HexagonBitTracker.cpp revision 360784
1//===- HexagonBitTracker.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "HexagonBitTracker.h"
10#include "Hexagon.h"
11#include "HexagonInstrInfo.h"
12#include "HexagonRegisterInfo.h"
13#include "HexagonSubtarget.h"
14#include "llvm/CodeGen/MachineFrameInfo.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineInstr.h"
17#include "llvm/CodeGen/MachineOperand.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/CodeGen/TargetRegisterInfo.h"
20#include "llvm/IR/Argument.h"
21#include "llvm/IR/Attributes.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/Type.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include <cassert>
30#include <cstddef>
31#include <cstdint>
32#include <cstdlib>
33#include <utility>
34#include <vector>
35
36using namespace llvm;
37
38using BT = BitTracker;
39
40HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
41                                   MachineRegisterInfo &mri,
42                                   const HexagonInstrInfo &tii,
43                                   MachineFunction &mf)
44    : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
45  // Populate the VRX map (VR to extension-type).
46  // Go over all the formal parameters of the function. If a given parameter
47  // P is sign- or zero-extended, locate the virtual register holding that
48  // parameter and create an entry in the VRX map indicating the type of ex-
49  // tension (and the source type).
50  // This is a bit complicated to do accurately, since the memory layout in-
51  // formation is necessary to precisely determine whether an aggregate para-
52  // meter will be passed in a register or in memory. What is given in MRI
53  // is the association between the physical register that is live-in (i.e.
54  // holds an argument), and the virtual register that this value will be
55  // copied into. This, by itself, is not sufficient to map back the virtual
56  // register to a formal parameter from Function (since consecutive live-ins
57  // from MRI may not correspond to consecutive formal parameters from Func-
58  // tion). To avoid the complications with in-memory arguments, only consi-
59  // der the initial sequence of formal parameters that are known to be
60  // passed via registers.
61  unsigned InVirtReg, InPhysReg = 0;
62
63  for (const Argument &Arg : MF.getFunction().args()) {
64    Type *ATy = Arg.getType();
65    unsigned Width = 0;
66    if (ATy->isIntegerTy())
67      Width = ATy->getIntegerBitWidth();
68    else if (ATy->isPointerTy())
69      Width = 32;
70    // If pointer size is not set through target data, it will default to
71    // Module::AnyPointerSize.
72    if (Width == 0 || Width > 64)
73      break;
74    if (Arg.hasAttribute(Attribute::ByVal))
75      continue;
76    InPhysReg = getNextPhysReg(InPhysReg, Width);
77    if (!InPhysReg)
78      break;
79    InVirtReg = getVirtRegFor(InPhysReg);
80    if (!InVirtReg)
81      continue;
82    if (Arg.hasAttribute(Attribute::SExt))
83      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
84    else if (Arg.hasAttribute(Attribute::ZExt))
85      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
86  }
87}
88
89BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
90  if (Sub == 0)
91    return MachineEvaluator::mask(Reg, 0);
92  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
93  unsigned ID = RC.getID();
94  uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
95  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
96  bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
97  switch (ID) {
98    case Hexagon::DoubleRegsRegClassID:
99    case Hexagon::HvxWRRegClassID:
100    case Hexagon::HvxVQRRegClassID:
101      return IsSubLo ? BT::BitMask(0, RW-1)
102                     : BT::BitMask(RW, 2*RW-1);
103    default:
104      break;
105  }
106#ifndef NDEBUG
107  dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
108         << TRI.getRegClassName(&RC) << '\n';
109#endif
110  llvm_unreachable("Unexpected register/subregister");
111}
112
113uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const {
114  assert(Register::isPhysicalRegister(Reg));
115
116  using namespace Hexagon;
117  const auto &HST = MF.getSubtarget<HexagonSubtarget>();
118  if (HST.useHVXOps()) {
119    for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
120                     HvxVQRRegClass})
121      if (RC.contains(Reg))
122        return TRI.getRegSizeInBits(RC);
123  }
124  // Default treatment for other physical registers.
125  if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
126    return TRI.getRegSizeInBits(*RC);
127
128  llvm_unreachable(
129      (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
130}
131
132const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
133      const TargetRegisterClass &RC, unsigned Idx) const {
134  if (Idx == 0)
135    return RC;
136
137#ifndef NDEBUG
138  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
139  bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
140  bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
141  assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
142#endif
143
144  switch (RC.getID()) {
145    case Hexagon::DoubleRegsRegClassID:
146      return Hexagon::IntRegsRegClass;
147    case Hexagon::HvxWRRegClassID:
148      return Hexagon::HvxVRRegClass;
149    case Hexagon::HvxVQRRegClassID:
150      return Hexagon::HvxWRRegClass;
151    default:
152      break;
153  }
154#ifndef NDEBUG
155  dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
156#endif
157  llvm_unreachable("Unimplemented combination of reg class/subreg idx");
158}
159
160namespace {
161
162class RegisterRefs {
163  std::vector<BT::RegisterRef> Vector;
164
165public:
166  RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
167    for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
168      const MachineOperand &MO = MI.getOperand(i);
169      if (MO.isReg())
170        Vector[i] = BT::RegisterRef(MO);
171      // For indices that don't correspond to registers, the entry will
172      // remain constructed via the default constructor.
