BTFDebug.cpp revision 363496
1//===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for writing BTF debug info.
10//
11//===----------------------------------------------------------------------===//
12
13#include "BTFDebug.h"
14#include "BPF.h"
15#include "BPFCORE.h"
16#include "MCTargetDesc/BPFMCTargetDesc.h"
17#include "llvm/BinaryFormat/ELF.h"
18#include "llvm/CodeGen/AsmPrinter.h"
19#include "llvm/CodeGen/MachineModuleInfo.h"
20#include "llvm/MC/MCContext.h"
21#include "llvm/MC/MCObjectFileInfo.h"
22#include "llvm/MC/MCSectionELF.h"
23#include "llvm/MC/MCStreamer.h"
24#include "llvm/Support/LineIterator.h"
25
26using namespace llvm;
27
28static const char *BTFKindStr[] = {
29#define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
30#include "BTF.def"
31};
32
33/// Emit a BTF common type.
34void BTFTypeBase::emitType(MCStreamer &OS) {
35  OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
36                ")");
37  OS.EmitIntValue(BTFType.NameOff, 4);
38  OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
39  OS.EmitIntValue(BTFType.Info, 4);
40  OS.EmitIntValue(BTFType.Size, 4);
41}
42
43BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
44                               bool NeedsFixup)
45    : DTy(DTy), NeedsFixup(NeedsFixup) {
46  switch (Tag) {
47  case dwarf::DW_TAG_pointer_type:
48    Kind = BTF::BTF_KIND_PTR;
49    break;
50  case dwarf::DW_TAG_const_type:
51    Kind = BTF::BTF_KIND_CONST;
52    break;
53  case dwarf::DW_TAG_volatile_type:
54    Kind = BTF::BTF_KIND_VOLATILE;
55    break;
56  case dwarf::DW_TAG_typedef:
57    Kind = BTF::BTF_KIND_TYPEDEF;
58    break;
59  case dwarf::DW_TAG_restrict_type:
60    Kind = BTF::BTF_KIND_RESTRICT;
61    break;
62  default:
63    llvm_unreachable("Unknown DIDerivedType Tag");
64  }
65  BTFType.Info = Kind << 24;
66}
67
68void BTFTypeDerived::completeType(BTFDebug &BDebug) {
69  if (IsCompleted)
70    return;
71  IsCompleted = true;
72
73  BTFType.NameOff = BDebug.addString(DTy->getName());
74
75  if (NeedsFixup)
76    return;
77
78  // The base type for PTR/CONST/VOLATILE could be void.
79  const DIType *ResolvedType = DTy->getBaseType();
80  if (!ResolvedType) {
81    assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
82            Kind == BTF::BTF_KIND_VOLATILE) &&
83           "Invalid null basetype");
84    BTFType.Type = 0;
85  } else {
86    BTFType.Type = BDebug.getTypeId(ResolvedType);
87  }
88}
89
90void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
91
92void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
93  BTFType.Type = PointeeType;
94}
95
96/// Represent a struct/union forward declaration.
97BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
98  Kind = BTF::BTF_KIND_FWD;
99  BTFType.Info = IsUnion << 31 | Kind << 24;
100  BTFType.Type = 0;
101}
102
103void BTFTypeFwd::completeType(BTFDebug &BDebug) {
104  if (IsCompleted)
105    return;
106  IsCompleted = true;
107
108  BTFType.NameOff = BDebug.addString(Name);
109}
110
111void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
112
113BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
114                       uint32_t OffsetInBits, StringRef TypeName)
115    : Name(TypeName) {
116  // Translate IR int encoding to BTF int encoding.
117  uint8_t BTFEncoding;
118  switch (Encoding) {
119  case dwarf::DW_ATE_boolean:
120    BTFEncoding = BTF::INT_BOOL;
121    break;
122  case dwarf::DW_ATE_signed:
123  case dwarf::DW_ATE_signed_char:
124    BTFEncoding = BTF::INT_SIGNED;
125    break;
126  case dwarf::DW_ATE_unsigned:
127  case dwarf::DW_ATE_unsigned_char:
128    BTFEncoding = 0;
129    break;
130  default:
131    llvm_unreachable("Unknown BTFTypeInt Encoding");
132  }
133
134  Kind = BTF::BTF_KIND_INT;
135  BTFType.Info = Kind << 24;
136  BTFType.Size = roundupToBytes(SizeInBits);
137  IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
138}
139
140void BTFTypeInt::completeType(BTFDebug &BDebug) {
141  if (IsCompleted)
142    return;
143  IsCompleted = true;
144
145  BTFType.NameOff = BDebug.addString(Name);
146}
147
148void BTFTypeInt::emitType(MCStreamer &OS) {
149  BTFTypeBase::emitType(OS);
150  OS.AddComment("0x" + Twine::utohexstr(IntVal));
151  OS.EmitIntValue(IntVal, 4);
152}
153
154BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
155  Kind = BTF::BTF_KIND_ENUM;
156  BTFType.Info = Kind << 24 | VLen;
157  BTFType.Size = roundupToBytes(ETy->getSizeInBits());
158}
159
160void BTFTypeEnum::completeType(BTFDebug &BDebug) {
161  if (IsCompleted)
162    return;
163  IsCompleted = true;
164
165  BTFType.NameOff = BDebug.addString(ETy->getName());
166
167  DINodeArray Elements = ETy->getElements();
168  for (const auto Element : Elements) {
169    const auto *Enum = cast<DIEnumerator>(Element);
170
171    struct BTF::BTFEnum BTFEnum;
172    BTFEnum.NameOff = BDebug.addString(Enum->getName());
173    // BTF enum value is 32bit, enforce it.
