BPFInstrInfo.td revision 341825
1132718Skan//===-- BPFInstrInfo.td - Target Description for BPF Target ---------------===//
2132718Skan//
3132718Skan//                     The LLVM Compiler Infrastructure
4132718Skan//
5132718Skan// This file is distributed under the University of Illinois Open Source
6132718Skan// License. See LICENSE.TXT for details.
7132718Skan//
8132718Skan//===----------------------------------------------------------------------===//
9132718Skan//
10132718Skan// This file describes the BPF instructions in TableGen format.
11132718Skan//
12132718Skan//===----------------------------------------------------------------------===//
13132718Skan
14132718Skaninclude "BPFInstrFormats.td"
15132718Skan
16132718Skan// Instruction Operands and Patterns
17132718Skan
18132718Skan// These are target-independent nodes, but have target-specific formats.
19132718Skandef SDT_BPFCallSeqStart : SDCallSeqStart<[SDTCisVT<0, iPTR>,
20132718Skan                                          SDTCisVT<1, iPTR>]>;
21132718Skandef SDT_BPFCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>;
22132718Skandef SDT_BPFCall         : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
23132718Skandef SDT_BPFSetFlag      : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>]>;
24132718Skandef SDT_BPFSelectCC     : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
25132718Skan                                               SDTCisSameAs<0, 4>,
26132718Skan                                               SDTCisSameAs<4, 5>]>;
27132718Skandef SDT_BPFBrCC         : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>,
28132718Skan                                               SDTCisVT<3, OtherVT>]>;
29132718Skandef SDT_BPFWrapper      : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
30132718Skan                                               SDTCisPtrTy<0>]>;
31132718Skandef SDT_BPFMEMCPY       : SDTypeProfile<0, 4, [SDTCisVT<0, i64>,
32132718Skan                                               SDTCisVT<1, i64>,
33132718Skan                                               SDTCisVT<2, i64>,
34132718Skan                                               SDTCisVT<3, i64>]>;
35132718Skan
36132718Skandef BPFcall         : SDNode<"BPFISD::CALL", SDT_BPFCall,
37132718Skan                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
38                              SDNPVariadic]>;
39def BPFretflag      : SDNode<"BPFISD::RET_FLAG", SDTNone,
40                             [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
41def BPFcallseq_start: SDNode<"ISD::CALLSEQ_START", SDT_BPFCallSeqStart,
42                             [SDNPHasChain, SDNPOutGlue]>;
43def BPFcallseq_end  : SDNode<"ISD::CALLSEQ_END",   SDT_BPFCallSeqEnd,
44                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
45def BPFbrcc         : SDNode<"BPFISD::BR_CC", SDT_BPFBrCC,
46                             [SDNPHasChain, SDNPOutGlue, SDNPInGlue]>;
47
48def BPFselectcc     : SDNode<"BPFISD::SELECT_CC", SDT_BPFSelectCC, [SDNPInGlue]>;
49def BPFWrapper      : SDNode<"BPFISD::Wrapper", SDT_BPFWrapper>;
50def BPFmemcpy       : SDNode<"BPFISD::MEMCPY", SDT_BPFMEMCPY,
51                             [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
52                              SDNPMayStore, SDNPMayLoad]>;
53def BPFIsLittleEndian : Predicate<"CurDAG->getDataLayout().isLittleEndian()">;
54def BPFIsBigEndian    : Predicate<"!CurDAG->getDataLayout().isLittleEndian()">;
55def BPFHasALU32 : Predicate<"Subtarget->getHasAlu32()">;
56def BPFNoALU32 : Predicate<"!Subtarget->getHasAlu32()">;
57
58def brtarget : Operand<OtherVT> {
59  let PrintMethod = "printBrTargetOperand";
60}
61def calltarget : Operand<i64>;
62
63def u64imm   : Operand<i64> {
64  let PrintMethod = "printImm64Operand";
65}
66
67def i64immSExt32 : PatLeaf<(i64 imm),
68                [{return isInt<32>(N->getSExtValue()); }]>;
69def i32immSExt32 : PatLeaf<(i32 imm),
70                [{return isInt<32>(N->getSExtValue()); }]>;
71
72// Addressing modes.