173    }
174  }
175
176  size_t size() const { return Vector.size(); }
177
178  const BT::RegisterRef &operator[](unsigned n) const {
179    // The main purpose of this operator is to assert with bad argument.
180    assert(n < Vector.size());
181    return Vector[n];
182  }
183};
184
185} // end anonymous namespace
186
187bool HexagonEvaluator::evaluate(const MachineInstr &MI,
188                                const CellMapType &Inputs,
189                                CellMapType &Outputs) const {
190  using namespace Hexagon;
191
192  unsigned NumDefs = 0;
193
194  // Sanity verification: there should not be any defs with subregisters.
195  for (const MachineOperand &MO : MI.operands()) {
196    if (!MO.isReg() || !MO.isDef())
197      continue;
198    NumDefs++;
199    assert(MO.getSubReg() == 0);
200  }
201
202  if (NumDefs == 0)
203    return false;
204
205  unsigned Opc = MI.getOpcode();
206
207  if (MI.mayLoad()) {
208    switch (Opc) {
209      // These instructions may be marked as mayLoad, but they are generating
210      // immediate values, so skip them.
211      case CONST32:
212      case CONST64:
213        break;
214      default:
215        return evaluateLoad(MI, Inputs, Outputs);
216    }
217  }
218
219  // Check COPY instructions that copy formal parameters into virtual
220  // registers. Such parameters can be sign- or zero-extended at the
221  // call site, and we should take advantage of this knowledge. The MRI
222  // keeps a list of pairs of live-in physical and virtual registers,
223  // which provides information about which virtual registers will hold
224  // the argument values. The function will still contain instructions
225  // defining those virtual registers, and in practice those are COPY
226  // instructions from a physical to a virtual register. In such cases,
227  // applying the argument extension to the virtual register can be seen
228  // as simply mirroring the extension that had already been applied to
229  // the physical register at the call site. If the defining instruction
230  // was not a COPY, it would not be clear how to mirror that extension
231  // on the callee's side. For that reason, only check COPY instructions
232  // for potential extensions.
233  if (MI.isCopy()) {
234    if (evaluateFormalCopy(MI, Inputs, Outputs))
235      return true;
236  }
237
238  // Beyond this point, if any operand is a global, skip that instruction.
239  // The reason is that certain instructions that can take an immediate
240  // operand can also have a global symbol in that operand. To avoid
241  // checking what kind of operand a given instruction has individually
242  // for each instruction, do it here. Global symbols as operands gene-
243  // rally do not provide any useful information.
244  for (const MachineOperand &MO : MI.operands()) {
245    if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
246        MO.isCPI())
247      return false;
248  }
249
250  RegisterRefs Reg(MI);
251#define op(i) MI.getOperand(i)
252#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
253#define im(i) MI.getOperand(i).getImm()
254
255  // If the instruction has no register operands, skip it.
256  if (Reg.size() == 0)
257    return false;
258
259  // Record result for register in operand 0.
260  auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
261        -> bool {
262    putCell(Reg[0], Val, Outputs);
263    return true;
264  };
265  // Get the cell corresponding to the N-th operand.
266  auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
267                                        uint16_t W) -> BT::RegisterCell {
268    const MachineOperand &Op = MI.getOperand(N);
269    if (Op.isImm())
270      return eIMM(Op.getImm(), W);
271    if (!Op.isReg())
272      return RegisterCell::self(0, W);
273    assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
274    return rc(N);
275  };
276  // Extract RW low bits of the cell.
277  auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
278        -> BT::RegisterCell {
279    assert(RW <= RC.width());
280    return eXTR(RC, 0, RW);
281  };
282  // Extract RW high bits of the cell.
283  auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
284        -> BT::RegisterCell {
285    uint16_t W = RC.width();
286    assert(RW <= W);
287    return eXTR(RC, W-RW, W);
288  };
289  // Extract N-th halfword (counting from the least significant position).
290  auto half = [this] (const BT::RegisterCell &RC, unsigned N)
291        -> BT::RegisterCell {
292    assert(N*16+16 <= RC.width());
293    return eXTR(RC, N*16, N*16+16);
294  };
295  // Shuffle bits (pick even/odd from cells and merge into result).
296  auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
297                         uint16_t BW, bool Odd) -> BT::RegisterCell {
298    uint16_t I = Odd, Ws = Rs.width();
299    assert(Ws == Rt.width());
300    RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
301    I += 2;
302    while (I*BW < Ws) {
303      RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
304      I += 2;
305    }
306    return RC;
307  };
308
309  // The bitwidth of the 0th operand. In most (if not all) of the
310  // instructions below, the 0th operand is the defined register.
311  // Pre-compute the bitwidth here, because it is needed in many cases
312  // cases below.
313  uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
314
315  // Register id of the 0th operand. It can be 0.