174    BTFEnum.Val = static_cast<uint32_t>(Enum->getValue());
175    EnumValues.push_back(BTFEnum);
176  }
177}
178
179void BTFTypeEnum::emitType(MCStreamer &OS) {
180  BTFTypeBase::emitType(OS);
181  for (const auto &Enum : EnumValues) {
182    OS.EmitIntValue(Enum.NameOff, 4);
183    OS.EmitIntValue(Enum.Val, 4);
184  }
185}
186
187BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) {
188  Kind = BTF::BTF_KIND_ARRAY;
189  BTFType.NameOff = 0;
190  BTFType.Info = Kind << 24;
191  BTFType.Size = 0;
192
193  ArrayInfo.ElemType = ElemTypeId;
194  ArrayInfo.Nelems = NumElems;
195}
196
197/// Represent a BTF array.
198void BTFTypeArray::completeType(BTFDebug &BDebug) {
199  if (IsCompleted)
200    return;
201  IsCompleted = true;
202
203  // The IR does not really have a type for the index.
204  // A special type for array index should have been
205  // created during initial type traversal. Just
206  // retrieve that type id.
207  ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
208}
209
210void BTFTypeArray::emitType(MCStreamer &OS) {
211  BTFTypeBase::emitType(OS);
212  OS.EmitIntValue(ArrayInfo.ElemType, 4);
213  OS.EmitIntValue(ArrayInfo.IndexType, 4);
214  OS.EmitIntValue(ArrayInfo.Nelems, 4);
215}
216
217/// Represent either a struct or a union.
218BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
219                             bool HasBitField, uint32_t Vlen)
220    : STy(STy), HasBitField(HasBitField) {
221  Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
222  BTFType.Size = roundupToBytes(STy->getSizeInBits());
223  BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
224}
225
226void BTFTypeStruct::completeType(BTFDebug &BDebug) {
227  if (IsCompleted)
228    return;
229  IsCompleted = true;
230
231  BTFType.NameOff = BDebug.addString(STy->getName());
232
233  // Add struct/union members.
234  const DINodeArray Elements = STy->getElements();
235  for (const auto *Element : Elements) {
236    struct BTF::BTFMember BTFMember;
237    const auto *DDTy = cast<DIDerivedType>(Element);
238
239    BTFMember.NameOff = BDebug.addString(DDTy->getName());
240    if (HasBitField) {
241      uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
242      BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
243    } else {
244      BTFMember.Offset = DDTy->getOffsetInBits();
245    }
246    const auto *BaseTy = DDTy->getBaseType();
247    BTFMember.Type = BDebug.getTypeId(BaseTy);
248    Members.push_back(BTFMember);
249  }
250}
251
252void BTFTypeStruct::emitType(MCStreamer &OS) {
253  BTFTypeBase::emitType(OS);
254  for (const auto &Member : Members) {
255    OS.EmitIntValue(Member.NameOff, 4);
256    OS.EmitIntValue(Member.Type, 4);
257    OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
258    OS.EmitIntValue(Member.Offset, 4);
259  }
260}
261
262std::string BTFTypeStruct::getName() { return STy->getName(); }
263
264/// The Func kind represents both subprogram and pointee of function
265/// pointers. If the FuncName is empty, it represents a pointee of function
266/// pointer. Otherwise, it represents a subprogram. The func arg names
267/// are empty for pointee of function pointer case, and are valid names
268/// for subprogram.
269BTFTypeFuncProto::BTFTypeFuncProto(
270    const DISubroutineType *STy, uint32_t VLen,
271    const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
272    : STy(STy), FuncArgNames(FuncArgNames) {
273  Kind = BTF::BTF_KIND_FUNC_PROTO;
274  BTFType.Info = (Kind << 24) | VLen;
275}
276
277void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
278  if (IsCompleted)
279    return;
280  IsCompleted = true;
281
282  DITypeRefArray Elements = STy->getTypeArray();
283  auto RetType = Elements[0];
284  BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
285  BTFType.NameOff = 0;
286
287  // For null parameter which is typically the last one
288  // to represent the vararg, encode the NameOff/Type to be 0.
289  for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
290    struct BTF::BTFParam Param;
291    auto Element = Elements[I];
292    if (Element) {
293      Param.NameOff = BDebug.addString(FuncArgNames[I]);
294      Param.Type = BDebug.getTypeId(Element);
295    } else {
296      Param.NameOff = 0;
297      Param.Type = 0;
298    }
299    Parameters.push_back(Param);
300  }
301}
302
303void BTFTypeFuncProto::emitType(MCStreamer &OS) {
304  BTFTypeBase::emitType(OS);
305  for (const auto &Param : Parameters) {
306    OS.EmitIntValue(Param.NameOff, 4);
307    OS.EmitIntValue(Param.Type, 4);
308  }
309}
310
311BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId,
312    uint32_t Scope)
313    : Name(FuncName) {
314  Kind = BTF::BTF_KIND_FUNC;
315  BTFType.Info = (Kind << 24) | Scope;
316  BTFType.Type = ProtoTypeId;
317}
318
319void BTFTypeFunc::completeType(BTFDebug &BDebug) {
320  if (IsCompleted)
321    return;
322  IsCompleted = true;
323
324  BTFType.NameOff = BDebug.addString(Name);
325}
326
327void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
328
329BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
330    : Name(VarName) {
331  Kind = BTF::BTF_KIND_VAR;
332  BTFType.Info = Kind << 24;
333  BTFType.Type = TypeId;
334  Info = VarInfo;
335}
336
337void BTFKindVar::completeType(BTFDebug &BDebug) {
338  BTFType.NameOff = BDebug.addString(Name);
339}
340
341void BTFKindVar::emitType(MCStreamer &OS) {
342  BTFTypeBase::emitType(OS);
343  OS.EmitIntValue(Info, 4);
344}
345
346BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
347    : Asm(AsmPrt), Name(SecName) {
348  Kind = BTF::BTF_KIND_DATASEC;
349  BTFType.Info = Kind << 24;
350  BTFType.Size = 0;
351}
352
353void BTFKindDataSec::completeType(BTFDebug &BDebug) {
354  BTFType.NameOff = BDebug.addString(Name);
355  BTFType.Info |= Vars.size();
356}
357
358void BTFKindDataSec::emitType(MCStreamer &OS) {
359  BTFTypeBase::emitType(OS);
360
361  for (const auto &V : Vars) {
362    OS.EmitIntValue(std::get<0>(V), 4);
363    Asm->EmitLabelReference(std::get<1>(V), 4);
364    OS.EmitIntValue(std::get<2>(V), 4);
365  }
366}
367
368uint32_t BTFStringTable::addString(StringRef S) {
369  // Check whether the string already exists.
