1//===- HexagonBitSimplify.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "BitTracker.h"
10#include "HexagonBitTracker.h"
11#include "HexagonInstrInfo.h"
12#include "HexagonRegisterInfo.h"
13#include "HexagonSubtarget.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/GraphTraits.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/TargetRegisterInfo.h"
29#include "llvm/IR/DebugLoc.h"
30#include "llvm/InitializePasses.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/Pass.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40#include <cassert>
41#include <cstdint>
42#include <iterator>
43#include <limits>
44#include <utility>
45#include <vector>
46
47#define DEBUG_TYPE "hexbit"
48
49using namespace llvm;
50
51static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
52  cl::init(true), cl::desc("Preserve subregisters in tied operands"));
53static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
54  cl::init(true), cl::desc("Generate extract instructions"));
55static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
56  cl::init(true), cl::desc("Generate bitsplit instructions"));
57
58static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
59  cl::init(std::numeric_limits<unsigned>::max()));
60static unsigned CountExtract = 0;
61static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
62  cl::init(std::numeric_limits<unsigned>::max()));
63static unsigned CountBitSplit = 0;
64
65namespace llvm {
66
67  void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
68  FunctionPass *createHexagonBitSimplify();
69
70} // end namespace llvm
71
72namespace {
73
74  // Set of virtual registers, based on BitVector.
75  struct RegisterSet : private BitVector {
76    RegisterSet() = default;
77    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
78    RegisterSet(const RegisterSet &RS) = default;
79
80    using BitVector::clear;
81    using BitVector::count;
82
83    unsigned find_first() const {
84      int First = BitVector::find_first();
85      if (First < 0)
86        return 0;
87      return x2v(First);
88    }
89
90    unsigned find_next(unsigned Prev) const {
91      int Next = BitVector::find_next(v2x(Prev));
92      if (Next < 0)
93        return 0;
94      return x2v(Next);
95    }
96
97    RegisterSet &insert(unsigned R) {
98      unsigned Idx = v2x(R);
99      ensure(Idx);
100      return static_cast<RegisterSet&>(BitVector::set(Idx));
101    }
102    RegisterSet &remove(unsigned R) {
103      unsigned Idx = v2x(R);
104      if (Idx >= size())
105        return *this;
106      return static_cast<RegisterSet&>(BitVector::reset(Idx));
107    }
108
109    RegisterSet &insert(const RegisterSet &Rs) {
110      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
111    }
112    RegisterSet &remove(const RegisterSet &Rs) {
113      return static_cast<RegisterSet&>(BitVector::reset(Rs));
114    }
115
116    reference operator[](unsigned R) {
117      unsigned Idx = v2x(R);
118      ensure(Idx);
119      return BitVector::operator[](Idx);
120    }
121    bool operator[](unsigned R) const {
122      unsigned Idx = v2x(R);
123      assert(Idx < size());
124      return BitVector::operator[](Idx);
125    }
126    bool has(unsigned R) const {
127      unsigned Idx = v2x(R);
128      if (Idx >= size())
129        return false;
130      return BitVector::test(Idx);
131    }
132
133    bool empty() const {
134      return !BitVector::any();
135    }
136    bool includes(const RegisterSet &Rs) const {
137      // A.BitVector::test(B)  <=>  A-B != {}
138      return !Rs.BitVector::test(*this);
139    }
140    bool intersects(const RegisterSet &Rs) const {
141      return BitVector::anyCommon(Rs);
142    }
143
144  private:
145    void ensure(unsigned Idx) {
146      if (size() <= Idx)
147        resize(std::max(Idx+1, 32U));
148    }
149
150    static inline unsigned v2x(unsigned v) {
151      return Register::virtReg2Index(v);
152    }
153
154    static inline unsigned x2v(unsigned x) {
155      return Register::index2VirtReg(x);
156    }
157  };
158
159  struct PrintRegSet {
160    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
161      : RS(S), TRI(RI) {}
162
163    friend raw_ostream &operator<< (raw_ostream &OS,
164          const PrintRegSet &P);
165
166  private:
167    const RegisterSet &RS;
168    const TargetRegisterInfo *TRI;
169  };
170
171  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
172    LLVM_ATTRIBUTE_UNUSED;
173  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
174    OS << '{';
175    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
176      OS << ' ' << printReg(R, P.TRI);
177    OS << " }";
178    return OS;
179  }
180
181  class Transformation;
182
183  class HexagonBitSimplify : public MachineFunctionPass {
184  public:
185    static char ID;
186
187    HexagonBitSimplify() : MachineFunctionPass(ID) {}
188
189    StringRef getPassName() const override {
190      return "Hexagon bit simplification";
191    }
192
193    void getAnalysisUsage(AnalysisUsage &AU) const override {
194      AU.addRequired<MachineDominatorTree>();
195      AU.addPreserved<MachineDominatorTree>();
196      MachineFunctionPass::getAnalysisUsage(AU);
197    }
198
199    bool runOnMachineFunction(MachineFunction &MF) override;
200
201    static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
202    static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
203    static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
204        const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
205    static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
206        uint16_t W);
207    static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
208        uint16_t W, uint64_t &U);
209    static bool replaceReg(unsigned OldR, unsigned NewR,
210        MachineRegisterInfo &MRI);
211    static bool getSubregMask(const BitTracker::RegisterRef &RR,
212        unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
213    static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
214        unsigned NewSR, MachineRegisterInfo &MRI);
215    static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
216        unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
217    static bool parseRegSequence(const MachineInstr &I,
218        BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
219        const MachineRegisterInfo &MRI);
220
221    static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
222        uint16_t Begin);
223    static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
224        uint16_t Begin, const HexagonInstrInfo &HII);
225
226    static const TargetRegisterClass *getFinalVRegClass(
227        const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
228    static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
229        const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
230
231  private:
232    MachineDominatorTree *MDT = nullptr;
233
234    bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
235    static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
236        unsigned NewSub = Hexagon::NoSubRegister);
237  };
238
239  using HBS = HexagonBitSimplify;
240
241  // The purpose of this class is to provide a common facility to traverse
242  // the function top-down or bottom-up via the dominator tree, and keep
243  // track of the available registers.
244  class Transformation {
245  public:
246    bool TopDown;
247
248    Transformation(bool TD) : TopDown(TD) {}
249    virtual ~Transformation() = default;
250
251    virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
252  };
253
254} // end anonymous namespace
255
256char HexagonBitSimplify::ID = 0;
257
258INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
259      "Hexagon bit simplification", false, false)
260INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
261INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
262      "Hexagon bit simplification", false, false)
263
264bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
265      RegisterSet &AVs) {
266  bool Changed = false;
267
268  if (T.TopDown)
269    Changed = T.processBlock(B, AVs);
270
271  RegisterSet Defs;
272  for (auto &I : B)
273    getInstrDefs(I, Defs);
274  RegisterSet NewAVs = AVs;
275  NewAVs.insert(Defs);
276
277  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
278    Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
279
280  if (!T.TopDown)
281    Changed |= T.processBlock(B, AVs);
282
283  return Changed;
284}
285
286//
287// Utility functions:
288//
289void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
290      RegisterSet &Defs) {
291  for (auto &Op : MI.operands()) {
292    if (!Op.isReg() || !Op.isDef())
293      continue;
294    Register R = Op.getReg();
295    if (!Register::isVirtualRegister(R))
296      continue;
297    Defs.insert(R);
298  }
299}
300
301void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
302      RegisterSet &Uses) {
303  for (auto &Op : MI.operands()) {
304    if (!Op.isReg() || !Op.isUse())
305      continue;
306    Register R = Op.getReg();
307    if (!Register::isVirtualRegister(R))
308      continue;
309    Uses.insert(R);
310  }
311}
312
313// Check if all the bits in range [B, E) in both cells are equal.
314bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
315      uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
316      uint16_t W) {
317  for (uint16_t i = 0; i < W; ++i) {
318    // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
319    if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
320      return false;
321    // Same for RC2[i].
322    if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
323      return false;
324    if (RC1[B1+i] != RC2[B2+i])
325      return false;
326  }
327  return true;
328}
329
330bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
331      uint16_t B, uint16_t W) {
332  assert(B < RC.width() && B+W <= RC.width());
333  for (uint16_t i = B; i < B+W; ++i)
334    if (!RC[i].is(0))
335      return false;
336  return true;
337}
338
339bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
340        uint16_t B, uint16_t W, uint64_t &U) {
341  assert(B < RC.width() && B+W <= RC.width());
342  int64_t T = 0;
343  for (uint16_t i = B+W; i > B; --i) {
344    const BitTracker::BitValue &BV = RC[i-1];
345    T <<= 1;
346    if (BV.is(1))
347      T |= 1;
348    else if (!BV.is(0))
349      return false;
350  }
351  U = T;
352  return true;
353}
354
355bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
356      MachineRegisterInfo &MRI) {
357  if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
358    return false;
359  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
360  decltype(End) NextI;
361  for (auto I = Begin; I != End; I = NextI) {
362    NextI = std::next(I);
363    I->setReg(NewR);
364  }
365  return Begin != End;
366}
367
368bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
369      unsigned NewSR, MachineRegisterInfo &MRI) {
370  if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
371    return false;
372  if (hasTiedUse(OldR, MRI, NewSR))
373    return false;
374  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
375  decltype(End) NextI;
376  for (auto I = Begin; I != End; I = NextI) {
377    NextI = std::next(I);
378    I->setReg(NewR);
379    I->setSubReg(NewSR);
380  }
381  return Begin != End;
382}
383
384bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
385      unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
386  if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
387    return false;
388  if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
389    return false;
390  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
391  decltype(End) NextI;
392  for (auto I = Begin; I != End; I = NextI) {
393    NextI = std::next(I);
394    if (I->getSubReg() != OldSR)
395      continue;
396    I->setReg(NewR);
397    I->setSubReg(NewSR);
398  }
399  return Begin != End;
400}
401
402// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
403// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
404// if this succeeded, otherwise return false.
405bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
406      unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
407  const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
408  if (RR.Sub == 0) {
409    Begin = 0;
410    Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
411    return true;
412  }
413
414  Begin = 0;
415
416  switch (RC->getID()) {
417    case Hexagon::DoubleRegsRegClassID:
418    case Hexagon::HvxWRRegClassID:
419      Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
420      if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
421        Begin = Width;
422      break;
423    default:
424      return false;
425  }
426  return true;
427}
428
429
430// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
431// subregister.
432bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
433      BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
434      const MachineRegisterInfo &MRI) {
435  assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
436  unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
437  auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
438  auto &HRI = static_cast<const HexagonRegisterInfo&>(
439                  *MRI.getTargetRegisterInfo());
440  unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
441  unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
442  assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
443  if (Sub1 == SubLo && Sub2 == SubHi) {
444    SL = I.getOperand(1);
445    SH = I.getOperand(3);
446    return true;
447  }
448  if (Sub1 == SubHi && Sub2 == SubLo) {
449    SH = I.getOperand(1);
450    SL = I.getOperand(3);
451    return true;
452  }
453  return false;
454}
455
456// All stores (except 64-bit stores) take a 32-bit register as the source
457// of the value to be stored. If the instruction stores into a location
458// that is shorter than 32 bits, some bits of the source register are not
459// used. For each store instruction, calculate the set of used bits in
460// the source register, and set appropriate bits in Bits. Return true if
461// the bits are calculated, false otherwise.
462bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
463      uint16_t Begin) {
464  using namespace Hexagon;
465
466  switch (Opc) {
467    // Store byte
468    case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
469    case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
470    case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
471    case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
472    case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
473    case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
474    case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
475    case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
476    case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
477    case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
478    case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
479    case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
480    case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
481    case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
482    case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
483    case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
484    case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
485    case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
486    case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
487    case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
488    case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
489    case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
490    case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
491    case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
492    case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
493    case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
494    case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
495    case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
496    case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
497    case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
498    case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
499    case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
500    case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
501    case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
502    case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
503    case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
504    case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
505    case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
506    case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
507    case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
508    case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
509    case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
510    case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
511    case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
512    case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
513    case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
514    case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
515    case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
516    case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
517    case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
518    case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
519    case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
520      Bits.set(Begin, Begin+8);
521      return true;
522
523    // Store low half
524    case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
525    case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
526    case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
527    case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
528    case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
529    case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
530    case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
531    case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
532    case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
533    case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
534    case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
535    case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
536    case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
537    case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
538    case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
539    case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
540    case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
541    case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
542    case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
543    case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
544    case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
545    case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
546    case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
547    case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
548    case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
549    case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
550    case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
551    case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
552    case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
553    case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
554    case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
555    case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
556    case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
557    case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
558    case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
559    case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
560    case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
561    case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
562    case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
563    case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
564    case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
565    case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
566    case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
567    case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
568    case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
569    case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
570    case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
571    case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
572    case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
573    case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
574    case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
575    case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
576      Bits.set(Begin, Begin+16);
577      return true;
578
579    // Store high half
580    case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
581    case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
582    case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
583    case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
584    case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
585    case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
586    case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
587    case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
588    case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
589    case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
590    case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
591    case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
592    case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
593    case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
594    case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
595    case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
596    case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
597    case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
598    case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
599    case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
600    case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
601    case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
602    case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
603    case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
604    case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
605    case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
606      Bits.set(Begin+16, Begin+32);
607      return true;
608  }
609
610  return false;
611}
612
613// For an instruction with opcode Opc, calculate the set of bits that it
614// uses in a register in operand OpN. This only calculates the set of used
615// bits for cases where it does not depend on any operands (as is the case
616// in shifts, for example). For concrete instructions from a program, the
617// operand may be a subregister of a larger register, while Bits would
618// correspond to the larger register in its entirety. Because of that,
619// the parameter Begin can be used to indicate which bit of Bits should be
620// considered the LSB of the operand.
621bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
622      BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
623  using namespace Hexagon;
624
625  const MCInstrDesc &D = HII.get(Opc);
626  if (D.mayStore()) {
627    if (OpN == D.getNumOperands()-1)
628      return getUsedBitsInStore(Opc, Bits, Begin);
629    return false;
630  }
631
632  switch (Opc) {
633    // One register source. Used bits: R1[0-7].
634    case A2_sxtb:
635    case A2_zxtb:
636    case A4_cmpbeqi:
637    case A4_cmpbgti:
638    case A4_cmpbgtui:
639      if (OpN == 1) {
640        Bits.set(Begin, Begin+8);
641        return true;
642      }
643      break;
644
645    // One register source. Used bits: R1[0-15].
646    case A2_aslh:
647    case A2_sxth:
648    case A2_zxth:
649    case A4_cmpheqi:
650    case A4_cmphgti:
651    case A4_cmphgtui:
652      if (OpN == 1) {
653        Bits.set(Begin, Begin+16);
654        return true;
655      }
656      break;
657
658    // One register source. Used bits: R1[16-31].
659    case A2_asrh:
660      if (OpN == 1) {
661        Bits.set(Begin+16, Begin+32);
662        return true;
663      }
664      break;
665
666    // Two register sources. Used bits: R1[0-7], R2[0-7].
667    case A4_cmpbeq:
668    case A4_cmpbgt:
669    case A4_cmpbgtu:
670      if (OpN == 1) {
671        Bits.set(Begin, Begin+8);
672        return true;
673      }
674      break;
675
676    // Two register sources. Used bits: R1[0-15], R2[0-15].
677    case A4_cmpheq:
678    case A4_cmphgt:
679    case A4_cmphgtu:
680    case A2_addh_h16_ll:
681    case A2_addh_h16_sat_ll:
682    case A2_addh_l16_ll:
683    case A2_addh_l16_sat_ll:
684    case A2_combine_ll:
685    case A2_subh_h16_ll:
686    case A2_subh_h16_sat_ll:
687    case A2_subh_l16_ll:
688    case A2_subh_l16_sat_ll:
689    case M2_mpy_acc_ll_s0:
690    case M2_mpy_acc_ll_s1:
691    case M2_mpy_acc_sat_ll_s0:
692    case M2_mpy_acc_sat_ll_s1:
693    case M2_mpy_ll_s0:
694    case M2_mpy_ll_s1:
695    case M2_mpy_nac_ll_s0:
696    case M2_mpy_nac_ll_s1:
697    case M2_mpy_nac_sat_ll_s0:
698    case M2_mpy_nac_sat_ll_s1:
699    case M2_mpy_rnd_ll_s0:
700    case M2_mpy_rnd_ll_s1:
701    case M2_mpy_sat_ll_s0:
702    case M2_mpy_sat_ll_s1:
703    case M2_mpy_sat_rnd_ll_s0:
704    case M2_mpy_sat_rnd_ll_s1:
705    case M2_mpyd_acc_ll_s0:
706    case M2_mpyd_acc_ll_s1:
707    case M2_mpyd_ll_s0:
708    case M2_mpyd_ll_s1:
709    case M2_mpyd_nac_ll_s0:
710    case M2_mpyd_nac_ll_s1:
711    case M2_mpyd_rnd_ll_s0:
712    case M2_mpyd_rnd_ll_s1:
713    case M2_mpyu_acc_ll_s0:
714    case M2_mpyu_acc_ll_s1:
715    case M2_mpyu_ll_s0:
716    case M2_mpyu_ll_s1:
717    case M2_mpyu_nac_ll_s0:
718    case M2_mpyu_nac_ll_s1:
719    case M2_mpyud_acc_ll_s0:
720    case M2_mpyud_acc_ll_s1:
721    case M2_mpyud_ll_s0:
722    case M2_mpyud_ll_s1:
723    case M2_mpyud_nac_ll_s0:
724    case M2_mpyud_nac_ll_s1:
725      if (OpN == 1 || OpN == 2) {
726        Bits.set(Begin, Begin+16);
727        return true;
728      }
729      break;
730
731    // Two register sources. Used bits: R1[0-15], R2[16-31].
732    case A2_addh_h16_lh:
733    case A2_addh_h16_sat_lh:
734    case A2_combine_lh:
735    case A2_subh_h16_lh:
736    case A2_subh_h16_sat_lh:
737    case M2_mpy_acc_lh_s0:
738    case M2_mpy_acc_lh_s1:
739    case M2_mpy_acc_sat_lh_s0:
740    case M2_mpy_acc_sat_lh_s1:
741    case M2_mpy_lh_s0:
742    case M2_mpy_lh_s1:
743    case M2_mpy_nac_lh_s0:
744    case M2_mpy_nac_lh_s1:
745    case M2_mpy_nac_sat_lh_s0:
746    case M2_mpy_nac_sat_lh_s1:
747    case M2_mpy_rnd_lh_s0:
748    case M2_mpy_rnd_lh_s1:
749    case M2_mpy_sat_lh_s0:
750    case M2_mpy_sat_lh_s1:
751    case M2_mpy_sat_rnd_lh_s0:
752    case M2_mpy_sat_rnd_lh_s1:
753    case M2_mpyd_acc_lh_s0:
754    case M2_mpyd_acc_lh_s1:
755    case M2_mpyd_lh_s0:
756    case M2_mpyd_lh_s1:
757    case M2_mpyd_nac_lh_s0:
758    case M2_mpyd_nac_lh_s1:
759    case M2_mpyd_rnd_lh_s0:
760    case M2_mpyd_rnd_lh_s1:
761    case M2_mpyu_acc_lh_s0:
762    case M2_mpyu_acc_lh_s1:
763    case M2_mpyu_lh_s0:
764    case M2_mpyu_lh_s1:
765    case M2_mpyu_nac_lh_s0:
766    case M2_mpyu_nac_lh_s1:
767    case M2_mpyud_acc_lh_s0:
768    case M2_mpyud_acc_lh_s1:
769    case M2_mpyud_lh_s0:
770    case M2_mpyud_lh_s1:
771    case M2_mpyud_nac_lh_s0:
772    case M2_mpyud_nac_lh_s1:
773    // These four are actually LH.
774    case A2_addh_l16_hl:
775    case A2_addh_l16_sat_hl:
776    case A2_subh_l16_hl:
777    case A2_subh_l16_sat_hl:
778      if (OpN == 1) {
779        Bits.set(Begin, Begin+16);
780        return true;
781      }
782      if (OpN == 2) {
783        Bits.set(Begin+16, Begin+32);
784        return true;
785      }
786      break;
787
788    // Two register sources, used bits: R1[16-31], R2[0-15].
789    case A2_addh_h16_hl:
790    case A2_addh_h16_sat_hl:
791    case A2_combine_hl:
792    case A2_subh_h16_hl:
793    case A2_subh_h16_sat_hl:
794    case M2_mpy_acc_hl_s0:
795    case M2_mpy_acc_hl_s1:
796    case M2_mpy_acc_sat_hl_s0:
797    case M2_mpy_acc_sat_hl_s1:
798    case M2_mpy_hl_s0:
799    case M2_mpy_hl_s1:
800    case M2_mpy_nac_hl_s0:
801    case M2_mpy_nac_hl_s1:
802    case M2_mpy_nac_sat_hl_s0:
803    case M2_mpy_nac_sat_hl_s1:
804    case M2_mpy_rnd_hl_s0:
805    case M2_mpy_rnd_hl_s1:
806    case M2_mpy_sat_hl_s0:
807    case M2_mpy_sat_hl_s1:
808    case M2_mpy_sat_rnd_hl_s0:
809    case M2_mpy_sat_rnd_hl_s1:
810    case M2_mpyd_acc_hl_s0:
811    case M2_mpyd_acc_hl_s1:
812    case M2_mpyd_hl_s0:
813    case M2_mpyd_hl_s1:
814    case M2_mpyd_nac_hl_s0:
815    case M2_mpyd_nac_hl_s1:
816    case M2_mpyd_rnd_hl_s0:
817    case M2_mpyd_rnd_hl_s1:
818    case M2_mpyu_acc_hl_s0:
819    case M2_mpyu_acc_hl_s1:
820    case M2_mpyu_hl_s0:
821    case M2_mpyu_hl_s1:
822    case M2_mpyu_nac_hl_s0:
823    case M2_mpyu_nac_hl_s1:
824    case M2_mpyud_acc_hl_s0:
825    case M2_mpyud_acc_hl_s1:
826    case M2_mpyud_hl_s0:
827    case M2_mpyud_hl_s1:
828    case M2_mpyud_nac_hl_s0:
829    case M2_mpyud_nac_hl_s1:
830      if (OpN == 1) {
831        Bits.set(Begin+16, Begin+32);
832        return true;
833      }
834      if (OpN == 2) {
835        Bits.set(Begin, Begin+16);
836        return true;
837      }
838      break;
839
840    // Two register sources, used bits: R1[16-31], R2[16-31].
841    case A2_addh_h16_hh:
842    case A2_addh_h16_sat_hh:
843    case A2_combine_hh:
844    case A2_subh_h16_hh:
845    case A2_subh_h16_sat_hh:
846    case M2_mpy_acc_hh_s0:
847    case M2_mpy_acc_hh_s1:
848    case M2_mpy_acc_sat_hh_s0:
849    case M2_mpy_acc_sat_hh_s1:
850    case M2_mpy_hh_s0:
851    case M2_mpy_hh_s1:
852    case M2_mpy_nac_hh_s0:
853    case M2_mpy_nac_hh_s1:
854    case M2_mpy_nac_sat_hh_s0:
855    case M2_mpy_nac_sat_hh_s1:
856    case M2_mpy_rnd_hh_s0:
857    case M2_mpy_rnd_hh_s1:
858    case M2_mpy_sat_hh_s0:
859    case M2_mpy_sat_hh_s1:
860    case M2_mpy_sat_rnd_hh_s0:
861    case M2_mpy_sat_rnd_hh_s1:
862    case M2_mpyd_acc_hh_s0:
863    case M2_mpyd_acc_hh_s1:
864    case M2_mpyd_hh_s0:
865    case M2_mpyd_hh_s1:
866    case M2_mpyd_nac_hh_s0:
867    case M2_mpyd_nac_hh_s1:
868    case M2_mpyd_rnd_hh_s0:
869    case M2_mpyd_rnd_hh_s1:
870    case M2_mpyu_acc_hh_s0:
871    case M2_mpyu_acc_hh_s1:
872    case M2_mpyu_hh_s0:
873    case M2_mpyu_hh_s1:
874    case M2_mpyu_nac_hh_s0:
875    case M2_mpyu_nac_hh_s1:
876    case M2_mpyud_acc_hh_s0:
877    case M2_mpyud_acc_hh_s1:
878    case M2_mpyud_hh_s0:
879    case M2_mpyud_hh_s1:
880    case M2_mpyud_nac_hh_s0:
881    case M2_mpyud_nac_hh_s1:
882      if (OpN == 1 || OpN == 2) {
883        Bits.set(Begin+16, Begin+32);
884        return true;
885      }
886      break;
887  }
888
889  return false;
890}
891
892// Calculate the register class that matches Reg:Sub. For example, if
893// %1 is a double register, then %1:isub_hi would match the "int"
894// register class.
895const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
896      const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
897  if (!Register::isVirtualRegister(RR.Reg))
898    return nullptr;
899  auto *RC = MRI.getRegClass(RR.Reg);
900  if (RR.Sub == 0)
901    return RC;
902  auto &HRI = static_cast<const HexagonRegisterInfo&>(
903                  *MRI.getTargetRegisterInfo());
904
905  auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
906    (void)HRI;
907    assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
908           Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
909  };
910
911  switch (RC->getID()) {
912    case Hexagon::DoubleRegsRegClassID:
913      VerifySR(RC, RR.Sub);
914      return &Hexagon::IntRegsRegClass;
915    case Hexagon::HvxWRRegClassID:
916      VerifySR(RC, RR.Sub);
917      return &Hexagon::HvxVRRegClass;
918  }
919  return nullptr;
920}
921
922// Check if RD could be replaced with RS at any possible use of RD.
923// For example a predicate register cannot be replaced with a integer
924// register, but a 64-bit register with a subregister can be replaced
925// with a 32-bit register.
926bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
927      const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
928  if (!Register::isVirtualRegister(RD.Reg) ||
929      !Register::isVirtualRegister(RS.Reg))
930    return false;
931  // Return false if one (or both) classes are nullptr.
932  auto *DRC = getFinalVRegClass(RD, MRI);
933  if (!DRC)
934    return false;
935
936  return DRC == getFinalVRegClass(RS, MRI);
937}
938
939bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
940      unsigned NewSub) {
941  if (!PreserveTiedOps)
942    return false;
943  return llvm::any_of(MRI.use_operands(Reg),
944                      [NewSub] (const MachineOperand &Op) -> bool {
945                        return Op.getSubReg() != NewSub && Op.isTied();
946                      });
947}
948
949namespace {
950
951  class DeadCodeElimination {
952  public:
953    DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
954      : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
955        MDT(mdt), MRI(mf.getRegInfo()) {}
956
957    bool run() {
958      return runOnNode(MDT.getRootNode());
959    }
960
961  private:
962    bool isDead(unsigned R) const;
963    bool runOnNode(MachineDomTreeNode *N);
964
965    MachineFunction &MF;
966    const HexagonInstrInfo &HII;
967    MachineDominatorTree &MDT;
968    MachineRegisterInfo &MRI;
969  };
970
971} // end anonymous namespace
972
973bool DeadCodeElimination::isDead(unsigned R) const {
974  for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
975    MachineInstr *UseI = I->getParent();
976    if (UseI->isDebugValue())
977      continue;
978    if (UseI->isPHI()) {
979      assert(!UseI->getOperand(0).getSubReg());
980      Register DR = UseI->getOperand(0).getReg();
981      if (DR == R)
982        continue;
983    }
984    return false;
985  }
986  return true;
987}
988
989bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
990  bool Changed = false;
991
992  for (auto *DTN : children<MachineDomTreeNode*>(N))
993    Changed |= runOnNode(DTN);
994
995  MachineBasicBlock *B = N->getBlock();
996  std::vector<MachineInstr*> Instrs;
997  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
998    Instrs.push_back(&*I);
999
1000  for (auto MI : Instrs) {
1001    unsigned Opc = MI->getOpcode();
1002    // Do not touch lifetime markers. This is why the target-independent DCE
1003    // cannot be used.
1004    if (Opc == TargetOpcode::LIFETIME_START ||
1005        Opc == TargetOpcode::LIFETIME_END)
1006      continue;
1007    bool Store = false;
1008    if (MI->isInlineAsm())
1009      continue;
1010    // Delete PHIs if possible.
1011    if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
1012      continue;
1013
1014    bool AllDead = true;
1015    SmallVector<unsigned,2> Regs;
1016    for (auto &Op : MI->operands()) {
1017      if (!Op.isReg() || !Op.isDef())
1018        continue;
1019      Register R = Op.getReg();
1020      if (!Register::isVirtualRegister(R) || !isDead(R)) {
1021        AllDead = false;
1022        break;
1023      }
1024      Regs.push_back(R);
1025    }
1026    if (!AllDead)
1027      continue;
1028
1029    B->erase(MI);
1030    for (unsigned i = 0, n = Regs.size(); i != n; ++i)
1031      MRI.markUsesInDebugValueAsUndef(Regs[i]);
1032    Changed = true;
1033  }
1034
1035  return Changed;
1036}
1037
1038namespace {
1039
1040// Eliminate redundant instructions
1041//
1042// This transformation will identify instructions where the output register
1043// is the same as one of its input registers. This only works on instructions
1044// that define a single register (unlike post-increment loads, for example).
1045// The equality check is actually more detailed: the code calculates which
1046// bits of the output are used, and only compares these bits with the input
1047// registers.
1048// If the output matches an input, the instruction is replaced with COPY.
1049// The copies will be removed by another transformation.
1050  class RedundantInstrElimination : public Transformation {
1051  public:
1052    RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1053          const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1054        : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1055
1056    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1057
1058  private:
1059    bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1060          unsigned &LostB, unsigned &LostE);
1061    bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1062          unsigned &LostB, unsigned &LostE);
1063    bool computeUsedBits(unsigned Reg, BitVector &Bits);
1064    bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1065          uint16_t Begin);
1066    bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1067
1068    const HexagonInstrInfo &HII;
1069    const HexagonRegisterInfo &HRI;
1070    MachineRegisterInfo &MRI;
1071    BitTracker &BT;
1072  };
1073
1074} // end anonymous namespace
1075
1076// Check if the instruction is a lossy shift left, where the input being
1077// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1078// of bit indices that are lost.
1079bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1080      unsigned OpN, unsigned &LostB, unsigned &LostE) {
1081  using namespace Hexagon;
1082
1083  unsigned Opc = MI.getOpcode();
1084  unsigned ImN, RegN, Width;
1085  switch (Opc) {
1086    case S2_asl_i_p:
1087      ImN = 2;
1088      RegN = 1;
1089      Width = 64;
1090      break;
1091    case S2_asl_i_p_acc:
1092    case S2_asl_i_p_and:
1093    case S2_asl_i_p_nac:
1094    case S2_asl_i_p_or:
1095    case S2_asl_i_p_xacc:
1096      ImN = 3;
1097      RegN = 2;
1098      Width = 64;
1099      break;
1100    case S2_asl_i_r:
1101      ImN = 2;
1102      RegN = 1;
1103      Width = 32;
1104      break;
1105    case S2_addasl_rrri:
1106    case S4_andi_asl_ri:
1107    case S4_ori_asl_ri:
1108    case S4_addi_asl_ri:
1109    case S4_subi_asl_ri:
1110    case S2_asl_i_r_acc:
1111    case S2_asl_i_r_and:
1112    case S2_asl_i_r_nac:
1113    case S2_asl_i_r_or:
1114    case S2_asl_i_r_sat:
1115    case S2_asl_i_r_xacc:
1116      ImN = 3;
1117      RegN = 2;
1118      Width = 32;
1119      break;
1120    default:
1121      return false;
1122  }
1123
1124  if (RegN != OpN)
1125    return false;
1126
1127  assert(MI.getOperand(ImN).isImm());
1128  unsigned S = MI.getOperand(ImN).getImm();
1129  if (S == 0)
1130    return false;
1131  LostB = Width-S;
1132  LostE = Width;
1133  return true;
1134}
1135
1136// Check if the instruction is a lossy shift right, where the input being
1137// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1138// of bit indices that are lost.
1139bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1140      unsigned OpN, unsigned &LostB, unsigned &LostE) {
1141  using namespace Hexagon;
1142
1143  unsigned Opc = MI.getOpcode();
1144  unsigned ImN, RegN;
1145  switch (Opc) {
1146    case S2_asr_i_p:
1147    case S2_lsr_i_p:
1148      ImN = 2;
1149      RegN = 1;
1150      break;
1151    case S2_asr_i_p_acc:
1152    case S2_asr_i_p_and:
1153    case S2_asr_i_p_nac:
1154    case S2_asr_i_p_or:
1155    case S2_lsr_i_p_acc:
1156    case S2_lsr_i_p_and:
1157    case S2_lsr_i_p_nac:
1158    case S2_lsr_i_p_or:
1159    case S2_lsr_i_p_xacc:
1160      ImN = 3;
1161      RegN = 2;
1162      break;
1163    case S2_asr_i_r:
1164    case S2_lsr_i_r:
1165      ImN = 2;
1166      RegN = 1;
1167      break;
1168    case S4_andi_lsr_ri:
1169    case S4_ori_lsr_ri:
1170    case S4_addi_lsr_ri:
1171    case S4_subi_lsr_ri:
1172    case S2_asr_i_r_acc:
1173    case S2_asr_i_r_and:
1174    case S2_asr_i_r_nac:
1175    case S2_asr_i_r_or:
1176    case S2_lsr_i_r_acc:
1177    case S2_lsr_i_r_and:
1178    case S2_lsr_i_r_nac:
1179    case S2_lsr_i_r_or:
1180    case S2_lsr_i_r_xacc:
1181      ImN = 3;
1182      RegN = 2;
1183      break;
1184
1185    default:
1186      return false;
1187  }
1188
1189  if (RegN != OpN)
1190    return false;
1191
1192  assert(MI.getOperand(ImN).isImm());
1193  unsigned S = MI.getOperand(ImN).getImm();
1194  LostB = 0;
1195  LostE = S;
1196  return true;
1197}
1198
1199// Calculate the bit vector that corresponds to the used bits of register Reg.
1200// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1201// culation fails (i.e. the used bits are unknown), it returns false. Other-
1202// wise, it returns true and sets the corresponding bits in Bits.
1203bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1204  BitVector Used(Bits.size());
1205  RegisterSet Visited;
1206  std::vector<unsigned> Pending;
1207  Pending.push_back(Reg);
1208
1209  for (unsigned i = 0; i < Pending.size(); ++i) {
1210    unsigned R = Pending[i];
1211    if (Visited.has(R))
1212      continue;
1213    Visited.insert(R);
1214    for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1215      BitTracker::RegisterRef UR = *I;
1216      unsigned B, W;
1217      if (!HBS::getSubregMask(UR, B, W, MRI))
1218        return false;
1219      MachineInstr &UseI = *I->getParent();
1220      if (UseI.isPHI() || UseI.isCopy()) {
1221        Register DefR = UseI.getOperand(0).getReg();
1222        if (!Register::isVirtualRegister(DefR))
1223          return false;
1224        Pending.push_back(DefR);
1225      } else {
1226        if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1227          return false;
1228      }
1229    }
1230  }
1231  Bits |= Used;
1232  return true;
1233}
1234
1235// Calculate the bits used by instruction MI in a register in operand OpN.
1236// Return true/false if the calculation succeeds/fails. If is succeeds, set
1237// used bits in Bits. This function does not reset any bits in Bits, so
1238// subsequent calls over different instructions will result in the union
1239// of the used bits in all these instructions.
1240// The register in question may be used with a sub-register, whereas Bits
1241// holds the bits for the entire register. To keep track of that, the
1242// argument Begin indicates where in Bits is the lowest-significant bit
1243// of the register used in operand OpN. For example, in instruction:
1244//   %1 = S2_lsr_i_r %2:isub_hi, 10
1245// the operand 1 is a 32-bit register, which happens to be a subregister
1246// of the 64-bit register %2, and that subregister starts at position 32.
1247// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1248// of %2:isub_hi.
1249bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1250      unsigned OpN, BitVector &Bits, uint16_t Begin) {
1251  unsigned Opc = MI.getOpcode();
1252  BitVector T(Bits.size());
1253  bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1254  // Even if we don't have bits yet, we could still provide some information
1255  // if the instruction is a lossy shift: the lost bits will be marked as
1256  // not used.
1257  unsigned LB, LE;
1258  if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1259    assert(MI.getOperand(OpN).isReg());
1260    BitTracker::RegisterRef RR = MI.getOperand(OpN);
1261    const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1262    uint16_t Width = HRI.getRegSizeInBits(*RC);
1263
1264    if (!GotBits)
1265      T.set(Begin, Begin+Width);
1266    assert(LB <= LE && LB < Width && LE <= Width);
1267    T.reset(Begin+LB, Begin+LE);
1268    GotBits = true;
1269  }
1270  if (GotBits)
1271    Bits |= T;
1272  return GotBits;
1273}
1274
1275// Calculates the used bits in RD ("defined register"), and checks if these
1276// bits in RS ("used register") and RD are identical.
1277bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1278      BitTracker::RegisterRef RS) {
1279  const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1280  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1281
1282  unsigned DB, DW;
1283  if (!HBS::getSubregMask(RD, DB, DW, MRI))
1284    return false;
1285  unsigned SB, SW;
1286  if (!HBS::getSubregMask(RS, SB, SW, MRI))
1287    return false;
1288  if (SW != DW)
1289    return false;
1290
1291  BitVector Used(DC.width());
1292  if (!computeUsedBits(RD.Reg, Used))
1293    return false;
1294
1295  for (unsigned i = 0; i != DW; ++i)
1296    if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1297      return false;
1298  return true;
1299}
1300
1301bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1302      const RegisterSet&) {
1303  if (!BT.reached(&B))
1304    return false;
1305  bool Changed = false;
1306
1307  for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1308    NextI = std::next(I);
1309    MachineInstr *MI = &*I;
1310
1311    if (MI->getOpcode() == TargetOpcode::COPY)
1312      continue;
1313    if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1314      continue;
1315    unsigned NumD = MI->getDesc().getNumDefs();
1316    if (NumD != 1)
1317      continue;
1318
1319    BitTracker::RegisterRef RD = MI->getOperand(0);
1320    if (!BT.has(RD.Reg))
1321      continue;
1322    const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1323    auto At = MachineBasicBlock::iterator(MI);
1324
1325    // Find a source operand that is equal to the result.