73def ADDRri : ComplexPattern<i64, 2, "SelectAddr", [], []>;
74def FIri : ComplexPattern<i64, 2, "SelectFIAddr", [add, or], []>;
75
76// Address operands
77def MEMri : Operand<i64> {
78  let PrintMethod = "printMemOperand";
79  let EncoderMethod = "getMemoryOpValue";
80  let DecoderMethod = "decodeMemoryOpValue";
81  let MIOperandInfo = (ops GPR, i16imm);
82}
83
84// Conditional code predicates - used for pattern matching for jump instructions
85def BPF_CC_EQ  : PatLeaf<(i64 imm),
86                         [{return (N->getZExtValue() == ISD::SETEQ);}]>;
87def BPF_CC_NE  : PatLeaf<(i64 imm),
88                         [{return (N->getZExtValue() == ISD::SETNE);}]>;
89def BPF_CC_GE  : PatLeaf<(i64 imm),
90                         [{return (N->getZExtValue() == ISD::SETGE);}]>;
91def BPF_CC_GT  : PatLeaf<(i64 imm),
92                         [{return (N->getZExtValue() == ISD::SETGT);}]>;
93def BPF_CC_GTU : PatLeaf<(i64 imm),
94                         [{return (N->getZExtValue() == ISD::SETUGT);}]>;
95def BPF_CC_GEU : PatLeaf<(i64 imm),
96                         [{return (N->getZExtValue() == ISD::SETUGE);}]>;
97def BPF_CC_LE  : PatLeaf<(i64 imm),
98                         [{return (N->getZExtValue() == ISD::SETLE);}]>;
99def BPF_CC_LT  : PatLeaf<(i64 imm),
100                         [{return (N->getZExtValue() == ISD::SETLT);}]>;
101def BPF_CC_LTU : PatLeaf<(i64 imm),
102                         [{return (N->getZExtValue() == ISD::SETULT);}]>;
103def BPF_CC_LEU : PatLeaf<(i64 imm),
104                         [{return (N->getZExtValue() == ISD::SETULE);}]>;
105
106// For arithmetic and jump instructions the 8-bit 'code'
107// field is divided into three parts:
108//
109//  +----------------+--------+--------------------+
110//  |   4 bits       |  1 bit |   3 bits           |
111//  | operation code | source | instruction class  |
112//  +----------------+--------+--------------------+
113//  (MSB)                                      (LSB)
114class TYPE_ALU_JMP<bits<4> op, bits<1> srctype,
115                   dag outs, dag ins, string asmstr, list<dag> pattern>
116  : InstBPF<outs, ins, asmstr, pattern> {
117
118  let Inst{63-60} = op;
119  let Inst{59} = srctype;
120}
121
122//For load and store instructions the 8-bit 'code' field is divided as:
123//
124//  +--------+--------+-------------------+
125//  | 3 bits | 2 bits |   3 bits          |
126//  |  mode  |  size  | instruction class |
127//  +--------+--------+-------------------+
128//  (MSB)                             (LSB)
129class TYPE_LD_ST<bits<3> mode, bits<2> size,
130                 dag outs, dag ins, string asmstr, list<dag> pattern>
131  : InstBPF<outs, ins, asmstr, pattern> {
132
133  let Inst{63-61} = mode;
134  let Inst{60-59} = size;
135}
136
137// jump instructions
138class JMP_RR<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
139    : TYPE_ALU_JMP<Opc.Value, BPF_X.Value,
140                   (outs),
141                   (ins GPR:$dst, GPR:$src, brtarget:$BrDst),
142                   "if $dst "#OpcodeStr#" $src goto $BrDst",
143                   [(BPFbrcc i64:$dst, i64:$src, Cond, bb:$BrDst)]> {
144  bits<4> dst;
145  bits<4> src;
146  bits<16> BrDst;
147
148  let Inst{55-52} = src;
149  let Inst{51-48} = dst;
150  let Inst{47-32} = BrDst;
151  let BPFClass = BPF_JMP;
152}
153
154class JMP_RI<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
155    : TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
156                   (outs),