370  for (auto &OffsetM : OffsetToIdMap) {
371    if (Table[OffsetM.second] == S)
372      return OffsetM.first;
373  }
374  // Not find, add to the string table.
375  uint32_t Offset = Size;
376  OffsetToIdMap[Offset] = Table.size();
377  Table.push_back(S);
378  Size += S.size() + 1;
379  return Offset;
380}
381
382BTFDebug::BTFDebug(AsmPrinter *AP)
383    : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
384      LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
385      MapDefNotCollected(true) {
386  addString("\0");
387}
388
389uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
390                           const DIType *Ty) {
391  TypeEntry->setId(TypeEntries.size() + 1);
392  uint32_t Id = TypeEntry->getId();
393  DIToIdMap[Ty] = Id;
394  TypeEntries.push_back(std::move(TypeEntry));
395  return Id;
396}
397
398uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
399  TypeEntry->setId(TypeEntries.size() + 1);
400  uint32_t Id = TypeEntry->getId();
401  TypeEntries.push_back(std::move(TypeEntry));
402  return Id;
403}
404
405void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
406  // Only int types are supported in BTF.
407  uint32_t Encoding = BTy->getEncoding();
408  if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed &&
409      Encoding != dwarf::DW_ATE_signed_char &&
410      Encoding != dwarf::DW_ATE_unsigned &&
411      Encoding != dwarf::DW_ATE_unsigned_char)
412    return;
413
414  // Create a BTF type instance for this DIBasicType and put it into
415  // DIToIdMap for cross-type reference check.
416  auto TypeEntry = std::make_unique<BTFTypeInt>(
417      Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
418  TypeId = addType(std::move(TypeEntry), BTy);
419}
420
421/// Handle subprogram or subroutine types.
422void BTFDebug::visitSubroutineType(
423    const DISubroutineType *STy, bool ForSubprog,
424    const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
425    uint32_t &TypeId) {
426  DITypeRefArray Elements = STy->getTypeArray();
427  uint32_t VLen = Elements.size() - 1;
428  if (VLen > BTF::MAX_VLEN)
429    return;
430
431  // Subprogram has a valid non-zero-length name, and the pointee of
432  // a function pointer has an empty name. The subprogram type will
433  // not be added to DIToIdMap as it should not be referenced by
434  // any other types.
435  auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
436  if (ForSubprog)
437    TypeId = addType(std::move(TypeEntry)); // For subprogram
438  else
439    TypeId = addType(std::move(TypeEntry), STy); // For func ptr
440
441  // Visit return type and func arg types.
442  for (const auto Element : Elements) {
443    visitTypeEntry(Element);
444  }
445}
446
447/// Handle structure/union types.
448void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
449                               uint32_t &TypeId) {
450  const DINodeArray Elements = CTy->getElements();
451  uint32_t VLen = Elements.size();
452  if (VLen > BTF::MAX_VLEN)
453    return;
454
455  // Check whether we have any bitfield members or not
456  bool HasBitField = false;
457  for (const auto *Element : Elements) {
458    auto E = cast<DIDerivedType>(Element);
459    if (E->isBitField()) {
460      HasBitField = true;
461      break;
462    }
463  }
464
465  auto TypeEntry =
466      std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
467  StructTypes.push_back(TypeEntry.get());
468  TypeId = addType(std::move(TypeEntry), CTy);
469
470  // Visit all struct members.
471  for (const auto *Element : Elements)
472    visitTypeEntry(cast<DIDerivedType>(Element));
473}
474
475void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
476  // Visit array element type.
477  uint32_t ElemTypeId;
478  const DIType *ElemType = CTy->getBaseType();
479  visitTypeEntry(ElemType, ElemTypeId, false, false);
480
481  // Visit array dimensions.
482  DINodeArray Elements = CTy->getElements();
483  for (int I = Elements.size() - 1; I >= 0; --I) {
484    if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
485      if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
486        const DISubrange *SR = cast<DISubrange>(Element);
487        auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
488        int64_t Count = CI->getSExtValue();
489
490        // For struct s { int b; char c[]; }, the c[] will be represented
491        // as an array with Count = -1.
492        auto TypeEntry =
493            std::make_unique<BTFTypeArray>(ElemTypeId,
494                Count >= 0 ? Count : 0);
495        if (I == 0)
496          ElemTypeId = addType(std::move(TypeEntry), CTy);
497        else
498          ElemTypeId = addType(std::move(TypeEntry));
499      }
500  }
501
502  // The array TypeId is the type id of the outermost dimension.