1326    for (auto &Op : MI->uses()) {
1327      if (!Op.isReg())
1328        continue;
1329      BitTracker::RegisterRef RS = Op;
1330      if (!BT.has(RS.Reg))
1331        continue;
1332      if (!HBS::isTransparentCopy(RD, RS, MRI))
1333        continue;
1334
1335      unsigned BN, BW;
1336      if (!HBS::getSubregMask(RS, BN, BW, MRI))
1337        continue;
1338
1339      const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1340      if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1341        continue;
1342
1343      // If found, replace the instruction with a COPY.
1344      const DebugLoc &DL = MI->getDebugLoc();
1345      const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1346      Register NewR = MRI.createVirtualRegister(FRC);
1347      MachineInstr *CopyI =
1348          BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1349            .addReg(RS.Reg, 0, RS.Sub);
1350      HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1351      // This pass can create copies between registers that don't have the
1352      // exact same values. Updating the tracker has to involve updating
1353      // all dependent cells. Example:
1354      //   %1  = inst %2     ; %1 != %2, but used bits are equal
1355      //
1356      //   %3  = copy %2     ; <- inserted
1357      //   ... = %3          ; <- replaced from %2
1358      // Indirectly, we can create a "copy" between %1 and %2 even
1359      // though their exact values do not match.
1360      BT.visit(*CopyI);
1361      Changed = true;
1362      break;
1363    }
1364  }
1365
1366  return Changed;
1367}
1368
1369namespace {
1370
1371// Recognize instructions that produce constant values known at compile-time.
1372// Replace them with register definitions that load these constants directly.
1373  class ConstGeneration : public Transformation {
1374  public:
1375    ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1376        MachineRegisterInfo &mri)
1377      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1378
1379    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1380    static bool isTfrConst(const MachineInstr &MI);
1381
1382  private:
1383    unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1384        MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1385
1386    const HexagonInstrInfo &HII;
1387    MachineRegisterInfo &MRI;
1388    BitTracker &BT;
1389  };
1390
1391} // end anonymous namespace
1392
1393bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1394  unsigned Opc = MI.getOpcode();
1395  switch (Opc) {
1396    case Hexagon::A2_combineii:
1397    case Hexagon::A4_combineii:
1398    case Hexagon::A2_tfrsi:
1399    case Hexagon::A2_tfrpi:
1400    case Hexagon::PS_true:
1401    case Hexagon::PS_false:
1402    case Hexagon::CONST32:
1403    case Hexagon::CONST64:
1404      return true;
1405  }
1406  return false;
1407}
1408
1409// Generate a transfer-immediate instruction that is appropriate for the
1410// register class and the actual value being transferred.
1411unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1412      MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1413  Register Reg = MRI.createVirtualRegister(RC);
1414  if (RC == &Hexagon::IntRegsRegClass) {
1415    BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1416        .addImm(int32_t(C));
1417    return Reg;
1418  }
1419
1420  if (RC == &Hexagon::DoubleRegsRegClass) {
1421    if (isInt<8>(C)) {
1422      BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1423          .addImm(C);
1424      return Reg;
1425    }
1426
1427    unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1428    if (isInt<8>(Lo) || isInt<8>(Hi)) {
1429      unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1430                                  : Hexagon::A4_combineii;
1431      BuildMI(B, At, DL, HII.get(Opc), Reg)
1432          .addImm(int32_t(Hi))
1433          .addImm(int32_t(Lo));
1434      return Reg;
1435    }
1436
1437    BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1438        .addImm(C);
1439    return Reg;
1440  }
1441
1442  if (RC == &Hexagon::PredRegsRegClass) {
1443    unsigned Opc;
1444    if (C == 0)
1445      Opc = Hexagon::PS_false;
1446    else if ((C & 0xFF) == 0xFF)
1447      Opc = Hexagon::PS_true;
1448    else
1449      return 0;
1450    BuildMI(B, At, DL, HII.get(Opc), Reg);
1451    return Reg;
1452  }
1453
1454  return 0;
1455}
1456
1457bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1458  if (!BT.reached(&B))
1459    return false;
1460  bool Changed = false;
1461  RegisterSet Defs;
1462
1463  for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1464    if (isTfrConst(*I))
1465      continue;
1466    Defs.clear();
1467    HBS::getInstrDefs(*I, Defs);
1468    if (Defs.count() != 1)
1469      continue;
1470    unsigned DR = Defs.find_first();
1471    if (!Register::isVirtualRegister(DR))
1472      continue;
1473    uint64_t U;
1474    const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1475    if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1476      int64_t C = U;
1477      DebugLoc DL = I->getDebugLoc();
1478      auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1479      unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1480      if (ImmReg) {
1481        HBS::replaceReg(DR, ImmReg, MRI);
1482        BT.put(ImmReg, DRC);
1483        Changed = true;
1484      }
1485    }
1486  }
1487  return Changed;
1488}
1489
1490namespace {
1491
1492// Identify pairs of available registers which hold identical values.
1493// In such cases, only one of them needs to be calculated, the other one
1494// will be defined as a copy of the first.
1495  class CopyGeneration : public Transformation {
1496  public:
1497    CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1498        const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1499      : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1500
1501    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1502
1503  private:
1504    bool findMatch(const BitTracker::RegisterRef &Inp,
1505        BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1506
1507    const HexagonInstrInfo &HII;
1508    const HexagonRegisterInfo &HRI;
1509    MachineRegisterInfo &MRI;
1510    BitTracker &BT;
1511    RegisterSet Forbidden;
1512  };
1513
1514// Eliminate register copies RD = RS, by replacing the uses of RD with
1515// with uses of RS.
1516  class CopyPropagation : public Transformation {
1517  public:
1518    CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1519        : Transformation(false), HRI(hri), MRI(mri) {}
1520
1521    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1522
1523    static bool isCopyReg(unsigned Opc, bool NoConv);
1524
1525  private:
1526    bool propagateRegCopy(MachineInstr &MI);
1527
1528    const HexagonRegisterInfo &HRI;
1529    MachineRegisterInfo &MRI;
1530  };
1531
1532} // end anonymous namespace
1533
1534/// Check if there is a register in AVs that is identical to Inp. If so,
1535/// set Out to the found register. The output may be a pair Reg:Sub.
1536bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1537      BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1538  if (!BT.has(Inp.Reg))
1539    return false;
1540  const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1541  auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1542  unsigned B, W;
1543  if (!HBS::getSubregMask(Inp, B, W, MRI))
1544    return false;
1545
1546  for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1547    if (!BT.has(R) || Forbidden[R])
1548      continue;
1549    const BitTracker::RegisterCell &RC = BT.lookup(R);
1550    unsigned RW = RC.width();
1551    if (W == RW) {
1552      if (FRC != MRI.getRegClass(R))
1553        continue;
1554      if (!HBS::isTransparentCopy(R, Inp, MRI))
1555        continue;
1556      if (!HBS::isEqual(InpRC, B, RC, 0, W))
1557        continue;
1558      Out.Reg = R;
1559      Out.Sub = 0;
1560      return true;
1561    }
1562    // Check if there is a super-register, whose part (with a subregister)
1563    // is equal to the input.
1564    // Only do double registers for now.
1565    if (W*2 != RW)
1566      continue;
1567    if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1568      continue;
1569
1570    if (HBS::isEqual(InpRC, B, RC, 0, W))
1571      Out.Sub = Hexagon::isub_lo;
1572    else if (HBS::isEqual(InpRC, B, RC, W, W))
1573      Out.Sub = Hexagon::isub_hi;
1574    else
1575      continue;
1576    Out.Reg = R;
1577    if (HBS::isTransparentCopy(Out, Inp, MRI))
1578      return true;
1579  }
1580  return false;
1581}
1582
1583bool CopyGeneration::processBlock(MachineBasicBlock &B,
1584      const RegisterSet &AVs) {
1585  if (!BT.reached(&B))
1586    return false;
1587  RegisterSet AVB(AVs);
1588  bool Changed = false;
1589  RegisterSet Defs;
1590
1591  for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1592       ++I, AVB.insert(Defs)) {
1593    NextI = std::next(I);
1594    Defs.clear();
1595    HBS::getInstrDefs(*I, Defs);
1596
1597    unsigned Opc = I->getOpcode();
1598    if (CopyPropagation::isCopyReg(Opc, false) ||
1599        ConstGeneration::isTfrConst(*I))
1600      continue;
1601
1602    DebugLoc DL = I->getDebugLoc();
1603    auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1604
1605    for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1606      BitTracker::RegisterRef MR;
1607      auto *FRC = HBS::getFinalVRegClass(R, MRI);
1608
1609      if (findMatch(R, MR, AVB)) {
1610        Register NewR = MRI.createVirtualRegister(FRC);
1611        BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1612          .addReg(MR.Reg, 0, MR.Sub);
1613        BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1614        HBS::replaceReg(R, NewR, MRI);
1615        Forbidden.insert(R);
1616        continue;
1617      }
1618
1619      if (FRC == &Hexagon::DoubleRegsRegClass ||
1620          FRC == &Hexagon::HvxWRRegClass) {
1621        // Try to generate REG_SEQUENCE.
1622        unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1623        unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1624        BitTracker::RegisterRef TL = { R, SubLo };
1625        BitTracker::RegisterRef TH = { R, SubHi };
1626        BitTracker::RegisterRef ML, MH;
1627        if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1628          auto *FRC = HBS::getFinalVRegClass(R, MRI);
1629          Register NewR = MRI.createVirtualRegister(FRC);
1630          BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1631            .addReg(ML.Reg, 0, ML.Sub)
1632            .addImm(SubLo)
1633            .addReg(MH.Reg, 0, MH.Sub)
1634            .addImm(SubHi);
1635          BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1636          HBS::replaceReg(R, NewR, MRI);
1637          Forbidden.insert(R);
1638        }
1639      }
1640    }
1641  }
1642
1643  return Changed;
1644}
1645
1646bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1647  switch (Opc) {
1648    case TargetOpcode::COPY:
1649    case TargetOpcode::REG_SEQUENCE:
1650    case Hexagon::A4_combineir:
1651    case Hexagon::A4_combineri:
1652      return true;
1653    case Hexagon::A2_tfr:
1654    case Hexagon::A2_tfrp:
1655    case Hexagon::A2_combinew:
1656    case Hexagon::V6_vcombine:
1657      return NoConv;
1658    default:
1659      break;
1660  }
1661  return false;
1662}
1663
1664bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1665  bool Changed = false;
1666  unsigned Opc = MI.getOpcode();
1667  BitTracker::RegisterRef RD = MI.getOperand(0);
1668  assert(MI.getOperand(0).getSubReg() == 0);
1669
1670  switch (Opc) {
1671    case TargetOpcode::COPY:
1672    case Hexagon::A2_tfr:
1673    case Hexagon::A2_tfrp: {
1674      BitTracker::RegisterRef RS = MI.getOperand(1);
1675      if (!HBS::isTransparentCopy(RD, RS, MRI))
1676        break;
1677      if (RS.Sub != 0)
1678        Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1679      else
1680        Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1681      break;
1682    }
1683    case TargetOpcode::REG_SEQUENCE: {
1684      BitTracker::RegisterRef SL, SH;
1685      if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1686        const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1687        unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1688        unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1689        Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1690        Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1691      }
1692      break;
1693    }
1694    case Hexagon::A2_combinew:
1695    case Hexagon::V6_vcombine: {
1696      const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1697      unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1698      unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1699      BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1700      Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1701      Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1702      break;
1703    }
1704    case Hexagon::A4_combineir:
1705    case Hexagon::A4_combineri: {
1706      unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1707      unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1708                                                    : Hexagon::isub_hi;
1709      BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1710      Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1711      break;
1712    }
1713  }
1714  return Changed;
1715}
1716
1717bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1718  std::vector<MachineInstr*> Instrs;
1719  for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1720    Instrs.push_back(&*I);
1721
1722  bool Changed = false;
1723  for (auto I : Instrs) {
1724    unsigned Opc = I->getOpcode();
1725    if (!CopyPropagation::isCopyReg(Opc, true))
1726      continue;
1727    Changed |= propagateRegCopy(*I);
1728  }
1729
1730  return Changed;
1731}
1732
1733namespace {
1734
1735// Recognize patterns that can be simplified and replace them with the
1736// simpler forms.
1737// This is by no means complete
1738  class BitSimplification : public Transformation {
1739  public:
1740    BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1741        const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1742        MachineRegisterInfo &mri, MachineFunction &mf)
1743      : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1744        MF(mf), BT(bt) {}
1745
1746    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1747
1748  private:
1749    struct RegHalf : public BitTracker::RegisterRef {
1750      bool Low;  // Low/High halfword.
1751    };
1752
1753    bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1754          unsigned B, RegHalf &RH);
1755    bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1756
1757    bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1758          BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1759    unsigned getCombineOpcode(bool HLow, bool LLow);
1760
1761    bool genStoreUpperHalf(MachineInstr *MI);
1762    bool genStoreImmediate(MachineInstr *MI);
1763    bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1764          const BitTracker::RegisterCell &RC);
1765    bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1766          const BitTracker::RegisterCell &RC);
1767    bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1768          const BitTracker::RegisterCell &RC);
1769    bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1770          const BitTracker::RegisterCell &RC);
1771    bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1772          const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1773    bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1774          const BitTracker::RegisterCell &RC);
1775    bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1776          const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1777    bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1778
1779    // Cache of created instructions to avoid creating duplicates.