316  unsigned Reg0 = Reg[0].Reg;
317
318  switch (Opc) {
319    // Transfer immediate:
320
321    case A2_tfrsi:
322    case A2_tfrpi:
323    case CONST32:
324    case CONST64:
325      return rr0(eIMM(im(1), W0), Outputs);
326    case PS_false:
327      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
328    case PS_true:
329      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
330    case PS_fi: {
331      int FI = op(1).getIndex();
332      int Off = op(2).getImm();
333      unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
334      unsigned L = countTrailingZeros(A);
335      RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
336      RC.fill(0, L, BT::BitValue::Zero);
337      return rr0(RC, Outputs);
338    }
339
340    // Transfer register:
341
342    case A2_tfr:
343    case A2_tfrp:
344    case C2_pxfer_map:
345      return rr0(rc(1), Outputs);
346    case C2_tfrpr: {
347      uint16_t RW = W0;
348      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
349      assert(PW <= RW);
350      RegisterCell PC = eXTR(rc(1), 0, PW);
351      RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
352      RC.fill(PW, RW, BT::BitValue::Zero);
353      return rr0(RC, Outputs);
354    }
355    case C2_tfrrp: {
356      uint16_t RW = W0;
357      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
358      RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
359      RC.fill(PW, RW, BT::BitValue::Zero);
360      return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
361    }
362
363    // Arithmetic:
364
365    case A2_abs:
366    case A2_absp:
367      // TODO
368      break;
369
370    case A2_addsp: {
371      uint16_t W1 = getRegBitWidth(Reg[1]);
372      assert(W0 == 64 && W1 == 32);
373      RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
374      RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
375      return rr0(RC, Outputs);
376    }
377    case A2_add:
378    case A2_addp:
379      return rr0(eADD(rc(1), rc(2)), Outputs);
380    case A2_addi:
381      return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
382    case S4_addi_asl_ri: {
383      RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
384      return rr0(RC, Outputs);
385    }
386    case S4_addi_lsr_ri: {
387      RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
388      return rr0(RC, Outputs);
389    }
390    case S4_addaddi: {
391      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
392      return rr0(RC, Outputs);
393    }
394    case M4_mpyri_addi: {
395      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
396      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
397      return rr0(RC, Outputs);
398    }
399    case M4_mpyrr_addi: {
400      RegisterCell M = eMLS(rc(2), rc(3));
401      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
402      return rr0(RC, Outputs);
403    }
404    case M4_mpyri_addr_u2: {
405      RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
406      RegisterCell RC = eADD(rc(1), lo(M, W0));
407      return rr0(RC, Outputs);
408    }
409    case M4_mpyri_addr: {
410      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
411      RegisterCell RC = eADD(rc(1), lo(M, W0));
412      return rr0(RC, Outputs);
413    }
414    case M4_mpyrr_addr: {
415      RegisterCell M = eMLS(rc(2), rc(3));
416      RegisterCell RC = eADD(rc(1), lo(M, W0));
417      return rr0(RC, Outputs);
418    }
419    case S4_subaddi: {
420      RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
421      return rr0(RC, Outputs);
422    }
423    case M2_accii: {
424      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
425      return rr0(RC, Outputs);
426    }
427    case M2_acci: {
428      RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
429      return rr0(RC, Outputs);
430    }
431    case M2_subacc: {
432      RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
433      return rr0(RC, Outputs);
434    }
435    case S2_addasl_rrri: {
436      RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
437      return rr0(RC, Outputs);
438    }
439    case C4_addipc: {
440      RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
441      RPC.fill(0, 2, BT::BitValue::Zero);
442      return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
443    }
444    case A2_sub:
445    case A2_subp:
446      return rr0(eSUB(rc(1), rc(2)), Outputs);
447    case A2_subri:
448      return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
449    case S4_subi_asl_ri: {
450      RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
451      return rr0(RC, Outputs);
452    }
453    case S4_subi_lsr_ri: {
454      RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
455      return rr0(RC, Outputs);
456    }
457    case M2_naccii: {
458      RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
459      return rr0(RC, Outputs);
460    }
461    case M2_nacci: {
462      RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
463      return rr0(RC, Outputs);
464    }
465    // 32-bit negation is done by "Rd = A2_subri 0, Rs"
466    case A2_negp:
467      return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
468
469    case M2_mpy_up: {
470      RegisterCell M = eMLS(rc(1), rc(2));
471      return rr0(hi(M, W0), Outputs);
472    }
473    case M2_dpmpyss_s0:
474      return rr0(eMLS(rc(1), rc(2)), Outputs);
475    case M2_dpmpyss_acc_s0:
476      return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
477    case M2_dpmpyss_nac_s0:
478      return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
479    case M2_mpyi: {
480      RegisterCell M = eMLS(rc(1), rc(2));
481      return rr0(lo(M, W0), Outputs);
482    }
483    case M2_macsip: {