503  TypeId = ElemTypeId;
504
505  // The IR does not have a type for array index while BTF wants one.
506  // So create an array index type if there is none.
507  if (!ArrayIndexTypeId) {
508    auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
509                                                   0, "__ARRAY_SIZE_TYPE__");
510    ArrayIndexTypeId = addType(std::move(TypeEntry));
511  }
512}
513
514void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
515  DINodeArray Elements = CTy->getElements();
516  uint32_t VLen = Elements.size();
517  if (VLen > BTF::MAX_VLEN)
518    return;
519
520  auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen);
521  TypeId = addType(std::move(TypeEntry), CTy);
522  // No need to visit base type as BTF does not encode it.
523}
524
525/// Handle structure/union forward declarations.
526void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
527                                uint32_t &TypeId) {
528  auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
529  TypeId = addType(std::move(TypeEntry), CTy);
530}
531
532/// Handle structure, union, array and enumeration types.
533void BTFDebug::visitCompositeType(const DICompositeType *CTy,
534                                  uint32_t &TypeId) {
535  auto Tag = CTy->getTag();
536  if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
537    // Handle forward declaration differently as it does not have members.
538    if (CTy->isForwardDecl())
539      visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
540    else
541      visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
542  } else if (Tag == dwarf::DW_TAG_array_type)
543    visitArrayType(CTy, TypeId);
544  else if (Tag == dwarf::DW_TAG_enumeration_type)
545    visitEnumType(CTy, TypeId);
546}
547
548/// Handle pointer, typedef, const, volatile, restrict and member types.
549void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
550                                bool CheckPointer, bool SeenPointer) {
551  unsigned Tag = DTy->getTag();
552
553  /// Try to avoid chasing pointees, esp. structure pointees which may
554  /// unnecessary bring in a lot of types.
555  if (CheckPointer && !SeenPointer) {
556    SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
557  }
558
559  if (CheckPointer && SeenPointer) {
560    const DIType *Base = DTy->getBaseType();
561    if (Base) {
562      if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
563        auto CTag = CTy->getTag();
564        if ((CTag == dwarf::DW_TAG_structure_type ||
565             CTag == dwarf::DW_TAG_union_type) &&
566            !CTy->isForwardDecl()) {
567          /// Find a candidate, generate a fixup. Later on the struct/union
568          /// pointee type will be replaced with either a real type or
569          /// a forward declaration.
570          auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true);
571          auto &Fixup = FixupDerivedTypes[CTy->getName()];
572          Fixup.first = CTag == dwarf::DW_TAG_union_type;
573          Fixup.second.push_back(TypeEntry.get());
574          TypeId = addType(std::move(TypeEntry), DTy);
575          return;
576        }
577      }
578    }
579  }
580
581  if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
582      Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
583      Tag == dwarf::DW_TAG_restrict_type) {
584    auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false);
585    TypeId = addType(std::move(TypeEntry), DTy);
586  } else if (Tag != dwarf::DW_TAG_member) {
587    return;
588  }
589
590  // Visit base type of pointer, typedef, const, volatile, restrict or
591  // struct/union member.
592  uint32_t TempTypeId = 0;
593  if (Tag == dwarf::DW_TAG_member)
594    visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
595  else
596    visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
597}
598
599void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
600                              bool CheckPointer, bool SeenPointer) {
601  if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
602    TypeId = DIToIdMap[Ty];
603
604    // To handle the case like the following:
605    //    struct t;
606    //    typedef struct t _t;
607    //    struct s1 { _t *c; };
608    //    int test1(struct s1 *arg) { ... }
609    //
610    //    struct t { int a; int b; };
611    //    struct s2 { _t c; }
612    //    int test2(struct s2 *arg) { ... }
613    //
614    // During traversing test1() argument, "_t" is recorded
615    // in DIToIdMap and a forward declaration fixup is created
616    // for "struct t" to avoid pointee type traversal.
617    //
618    // During traversing test2() argument, even if we see "_t" is
619    // already defined, we should keep moving to eventually
620    // bring in types for "struct t". Otherwise, the "struct s2"
621    // definition won't be correct.
622    if (Ty && (!CheckPointer || !SeenPointer)) {
623      if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
624        unsigned Tag = DTy->getTag();
625        if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type ||
626            Tag == dwarf::DW_TAG_volatile_type ||
627            Tag == dwarf::DW_TAG_restrict_type) {
628          uint32_t TmpTypeId;
629          visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer,
630                         SeenPointer);
631        }
632      }
633    }
634
635    return;
636  }
637
638  if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
639    visitBasicType(BTy, TypeId);
640  else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
641    visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
642                        TypeId);
643  else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
644    visitCompositeType(CTy, TypeId);
645  else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
646    visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
647  else
648    llvm_unreachable("Unknown DIType");
649}
650
651void BTFDebug::visitTypeEntry(const DIType *Ty) {
652  uint32_t TypeId;
653  visitTypeEntry(Ty, TypeId, false, false);
654}
655
656void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
657  if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
658    TypeId = DIToIdMap[Ty];
659    return;
660  }
661
662  // MapDef type is a struct type
663  const auto *CTy = dyn_cast<DICompositeType>(Ty);
664  if (!CTy)
665    return;
666
667  auto Tag = CTy->getTag();
668  if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
669    return;
670
671  // Record this type
672  const DINodeArray Elements = CTy->getElements();
673  bool HasBitField = false;
674  for (const auto *Element : Elements) {
675    auto E = cast<DIDerivedType>(Element);
676    if (E->isBitField()) {
677      HasBitField = true;
678      break;
679    }
680  }
681
682  auto TypeEntry =
683      std::make_unique<BTFTypeStruct>(CTy, true, HasBitField, Elements.size());
684  StructTypes.push_back(TypeEntry.get());
685  TypeId = addType(std::move(TypeEntry), CTy);
686
687  // Visit all struct members
688  for (const auto *Element : Elements) {
689    const auto *MemberType = cast<DIDerivedType>(Element);
690    visitTypeEntry(MemberType->getBaseType());
691  }
692}
693
694/// Read file contents from the actual file or from the source
695std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
696  auto File = SP->getFile();
697  std::string FileName;
698
699  if (!File->getFilename().startswith("/") && File->getDirectory().size())
700    FileName = File->getDirectory().str() + "/" + File->getFilename().str();
701  else
702    FileName = File->getFilename();
703
704  // No need to populate the contends if it has been populated!
