
821  for (uint16_t S = 0; S < W; ++S) {
822    iterator B = AVs.begin(), E = AVs.end();
823    // The registers in AVs are ordered according to the lexical order of
824    // the corresponding register cells. This means that the range of regis-
825    // ters in AVs that match a prefix of length L+1 will be contained in
826    // the range that matches a prefix of length L. This means that we can
827    // keep narrowing the search space as the prefix length goes up. This
828    // helps reduce the overall complexity of the search.
829    uint16_t L;
830    for (L = 0; L < W-S; ++L) {
831      // Compare against VR's bits starting at S, which emulates rotation
832      // of VR by S.
833      RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
834      iterator NewB = std::lower_bound(B, E, VR, RCB);
835      iterator NewE = std::upper_bound(NewB, E, VR, RCB);
836      // For the registers that are eliminated from the next range, L is
837      // the longest prefix matching VR at position S (their prefixes
838      // differ from VR at S+L). If L>0, record this information for later
839      // use.
840      if (L > 0) {
841        for (iterator I = B; I != NewB; ++I)
842          LM[L].push_back(std::make_pair(*I, S));
843        for (iterator I = NewE; I != E; ++I)
844          LM[L].push_back(std::make_pair(*I, S));
845      }
846      B = NewB, E = NewE;
847      if (B == E)
848        break;
849    }
850    // Record the final register range. If this range is non-empty, then
851    // L=W-S.
852    assert(B == E || L == W-S);
853    if (B != E) {
854      for (iterator I = B; I != E; ++I)
855        LM[L].push_back(std::make_pair(*I, S));
856      // If B!=E, then we found a range of registers whose prefixes cover the
857      // rest of VR from position S. There is no need to further advance S.
858      break;
859    }
860  }
861
862  if (isDebug()) {
863    dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
864    for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
865      dbgs() << "  L=" << I->first << ':';
866      const RSListType &LL = I->second;
867      for (unsigned i = 0, n = LL.size(); i < n; ++i)
868        dbgs() << " (" << printReg(LL[i].first, HRI) << ",@"
869               << LL[i].second << ')';
870      dbgs() << '\n';
871    }
872  }
873
874  bool Recorded = false;
875
876  for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
877    unsigned SrcR = *I;
878    int FDi = -1, LDi = -1;   // First/last different bit.
879    const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
880    uint16_t AW = AC.width();
881    for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
882      if (RC[i] == AC[i])
883        continue;
884      if (FDi == -1)
885        FDi = i;
886      LDi = i;
887    }
888    if (FDi == -1)
889      continue;  // TODO (future): Record identical registers.
890    // Look for a register whose prefix could patch the range [FD..LD]
891    // where VR and SrcR differ.
892    uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
893    uint16_t MinL = LD-FD+1;
894    for (uint16_t L = MinL; L < W; ++L) {
895      LRSMapType::iterator F = LM.find(L);
896      if (F == LM.end())
897        continue;
898      RSListType &LL = F->second;
899      for (unsigned i = 0, n = LL.size(); i < n; ++i) {
900        uint16_t S = LL[i].second;
901        // MinL is the minimum length of the prefix. Any length above MinL
902        // allows some flexibility as to where the prefix can start:
903        // given the extra length EL=L-MinL, the prefix must start between
904        // max(0,FD-EL) and FD.
905        if (S > FD)   // Starts too late.
906          continue;
907        uint16_t EL = L-MinL;
908        uint16_t LowS = (EL < FD) ? FD-EL : 0;
909        if (S < LowS) // Starts too early.
910          continue;
911        unsigned InsR = LL[i].first;
912        if (!isValidInsertForm(VR, SrcR, InsR, L, S))
913          continue;
914        if (isDebug()) {
915          dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
916                 << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
917                 << S << ")\n";
918        }
919        IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
920        IFMap[VR].push_back(RR);
921        Recorded = true;
922      }
923    }
924  }
925
926  return Recorded;
927}
928
929void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
930      OrderedRegisterList &AVs) {
931  if (isDebug())
932    dbgs() << "visiting block " << printMBBReference(*B) << "\n";
933
934  // First, check if this block is reachable at all. If not, the bit tracker
935  // will not have any information about registers in it.