484      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
485      RegisterCell RC = eADD(rc(1), lo(M, W0));
486      return rr0(RC, Outputs);
487    }
488    case M2_macsin: {
489      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
490      RegisterCell RC = eSUB(rc(1), lo(M, W0));
491      return rr0(RC, Outputs);
492    }
493    case M2_maci: {
494      RegisterCell M = eMLS(rc(2), rc(3));
495      RegisterCell RC = eADD(rc(1), lo(M, W0));
496      return rr0(RC, Outputs);
497    }
498    case M2_mpysmi: {
499      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
500      return rr0(lo(M, 32), Outputs);
501    }
502    case M2_mpysin: {
503      RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
504      return rr0(lo(M, 32), Outputs);
505    }
506    case M2_mpysip: {
507      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
508      return rr0(lo(M, 32), Outputs);
509    }
510    case M2_mpyu_up: {
511      RegisterCell M = eMLU(rc(1), rc(2));
512      return rr0(hi(M, W0), Outputs);
513    }
514    case M2_dpmpyuu_s0:
515      return rr0(eMLU(rc(1), rc(2)), Outputs);
516    case M2_dpmpyuu_acc_s0:
517      return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
518    case M2_dpmpyuu_nac_s0:
519      return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
520    //case M2_mpysu_up:
521
522    // Logical/bitwise:
523
524    case A2_andir:
525      return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
526    case A2_and:
527    case A2_andp:
528      return rr0(eAND(rc(1), rc(2)), Outputs);
529    case A4_andn:
530    case A4_andnp:
531      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
532    case S4_andi_asl_ri: {
533      RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
534      return rr0(RC, Outputs);
535    }
536    case S4_andi_lsr_ri: {
537      RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
538      return rr0(RC, Outputs);
539    }
540    case M4_and_and:
541      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
542    case M4_and_andn:
543      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
544    case M4_and_or:
545      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
546    case M4_and_xor:
547      return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
548    case A2_orir:
549      return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
550    case A2_or:
551    case A2_orp:
552      return rr0(eORL(rc(1), rc(2)), Outputs);
553    case A4_orn:
554    case A4_ornp:
555      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
556    case S4_ori_asl_ri: {
557      RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
558      return rr0(RC, Outputs);
559    }
560    case S4_ori_lsr_ri: {
561      RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
562      return rr0(RC, Outputs);
563    }
564    case M4_or_and:
565      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
566    case M4_or_andn:
567      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
568    case S4_or_andi:
569    case S4_or_andix: {
570      RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
571      return rr0(RC, Outputs);
572    }
573    case S4_or_ori: {
574      RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
575      return rr0(RC, Outputs);
576    }
577    case M4_or_or:
578      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
579    case M4_or_xor:
580      return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
581    case A2_xor:
582    case A2_xorp:
583      return rr0(eXOR(rc(1), rc(2)), Outputs);
584    case M4_xor_and:
585      return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
586    case M4_xor_andn:
587      return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
588    case M4_xor_or:
589      return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
590    case M4_xor_xacc:
591      return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
592    case A2_not:
593    case A2_notp:
594      return rr0(eNOT(rc(1)), Outputs);
595
596    case S2_asl_i_r:
597    case S2_asl_i_p:
598      return rr0(eASL(rc(1), im(2)), Outputs);
599    case A2_aslh:
600      return rr0(eASL(rc(1), 16), Outputs);
601    case S2_asl_i_r_acc:
602    case S2_asl_i_p_acc:
603      return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
604    case S2_asl_i_r_nac:
605    case S2_asl_i_p_nac:
606      return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
607    case S2_asl_i_r_and:
608    case S2_asl_i_p_and:
609      return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
610    case S2_asl_i_r_or:
611    case S2_asl_i_p_or:
612      return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
613    case S2_asl_i_r_xacc:
614    case S2_asl_i_p_xacc:
615      return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
616    case S2_asl_i_vh:
617    case S2_asl_i_vw:
618      // TODO
619      break;
620
621    case S2_asr_i_r:
622    case S2_asr_i_p:
623      return rr0(eASR(rc(1), im(2)), Outputs);
624    case A2_asrh:
625      return rr0(eASR(rc(1), 16), Outputs);
626    case S2_asr_i_r_acc:
627    case S2_asr_i_p_acc:
628      return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
629    case S2_asr_i_r_nac:
630    case S2_asr_i_p_nac:
631      return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
632    case S2_asr_i_r_and:
633    case S2_asr_i_p_and:
634      return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
635    case S2_asr_i_r_or:
636    case S2_asr_i_p_or:
637      return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
638    case S2_asr_i_r_rnd: {
639      // The input is first sign-extended to 64 bits, then the output
640      // is truncated back to 32 bits.