705  if (FileContent.find(FileName) != FileContent.end())
706    return FileName;
707
708  std::vector<std::string> Content;
709  std::string Line;
710  Content.push_back(Line); // Line 0 for empty string
711
712  std::unique_ptr<MemoryBuffer> Buf;
713  auto Source = File->getSource();
714  if (Source)
715    Buf = MemoryBuffer::getMemBufferCopy(*Source);
716  else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
717               MemoryBuffer::getFile(FileName))
718    Buf = std::move(*BufOrErr);
719  if (Buf)
720    for (line_iterator I(*Buf, false), E; I != E; ++I)
721      Content.push_back(*I);
722
723  FileContent[FileName] = Content;
724  return FileName;
725}
726
727void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
728                                 uint32_t Line, uint32_t Column) {
729  std::string FileName = populateFileContent(SP);
730  BTFLineInfo LineInfo;
731
732  LineInfo.Label = Label;
733  LineInfo.FileNameOff = addString(FileName);
734  // If file content is not available, let LineOff = 0.
735  if (Line < FileContent[FileName].size())
736    LineInfo.LineOff = addString(FileContent[FileName][Line]);
737  else
738    LineInfo.LineOff = 0;
739  LineInfo.LineNum = Line;
740  LineInfo.ColumnNum = Column;
741  LineInfoTable[SecNameOff].push_back(LineInfo);
742}
743
744void BTFDebug::emitCommonHeader() {
745  OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
746  OS.EmitIntValue(BTF::MAGIC, 2);
747  OS.EmitIntValue(BTF::VERSION, 1);
748  OS.EmitIntValue(0, 1);
749}
750
751void BTFDebug::emitBTFSection() {
752  // Do not emit section if no types and only "" string.
753  if (!TypeEntries.size() && StringTable.getSize() == 1)
754    return;
755
756  MCContext &Ctx = OS.getContext();
757  OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));
758
759  // Emit header.
760  emitCommonHeader();
761  OS.EmitIntValue(BTF::HeaderSize, 4);
762
763  uint32_t TypeLen = 0, StrLen;
764  for (const auto &TypeEntry : TypeEntries)
765    TypeLen += TypeEntry->getSize();
766  StrLen = StringTable.getSize();
767
768  OS.EmitIntValue(0, 4);
769  OS.EmitIntValue(TypeLen, 4);
770  OS.EmitIntValue(TypeLen, 4);
771  OS.EmitIntValue(StrLen, 4);
772
773  // Emit type table.
774  for (const auto &TypeEntry : TypeEntries)
775    TypeEntry->emitType(OS);
776
777  // Emit string table.
778  uint32_t StringOffset = 0;
779  for (const auto &S : StringTable.getTable()) {
780    OS.AddComment("string offset=" + std::to_string(StringOffset));
781    OS.EmitBytes(S);
782    OS.EmitBytes(StringRef("\0", 1));
783    StringOffset += S.size() + 1;
784  }
785}
786
787void BTFDebug::emitBTFExtSection() {
788  // Do not emit section if empty FuncInfoTable and LineInfoTable
789  // and FieldRelocTable.
790  if (!FuncInfoTable.size() && !LineInfoTable.size() &&
791      !FieldRelocTable.size())
792    return;
793
794  MCContext &Ctx = OS.getContext();
795  OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));
796
797  // Emit header.
798  emitCommonHeader();
799  OS.EmitIntValue(BTF::ExtHeaderSize, 4);
800
801  // Account for FuncInfo/LineInfo record size as well.
802  uint32_t FuncLen = 4, LineLen = 4;
803  // Do not account for optional FieldReloc.
804  uint32_t FieldRelocLen = 0;
805  for (const auto &FuncSec : FuncInfoTable) {
806    FuncLen += BTF::SecFuncInfoSize;
807    FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
808  }
809  for (const auto &LineSec : LineInfoTable) {
810    LineLen += BTF::SecLineInfoSize;
811    LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
812  }
813  for (const auto &FieldRelocSec : FieldRelocTable) {
814    FieldRelocLen += BTF::SecFieldRelocSize;
815    FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize;
816  }
817
818  if (FieldRelocLen)
819    FieldRelocLen += 4;
820
821  OS.EmitIntValue(0, 4);
822  OS.EmitIntValue(FuncLen, 4);
823  OS.EmitIntValue(FuncLen, 4);
824  OS.EmitIntValue(LineLen, 4);
825  OS.EmitIntValue(FuncLen + LineLen, 4);
826  OS.EmitIntValue(FieldRelocLen, 4);
827
828  // Emit func_info table.