936  if (!CMS->BT.reached(B))
937    return;
938
939  bool DoConst = OptConst;
940  // Keep a separate set of registers defined in this block, so that we
941  // can remove them from the list of available registers once all DT
942  // successors have been processed.
943  RegisterSet BlockDefs, InsDefs;
944  for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
945    MachineInstr *MI = &*I;
946    InsDefs.clear();
947    getInstrDefs(MI, InsDefs);
948    // Leave those alone. They are more transparent than "insert".
949    bool Skip = MI->isCopy() || MI->isRegSequence();
950
951    if (!Skip) {
952      // Visit all defined registers, and attempt to find the corresponding
953      // "insert" representations.
954      for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
955        // Do not collect registers that are known to be compile-time cons-
956        // tants, unless requested.
957        if (!DoConst && isConstant(VR))
958          continue;
959        // If VR's cell contains a reference to VR, then VR cannot be defined
960        // via "insert". If VR is a constant that can be generated in a single
961        // instruction (without constant extenders), generating it via insert
962        // makes no sense.
963        if (findSelfReference(VR) || isSmallConstant(VR))
964          continue;
965
966        findRecordInsertForms(VR, AVs);
967        // Stop if the map size is too large.
968        if (IFMap.size() > MaxIFMSize)
969          return;
970      }
971    }
972
973    // Insert the defined registers into the list of available registers
974    // after they have been processed.
975    for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
976      AVs.insert(VR);
977    BlockDefs.insert(InsDefs);
978  }
979
980  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
981    MachineBasicBlock *SB = DTN->getBlock();
982    collectInBlock(SB, AVs);
983  }
984
985  for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
986    AVs.remove(VR);
987}
988
989void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
990      RegisterSet &RMs) const {
991  // For a given register VR and a insert form, find the registers that are
992  // used by the current definition of VR, and which would no longer be
993  // needed for it after the definition of VR is replaced with the insert
994  // form. These are the registers that could potentially become dead.
995  RegisterSet Regs[2];
996
997  unsigned S = 0;  // Register set selector.
998  Regs[S].insert(VR);
999
1000  while (!Regs[S].empty()) {
1001    // Breadth-first search.
1002    unsigned OtherS = 1-S;
1003    Regs[OtherS].clear();
1004    for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
1005      Regs[S].remove(R);
1006      if (R == IF.SrcR || R == IF.InsR)
1007        continue;
1008      // Check if a given register has bits that are references to any other
1009      // registers. This is to detect situations where the instruction that
1010      // defines register R takes register Q as an operand, but R itself does
1011      // not contain any bits from Q. Loads are examples of how this could
1012      // happen:
1013      //   R = load Q
1014      // In this case (assuming we do not have any knowledge about the loaded
1015      // value), we must not treat R as a "conveyance" of the bits from Q.
1016      // (The information in BT about R's bits would have them as constants,
1017      // in case of zero-extending loads, or refs to R.)
1018      if (!findNonSelfReference(R))
1019        continue;
1020      RMs.insert(R);
1021      const MachineInstr *DefI = MRI->getVRegDef(R);
1022      assert(DefI);
1023      // Do not iterate past PHI nodes to avoid infinite loops. This can
1024      // make the final set a bit less accurate, but the removable register
1025      // sets are an approximation anyway.
1026      if (DefI->isPHI())
1027        continue;
1028      getInstrUses(DefI, Regs[OtherS]);
1029    }
1030    S = OtherS;
1031  }
1032  // The register VR is added to the list as a side-effect of the algorithm,
1033  // but it is not "potentially removable". A potentially removable register
1034  // is one that may become unused (dead) after conversion to the insert form
1035  // IF, and obviously VR (or its replacement) will not become dead by apply-
1036  // ing IF.