641      assert(W0 == 32);
642      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
643      RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
644      return rr0(eXTR(RC, 0, W0), Outputs);
645    }
646    case S2_asr_i_r_rnd_goodsyntax: {
647      int64_t S = im(2);
648      if (S == 0)
649        return rr0(rc(1), Outputs);
650      // Result: S2_asr_i_r_rnd Rs, u5-1
651      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
652      RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
653      return rr0(eXTR(RC, 0, W0), Outputs);
654    }
655    case S2_asr_r_vh:
656    case S2_asr_i_vw:
657    case S2_asr_i_svw_trun:
658      // TODO
659      break;
660
661    case S2_lsr_i_r:
662    case S2_lsr_i_p:
663      return rr0(eLSR(rc(1), im(2)), Outputs);
664    case S2_lsr_i_r_acc:
665    case S2_lsr_i_p_acc:
666      return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
667    case S2_lsr_i_r_nac:
668    case S2_lsr_i_p_nac:
669      return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
670    case S2_lsr_i_r_and:
671    case S2_lsr_i_p_and:
672      return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
673    case S2_lsr_i_r_or:
674    case S2_lsr_i_p_or:
675      return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
676    case S2_lsr_i_r_xacc:
677    case S2_lsr_i_p_xacc:
678      return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
679
680    case S2_clrbit_i: {
681      RegisterCell RC = rc(1);
682      RC[im(2)] = BT::BitValue::Zero;
683      return rr0(RC, Outputs);
684    }
685    case S2_setbit_i: {
686      RegisterCell RC = rc(1);
687      RC[im(2)] = BT::BitValue::One;
688      return rr0(RC, Outputs);
689    }
690    case S2_togglebit_i: {
691      RegisterCell RC = rc(1);
692      uint16_t BX = im(2);
693      RC[BX] = RC[BX].is(0) ? BT::BitValue::One
694                            : RC[BX].is(1) ? BT::BitValue::Zero
695                                           : BT::BitValue::self();
696      return rr0(RC, Outputs);
697    }
698
699    case A4_bitspliti: {
700      uint16_t W1 = getRegBitWidth(Reg[1]);
701      uint16_t BX = im(2);
702      // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
703      const BT::BitValue Zero = BT::BitValue::Zero;
704      RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
705                                        .fill(W1+(W1-BX), W0, Zero);
706      RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
707      RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
708      return rr0(RC, Outputs);
709    }
710    case S4_extract:
711    case S4_extractp:
712    case S2_extractu:
713    case S2_extractup: {
714      uint16_t Wd = im(2), Of = im(3);
715      assert(Wd <= W0);
716      if (Wd == 0)
717        return rr0(eIMM(0, W0), Outputs);
718      // If the width extends beyond the register size, pad the register
719      // with 0 bits.
720      RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
721      RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
722      // Ext is short, need to extend it with 0s or sign bit.
723      RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
724      if (Opc == S2_extractu || Opc == S2_extractup)
725        return rr0(eZXT(RC, Wd), Outputs);
726      return rr0(eSXT(RC, Wd), Outputs);
727    }
728    case S2_insert:
729    case S2_insertp: {
730      uint16_t Wd = im(3), Of = im(4);
731      assert(Wd < W0 && Of < W0);
732      // If Wd+Of exceeds W0, the inserted bits are truncated.
733      if (Wd+Of > W0)
734        Wd = W0-Of;
735      if (Wd == 0)
736        return rr0(rc(1), Outputs);
737      return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
738    }
739
740    // Bit permutations:
741
742    case A2_combineii:
743    case A4_combineii:
744    case A4_combineir:
745    case A4_combineri:
746    case A2_combinew:
747    case V6_vcombine:
748      assert(W0 % 2 == 0);
749      return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
750    case A2_combine_ll:
751    case A2_combine_lh:
752    case A2_combine_hl:
753    case A2_combine_hh: {
754      assert(W0 == 32);
755      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
756      // Low half in the output is 0 for _ll and _hl, 1 otherwise:
757      unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
758      // High half in the output is 0 for _ll and _lh, 1 otherwise:
759      unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
760      RegisterCell R1 = rc(1);
761      RegisterCell R2 = rc(2);
762      RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
763      return rr0(RC, Outputs);
764    }
765    case S2_packhl: {
766      assert(W0 == 64);
767      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
768      RegisterCell R1 = rc(1);
769      RegisterCell R2 = rc(2);
770      RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
771                                   .cat(half(R1, 1));
772      return rr0(RC, Outputs);
773    }
774    case S2_shuffeb: {
775      RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
776      return rr0(RC, Outputs);
777    }
778    case S2_shuffeh: {
779      RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
780      return rr0(RC, Outputs);
781    }
782    case S2_shuffob: {
783      RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
784      return rr0(RC, Outputs);
785    }
786    case S2_shuffoh: {
787      RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
788      return rr0(RC, Outputs);
789    }
790    case C2_mask: {
791      uint16_t WR = W0;
792      uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
793      assert(WR == 64 && WP == 8);
794      RegisterCell R1 = rc(1);
795      RegisterCell RC(WR);
796      for (uint16_t i = 0; i < WP; ++i) {
797        const BT::BitValue &V = R1[i];
798        BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
799        RC.fill(i*8, i*8+8, F);
800      }
801      return rr0(RC, Outputs);
802    }
803
804    // Mux:
805
806    case C2_muxii:
807    case C2_muxir:
808    case C2_muxri:
809    case C2_mux: {
810      BT::BitValue PC0 = rc(1)[0];
811      RegisterCell R2 = cop(2, W0);
812      RegisterCell R3 = cop(3, W0);
813      if (PC0.is(0) || PC0.is(1))
814        return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
815      R2.meet(R3, Reg[0].Reg);
816      return rr0(R2, Outputs);
817    }
818    case C2_vmux:
819      // TODO
820      break;
821
822    // Sign- and zero-extension:
823
824    case A2_sxtb:
825      return rr0(eSXT(rc(1), 8), Outputs);
826    case A2_sxth:
827      return rr0(eSXT(rc(1), 16), Outputs);
828    case A2_sxtw: {
829      uint16_t W1 = getRegBitWidth(Reg[1]);
830      assert(W0 == 64 && W1 == 32);
831      RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
832      return rr0(RC, Outputs);
833    }
834    case A2_zxtb:
835      return rr0(eZXT(rc(1), 8), Outputs);
836    case A2_zxth:
837      return rr0(eZXT(rc(1), 16), Outputs);
838
839    // Saturations
840
841    case A2_satb:
842      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
843    case A2_sath:
844      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
845    case A2_satub:
846      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
847    case A2_satuh:
848      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
849
850    // Bit count:
851
852    case S2_cl0:
853    case S2_cl0p:
854      // Always produce a 32-bit result.