829  OS.AddComment("FuncInfo");
830  OS.EmitIntValue(BTF::BPFFuncInfoSize, 4);
831  for (const auto &FuncSec : FuncInfoTable) {
832    OS.AddComment("FuncInfo section string offset=" +
833                  std::to_string(FuncSec.first));
834    OS.EmitIntValue(FuncSec.first, 4);
835    OS.EmitIntValue(FuncSec.second.size(), 4);
836    for (const auto &FuncInfo : FuncSec.second) {
837      Asm->EmitLabelReference(FuncInfo.Label, 4);
838      OS.EmitIntValue(FuncInfo.TypeId, 4);
839    }
840  }
841
842  // Emit line_info table.
843  OS.AddComment("LineInfo");
844  OS.EmitIntValue(BTF::BPFLineInfoSize, 4);
845  for (const auto &LineSec : LineInfoTable) {
846    OS.AddComment("LineInfo section string offset=" +
847                  std::to_string(LineSec.first));
848    OS.EmitIntValue(LineSec.first, 4);
849    OS.EmitIntValue(LineSec.second.size(), 4);
850    for (const auto &LineInfo : LineSec.second) {
851      Asm->EmitLabelReference(LineInfo.Label, 4);
852      OS.EmitIntValue(LineInfo.FileNameOff, 4);
853      OS.EmitIntValue(LineInfo.LineOff, 4);
854      OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
855                    std::to_string(LineInfo.ColumnNum));
856      OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4);
857    }
858  }
859
860  // Emit field reloc table.
861  if (FieldRelocLen) {
862    OS.AddComment("FieldReloc");
863    OS.EmitIntValue(BTF::BPFFieldRelocSize, 4);
864    for (const auto &FieldRelocSec : FieldRelocTable) {
865      OS.AddComment("Field reloc section string offset=" +
866                    std::to_string(FieldRelocSec.first));
867      OS.EmitIntValue(FieldRelocSec.first, 4);
868      OS.EmitIntValue(FieldRelocSec.second.size(), 4);
869      for (const auto &FieldRelocInfo : FieldRelocSec.second) {
870        Asm->EmitLabelReference(FieldRelocInfo.Label, 4);
871        OS.EmitIntValue(FieldRelocInfo.TypeID, 4);
872        OS.EmitIntValue(FieldRelocInfo.OffsetNameOff, 4);
873        OS.EmitIntValue(FieldRelocInfo.RelocKind, 4);
874      }
875    }
876  }
877}
878
879void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
880  auto *SP = MF->getFunction().getSubprogram();
881  auto *Unit = SP->getUnit();
882
883  if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
884    SkipInstruction = true;
885    return;
886  }
887  SkipInstruction = false;
888
889  // Collect MapDef types. Map definition needs to collect
890  // pointee types. Do it first. Otherwise, for the following
891  // case:
892  //    struct m { ...};
893  //    struct t {
894  //      struct m *key;
895  //    };
896  //    foo(struct t *arg);
897  //
898  //    struct mapdef {
899  //      ...
900  //      struct m *key;
901  //      ...
902  //    } __attribute__((section(".maps"))) hash_map;
903  //
904  // If subroutine foo is traversed first, a type chain
905  // "ptr->struct m(fwd)" will be created and later on
906  // when traversing mapdef, since "ptr->struct m" exists,
907  // the traversal of "struct m" will be omitted.
908  if (MapDefNotCollected) {
909    processGlobals(true);
910    MapDefNotCollected = false;
911  }
912
913  // Collect all types locally referenced in this function.
914  // Use RetainedNodes so we can collect all argument names
915  // even if the argument is not used.
916  std::unordered_map<uint32_t, StringRef> FuncArgNames;
917  for (const DINode *DN : SP->getRetainedNodes()) {
918    if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
919      // Collect function arguments for subprogram func type.
920      uint32_t Arg = DV->getArg();
921      if (Arg) {
922        visitTypeEntry(DV->getType());
923        FuncArgNames[Arg] = DV->getName();
924      }
925    }
926  }
927
928  // Construct subprogram func proto type.
929  uint32_t ProtoTypeId;
930  visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
931
932  // Construct subprogram func type
933  uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL;
934  auto FuncTypeEntry =
935      std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
936  uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));
937
938  for (const auto &TypeEntry : TypeEntries)
939    TypeEntry->completeType(*this);
940
941  // Construct funcinfo and the first lineinfo for the function.
942  MCSymbol *FuncLabel = Asm->getFunctionBegin();
943  BTFFuncInfo FuncInfo;
944  FuncInfo.Label = FuncLabel;
945  FuncInfo.TypeId = FuncTypeId;
946  if (FuncLabel->isInSection()) {
947    MCSection &Section = FuncLabel->getSection();
948    const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
949    assert(SectionELF && "Null section for Function Label");
950    SecNameOff = addString(SectionELF->getSectionName());
951  } else {
952    SecNameOff = addString(".text");
953  }
954  FuncInfoTable[SecNameOff].push_back(FuncInfo);
955}
956
957void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
958  SkipInstruction = false;
959  LineInfoGenerated = false;
960  SecNameOff = 0;
961}
962
963/// On-demand populate struct types as requested from abstract member
964/// accessing.
965unsigned BTFDebug::populateStructType(const DIType *Ty) {
966  unsigned Id;
967  visitTypeEntry(Ty, Id, false, false);
968  for (const auto &TypeEntry : TypeEntries)
969    TypeEntry->completeType(*this);
970  return Id;
971}
972
973/// Generate a struct member field relocation.