1780    // XXX Currently only used by genBitSplit.
1781    std::vector<MachineInstr*> NewMIs;
1782
1783    const MachineDominatorTree &MDT;
1784    const HexagonInstrInfo &HII;
1785    const HexagonRegisterInfo &HRI;
1786    MachineRegisterInfo &MRI;
1787    MachineFunction &MF;
1788    BitTracker &BT;
1789  };
1790
1791} // end anonymous namespace
1792
1793// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1794// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1795// set the information about the found register in RH.
1796bool BitSimplification::matchHalf(unsigned SelfR,
1797      const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1798  // XXX This could be searching in the set of available registers, in case
1799  // the match is not exact.
1800
1801  // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1802  // register and all the bits B..B+15 match between RC and the register.
1803  // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1804  // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1805  bool Low = false;
1806  unsigned I = B;
1807  while (I < B+16 && RC[I].num())
1808    I++;
1809  if (I == B+16)
1810    return false;
1811
1812  unsigned Reg = RC[I].RefI.Reg;
1813  unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
1814  if (P < I-B)
1815    return false;
1816  unsigned Pos = P - (I-B);
1817
1818  if (Reg == 0 || Reg == SelfR)    // Don't match "self".
1819    return false;
1820  if (!Register::isVirtualRegister(Reg))
1821    return false;
1822  if (!BT.has(Reg))
1823    return false;
1824
1825  const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1826  if (Pos+16 > SC.width())
1827    return false;
1828
1829  for (unsigned i = 0; i < 16; ++i) {
1830    const BitTracker::BitValue &RV = RC[i+B];
1831    if (RV.Type == BitTracker::BitValue::Ref) {
1832      if (RV.RefI.Reg != Reg)
1833        return false;
1834      if (RV.RefI.Pos != i+Pos)
1835        return false;
1836      continue;
1837    }
1838    if (RC[i+B] != SC[i+Pos])
1839      return false;
1840  }
1841
1842  unsigned Sub = 0;
1843  switch (Pos) {
1844    case 0:
1845      Sub = Hexagon::isub_lo;
1846      Low = true;
1847      break;
1848    case 16:
1849      Sub = Hexagon::isub_lo;
1850      Low = false;
1851      break;
1852    case 32:
1853      Sub = Hexagon::isub_hi;
1854      Low = true;
1855      break;
1856    case 48:
1857      Sub = Hexagon::isub_hi;
1858      Low = false;
1859      break;
1860    default:
1861      return false;
1862  }
1863
1864  RH.Reg = Reg;
1865  RH.Sub = Sub;
1866  RH.Low = Low;
1867  // If the subregister is not valid with the register, set it to 0.
1868  if (!HBS::getFinalVRegClass(RH, MRI))
1869    RH.Sub = 0;
1870
1871  return true;
1872}
1873
1874bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1875      unsigned OpNum) {
1876  auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1877  auto *RRC = HBS::getFinalVRegClass(R, MRI);
1878  return OpRC->hasSubClassEq(RRC);
1879}
1880
1881// Check if RC matches the pattern of a S2_packhl. If so, return true and
1882// set the inputs Rs and Rt.
1883bool BitSimplification::matchPackhl(unsigned SelfR,
1884      const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1885      BitTracker::RegisterRef &Rt) {
1886  RegHalf L1, H1, L2, H2;
1887
1888  if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
1889    return false;
1890  if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1891    return false;
1892
1893  // Rs = H1.L1, Rt = H2.L2
1894  if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1895    return false;
1896  if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1897    return false;
1898
1899  Rs = H1;
1900  Rt = H2;
1901  return true;
1902}
1903
1904unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1905  return HLow ? LLow ? Hexagon::A2_combine_ll
1906                     : Hexagon::A2_combine_lh
1907              : LLow ? Hexagon::A2_combine_hl
1908                     : Hexagon::A2_combine_hh;
1909}
1910
1911// If MI stores the upper halfword of a register (potentially obtained via
1912// shifts or extracts), replace it with a storerf instruction. This could
1913// cause the "extraction" code to become dead.
1914bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1915  unsigned Opc = MI->getOpcode();
1916  if (Opc != Hexagon::S2_storerh_io)
1917    return false;
1918
1919  MachineOperand &ValOp = MI->getOperand(2);
1920  BitTracker::RegisterRef RS = ValOp;
1921  if (!BT.has(RS.Reg))
1922    return false;
1923  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1924  RegHalf H;
1925  if (!matchHalf(0, RC, 0, H))
1926    return false;
1927  if (H.Low)
1928    return false;
1929  MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1930  ValOp.setReg(H.Reg);
1931  ValOp.setSubReg(H.Sub);
1932  return true;
1933}
1934
1935// If MI stores a value known at compile-time, and the value is within a range
1936// that avoids using constant-extenders, replace it with a store-immediate.
1937bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1938  unsigned Opc = MI->getOpcode();
1939  unsigned Align = 0;
1940  switch (Opc) {
1941    case Hexagon::S2_storeri_io:
1942      Align++;
1943      LLVM_FALLTHROUGH;
1944    case Hexagon::S2_storerh_io:
1945      Align++;
1946      LLVM_FALLTHROUGH;
1947    case Hexagon::S2_storerb_io:
1948      break;
1949    default:
1950      return false;
1951  }
1952
1953  // Avoid stores to frame-indices (due to an unknown offset).
1954  if (!MI->getOperand(0).isReg())
1955    return false;
1956  MachineOperand &OffOp = MI->getOperand(1);
1957  if (!OffOp.isImm())
1958    return false;
1959
1960  int64_t Off = OffOp.getImm();
1961  // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1962  if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1963    return false;
1964  // Source register:
1965  BitTracker::RegisterRef RS = MI->getOperand(2);
1966  if (!BT.has(RS.Reg))
1967    return false;
1968  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1969  uint64_t U;
1970  if (!HBS::getConst(RC, 0, RC.width(), U))
1971    return false;
1972
1973  // Only consider 8-bit values to avoid constant-extenders.
1974  int V;
1975  switch (Opc) {
1976    case Hexagon::S2_storerb_io:
1977      V = int8_t(U);
1978      break;
1979    case Hexagon::S2_storerh_io:
1980      V = int16_t(U);
1981      break;
1982    case Hexagon::S2_storeri_io:
1983      V = int32_t(U);
1984      break;
1985    default:
1986      // Opc is already checked above to be one of the three store instructions.
1987      // This silences a -Wuninitialized false positive on GCC 5.4.
1988      llvm_unreachable("Unexpected store opcode");
1989  }
1990  if (!isInt<8>(V))
1991    return false;
1992
1993  MI->RemoveOperand(2);
1994  switch (Opc) {
1995    case Hexagon::S2_storerb_io:
1996      MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1997      break;
1998    case Hexagon::S2_storerh_io:
1999      MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
2000      break;
2001    case Hexagon::S2_storeri_io:
2002      MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2003      break;
2004  }
2005  MI->addOperand(MachineOperand::CreateImm(V));
2006  return true;
2007}
2008
2009// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2010// last instruction in a sequence that results in something equivalent to
2011// the pack-halfwords. The intent is to cause the entire sequence to become
2012// dead.
2013bool BitSimplification::genPackhl(MachineInstr *MI,
2014      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2015  unsigned Opc = MI->getOpcode();
2016  if (Opc == Hexagon::S2_packhl)
2017    return false;
2018  BitTracker::RegisterRef Rs, Rt;
2019  if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2020    return false;
2021  if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2022      !validateReg(Rt, Hexagon::S2_packhl, 2))
2023    return false;
2024
2025  MachineBasicBlock &B = *MI->getParent();
2026  Register NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2027  DebugLoc DL = MI->getDebugLoc();
2028  auto At = MI->isPHI() ? B.getFirstNonPHI()
2029                        : MachineBasicBlock::iterator(MI);
2030  BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2031      .addReg(Rs.Reg, 0, Rs.Sub)
2032      .addReg(Rt.Reg, 0, Rt.Sub);
2033  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2034  BT.put(BitTracker::RegisterRef(NewR), RC);
2035  return true;
2036}
2037
2038// If MI produces halfword of the input in the low half of the output,
2039// replace it with zero-extend or extractu.
2040bool BitSimplification::genExtractHalf(MachineInstr *MI,
2041      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2042  RegHalf L;
2043  // Check for halfword in low 16 bits, zeros elsewhere.
2044  if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2045    return false;
2046
2047  unsigned Opc = MI->getOpcode();
2048  MachineBasicBlock &B = *MI->getParent();
2049  DebugLoc DL = MI->getDebugLoc();
2050
2051  // Prefer zxth, since zxth can go in any slot, while extractu only in
2052  // slots 2 and 3.
2053  unsigned NewR = 0;
2054  auto At = MI->isPHI() ? B.getFirstNonPHI()
2055                        : MachineBasicBlock::iterator(MI);
2056  if (L.Low && Opc != Hexagon::A2_zxth) {
2057    if (validateReg(L, Hexagon::A2_zxth, 1)) {
2058      NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2059      BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2060          .addReg(L.Reg, 0, L.Sub);
2061    }
2062  } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2063    if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2064      NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2065      BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2066          .addReg(L.Reg, 0, L.Sub)
2067          .addImm(16);
2068    }
2069  }
2070  if (NewR == 0)
2071    return false;
2072  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2073  BT.put(BitTracker::RegisterRef(NewR), RC);
2074  return true;
2075}
2076
2077// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2078// combine.
2079bool BitSimplification::genCombineHalf(MachineInstr *MI,
2080      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2081  RegHalf L, H;
2082  // Check for combine h/l
2083  if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2084    return false;
2085  // Do nothing if this is just a reg copy.
2086  if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2087    return false;
2088
2089  unsigned Opc = MI->getOpcode();
2090  unsigned COpc = getCombineOpcode(H.Low, L.Low);
2091  if (COpc == Opc)
2092    return false;
2093  if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2094    return false;
2095
2096  MachineBasicBlock &B = *MI->getParent();
2097  DebugLoc DL = MI->getDebugLoc();
2098  Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2099  auto At = MI->isPHI() ? B.getFirstNonPHI()
2100                        : MachineBasicBlock::iterator(MI);
2101  BuildMI(B, At, DL, HII.get(COpc), NewR)
2102      .addReg(H.Reg, 0, H.Sub)
2103      .addReg(L.Reg, 0, L.Sub);
2104  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2105  BT.put(BitTracker::RegisterRef(NewR), RC);
2106  return true;
2107}
2108
2109// If MI resets high bits of a register and keeps the lower ones, replace it
2110// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2111bool BitSimplification::genExtractLow(MachineInstr *MI,
2112      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2113  unsigned Opc = MI->getOpcode();
2114  switch (Opc) {
2115    case Hexagon::A2_zxtb:
2116    case Hexagon::A2_zxth:
2117    case Hexagon::S2_extractu:
2118      return false;
2119  }
2120  if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2121    int32_t Imm = MI->getOperand(2).getImm();
2122    if (isInt<10>(Imm))
2123      return false;
2124  }
2125
2126  if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2127    return false;
2128  unsigned W = RC.width();
2129  while (W > 0 && RC[W-1].is(0))
2130    W--;
2131  if (W == 0 || W == RC.width())
2132    return false;
2133  unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
2134                  : (W == 16) ? Hexagon::A2_zxth
2135                  : (W < 10)  ? Hexagon::A2_andir
2136                  : Hexagon::S2_extractu;
2137  MachineBasicBlock &B = *MI->getParent();
2138  DebugLoc DL = MI->getDebugLoc();
2139
2140  for (auto &Op : MI->uses()) {
2141    if (!Op.isReg())
2142      continue;
2143    BitTracker::RegisterRef RS = Op;
2144    if (!BT.has(RS.Reg))
2145      continue;
2146    const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2147    unsigned BN, BW;
2148    if (!HBS::getSubregMask(RS, BN, BW, MRI))
2149      continue;
2150    if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2151      continue;
2152    if (!validateReg(RS, NewOpc, 1))
2153      continue;
2154
2155    Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2156    auto At = MI->isPHI() ? B.getFirstNonPHI()
2157                          : MachineBasicBlock::iterator(MI);
2158    auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2159                  .addReg(RS.Reg, 0, RS.Sub);
2160    if (NewOpc == Hexagon::A2_andir)
2161      MIB.addImm((1 << W) - 1);
2162    else if (NewOpc == Hexagon::S2_extractu)
2163      MIB.addImm(W).addImm(0);
2164    HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2165    BT.put(BitTracker::RegisterRef(NewR), RC);
2166    return true;
2167  }
2168  return false;
2169}
2170
2171bool BitSimplification::genBitSplit(MachineInstr *MI,
2172      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2173      const RegisterSet &AVs) {
2174  if (!GenBitSplit)
2175    return false;
2176  if (MaxBitSplit.getNumOccurrences()) {
2177    if (CountBitSplit >= MaxBitSplit)
2178      return false;
2179  }
2180
2181  unsigned Opc = MI->getOpcode();
2182  switch (Opc) {
2183    case Hexagon::A4_bitsplit:
2184    case Hexagon::A4_bitspliti:
2185      return false;
2186  }
2187
2188  unsigned W = RC.width();
2189  if (W != 32)
2190    return false;
2191
2192  auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2193    unsigned Z = C.width();
2194    while (Z > 0 && C[Z-1].is(0))
2195      --Z;
2196    return C.width() - Z;
2197  };
2198
2199  // Count the number of leading zeros in the target RC.