855      return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
856    case S2_cl1:
857    case S2_cl1p:
858      return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
859    case S2_clb:
860    case S2_clbp: {
861      uint16_t W1 = getRegBitWidth(Reg[1]);
862      RegisterCell R1 = rc(1);
863      BT::BitValue TV = R1[W1-1];
864      if (TV.is(0) || TV.is(1))
865        return rr0(eCLB(R1, TV, 32), Outputs);
866      break;
867    }
868    case S2_ct0:
869    case S2_ct0p:
870      return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
871    case S2_ct1:
872    case S2_ct1p:
873      return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
874    case S5_popcountp:
875      // TODO
876      break;
877
878    case C2_all8: {
879      RegisterCell P1 = rc(1);
880      bool Has0 = false, All1 = true;
881      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
882        if (!P1[i].is(1))
883          All1 = false;
884        if (!P1[i].is(0))
885          continue;
886        Has0 = true;
887        break;
888      }
889      if (!Has0 && !All1)
890        break;
891      RegisterCell RC(W0);
892      RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
893      return rr0(RC, Outputs);
894    }
895    case C2_any8: {
896      RegisterCell P1 = rc(1);
897      bool Has1 = false, All0 = true;
898      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
899        if (!P1[i].is(0))
900          All0 = false;
901        if (!P1[i].is(1))
902          continue;
903        Has1 = true;
904        break;
905      }
906      if (!Has1 && !All0)
907        break;
908      RegisterCell RC(W0);
909      RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
910      return rr0(RC, Outputs);
911    }
912    case C2_and:
913      return rr0(eAND(rc(1), rc(2)), Outputs);
914    case C2_andn:
915      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
916    case C2_not:
917      return rr0(eNOT(rc(1)), Outputs);
918    case C2_or:
919      return rr0(eORL(rc(1), rc(2)), Outputs);
920    case C2_orn:
921      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
922    case C2_xor:
923      return rr0(eXOR(rc(1), rc(2)), Outputs);
924    case C4_and_and:
925      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
926    case C4_and_andn:
927      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
928    case C4_and_or:
929      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
930    case C4_and_orn:
931      return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
932    case C4_or_and:
933      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
934    case C4_or_andn:
935      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
936    case C4_or_or:
937      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
938    case C4_or_orn:
939      return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
940    case C2_bitsclr:
941    case C2_bitsclri:
942    case C2_bitsset:
943    case C4_nbitsclr:
944    case C4_nbitsclri:
945    case C4_nbitsset:
946      // TODO
947      break;
948    case S2_tstbit_i:
949    case S4_ntstbit_i: {
950      BT::BitValue V = rc(1)[im(2)];
951      if (V.is(0) || V.is(1)) {
952        // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
953        bool TV = (Opc == S2_tstbit_i);
954        BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
955        return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
956      }
957      break;
958    }
959
960    default:
961      // For instructions that define a single predicate registers, store
962      // the low 8 bits of the register only.
963      if (unsigned DefR = getUniqueDefVReg(MI)) {
964        if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
965          BT::RegisterRef PD(DefR, 0);
966          uint16_t RW = getRegBitWidth(PD);
967          uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
968          RegisterCell RC = RegisterCell::self(DefR, RW);
969          RC.fill(PW, RW, BT::BitValue::Zero);
970          putCell(PD, RC, Outputs);
971          return true;
972        }
973      }
974      return MachineEvaluator::evaluate(MI, Inputs, Outputs);
975  }
976  #undef im
977  #undef rc
978  #undef op
979  return false;
980}
981
982bool HexagonEvaluator::evaluate(const MachineInstr &BI,
983                                const CellMapType &Inputs,
984                                BranchTargetList &Targets,
985                                bool &FallsThru) const {
986  // We need to evaluate one branch at a time. TII::analyzeBranch checks
987  // all the branches in a basic block at once, so we cannot use it.