974void BTFDebug::generateFieldReloc(const MCSymbol *ORSym, DIType *RootTy,
975                                  StringRef AccessPattern) {
976  unsigned RootId = populateStructType(RootTy);
977  size_t FirstDollar = AccessPattern.find_first_of('$');
978  size_t FirstColon = AccessPattern.find_first_of(':');
979  size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1);
980  StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1);
981  StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1,
982      SecondColon - FirstColon);
983  StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1,
984      FirstDollar - SecondColon);
985
986  BTFFieldReloc FieldReloc;
987  FieldReloc.Label = ORSym;
988  FieldReloc.OffsetNameOff = addString(IndexPattern);
989  FieldReloc.TypeID = RootId;
990  FieldReloc.RelocKind = std::stoull(RelocKindStr);
991  PatchImms[AccessPattern.str()] = std::stoul(PatchImmStr);
992  FieldRelocTable[SecNameOff].push_back(FieldReloc);
993}
994
995void BTFDebug::processReloc(const MachineOperand &MO) {
996  // check whether this is a candidate or not
997  if (MO.isGlobal()) {
998    const GlobalValue *GVal = MO.getGlobal();
999    auto *GVar = dyn_cast<GlobalVariable>(GVal);
1000    if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1001      MCSymbol *ORSym = OS.getContext().createTempSymbol();
1002      OS.EmitLabel(ORSym);
1003
1004      MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
1005      DIType *Ty = dyn_cast<DIType>(MDN);
1006      generateFieldReloc(ORSym, Ty, GVar->getName());
1007    }
1008  }
1009}
1010
1011void BTFDebug::beginInstruction(const MachineInstr *MI) {
1012  DebugHandlerBase::beginInstruction(MI);
1013
1014  if (SkipInstruction || MI->isMetaInstruction() ||
1015      MI->getFlag(MachineInstr::FrameSetup))
1016    return;
1017
1018  if (MI->isInlineAsm()) {
1019    // Count the number of register definitions to find the asm string.
1020    unsigned NumDefs = 0;
1021    for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1022         ++NumDefs)
1023      ;
1024
1025    // Skip this inline asm instruction if the asmstr is empty.
1026    const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1027    if (AsmStr[0] == 0)
1028      return;
1029  }
1030
1031  if (MI->getOpcode() == BPF::LD_imm64) {
1032    // If the insn is "r2 = LD_imm64 @<an AmaAttr global>",
1033    // add this insn into the .BTF.ext FieldReloc subsection.
1034    // Relocation looks like:
1035    //  . SecName:
1036    //    . InstOffset
1037    //    . TypeID
1038    //    . OffSetNameOff
1039    //    . RelocType
1040    // Later, the insn is replaced with "r2 = <offset>"
1041    // where "<offset>" equals to the offset based on current
1042    // type definitions.
1043    processReloc(MI->getOperand(1));
1044  } else if (MI->getOpcode() == BPF::CORE_MEM ||
1045             MI->getOpcode() == BPF::CORE_ALU32_MEM ||
1046             MI->getOpcode() == BPF::CORE_SHIFT) {
1047    // relocation insn is a load, store or shift insn.
1048    processReloc(MI->getOperand(3));
1049  } else if (MI->getOpcode() == BPF::JAL) {
1050    // check extern function references
1051    const MachineOperand &MO = MI->getOperand(0);
1052    if (MO.isGlobal()) {
1053      processFuncPrototypes(dyn_cast<Function>(MO.getGlobal()));
1054    }
1055  }
1056
1057  // Skip this instruction if no DebugLoc or the DebugLoc
1058  // is the same as the previous instruction.
1059  const DebugLoc &DL = MI->getDebugLoc();
1060  if (!DL || PrevInstLoc == DL) {
1061    // This instruction will be skipped, no LineInfo has
1062    // been generated, construct one based on function signature.
1063    if (LineInfoGenerated == false) {
1064      auto *S = MI->getMF()->getFunction().getSubprogram();
1065      MCSymbol *FuncLabel = Asm->getFunctionBegin();
1066      constructLineInfo(S, FuncLabel, S->getLine(), 0);
1067      LineInfoGenerated = true;
1068    }
1069
1070    return;
1071  }
1072
1073  // Create a temporary label to remember the insn for lineinfo.
1074  MCSymbol *LineSym = OS.getContext().createTempSymbol();
1075  OS.EmitLabel(LineSym);
1076
1077  // Construct the lineinfo.
1078  auto SP = DL.get()->getScope()->getSubprogram();
1079  constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
1080
1081  LineInfoGenerated = true;
1082  PrevInstLoc = DL;
1083}
1084
1085void BTFDebug::processGlobals(bool ProcessingMapDef) {
1086  // Collect all types referenced by globals.
1087  const Module *M = MMI->getModule();
1088  for (const GlobalVariable &Global : M->globals()) {
1089    // Decide the section name.
1090    StringRef SecName;
1091    if (Global.hasSection()) {
1092      SecName = Global.getSection();
1093    } else if (Global.hasInitializer()) {
1094      // data, bss, or readonly sections
1095      if (Global.isConstant())
1096        SecName = ".rodata";
1097      else
1098        SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data";
1099    } else {
1100      // extern variables without explicit section,
1101      // put them into ".extern" section.
1102      SecName = ".extern";
1103    }
1104
1105    if (ProcessingMapDef != SecName.startswith(".maps"))
1106      continue;
1107
1108    SmallVector<DIGlobalVariableExpression *, 1> GVs;
1109    Global.getDebugInfo(GVs);
1110
1111    // No type information, mostly internal, skip it.
1112    if (GVs.size() == 0)
1113      continue;
1114
1115    uint32_t GVTypeId = 0;
1116    for (auto *GVE : GVs) {
1117      if (SecName.startswith(".maps"))
1118        visitMapDefType(GVE->getVariable()->getType(), GVTypeId);
1119      else
1120        visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false);
1121      break;
1122    }
1123
1124    // Only support the following globals:
1125    //  . static variables
1126    //  . non-static weak or non-weak global variables
1127    //  . weak or non-weak extern global variables
1128    // Whether DataSec is readonly or not can be found from corresponding ELF
1129    // section flags. Whether a BTF_KIND_VAR is a weak symbol or not
1130    // can be found from the corresponding ELF symbol table.