1037  RMs.remove(VR);
1038}
1039
1040void HexagonGenInsert::computeRemovableRegisters() {
1041  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1042    IFListType &LL = I->second;
1043    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1044      findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1045  }
1046}
1047
1048void HexagonGenInsert::pruneEmptyLists() {
1049  // Remove all entries from the map, where the register has no insert forms
1050  // associated with it.
1051  using IterListType = SmallVector<IFMapType::iterator, 16>;
1052  IterListType Prune;
1053  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1054    if (I->second.empty())
1055      Prune.push_back(I);
1056  }
1057  for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1058    IFMap.erase(Prune[i]);
1059}
1060
1061void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1062  IFMapType::iterator F = IFMap.find(VR);
1063  assert(F != IFMap.end());
1064  IFListType &LL = F->second;
1065
1066  // First, examine the IF candidates for register VR whose removable-regis-
1067  // ter sets are empty. This means that a given candidate will not help eli-
1068  // minate any registers, but since "insert" is not a constant-extendable
1069  // instruction, using such a candidate may reduce code size if the defini-
1070  // tion of VR is constant-extended.
1071  // If there exists a candidate with a non-empty set, the ones with empty
1072  // sets will not be used and can be removed.
1073  MachineInstr *DefVR = MRI->getVRegDef(VR);
1074  bool DefEx = HII->isConstExtended(*DefVR);
1075  bool HasNE = false;
1076  for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1077    if (LL[i].second.empty())
1078      continue;
1079    HasNE = true;
1080    break;
1081  }
1082  if (!DefEx || HasNE) {
1083    // The definition of VR is not constant-extended, or there is a candidate
1084    // with a non-empty set. Remove all candidates with empty sets.
1085    auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1086      return IR.second.empty();
1087    };
1088    auto End = llvm::remove_if(LL, IsEmpty);
1089    if (End != LL.end())
1090      LL.erase(End, LL.end());
1091  } else {
1092    // The definition of VR is constant-extended, and all candidates have
1093    // empty removable-register sets. Pick the maximum candidate, and remove
1094    // all others. The "maximum" does not have any special meaning here, it
1095    // is only so that the candidate that will remain on the list is selec-
1096    // ted deterministically.
1097    IFRecord MaxIF = LL[0].first;
1098    for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1099      // If LL[MaxI] < LL[i], then MaxI = i.
1100      const IFRecord &IF = LL[i].first;
1101      unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1102      unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1103      if (M0 > R0)
1104        continue;
1105      if (M0 == R0) {
1106        if (M1 > R1)
1107          continue;
1108        if (M1 == R1) {
1109          if (MaxIF.Wdh > IF.Wdh)
1110            continue;
1111          if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1112            continue;
1113        }
1114      }
1115      // MaxIF < IF.
1116      MaxIF = IF;
1117    }
1118    // Remove everything except the maximum candidate. All register sets
1119    // are empty, so no need to preserve anything.
1120    LL.clear();
1121    LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1122  }
1123
1124  // Now, remove those whose sets of potentially removable registers are
1125  // contained in another IF candidate for VR. For example, given these
1126  // candidates for %45,
1127  //   %45:
1128  //     (%44,%41,#9,#8), { %42 }
1129  //     (%43,%41,#9,#8), { %42 %44 }
1130  // remove the first one, since it is contained in the second one.
1131  for (unsigned i = 0, n = LL.size(); i < n; ) {
1132    const RegisterSet &RMi = LL[i].second;
1133    unsigned j = 0;
1134    while (j < n) {
1135      if (j != i && LL[j].second.includes(RMi))
1136        break;
1137      j++;
1138    }
1139    if (j == n) {   // RMi not contained in anything else.