157                   (ins GPR:$dst, i64imm:$imm, brtarget:$BrDst),
158                   "if $dst "#OpcodeStr#" $imm goto $BrDst",
159                   [(BPFbrcc i64:$dst, i64immSExt32:$imm, Cond, bb:$BrDst)]> {
160  bits<4> dst;
161  bits<16> BrDst;
162  bits<32> imm;
163
164  let Inst{51-48} = dst;
165  let Inst{47-32} = BrDst;
166  let Inst{31-0} = imm;
167  let BPFClass = BPF_JMP;
168}
169
170multiclass J<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> {
171  def _rr : JMP_RR<Opc, OpcodeStr, Cond>;
172  def _ri : JMP_RI<Opc, OpcodeStr, Cond>;
173}
174
175let isBranch = 1, isTerminator = 1, hasDelaySlot=0 in {
176// cmp+goto instructions
177defm JEQ  : J<BPF_JEQ, "==",  BPF_CC_EQ>;
178defm JUGT : J<BPF_JGT, ">", BPF_CC_GTU>;
179defm JUGE : J<BPF_JGE, ">=", BPF_CC_GEU>;
180defm JNE  : J<BPF_JNE, "!=",  BPF_CC_NE>;
181defm JSGT : J<BPF_JSGT, "s>", BPF_CC_GT>;
182defm JSGE : J<BPF_JSGE, "s>=", BPF_CC_GE>;
183defm JULT : J<BPF_JLT, "<", BPF_CC_LTU>;
184defm JULE : J<BPF_JLE, "<=", BPF_CC_LEU>;
185defm JSLT : J<BPF_JSLT, "s<", BPF_CC_LT>;
186defm JSLE : J<BPF_JSLE, "s<=", BPF_CC_LE>;
187}
188
189// ALU instructions
190class ALU_RI<BPFOpClass Class, BPFArithOp Opc,
191             dag outs, dag ins, string asmstr, list<dag> pattern>
192    : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, outs, ins, asmstr, pattern> {
193  bits<4> dst;
194  bits<32> imm;
195
196  let Inst{51-48} = dst;
197  let Inst{31-0} = imm;
198  let BPFClass = Class;
199}
200
201class ALU_RR<BPFOpClass Class, BPFArithOp Opc,
202             dag outs, dag ins, string asmstr, list<dag> pattern>
203    : TYPE_ALU_JMP<Opc.Value, BPF_X.Value, outs, ins, asmstr, pattern> {
204  bits<4> dst;
205  bits<4> src;
206
207  let Inst{55-52} = src;
208  let Inst{51-48} = dst;
209  let BPFClass = Class;
210}
211
212multiclass ALU<BPFArithOp Opc, string OpcodeStr, SDNode OpNode> {
213  def _rr : ALU_RR<BPF_ALU64, Opc,
214                   (outs GPR:$dst),
215                   (ins GPR:$src2, GPR:$src),
216                   "$dst "#OpcodeStr#" $src",
217                   [(set GPR:$dst, (OpNode i64:$src2, i64:$src))]>;
218  def _ri : ALU_RI<BPF_ALU64, Opc,
219                   (outs GPR:$dst),
220                   (ins GPR:$src2, i64imm:$imm),
221                   "$dst "#OpcodeStr#" $imm",
222                   [(set GPR:$dst, (OpNode GPR:$src2, i64immSExt32:$imm))]>;
223  def _rr_32 : ALU_RR<BPF_ALU, Opc,
224                   (outs GPR32:$dst),
225                   (ins GPR32:$src2, GPR32:$src),
226                   "$dst "#OpcodeStr#" $src",
227                   [(set GPR32:$dst, (OpNode i32:$src2, i32:$src))]>;
228  def _ri_32 : ALU_RI<BPF_ALU, Opc,
229                   (outs GPR32:$dst),
230                   (ins GPR32:$src2, i32imm:$imm),
231                   "$dst "#OpcodeStr#" $imm",
232                   [(set GPR32:$dst, (OpNode GPR32:$src2, i32immSExt32:$imm))]>;
233}
234
235let Constraints = "$dst = $src2" in {
236let isAsCheapAsAMove = 1 in {
237  defm ADD : ALU<BPF_ADD, "+=", add>;
238  defm SUB : ALU<BPF_SUB, "-=", sub>;
239  defm OR  : ALU<BPF_OR, "|=", or>;
240  defm AND : ALU<BPF_AND, "&=", and>;
241  defm SLL : ALU<BPF_LSH, "<<=", shl>;
242  defm SRL : ALU<BPF_RSH, ">>=", srl>;
243  defm XOR : ALU<BPF_XOR, "^=", xor>;
244  defm SRA : ALU<BPF_ARSH, "s>>=", sra>;
245}
246  defm MUL : ALU<BPF_MUL, "*=", mul>;
247  defm DIV : ALU<BPF_DIV, "/=", udiv>;
248}
249
250class NEG_RR<BPFOpClass Class, BPFArithOp Opc,
251             dag outs, dag ins, string asmstr, list<dag> pattern>