2200  unsigned Z = ctlz(RC);
2201  if (Z == 0 || Z == W)
2202    return false;
2203
2204  // A simplistic analysis: assume the source register (the one being split)
2205  // is fully unknown, and that all its bits are self-references.
2206  const BitTracker::BitValue &B0 = RC[0];
2207  if (B0.Type != BitTracker::BitValue::Ref)
2208    return false;
2209
2210  unsigned SrcR = B0.RefI.Reg;
2211  unsigned SrcSR = 0;
2212  unsigned Pos = B0.RefI.Pos;
2213
2214  // All the non-zero bits should be consecutive bits from the same register.
2215  for (unsigned i = 1; i < W-Z; ++i) {
2216    const BitTracker::BitValue &V = RC[i];
2217    if (V.Type != BitTracker::BitValue::Ref)
2218      return false;
2219    if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2220      return false;
2221  }
2222
2223  // Now, find the other bitfield among AVs.
2224  for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2225    // The number of leading zeros here should be the number of trailing
2226    // non-zeros in RC.
2227    unsigned SRC = MRI.getRegClass(S)->getID();
2228    if (SRC != Hexagon::IntRegsRegClassID &&
2229        SRC != Hexagon::DoubleRegsRegClassID)
2230      continue;
2231    if (!BT.has(S))
2232      continue;
2233    const BitTracker::RegisterCell &SC = BT.lookup(S);
2234    if (SC.width() != W || ctlz(SC) != W-Z)
2235      continue;
2236    // The Z lower bits should now match SrcR.
2237    const BitTracker::BitValue &S0 = SC[0];
2238    if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2239      continue;
2240    unsigned P = S0.RefI.Pos;
2241
2242    if (Pos <= P && (Pos + W-Z) != P)
2243      continue;
2244    if (P < Pos && (P + Z) != Pos)
2245      continue;
2246    // The starting bitfield position must be at a subregister boundary.
2247    if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2248      continue;
2249
2250    unsigned I;
2251    for (I = 1; I < Z; ++I) {
2252      const BitTracker::BitValue &V = SC[I];
2253      if (V.Type != BitTracker::BitValue::Ref)
2254        break;
2255      if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2256        break;
2257    }
2258    if (I != Z)
2259      continue;
2260
2261    // Generate bitsplit where S is defined.
2262    if (MaxBitSplit.getNumOccurrences())
2263      CountBitSplit++;
2264    MachineInstr *DefS = MRI.getVRegDef(S);
2265    assert(DefS != nullptr);
2266    DebugLoc DL = DefS->getDebugLoc();
2267    MachineBasicBlock &B = *DefS->getParent();
2268    auto At = DefS->isPHI() ? B.getFirstNonPHI()
2269                            : MachineBasicBlock::iterator(DefS);
2270    if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2271      SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2272    if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2273      continue;
2274    unsigned ImmOp = Pos <= P ? W-Z : Z;
2275
2276    // Find an existing bitsplit instruction if one already exists.
2277    unsigned NewR = 0;
2278    for (MachineInstr *In : NewMIs) {
2279      if (In->getOpcode() != Hexagon::A4_bitspliti)
2280        continue;
2281      MachineOperand &Op1 = In->getOperand(1);
2282      if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2283        continue;
2284      if (In->getOperand(2).getImm() != ImmOp)
2285        continue;
2286      // Check if the target register is available here.
2287      MachineOperand &Op0 = In->getOperand(0);
2288      MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2289      assert(DefI != nullptr);
2290      if (!MDT.dominates(DefI, &*At))
2291        continue;
2292
2293      // Found one that can be reused.
2294      assert(Op0.getSubReg() == 0);
2295      NewR = Op0.getReg();
2296      break;
2297    }
2298    if (!NewR) {
2299      NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2300      auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2301                      .addReg(SrcR, 0, SrcSR)
2302                      .addImm(ImmOp);
2303      NewMIs.push_back(NewBS);
2304    }
2305    if (Pos <= P) {
2306      HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2307      HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_hi, MRI);
2308    } else {
2309      HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_lo, MRI);
2310      HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2311    }
2312    return true;
2313  }
2314
2315  return false;
2316}
2317
2318// Check for tstbit simplification opportunity, where the bit being checked
2319// can be tracked back to another register. For example:
2320//   %2 = S2_lsr_i_r  %1, 5
2321//   %3 = S2_tstbit_i %2, 0
2322// =>
2323//   %3 = S2_tstbit_i %1, 5
2324bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2325      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2326  unsigned Opc = MI->getOpcode();
2327  if (Opc != Hexagon::S2_tstbit_i)
2328    return false;
2329
2330  unsigned BN = MI->getOperand(2).getImm();
2331  BitTracker::RegisterRef RS = MI->getOperand(1);
2332  unsigned F, W;
2333  DebugLoc DL = MI->getDebugLoc();
2334  if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2335    return false;
2336  MachineBasicBlock &B = *MI->getParent();
2337  auto At = MI->isPHI() ? B.getFirstNonPHI()
2338                        : MachineBasicBlock::iterator(MI);
2339
2340  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2341  const BitTracker::BitValue &V = SC[F+BN];
2342  if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2343    const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2344    // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2345    // a double register, need to use a subregister and adjust bit
2346    // number.
2347    unsigned P = std::numeric_limits<unsigned>::max();
2348    BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2349    if (TC == &Hexagon::DoubleRegsRegClass) {
2350      P = V.RefI.Pos;
2351      RR.Sub = Hexagon::isub_lo;
2352      if (P >= 32) {
2353        P -= 32;
2354        RR.Sub = Hexagon::isub_hi;
2355      }
2356    } else if (TC == &Hexagon::IntRegsRegClass) {
2357      P = V.RefI.Pos;
2358    }
2359    if (P != std::numeric_limits<unsigned>::max()) {
2360      unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2361      BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2362          .addReg(RR.Reg, 0, RR.Sub)
2363          .addImm(P);
2364      HBS::replaceReg(RD.Reg, NewR, MRI);
2365      BT.put(NewR, RC);
2366      return true;
2367    }
2368  } else if (V.is(0) || V.is(1)) {
2369    Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2370    unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2371    BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2372    HBS::replaceReg(RD.Reg, NewR, MRI);
2373    return true;
2374  }
2375
2376  return false;
2377}
2378
2379// Detect whether RD is a bitfield extract (sign- or zero-extended) of
2380// some register from the AVs set. Create a new corresponding instruction
2381// at the location of MI. The intent is to recognize situations where
2382// a sequence of instructions performs an operation that is equivalent to
2383// an extract operation, such as a shift left followed by a shift right.
2384bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2385      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2386      const RegisterSet &AVs) {
2387  if (!GenExtract)
2388    return false;
2389  if (MaxExtract.getNumOccurrences()) {
2390    if (CountExtract >= MaxExtract)
2391      return false;
2392    CountExtract++;
2393  }
2394
2395  unsigned W = RC.width();
2396  unsigned RW = W;
2397  unsigned Len;
2398  bool Signed;
2399
2400  // The code is mostly class-independent, except for the part that generates
2401  // the extract instruction, and establishes the source register (in case it
2402  // needs to use a subregister).
2403  const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2404  if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2405    return false;
2406  assert(RD.Sub == 0);
2407
2408  // Observation:
2409  // If the cell has a form of 00..0xx..x with k zeros and n remaining
2410  // bits, this could be an extractu of the n bits, but it could also be
2411  // an extractu of a longer field which happens to have 0s in the top
2412  // bit positions.
2413  // The same logic applies to sign-extended fields.
2414  //
2415  // Do not check for the extended extracts, since it would expand the
2416  // search space quite a bit. The search may be expensive as it is.
2417
2418  const BitTracker::BitValue &TopV = RC[W-1];
2419
2420  // Eliminate candidates that have self-referential bits, since they
2421  // cannot be extracts from other registers. Also, skip registers that
2422  // have compile-time constant values.
2423  bool IsConst = true;
2424  for (unsigned I = 0; I != W; ++I) {
2425    const BitTracker::BitValue &V = RC[I];
2426    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2427      return false;
2428    IsConst = IsConst && (V.is(0) || V.is(1));
2429  }
2430  if (IsConst)
2431    return false;
2432
2433  if (TopV.is(0) || TopV.is(1)) {
2434    bool S = TopV.is(1);
2435    for (--W; W > 0 && RC[W-1].is(S); --W)
2436      ;
2437    Len = W;
2438    Signed = S;
2439    // The sign bit must be a part of the field being extended.
2440    if (Signed)
2441      ++Len;
2442  } else {
2443    // This could still be a sign-extended extract.
2444    assert(TopV.Type == BitTracker::BitValue::Ref);
2445    if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2446      return false;
2447    for (--W; W > 0 && RC[W-1] == TopV; --W)
2448      ;
2449    // The top bits of RC are copies of TopV. One occurrence of TopV will
2450    // be a part of the field.
2451    Len = W + 1;
2452    Signed = true;
2453  }
2454
2455  // This would be just a copy. It should be handled elsewhere.
2456  if (Len == RW)
2457    return false;
2458
2459  LLVM_DEBUG({
2460    dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2461           << ", MI: " << *MI;
2462    dbgs() << "Cell: " << RC << '\n';
2463    dbgs() << "Expected bitfield size: " << Len << " bits, "
2464           << (Signed ? "sign" : "zero") << "-extended\n";
2465  });
2466
2467  bool Changed = false;
2468
2469  for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2470    if (!BT.has(R))
2471      continue;
2472    const BitTracker::RegisterCell &SC = BT.lookup(R);
2473    unsigned SW = SC.width();
2474
2475    // The source can be longer than the destination, as long as its size is
2476    // a multiple of the size of the destination. Also, we would need to be
2477    // able to refer to the subregister in the source that would be of the
2478    // same size as the destination, but only check the sizes here.
2479    if (SW < RW || (SW % RW) != 0)
2480      continue;
2481
2482    // The field can start at any offset in SC as long as it contains Len
2483    // bits and does not cross subregister boundary (if the source register
2484    // is longer than the destination).
2485    unsigned Off = 0;
2486    while (Off <= SW-Len) {
2487      unsigned OE = (Off+Len)/RW;
2488      if (OE != Off/RW) {
2489        // The assumption here is that if the source (R) is longer than the
2490        // destination, then the destination is a sequence of words of
2491        // size RW, and each such word in R can be accessed via a subregister.
2492        //
2493        // If the beginning and the end of the field cross the subregister
2494        // boundary, advance to the next subregister.
2495        Off = OE*RW;
2496        continue;
2497      }
2498      if (HBS::isEqual(RC, 0, SC, Off, Len))
2499        break;
2500      ++Off;
2501    }
2502
2503    if (Off > SW-Len)
2504      continue;
2505
2506    // Found match.
2507    unsigned ExtOpc = 0;
2508    if (Off == 0) {
2509      if (Len == 8)
2510        ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2511      else if (Len == 16)
2512        ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2513      else if (Len < 10 && !Signed)
2514        ExtOpc = Hexagon::A2_andir;
2515    }
2516    if (ExtOpc == 0) {
2517      ExtOpc =
2518          Signed ? (RW == 32 ? Hexagon::S4_extract  : Hexagon::S4_extractp)
2519                 : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2520    }
2521    unsigned SR = 0;
2522    // This only recognizes isub_lo and isub_hi.
2523    if (RW != SW && RW*2 != SW)
2524      continue;
2525    if (RW != SW)
2526      SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2527    Off = Off % RW;
2528
2529    if (!validateReg({R,SR}, ExtOpc, 1))
2530      continue;
2531
2532    // Don't generate the same instruction as the one being optimized.
2533    if (MI->getOpcode() == ExtOpc) {
2534      // All possible ExtOpc's have the source in operand(1).