1140      i++;
1141      continue;
1142    }
1143    LL.erase(LL.begin()+i);
1144    n = LL.size();
1145  }
1146}
1147
1148void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1149      PairMapType &M) {
1150  IFMapType::iterator F = IFMap.find(VR);
1151  assert(F != IFMap.end());
1152  IFListType &LL = F->second;
1153  unsigned Cutoff = VRegDistCutoff;
1154  const MachineInstr *DefV = MRI->getVRegDef(VR);
1155
1156  for (unsigned i = LL.size(); i > 0; --i) {
1157    unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1158    const MachineInstr *DefS = MRI->getVRegDef(SR);
1159    const MachineInstr *DefI = MRI->getVRegDef(IR);
1160    unsigned DSV = distance(DefS, DefV, RPO, M);
1161    if (DSV < Cutoff) {
1162      unsigned DIV = distance(DefI, DefV, RPO, M);
1163      if (DIV < Cutoff)
1164        continue;
1165    }
1166    LL.erase(LL.begin()+(i-1));
1167  }
1168}
1169
1170void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1171  IFMapType::iterator F = IFMap.find(VR);
1172  assert(F != IFMap.end());
1173  IFListType &LL = F->second;
1174
1175  auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1176    return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1177  };
1178  auto End = llvm::remove_if(LL, IsCopy);
1179  if (End != LL.end())
1180    LL.erase(End, LL.end());
1181}
1182
1183void HexagonGenInsert::pruneCandidates() {
1184  // Remove candidates that are not beneficial, regardless of the final
1185  // selection method.
1186  // First, remove candidates whose potentially removable set is a subset
1187  // of another candidate's set.
1188  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1189    pruneCoveredSets(I->first);
1190
1191  UnsignedMap RPO;
1192
1193  using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1194
1195  RPOTType RPOT(MFN);
1196  unsigned RPON = 0;
1197  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1198    RPO[(*I)->getNumber()] = RPON++;
1199
1200  PairMapType Memo; // Memoization map for distance calculation.
1201  // Remove candidates that would use registers defined too far away.
1202  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1203    pruneUsesTooFar(I->first, RPO, Memo);
1204
1205  pruneEmptyLists();
1206
1207  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1208    pruneRegCopies(I->first);
1209}
1210
1211namespace {
1212
1213  // Class for comparing IF candidates for registers that have multiple of
1214  // them. The smaller the candidate, according to this ordering, the better.
1215  // First, compare the number of zeros in the associated potentially remova-
1216  // ble register sets. "Zero" indicates that the register is very likely to
1217  // become dead after this transformation.
1218  // Second, compare "averages", i.e. use-count per size. The lower wins.
1219  // After that, it does not really matter which one is smaller. Resolve
1220  // the tie in some deterministic way.
1221  struct IFOrdering {
1222    IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1223      : UseC(UC), BaseOrd(BO) {}
1224
1225    bool operator() (const IFRecordWithRegSet &A,
1226                     const IFRecordWithRegSet &B) const;
1227
1228  private:
1229    void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1230          unsigned &Sum) const;
1231
1232    const UnsignedMap &UseC;
1233    const RegisterOrdering &BaseOrd;
1234  };
1235
1236} // end anonymous namespace
1237
1238bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1239      const IFRecordWithRegSet &B) const {
1240  unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1241  unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1242  stats(A.second, SizeA, ZeroA, SumA);
1243  stats(B.second, SizeB, ZeroB, SumB);
1244
1245  // We will pick the minimum element. The more zeros, the better.
1246  if (ZeroA != ZeroB)
1247    return ZeroA > ZeroB;
1248  // Compare SumA/SizeA with SumB/SizeB, lower is better.
1249  uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1250  if (AvgA != AvgB)
1251    return AvgA < AvgB;
1252
1253  // The sets compare identical so far. Resort to comparing the IF records.
1254  // The actual values don't matter, this is only for determinism.