988  unsigned Opc = BI.getOpcode();
989  bool SimpleBranch = false;
990  bool Negated = false;
991  switch (Opc) {
992    case Hexagon::J2_jumpf:
993    case Hexagon::J2_jumpfpt:
994    case Hexagon::J2_jumpfnew:
995    case Hexagon::J2_jumpfnewpt:
996      Negated = true;
997      LLVM_FALLTHROUGH;
998    case Hexagon::J2_jumpt:
999    case Hexagon::J2_jumptpt:
1000    case Hexagon::J2_jumptnew:
1001    case Hexagon::J2_jumptnewpt:
1002      // Simple branch:  if([!]Pn) jump ...
1003      // i.e. Op0 = predicate, Op1 = branch target.
1004      SimpleBranch = true;
1005      break;
1006    case Hexagon::J2_jump:
1007      Targets.insert(BI.getOperand(0).getMBB());
1008      FallsThru = false;
1009      return true;
1010    default:
1011      // If the branch is of unknown type, assume that all successors are
1012      // executable.
1013      return false;
1014  }
1015
1016  if (!SimpleBranch)
1017    return false;
1018
1019  // BI is a conditional branch if we got here.
1020  RegisterRef PR = BI.getOperand(0);
1021  RegisterCell PC = getCell(PR, Inputs);
1022  const BT::BitValue &Test = PC[0];
1023
1024  // If the condition is neither true nor false, then it's unknown.
1025  if (!Test.is(0) && !Test.is(1))
1026    return false;
1027
1028  // "Test.is(!Negated)" means "branch condition is true".
1029  if (!Test.is(!Negated)) {
1030    // Condition known to be false.
1031    FallsThru = true;
1032    return true;
1033  }
1034
1035  Targets.insert(BI.getOperand(1).getMBB());
1036  FallsThru = false;
1037  return true;
1038}
1039
1040unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
1041  unsigned DefReg = 0;
1042  for (const MachineOperand &Op : MI.operands()) {
1043    if (!Op.isReg() || !Op.isDef())
1044      continue;
1045    Register R = Op.getReg();
1046    if (!Register::isVirtualRegister(R))
1047      continue;
1048    if (DefReg != 0)
1049      return 0;
1050    DefReg = R;
1051  }
1052  return DefReg;
1053}
1054
1055bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
1056                                    const CellMapType &Inputs,
1057                                    CellMapType &Outputs) const {
1058  using namespace Hexagon;
1059
1060  if (TII.isPredicated(MI))
1061    return false;
1062  assert(MI.mayLoad() && "A load that mayn't?");
1063  unsigned Opc = MI.getOpcode();
1064
1065  uint16_t BitNum;
1066  bool SignEx;
1067
1068  switch (Opc) {
1069    default:
1070      return false;
1071
1072#if 0
1073    // memb_fifo
1074    case L2_loadalignb_pbr:
1075    case L2_loadalignb_pcr:
1076    case L2_loadalignb_pi:
1077    // memh_fifo
1078    case L2_loadalignh_pbr:
1079    case L2_loadalignh_pcr:
1080    case L2_loadalignh_pi:
1081    // membh
1082    case L2_loadbsw2_pbr:
1083    case L2_loadbsw2_pci:
1084    case L2_loadbsw2_pcr:
1085    case L2_loadbsw2_pi:
1086    case L2_loadbsw4_pbr:
1087    case L2_loadbsw4_pci:
1088    case L2_loadbsw4_pcr:
1089    case L2_loadbsw4_pi:
1090    // memubh
1091    case L2_loadbzw2_pbr:
1092    case L2_loadbzw2_pci:
1093    case L2_loadbzw2_pcr:
1094    case L2_loadbzw2_pi:
1095    case L2_loadbzw4_pbr:
1096    case L2_loadbzw4_pci:
1097    case L2_loadbzw4_pcr:
1098    case L2_loadbzw4_pi:
1099#endif
1100
1101    case L2_loadrbgp:
1102    case L2_loadrb_io:
1103    case L2_loadrb_pbr:
1104    case L2_loadrb_pci:
1105    case L2_loadrb_pcr:
1106    case L2_loadrb_pi:
1107    case PS_loadrbabs:
1108    case L4_loadrb_ap:
1109    case L4_loadrb_rr:
1110    case L4_loadrb_ur:
1111      BitNum = 8;
1112      SignEx = true;
1113      break;
1114
1115    case L2_loadrubgp:
1116    case L2_loadrub_io:
1117    case L2_loadrub_pbr:
1118    case L2_loadrub_pci:
1119    case L2_loadrub_pcr:
1120    case L2_loadrub_pi:
1121    case PS_loadrubabs:
1122    case L4_loadrub_ap:
1123    case L4_loadrub_rr:
1124    case L4_loadrub_ur:
1125      BitNum = 8;
1126      SignEx = false;
1127      break;
1128
1129    case L2_loadrhgp:
1130    case L2_loadrh_io:
1131    case L2_loadrh_pbr:
1132    case L2_loadrh_pci:
1133    case L2_loadrh_pcr:
1134    case L2_loadrh_pi:
1135    case PS_loadrhabs:
1136    case L4_loadrh_ap:
1137    case L4_loadrh_rr:
1138    case L4_loadrh_ur:
1139      BitNum = 16;
1140      SignEx = true;
1141      break;
1142
1143    case L2_loadruhgp:
1144    case L2_loadruh_io:
1145    case L2_loadruh_pbr:
1146    case L2_loadruh_pci:
1147    case L2_loadruh_pcr:
1148    case L2_loadruh_pi:
1149    case L4_loadruh_rr:
1150    case PS_loadruhabs:
1151    case L4_loadruh_ap:
1152    case L4_loadruh_ur:
1153      BitNum = 16;
1154      SignEx = false;
1155      break;
1156
1157    case L2_loadrigp:
1158    case L2_loadri_io:
1159    case L2_loadri_pbr:
1160    case L2_loadri_pci:
1161    case L2_loadri_pcr:
1162    case L2_loadri_pi:
1163    case L2_loadw_locked:
1164    case PS_loadriabs:
1165    case L4_loadri_ap:
1166    case L4_loadri_rr:
1167    case L4_loadri_ur:
1168    case LDriw_pred:
1169      BitNum = 32;
1170      SignEx = true;
1171      break;
1172
1173    case L2_loadrdgp:
1174    case L2_loadrd_io:
1175    case L2_loadrd_pbr:
1176    case L2_loadrd_pci:
1177    case L2_loadrd_pcr:
1178    case L2_loadrd_pi:
1179    case L4_loadd_locked:
1180    case PS_loadrdabs:
1181    case L4_loadrd_ap:
1182    case L4_loadrd_rr:
1183    case L4_loadrd_ur:
1184      BitNum = 64;
1185      SignEx = true;
1186      break;
1187  }
1188
1189  const MachineOperand &MD = MI.getOperand(0);
1190  assert(MD.isReg() && MD.isDef());
1191  RegisterRef RD = MD;
1192
1193  uint16_t W = getRegBitWidth(RD);
1194  assert(W >= BitNum && BitNum > 0);
1195  RegisterCell Res(W);
1196
1197  for (uint16_t i = 0; i < BitNum; ++i)
1198    Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1199
1200  if (SignEx) {
1201    const BT::BitValue &Sign = Res[BitNum-1];
1202    for (uint16_t i = BitNum; i < W; ++i)
1203      Res[i] = BT::BitValue::ref(Sign);
1204  } else {
1205    for (uint16_t i = BitNum; i < W; ++i)
1206      Res[i] = BT::BitValue::Zero;
1207  }
1208
1209  putCell(RD, Res, Outputs);
1210  return true;
1211}
1212
1213bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1214                                          const CellMapType &Inputs,
1215                                          CellMapType &Outputs) const {
1216  // If MI defines a formal parameter, but is not a copy (loads are handled
1217  // in evaluateLoad), then it's not clear what to do.
1218  assert(MI.isCopy());
1219
1220  RegisterRef RD = MI.getOperand(0);
1221  RegisterRef RS = MI.getOperand(1);
1222  assert(RD.Sub == 0);
1223  if (!Register::isPhysicalRegister(RS.Reg))
1224    return false;
1225  RegExtMap::const_iterator F = VRX.find(RD.Reg);
1226  if (F == VRX.end())
1227    return false;
1228
1229  uint16_t EW = F->second.Width;
1230  // Store RD's cell into the map. This will associate the cell with a virtual
1231  // register, and make zero-/sign-extends possible (otherwise we would be ex-
1232  // tending "self" bit values, which will have no effect, since "self" values
1233  // cannot be references to anything).
1234  putCell(RD, getCell(RS, Inputs), Outputs);
1235
1236  RegisterCell Res;
1237  // Read RD's cell from the outputs instead of RS's cell from the inputs:
1238  if (F->second.Type == ExtType::SExt)
1239    Res = eSXT(getCell(RD, Outputs), EW);
1240  else if (F->second.Type == ExtType::ZExt)
1241    Res = eZXT(getCell(RD, Outputs), EW);
1242
1243  putCell(RD, Res, Outputs);
1244  return true;
1245}
1246
1247unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1248  using namespace Hexagon;
1249
1250  bool Is64 = DoubleRegsRegClass.contains(PReg);
1251  assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1252
1253  static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1254  static const unsigned Phys64[] = { D0, D1, D2 };
1255  const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1256  const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1257
1258  // Return the first parameter register of the required width.
1259  if (PReg == 0)
1260    return (Width <= 32) ? Phys32[0] : Phys64[0];
1261
1262  // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1263  // next register.
1264  unsigned Idx32 = 0, Idx64 = 0;
1265  if (!Is64) {
1266    while (Idx32 < Num32) {
1267      if (Phys32[Idx32] == PReg)
1268        break;
1269      Idx32++;
1270    }
1271    Idx64 = Idx32/2;
1272  } else {
1273    while (Idx64 < Num64) {
1274      if (Phys64[Idx64] == PReg)
1275        break;
1276      Idx64++;
1277    }
1278    Idx32 = Idx64*2+1;
1279  }
1280
1281  if (Width <= 32)
1282    return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1283  return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1284}
1285
1286unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1287  for (std::pair<unsigned,unsigned> P : MRI.liveins())
1288    if (P.first == PReg)
1289      return P.second;
1290  return 0;
1291}
1292