1131    auto Linkage = Global.getLinkage();
1132    if (Linkage != GlobalValue::InternalLinkage &&
1133        Linkage != GlobalValue::ExternalLinkage &&
1134        Linkage != GlobalValue::WeakAnyLinkage &&
1135        Linkage != GlobalValue::ExternalWeakLinkage)
1136      continue;
1137
1138    uint32_t GVarInfo;
1139    if (Linkage == GlobalValue::InternalLinkage) {
1140      GVarInfo = BTF::VAR_STATIC;
1141    } else if (Global.hasInitializer()) {
1142      GVarInfo = BTF::VAR_GLOBAL_ALLOCATED;
1143    } else {
1144      GVarInfo = BTF::VAR_GLOBAL_EXTERNAL;
1145    }
1146
1147    auto VarEntry =
1148        std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
1149    uint32_t VarId = addType(std::move(VarEntry));
1150
1151    assert(!SecName.empty());
1152
1153    // Find or create a DataSec
1154    if (DataSecEntries.find(SecName) == DataSecEntries.end()) {
1155      DataSecEntries[SecName] = std::make_unique<BTFKindDataSec>(Asm, SecName);
1156    }
1157
1158    // Calculate symbol size
1159    const DataLayout &DL = Global.getParent()->getDataLayout();
1160    uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType());
1161
1162    DataSecEntries[SecName]->addVar(VarId, Asm->getSymbol(&Global), Size);
1163  }
1164}
1165
1166/// Emit proper patchable instructions.
1167bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
1168  if (MI->getOpcode() == BPF::LD_imm64) {
1169    const MachineOperand &MO = MI->getOperand(1);
1170    if (MO.isGlobal()) {
1171      const GlobalValue *GVal = MO.getGlobal();
1172      auto *GVar = dyn_cast<GlobalVariable>(GVal);
1173      if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1174        // Emit "mov ri, <imm>" for patched immediate.
1175        uint32_t Imm = PatchImms[GVar->getName().str()];
1176        OutMI.setOpcode(BPF::MOV_ri);
1177        OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1178        OutMI.addOperand(MCOperand::createImm(Imm));
1179        return true;
1180      }
1181    }
1182  } else if (MI->getOpcode() == BPF::CORE_MEM ||
1183             MI->getOpcode() == BPF::CORE_ALU32_MEM ||
1184             MI->getOpcode() == BPF::CORE_SHIFT) {
1185    const MachineOperand &MO = MI->getOperand(3);
1186    if (MO.isGlobal()) {
1187      const GlobalValue *GVal = MO.getGlobal();
1188      auto *GVar = dyn_cast<GlobalVariable>(GVal);
1189      if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1190        uint32_t Imm = PatchImms[GVar->getName().str()];
1191        OutMI.setOpcode(MI->getOperand(1).getImm());
1192        if (MI->getOperand(0).isImm())
1193          OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm()));
1194        else
1195          OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1196        OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg()));
1197        OutMI.addOperand(MCOperand::createImm(Imm));
1198        return true;
1199      }
1200    }
1201  }
1202  return false;
1203}
1204
1205void BTFDebug::processFuncPrototypes(const Function *F) {
1206  if (!F)
1207    return;
1208
1209  const DISubprogram *SP = F->getSubprogram();
1210  if (!SP || SP->isDefinition())
1211    return;
1212
1213  // Do not emit again if already emitted.
1214  if (ProtoFunctions.find(F) != ProtoFunctions.end())
1215    return;
1216  ProtoFunctions.insert(F);
1217
1218  uint32_t ProtoTypeId;
1219  const std::unordered_map<uint32_t, StringRef> FuncArgNames;
1220  visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId);
1221
1222  uint8_t Scope = BTF::FUNC_EXTERN;
1223  auto FuncTypeEntry =
1224      std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
1225  addType(std::move(FuncTypeEntry));
1226}
1227
1228void BTFDebug::endModule() {
1229  // Collect MapDef globals if not collected yet.
1230  if (MapDefNotCollected) {
1231    processGlobals(true);
1232    MapDefNotCollected = false;
1233  }
1234
1235  // Collect global types/variables except MapDef globals.
1236  processGlobals(false);
1237
1238  for (auto &DataSec : DataSecEntries)
1239    addType(std::move(DataSec.second));
1240
1241  // Fixups
1242  for (auto &Fixup : FixupDerivedTypes) {
1243    StringRef TypeName = Fixup.first;
1244    bool IsUnion = Fixup.second.first;
1245
1246    // Search through struct types
1247    uint32_t StructTypeId = 0;
1248    for (const auto &StructType : StructTypes) {
1249      if (StructType->getName() == TypeName) {
1250        StructTypeId = StructType->getId();
1251        break;
1252      }
1253    }
1254
1255    if (StructTypeId == 0) {
1256      auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion);
1257      StructTypeId = addType(std::move(FwdTypeEntry));
1258    }
1259
1260    for (auto &DType : Fixup.second.second) {
1261      DType->setPointeeType(StructTypeId);
1262    }
1263  }
1264
1265  // Complete BTF type cross refereences.
1266  for (const auto &TypeEntry : TypeEntries)
1267    TypeEntry->completeType(*this);
1268
1269  // Emit BTF sections.
1270  emitBTFSection();
1271  emitBTFExtSection();
1272}
1273