2535      const MachineOperand &SrcOp = MI->getOperand(1);
2536      if (SrcOp.getReg() == R)
2537        continue;
2538    }
2539
2540    DebugLoc DL = MI->getDebugLoc();
2541    MachineBasicBlock &B = *MI->getParent();
2542    Register NewR = MRI.createVirtualRegister(FRC);
2543    auto At = MI->isPHI() ? B.getFirstNonPHI()
2544                          : MachineBasicBlock::iterator(MI);
2545    auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2546                  .addReg(R, 0, SR);
2547    switch (ExtOpc) {
2548      case Hexagon::A2_sxtb:
2549      case Hexagon::A2_zxtb:
2550      case Hexagon::A2_sxth:
2551      case Hexagon::A2_zxth:
2552        break;
2553      case Hexagon::A2_andir:
2554        MIB.addImm((1u << Len) - 1);
2555        break;
2556      case Hexagon::S4_extract:
2557      case Hexagon::S2_extractu:
2558      case Hexagon::S4_extractp:
2559      case Hexagon::S2_extractup:
2560        MIB.addImm(Len)
2561           .addImm(Off);
2562        break;
2563      default:
2564        llvm_unreachable("Unexpected opcode");
2565    }
2566
2567    HBS::replaceReg(RD.Reg, NewR, MRI);
2568    BT.put(BitTracker::RegisterRef(NewR), RC);
2569    Changed = true;
2570    break;
2571  }
2572
2573  return Changed;
2574}
2575
2576bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2577      BitTracker::RegisterRef RD) {
2578  unsigned Opc = MI->getOpcode();
2579  if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2580    return false;
2581  MachineOperand &CmpOp = MI->getOperand(2);
2582  if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2583    return false;
2584
2585  const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2586  if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2587    return false;
2588  assert(RD.Sub == 0);
2589
2590  MachineBasicBlock &B = *MI->getParent();
2591  const DebugLoc &DL = MI->getDebugLoc();
2592  auto At = MI->isPHI() ? B.getFirstNonPHI()
2593                        : MachineBasicBlock::iterator(MI);
2594  bool KnownZ = true;
2595  bool KnownNZ = false;
2596
2597  BitTracker::RegisterRef SR = MI->getOperand(1);
2598  if (!BT.has(SR.Reg))
2599    return false;
2600  const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
2601  unsigned F, W;
2602  if (!HBS::getSubregMask(SR, F, W, MRI))
2603    return false;
2604
2605  for (uint16_t I = F; I != F+W; ++I) {
2606    const BitTracker::BitValue &V = SC[I];
2607    if (!V.is(0))
2608      KnownZ = false;
2609    if (V.is(1))
2610      KnownNZ = true;
2611  }
2612
2613  auto ReplaceWithConst = [&](int C) {
2614    Register NewR = MRI.createVirtualRegister(FRC);
2615    BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2616      .addImm(C);
2617    HBS::replaceReg(RD.Reg, NewR, MRI);
2618    BitTracker::RegisterCell NewRC(W);
2619    for (uint16_t I = 0; I != W; ++I) {
2620      NewRC[I] = BitTracker::BitValue(C & 1);
2621      C = unsigned(C) >> 1;
2622    }
2623    BT.put(BitTracker::RegisterRef(NewR), NewRC);
2624    return true;
2625  };
2626
2627  auto IsNonZero = [] (const MachineOperand &Op) {
2628    if (Op.isGlobal() || Op.isBlockAddress())
2629      return true;
2630    if (Op.isImm())
2631      return Op.getImm() != 0;
2632    if (Op.isCImm())
2633      return !Op.getCImm()->isZero();
2634    if (Op.isFPImm())
2635      return !Op.getFPImm()->isZero();
2636    return false;
2637  };
2638
2639  auto IsZero = [] (const MachineOperand &Op) {
2640    if (Op.isGlobal() || Op.isBlockAddress())
2641      return false;
2642    if (Op.isImm())
2643      return Op.getImm() == 0;
2644    if (Op.isCImm())
2645      return Op.getCImm()->isZero();
2646    if (Op.isFPImm())
2647      return Op.getFPImm()->isZero();
2648    return false;
2649  };
2650
2651  // If the source register is known to be 0 or non-0, the comparison can
2652  // be folded to a load of a constant.
2653  if (KnownZ || KnownNZ) {
2654    assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2655    return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2656  }
2657
2658  // Special case: if the compare comes from a C2_muxii, then we know the
2659  // two possible constants that can be the source value.
2660  MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2661  if (!InpDef)
2662    return false;
2663  if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2664    MachineOperand &Src1 = InpDef->getOperand(2);
2665    MachineOperand &Src2 = InpDef->getOperand(3);
2666    // Check if both are non-zero.
2667    bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2668    if (KnownNZ1 && KnownNZ2)
2669      return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2670    // Check if both are zero.
2671    bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2672    if (KnownZ1 && KnownZ2)
2673      return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2674
2675    // If for both operands we know that they are either 0 or non-0,
2676    // replace the comparison with a C2_muxii, using the same predicate
2677    // register, but with operands substituted with 0/1 accordingly.
2678    if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2679      Register NewR = MRI.createVirtualRegister(FRC);
2680      BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2681        .addReg(InpDef->getOperand(1).getReg())
2682        .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2683        .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2684      HBS::replaceReg(RD.Reg, NewR, MRI);
2685      // Create a new cell with only the least significant bit unknown.
2686      BitTracker::RegisterCell NewRC(W);
2687      NewRC[0] = BitTracker::BitValue::self();
2688      NewRC.fill(1, W, BitTracker::BitValue::Zero);
2689      BT.put(BitTracker::RegisterRef(NewR), NewRC);
2690      return true;
2691    }
2692  }
2693
2694  return false;
2695}
2696
2697bool BitSimplification::processBlock(MachineBasicBlock &B,
2698      const RegisterSet &AVs) {
2699  if (!BT.reached(&B))
2700    return false;
2701  bool Changed = false;
2702  RegisterSet AVB = AVs;
2703  RegisterSet Defs;
2704
2705  for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2706    MachineInstr *MI = &*I;
2707    Defs.clear();
2708    HBS::getInstrDefs(*MI, Defs);
2709
2710    unsigned Opc = MI->getOpcode();
2711    if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2712      continue;
2713
2714    if (MI->mayStore()) {
2715      bool T = genStoreUpperHalf(MI);
2716      T = T || genStoreImmediate(MI);
2717      Changed |= T;
2718      continue;
2719    }
2720
2721    if (Defs.count() != 1)
2722      continue;
2723    const MachineOperand &Op0 = MI->getOperand(0);
2724    if (!Op0.isReg() || !Op0.isDef())
2725      continue;
2726    BitTracker::RegisterRef RD = Op0;
2727    if (!BT.has(RD.Reg))
2728      continue;
2729    const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2730    const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2731
2732    if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2733      bool T = genPackhl(MI, RD, RC);
2734      T = T || simplifyExtractLow(MI, RD, RC, AVB);
2735      Changed |= T;
2736      continue;
2737    }
2738
2739    if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2740      bool T = genBitSplit(MI, RD, RC, AVB);
2741      T = T || simplifyExtractLow(MI, RD, RC, AVB);
2742      T = T || genExtractHalf(MI, RD, RC);
2743      T = T || genCombineHalf(MI, RD, RC);
2744      T = T || genExtractLow(MI, RD, RC);
2745      T = T || simplifyRCmp0(MI, RD);
2746      Changed |= T;
2747      continue;
2748    }
2749
2750    if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2751      bool T = simplifyTstbit(MI, RD, RC);
2752      Changed |= T;
2753      continue;
2754    }
2755  }
2756  return Changed;
2757}
2758
2759bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2760  if (skipFunction(MF.getFunction()))
2761    return false;
2762
2763  auto &HST = MF.getSubtarget<HexagonSubtarget>();
2764  auto &HRI = *HST.getRegisterInfo();
2765  auto &HII = *HST.getInstrInfo();
2766
2767  MDT = &getAnalysis<MachineDominatorTree>();
2768  MachineRegisterInfo &MRI = MF.getRegInfo();
2769  bool Changed;
2770
2771  Changed = DeadCodeElimination(MF, *MDT).run();
2772
2773  const HexagonEvaluator HE(HRI, MRI, HII, MF);
2774  BitTracker BT(HE, MF);
2775  LLVM_DEBUG(BT.trace(true));
2776  BT.run();
2777
2778  MachineBasicBlock &Entry = MF.front();
2779
2780  RegisterSet AIG;  // Available registers for IG.
2781  ConstGeneration ImmG(BT, HII, MRI);
2782  Changed |= visitBlock(Entry, ImmG, AIG);
2783
2784  RegisterSet ARE;  // Available registers for RIE.
2785  RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2786  bool Ried = visitBlock(Entry, RIE, ARE);
2787  if (Ried) {
2788    Changed = true;
2789    BT.run();
2790  }
2791
2792  RegisterSet ACG;  // Available registers for CG.
2793  CopyGeneration CopyG(BT, HII, HRI, MRI);
2794  Changed |= visitBlock(Entry, CopyG, ACG);
2795
2796  RegisterSet ACP;  // Available registers for CP.
2797  CopyPropagation CopyP(HRI, MRI);
2798  Changed |= visitBlock(Entry, CopyP, ACP);
2799
2800  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2801
2802  BT.run();
2803  RegisterSet ABS;  // Available registers for BS.
2804  BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2805  Changed |= visitBlock(Entry, BitS, ABS);
2806
2807  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2808
2809  if (Changed) {
2810    for (auto &B : MF)
2811      for (auto &I : B)
2812        I.clearKillInfo();
2813    DeadCodeElimination(MF, *MDT).run();
2814  }
2815  return Changed;
2816}
2817
2818// Recognize loops where the code at the end of the loop matches the code
2819// before the entry of the loop, and the matching code is such that is can
2820// be simplified. This pass relies on the bit simplification above and only
2821// prepares code in a way that can be handled by the bit simplifcation.
2822//
2823// This is the motivating testcase (and explanation):
2824//
2825// {
2826//   loop0(.LBB0_2, r1)      // %for.body.preheader
2827//   r5:4 = memd(r0++#8)
2828// }
2829// {
2830//   r3 = lsr(r4, #16)
2831//   r7:6 = combine(r5, r5)
2832// }
2833// {
2834//   r3 = insert(r5, #16, #16)
2835//   r7:6 = vlsrw(r7:6, #16)
2836// }
2837// .LBB0_2:
2838// {
2839//   memh(r2+#4) = r5
2840//   memh(r2+#6) = r6            # R6 is really R5.H
2841// }
2842// {
2843//   r2 = add(r2, #8)
2844//   memh(r2+#0) = r4
2845//   memh(r2+#2) = r3            # R3 is really R4.H
2846// }
2847// {
2848//   r5:4 = memd(r0++#8)
2849// }
2850// {                             # "Shuffling" code that sets up R3 and R6
2851//   r3 = lsr(r4, #16)           # so that their halves can be stored in the
2852//   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
2853// }                             # the stores if the code was at the beginning
2854// {                             # of the loop iteration. Since the same code
2855//   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
2856//   r7:6 = vlsrw(r7:6, #16)     # there.