1255  unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1256  if (OSA != OSB)
1257    return OSA < OSB;
1258  unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1259  if (OIA != OIB)
1260    return OIA < OIB;
1261  if (A.first.Wdh != B.first.Wdh)
1262    return A.first.Wdh < B.first.Wdh;
1263  return A.first.Off < B.first.Off;
1264}
1265
1266void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1267      unsigned &Sum) const {
1268  for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1269    UnsignedMap::const_iterator F = UseC.find(R);
1270    assert(F != UseC.end());
1271    unsigned UC = F->second;
1272    if (UC == 0)
1273      Zero++;
1274    Sum += UC;
1275    Size++;
1276  }
1277}
1278
1279void HexagonGenInsert::selectCandidates() {
1280  // Some registers may have multiple valid candidates. Pick the best one
1281  // (or decide not to use any).
1282
1283  // Compute the "removability" measure of R:
1284  // For each potentially removable register R, record the number of regis-
1285  // ters with IF candidates, where R appears in at least one set.
1286  RegisterSet AllRMs;
1287  UnsignedMap UseC, RemC;
1288  IFMapType::iterator End = IFMap.end();
1289
1290  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1291    const IFListType &LL = I->second;
1292    RegisterSet TT;
1293    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1294      TT.insert(LL[i].second);
1295    for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1296      RemC[R]++;
1297    AllRMs.insert(TT);
1298  }
1299
1300  for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1301    using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1302    using InstrSet = SmallSet<const MachineInstr *, 16>;
1303
1304    InstrSet UIs;
1305    // Count as the number of instructions in which R is used, not the
1306    // number of operands.
1307    use_iterator E = MRI->use_nodbg_end();
1308    for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1309      UIs.insert(I->getParent());
1310    unsigned C = UIs.size();
1311    // Calculate a measure, which is the number of instructions using R,
1312    // minus the "removability" count computed earlier.
1313    unsigned D = RemC[R];
1314    UseC[R] = (C > D) ? C-D : 0;  // doz
1315  }
1316
1317  bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1318  if (!SelectAll0 && !SelectHas0)
1319    SelectAll0 = true;
1320
1321  // The smaller the number UseC for a given register R, the "less used"
1322  // R is aside from the opportunities for removal offered by generating
1323  // "insert" instructions.
1324  // Iterate over the IF map, and for those registers that have multiple
1325  // candidates, pick the minimum one according to IFOrdering.
1326  IFOrdering IFO(UseC, BaseOrd);
1327  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1328    IFListType &LL = I->second;
1329    if (LL.empty())
1330      continue;
1331    // Get the minimum element, remember it and clear the list. If the
1332    // element found is adequate, we will put it back on the list, other-
1333    // wise the list will remain empty, and the entry for this register
1334    // will be removed (i.e. this register will not be replaced by insert).
1335    IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1336    assert(MinI != LL.end());
1337    IFRecordWithRegSet M = *MinI;
1338    LL.clear();
1339
1340    // We want to make sure that this replacement will have a chance to be
1341    // beneficial, and that means that we want to have indication that some
1342    // register will be removed. The most likely registers to be eliminated
1343    // are the use operands in the definition of I->first. Accept/reject a
1344    // candidate based on how many of its uses it can potentially eliminate.
1345
1346    RegisterSet Us;
1347    const MachineInstr *DefI = MRI->getVRegDef(I->first);
1348    getInstrUses(DefI, Us);
1349    bool Accept = false;
1350
1351    if (SelectAll0) {
1352      bool All0 = true;
1353      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1354        if (UseC[R] == 0)
1355          continue;
1356        All0 = false;
1357        break;
1358      }
1359      Accept = All0;
1360    } else if (SelectHas0) {
1361      bool Has0 = false;
1362      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1363        if (UseC[R] != 0)
1364          continue;
1365        Has0 = true;
1366        break;
1367      }
1368      Accept = Has0;
1369    }
1370    if (Accept)
1371      LL.push_back(M);
1372  }
1373
1374  // Remove candidates that add uses of removable registers, unless the
1375  // removable registers are among replacement candidates.
1376  // Recompute the removable registers, since some candidates may have
1377  // been eliminated.
1378  AllRMs.clear();
1379  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1380    const IFListType &LL = I->second;
1381    if (!LL.empty())
1382      AllRMs.insert(LL[0].second);
1383  }
1384  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1385    IFListType &LL = I->second;
1386    if (LL.empty())
1387      continue;
1388    unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1389    if (AllRMs[SR] || AllRMs[IR])
1390      LL.clear();
1391  }
1392
1393  pruneEmptyLists();
1394}
1395
1396bool HexagonGenInsert::generateInserts() {
1397  // Create a new register for each one from IFMap, and store them in the
1398  // map.
1399  UnsignedMap RegMap;
1400  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1401    unsigned VR = I->first;
1402    const TargetRegisterClass *RC = MRI->getRegClass(VR);
1403    unsigned NewVR = MRI->createVirtualRegister(RC);
1404    RegMap[VR] = NewVR;
1405  }
1406
1407  // We can generate the "insert" instructions using potentially stale re-
1408  // gisters: SrcR and InsR for a given VR may be among other registers that
1409  // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1410  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1411    MachineInstr *MI = MRI->getVRegDef(I->first);
1412    MachineBasicBlock &B = *MI->getParent();
1413    DebugLoc DL = MI->getDebugLoc();
1414    unsigned NewR = RegMap[I->first];
1415    bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1416    const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1417                               : HII->get(Hexagon::S2_insertp);
1418    IFRecord IF = I->second[0].first;
1419    unsigned Wdh = IF.Wdh, Off = IF.Off;
1420    unsigned InsS = 0;
1421    if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1422      InsS = Hexagon::isub_lo;
1423      if (Off >= 32) {
1424        InsS = Hexagon::isub_hi;
1425        Off -= 32;
1426      }
1427    }
1428    // Advance to the proper location for inserting instructions. This could
1429    // be B.end().
1430    MachineBasicBlock::iterator At = MI;
1431    if (MI->isPHI())
1432      At = B.getFirstNonPHI();
1433
1434    BuildMI(B, At, DL, D, NewR)
1435      .addReg(IF.SrcR)
1436      .addReg(IF.InsR, 0, InsS)
1437      .addImm(Wdh)
1438      .addImm(Off);
1439
1440    MRI->clearKillFlags(IF.SrcR);
1441    MRI->clearKillFlags(IF.InsR);
1442  }
1443
1444  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1445    MachineInstr *DefI = MRI->getVRegDef(I->first);
1446    MRI->replaceRegWith(I->first, RegMap[I->first]);
1447    DefI->eraseFromParent();
1448  }
1449
1450  return true;
1451}
1452
1453bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1454  bool Changed = false;
1455
1456  for (auto *DTN : children<MachineDomTreeNode*>(N))
1457    Changed |= removeDeadCode(DTN);
1458
1459  MachineBasicBlock *B = N->getBlock();
1460  std::vector<MachineInstr*> Instrs;
1461  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1462    Instrs.push_back(&*I);
1463
1464  for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1465    MachineInstr *MI = *I;
1466    unsigned Opc = MI->getOpcode();
1467    // Do not touch lifetime markers. This is why the target-independent DCE
1468    // cannot be used.
1469    if (Opc == TargetOpcode::LIFETIME_START ||
1470        Opc == TargetOpcode::LIFETIME_END)
1471      continue;
1472    bool Store = false;
1473    if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1474      continue;
1475
1476    bool AllDead = true;
1477    SmallVector<unsigned,2> Regs;
1478    for (const MachineOperand &MO : MI->operands()) {
1479      if (!MO.isReg() || !MO.isDef())
1480        continue;
1481      unsigned R = MO.getReg();
1482      if (!TargetRegisterInfo::isVirtualRegister(R) ||
1483          !MRI->use_nodbg_empty(R)) {
1484        AllDead = false;
1485        break;
1486      }
1487      Regs.push_back(R);
1488    }
1489    if (!AllDead)
1490      continue;
1491
1492    B->erase(MI);
1493    for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1494      MRI->markUsesInDebugValueAsUndef(Regs[I]);
1495    Changed = true;
1496  }
1497
1498  return Changed;
1499}
1500
1501bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1502  if (skipFunction(MF.getFunction()))
1503    return false;
1504
1505  bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1506  bool Changed = false;
1507
1508  // Sanity check: one, but not both.