2857// }:endloop0
2858//
2859//
2860// The outcome:
2861//
2862// {
2863//   loop0(.LBB0_2, r1)
2864//   r5:4 = memd(r0++#8)
2865// }
2866// .LBB0_2:
2867// {
2868//   memh(r2+#4) = r5
2869//   memh(r2+#6) = r5.h
2870// }
2871// {
2872//   r2 = add(r2, #8)
2873//   memh(r2+#0) = r4
2874//   memh(r2+#2) = r4.h
2875// }
2876// {
2877//   r5:4 = memd(r0++#8)
2878// }:endloop0
2879
2880namespace llvm {
2881
2882  FunctionPass *createHexagonLoopRescheduling();
2883  void initializeHexagonLoopReschedulingPass(PassRegistry&);
2884
2885} // end namespace llvm
2886
2887namespace {
2888
2889  class HexagonLoopRescheduling : public MachineFunctionPass {
2890  public:
2891    static char ID;
2892
2893    HexagonLoopRescheduling() : MachineFunctionPass(ID) {
2894      initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2895    }
2896
2897    bool runOnMachineFunction(MachineFunction &MF) override;
2898
2899  private:
2900    const HexagonInstrInfo *HII = nullptr;
2901    const HexagonRegisterInfo *HRI = nullptr;
2902    MachineRegisterInfo *MRI = nullptr;
2903    BitTracker *BTP = nullptr;
2904
2905    struct LoopCand {
2906      LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2907            MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2908
2909      MachineBasicBlock *LB, *PB, *EB;
2910    };
2911    using InstrList = std::vector<MachineInstr *>;
2912    struct InstrGroup {
2913      BitTracker::RegisterRef Inp, Out;
2914      InstrList Ins;
2915    };
2916    struct PhiInfo {
2917      PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2918
2919      unsigned DefR;
2920      BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2921      MachineBasicBlock *LB, *PB;     // Loop Block, Preheader Block
2922    };
2923
2924    static unsigned getDefReg(const MachineInstr *MI);
2925    bool isConst(unsigned Reg) const;
2926    bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2927    bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2928    bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2929    bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2930        unsigned &InpR2) const;
2931    void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2932        MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2933    bool processLoop(LoopCand &C);
2934  };
2935
2936} // end anonymous namespace
2937
2938char HexagonLoopRescheduling::ID = 0;
2939
2940INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2941  "Hexagon Loop Rescheduling", false, false)
2942
2943HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2944      MachineBasicBlock &B) {
2945  DefR = HexagonLoopRescheduling::getDefReg(&P);
2946  LB = &B;
2947  PB = nullptr;
2948  for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2949    const MachineOperand &OpB = P.getOperand(i+1);
2950    if (OpB.getMBB() == &B) {
2951      LR = P.getOperand(i);
2952      continue;
2953    }
2954    PB = OpB.getMBB();
2955    PR = P.getOperand(i);
2956  }
2957}
2958
2959unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2960  RegisterSet Defs;
2961  HBS::getInstrDefs(*MI, Defs);
2962  if (Defs.count() != 1)
2963    return 0;
2964  return Defs.find_first();
2965}
2966
2967bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2968  if (!BTP->has(Reg))
2969    return false;
2970  const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2971  for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2972    const BitTracker::BitValue &V = RC[i];
2973    if (!V.is(0) && !V.is(1))
2974      return false;
2975  }
2976  return true;
2977}
2978
2979bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2980      unsigned DefR) const {
2981  unsigned Opc = MI->getOpcode();
2982  switch (Opc) {
2983    case TargetOpcode::COPY:
2984    case Hexagon::S2_lsr_i_r:
2985    case Hexagon::S2_asr_i_r:
2986    case Hexagon::S2_asl_i_r:
2987    case Hexagon::S2_lsr_i_p:
2988    case Hexagon::S2_asr_i_p:
2989    case Hexagon::S2_asl_i_p:
2990    case Hexagon::S2_insert:
2991    case Hexagon::A2_or:
2992    case Hexagon::A2_orp:
2993    case Hexagon::A2_and:
2994    case Hexagon::A2_andp:
2995    case Hexagon::A2_combinew:
2996    case Hexagon::A4_combineri:
2997    case Hexagon::A4_combineir:
2998    case Hexagon::A2_combineii:
2999    case Hexagon::A4_combineii:
3000    case Hexagon::A2_combine_ll:
3001    case Hexagon::A2_combine_lh:
3002    case Hexagon::A2_combine_hl:
3003    case Hexagon::A2_combine_hh:
3004      return true;
3005  }
3006  return false;
3007}
3008
3009bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3010      unsigned InpR) const {
3011  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3012    const MachineOperand &Op = MI->getOperand(i);
3013    if (!Op.isReg())
3014      continue;
3015    if (Op.getReg() == InpR)
3016      return i == n-1;
3017  }
3018  return false;
3019}
3020
3021bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3022  if (!BTP->has(OutR) || !BTP->has(InpR))
3023    return false;
3024  const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3025  for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3026    const BitTracker::BitValue &V = OutC[i];
3027    if (V.Type != BitTracker::BitValue::Ref)
3028      continue;
3029    if (V.RefI.Reg != InpR)
3030      return false;
3031  }
3032  return true;
3033}
3034
3035bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3036      unsigned OutR2, unsigned &InpR2) const {
3037  if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3038    return false;
3039  const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3040  const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3041  unsigned W = OutC1.width();
3042  unsigned MatchR = 0;
3043  if (W != OutC2.width())
3044    return false;
3045  for (unsigned i = 0; i < W; ++i) {
3046    const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3047    if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3048      return false;
3049    if (V1.Type != BitTracker::BitValue::Ref)
3050      continue;
3051    if (V1.RefI.Pos != V2.RefI.Pos)
3052      return false;
3053    if (V1.RefI.Reg != InpR1)
3054      return false;
3055    if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3056      return false;
3057    if (!MatchR)
3058      MatchR = V2.RefI.Reg;
3059    else if (V2.RefI.Reg != MatchR)
3060      return false;
3061  }
3062  InpR2 = MatchR;
3063  return true;
3064}
3065
3066void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3067      MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3068      unsigned NewPredR) {
3069  DenseMap<unsigned,unsigned> RegMap;
3070
3071  const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3072  Register PhiR = MRI->createVirtualRegister(PhiRC);
3073  BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3074    .addReg(NewPredR)
3075    .addMBB(&PB)
3076    .addReg(G.Inp.Reg)
3077    .addMBB(&LB);
3078  RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3079
3080  for (unsigned i = G.Ins.size(); i > 0; --i) {
3081    const MachineInstr *SI = G.Ins[i-1];
3082    unsigned DR = getDefReg(SI);
3083    const TargetRegisterClass *RC = MRI->getRegClass(DR);
3084    Register NewDR = MRI->createVirtualRegister(RC);
3085    DebugLoc DL = SI->getDebugLoc();
3086
3087    auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3088    for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
3089      const MachineOperand &Op = SI->getOperand(j);
3090      if (!Op.isReg()) {
3091        MIB.add(Op);
3092        continue;
3093      }
3094      if (!Op.isUse())
3095        continue;
3096      unsigned UseR = RegMap[Op.getReg()];
3097      MIB.addReg(UseR, 0, Op.getSubReg());
3098    }
3099    RegMap.insert(std::make_pair(DR, NewDR));
3100  }
3101
3102  HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3103}
3104
3105bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3106  LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3107                    << "\n");
3108  std::vector<PhiInfo> Phis;
3109  for (auto &I : *C.LB) {
3110    if (!I.isPHI())
3111      break;
3112    unsigned PR = getDefReg(&I);
3113    if (isConst(PR))
3114      continue;
3115    bool BadUse = false, GoodUse = false;
3116    for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
3117      MachineInstr *UseI = UI->getParent();
3118      if (UseI->getParent() != C.LB) {
3119        BadUse = true;
3120        break;
3121      }
3122      if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3123        GoodUse = true;
3124    }
3125    if (BadUse || !GoodUse)
3126      continue;
3127
3128    Phis.push_back(PhiInfo(I, *C.LB));
3129  }
3130
3131  LLVM_DEBUG({
3132    dbgs() << "Phis: {";
3133    for (auto &I : Phis) {
3134      dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3135             << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3136             << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3137             << I.LB->getNumber() << ')';
3138    }
3139    dbgs() << " }\n";
3140  });
3141
3142  if (Phis.empty())
3143    return false;
3144
3145  bool Changed = false;
3146  InstrList ShufIns;
3147
3148  // Go backwards in the block: for each bit shuffling instruction, check
3149  // if that instruction could potentially be moved to the front of the loop:
3150  // the output of the loop cannot be used in a non-shuffling instruction
3151  // in this loop.
3152  for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
3153    if (I->isTerminator())
3154      continue;
3155    if (I->isPHI())
3156      break;
3157
3158    RegisterSet Defs;
3159    HBS::getInstrDefs(*I, Defs);
3160    if (Defs.count() != 1)
3161      continue;
3162    unsigned DefR = Defs.find_first();
3163    if (!Register::isVirtualRegister(DefR))
3164      continue;
3165    if (!isBitShuffle(&*I, DefR))
3166      continue;
3167
3168    bool BadUse = false;
3169    for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3170      MachineInstr *UseI = UI->getParent();
3171      if (UseI->getParent() == C.LB) {
3172        if (UseI->isPHI()) {
3173          // If the use is in a phi node in this loop, then it should be
3174          // the value corresponding to the back edge.
3175          unsigned Idx = UI.getOperandNo();
3176          if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3177            BadUse = true;
3178        } else {
3179          auto F = find(ShufIns, UseI);
3180          if (F == ShufIns.end())
3181            BadUse = true;
3182        }
3183      } else {
3184        // There is a use outside of the loop, but there is no epilog block
3185        // suitable for a copy-out.
3186        if (C.EB == nullptr)
3187          BadUse = true;
3188      }
3189      if (BadUse)
3190        break;
3191    }
3192
3193    if (BadUse)
3194      continue;
3195    ShufIns.push_back(&*I);
3196  }
3197
3198  // Partition the list of shuffling instructions into instruction groups,
3199  // where each group has to be moved as a whole (i.e. a group is a chain of
3200  // dependent instructions). A group produces a single live output register,
3201  // which is meant to be the input of the loop phi node (although this is
3202  // not checked here yet). It also uses a single register as its input,
3203  // which is some value produced in the loop body. After moving the group
3204  // to the beginning of the loop, that input register would need to be
3205  // the loop-carried register (through a phi node) instead of the (currently
3206  // loop-carried) output register.
3207  using InstrGroupList = std::vector<InstrGroup>;
3208  InstrGroupList Groups;
3209
3210  for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3211    MachineInstr *SI = ShufIns[i];
3212    if (SI == nullptr)
3213      continue;
3214
3215    InstrGroup G;
3216    G.Ins.push_back(SI);
3217    G.Out.Reg = getDefReg(SI);
3218    RegisterSet Inputs;
3219    HBS::getInstrUses(*SI, Inputs);
3220
3221    for (unsigned j = i+1; j < n; ++j) {
3222      MachineInstr *MI = ShufIns[j];
3223      if (MI == nullptr)
3224        continue;
3225      RegisterSet Defs;
3226      HBS::getInstrDefs(*MI, Defs);
3227      // If this instruction does not define any pending inputs, skip it.
3228      if (!Defs.intersects(Inputs))
3229        continue;
3230      // Otherwise, add it to the current group and remove the inputs that
3231      // are defined by MI.
3232      G.Ins.push_back(MI);
3233      Inputs.remove(Defs);
3234      // Then add all registers used by MI.
3235      HBS::getInstrUses(*MI, Inputs);
3236      ShufIns[j] = nullptr;
3237    }
3238
3239    // Only add a group if it requires at most one register.
3240    if (Inputs.count() > 1)
3241      continue;
3242    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3243      return G.Out.Reg == P.LR.Reg;
3244    };
3245    if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
3246      continue;
3247
3248    G.Inp.Reg = Inputs.find_first();
3249    Groups.push_back(G);
3250  }
3251
3252  LLVM_DEBUG({
3253    for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3254      InstrGroup &G = Groups[i];
3255      dbgs() << "Group[" << i << "] inp: "
3256             << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3257             << "  out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3258      for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
3259        dbgs() << "  " << *G.Ins[j];
3260    }
3261  });
3262
3263  for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3264    InstrGroup &G = Groups[i];
3265    if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3266      continue;
3267    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3268      return G.Out.Reg == P.LR.Reg;
3269    };
3270    auto F = llvm::find_if(Phis, LoopInpEq);
3271    if (F == Phis.end())
3272      continue;
3273    unsigned PrehR = 0;
3274    if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3275      const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3276      unsigned Opc = DefPrehR->getOpcode();
3277      if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3278        continue;
3279      if (!DefPrehR->getOperand(1).isImm())
3280        continue;
3281      if (DefPrehR->getOperand(1).getImm() != 0)
3282        continue;
3283      const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3284      if (RC != MRI->getRegClass(F->PR.Reg)) {
3285        PrehR = MRI->createVirtualRegister(RC);
3286        unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3287                                                          : Hexagon::A2_tfrpi;
3288        auto T = C.PB->getFirstTerminator();
3289        DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3290        BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3291          .addImm(0);
3292      } else {
3293        PrehR = F->PR.Reg;
3294      }
3295    }
3296    // isSameShuffle could match with PrehR being of a wider class than
3297    // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3298    // it would match for the input being a 32-bit register, and PrehR
3299    // being a 64-bit register (where the low 32 bits match). This could
3300    // be handled, but for now skip these cases.
3301    if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3302      continue;
3303    moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3304    Changed = true;
3305  }
3306
3307  return Changed;
3308}
3309
3310bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3311  if (skipFunction(MF.getFunction()))
3312    return false;
3313
3314  auto &HST = MF.getSubtarget<HexagonSubtarget>();
3315  HII = HST.getInstrInfo();
3316  HRI = HST.getRegisterInfo();
3317  MRI = &MF.getRegInfo();
3318  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3319  BitTracker BT(HE, MF);
3320  LLVM_DEBUG(BT.trace(true));
3321  BT.run();
3322  BTP = &BT;
3323
3324  std::vector<LoopCand> Cand;
3325
3326  for (auto &B : MF) {
3327    if (B.pred_size() != 2 || B.succ_size() != 2)
3328      continue;
3329    MachineBasicBlock *PB = nullptr;
3330    bool IsLoop = false;
3331    for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
3332      if (*PI != &B)
3333        PB = *PI;
3334      else
3335        IsLoop = true;
3336    }
3337    if (!IsLoop)
3338      continue;
3339
3340    MachineBasicBlock *EB = nullptr;
3341    for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
3342      if (*SI == &B)
3343        continue;
3344      // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3345      // edge from B to EP is non-critical.
3346      if ((*SI)->pred_size() == 1)
3347        EB = *SI;
3348      break;
3349    }
3350
3351    Cand.push_back(LoopCand(&B, PB, EB));
3352  }
3353
3354  bool Changed = false;
3355  for (auto &C : Cand)
3356    Changed |= processLoop(C);
3357
3358  return Changed;
3359}
3360
3361//===----------------------------------------------------------------------===//
3362//                         Public Constructor Functions
3363//===----------------------------------------------------------------------===//
3364
3365FunctionPass *llvm::createHexagonLoopRescheduling() {
3366  return new HexagonLoopRescheduling();
3367}
3368
3369FunctionPass *llvm::createHexagonBitSimplify() {
3370  return new HexagonBitSimplify();
3371}
3372