1509  assert(!OptSelectAll0 || !OptSelectHas0);
1510
1511  IFMap.clear();
1512  BaseOrd.clear();
1513  CellOrd.clear();
1514
1515  const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1516  HII = ST.getInstrInfo();
1517  HRI = ST.getRegisterInfo();
1518  MFN = &MF;
1519  MRI = &MF.getRegInfo();
1520  MDT = &getAnalysis<MachineDominatorTree>();
1521
1522  // Clean up before any further processing, so that dead code does not
1523  // get used in a newly generated "insert" instruction. Have a custom
1524  // version of DCE that preserves lifetime markers. Without it, merging
1525  // of stack objects can fail to recognize and merge disjoint objects
1526  // leading to unnecessary stack growth.
1527  Changed = removeDeadCode(MDT->getRootNode());
1528
1529  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1530  BitTracker BTLoc(HE, MF);
1531  BTLoc.trace(isDebug());
1532  BTLoc.run();
1533  CellMapShadow MS(BTLoc);
1534  CMS = &MS;
1535
1536  buildOrderingMF(BaseOrd);
1537  buildOrderingBT(BaseOrd, CellOrd);
1538
1539  if (isDebug()) {
1540    dbgs() << "Cell ordering:\n";
1541    for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1542        I != E; ++I) {
1543      unsigned VR = I->first, Pos = I->second;
1544      dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1545    }
1546  }
1547
1548  // Collect candidates for conversion into the insert forms.
1549  MachineBasicBlock *RootB = MDT->getRoot();
1550  OrderedRegisterList AvailR(CellOrd);
1551
1552  const char *const TGName = "hexinsert";
1553  const char *const TGDesc = "Generate Insert Instructions";
1554
1555  {
1556    NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1557                        TimingDetail);
1558    collectInBlock(RootB, AvailR);
1559    // Complete the information gathered in IFMap.
1560    computeRemovableRegisters();
1561  }
1562
1563  if (isDebug()) {
1564    dbgs() << "Candidates after collection:\n";
1565    dump_map();
1566  }
1567
1568  if (IFMap.empty())
1569    return Changed;
1570
1571  {
1572    NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1573    pruneCandidates();
1574  }
1575
1576  if (isDebug()) {
1577    dbgs() << "Candidates after pruning:\n";
1578    dump_map();
1579  }
1580
1581  if (IFMap.empty())
1582    return Changed;
1583
1584  {
1585    NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1586    selectCandidates();
1587  }
1588
1589  if (isDebug()) {
1590    dbgs() << "Candidates after selection:\n";
1591    dump_map();
1592  }
1593
1594  // Filter out vregs beyond the cutoff.
1595  if (VRegIndexCutoff.getPosition()) {
1596    unsigned Cutoff = VRegIndexCutoff;
1597
1598    using IterListType = SmallVector<IFMapType::iterator, 16>;
1599
1600    IterListType Out;
1601    for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1602      unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1603      if (Idx >= Cutoff)
1604        Out.push_back(I);
1605    }
1606    for (unsigned i = 0, n = Out.size(); i < n; ++i)
1607      IFMap.erase(Out[i]);
1608  }
1609  if (IFMap.empty())
1610    return Changed;
1611
1612  {
1613    NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1614                        TimingDetail);
1615    generateInserts();
1616  }
1617
1618  return true;
1619}
1620
1621FunctionPass *llvm::createHexagonGenInsert() {
1622  return new HexagonGenInsert();
1623}
1624
1625//===----------------------------------------------------------------------===//
1626//                         Public Constructor Functions
1627//===----------------------------------------------------------------------===//
1628
1629INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1630  "Hexagon generate \"insert\" instructions", false, false)
1631INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1632INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1633  "Hexagon generate \"insert\" instructions", false, false)
1634