252    : TYPE_ALU_JMP<Opc.Value, 0, outs, ins, asmstr, pattern> {
253  bits<4> dst;
254
255  let Inst{51-48} = dst;
256  let BPFClass = Class;
257}
258
259let Constraints = "$dst = $src", isAsCheapAsAMove = 1 in {
260  def NEG_64: NEG_RR<BPF_ALU64, BPF_NEG, (outs GPR:$dst), (ins GPR:$src),
261                     "$dst = -$src",
262                     [(set GPR:$dst, (ineg i64:$src))]>;
263  def NEG_32: NEG_RR<BPF_ALU, BPF_NEG, (outs GPR32:$dst), (ins GPR32:$src),
264                     "$dst = -$src",
265                     [(set GPR32:$dst, (ineg i32:$src))]>;
266}
267
268class LD_IMM64<bits<4> Pseudo, string OpcodeStr>
269    : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
270                 (outs GPR:$dst),
271                 (ins u64imm:$imm),
272                 "$dst "#OpcodeStr#" ${imm} ll",
273                 [(set GPR:$dst, (i64 imm:$imm))]> {
274
275  bits<4> dst;
276  bits<64> imm;
277
278  let Inst{51-48} = dst;
279  let Inst{55-52} = Pseudo;
280  let Inst{47-32} = 0;
281  let Inst{31-0} = imm{31-0};
282  let BPFClass = BPF_LD;
283}
284
285let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
286def LD_imm64 : LD_IMM64<0, "=">;
287def MOV_rr : ALU_RR<BPF_ALU64, BPF_MOV,
288                    (outs GPR:$dst),
289                    (ins GPR:$src),
290                    "$dst = $src",
291                    []>;
292def MOV_ri : ALU_RI<BPF_ALU64, BPF_MOV,
293                    (outs GPR:$dst),
294                    (ins i64imm:$imm),
295                    "$dst = $imm",
296                    [(set GPR:$dst, (i64 i64immSExt32:$imm))]>;
297def MOV_rr_32 : ALU_RR<BPF_ALU, BPF_MOV,
298                    (outs GPR32:$dst),
299                    (ins GPR32:$src),
300                    "$dst = $src",
301                    []>;
302def MOV_ri_32 : ALU_RI<BPF_ALU, BPF_MOV,
303                    (outs GPR32:$dst),
304                    (ins i32imm:$imm),
305                    "$dst = $imm",
306                    [(set GPR32:$dst, (i32 i32immSExt32:$imm))]>;
307}
308
309def FI_ri
310    : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
311                 (outs GPR:$dst),
312                 (ins MEMri:$addr),
313                 "lea\t$dst, $addr",
314                 [(set i64:$dst, FIri:$addr)]> {
315  // This is a tentative instruction, and will be replaced
316  // with MOV_rr and ADD_ri in PEI phase
317  let Inst{51-48} = 0;
318  let Inst{55-52} = 2;
319  let Inst{47-32} = 0;
320  let Inst{31-0} = 0;
321  let BPFClass = BPF_LD;
322}
323
324def LD_pseudo
325    : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
326                 (outs GPR:$dst),
327                 (ins i64imm:$pseudo, u64imm:$imm),
328                 "ld_pseudo\t$dst, $pseudo, $imm",
329                 [(set GPR:$dst, (int_bpf_pseudo imm:$pseudo, imm:$imm))]> {
330
331  bits<4> dst;
332  bits<64> imm;
333  bits<4> pseudo;
334
335  let Inst{51-48} = dst;
336  let Inst{55-52} = pseudo;
337  let Inst{47-32} = 0;
338  let Inst{31-0} = imm{31-0};
339  let BPFClass = BPF_LD;
340}
341
342// STORE instructions
343class STORE<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
344    : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
345                 (outs),
346                 (ins GPR:$src, MEMri:$addr),
347                 "*("#OpcodeStr#" *)($addr) = $src",
348                 Pattern> {
349  bits<4> src;
350  bits<20> addr;
351
352  let Inst{51-48} = addr{19-16}; // base reg
353  let Inst{55-52} = src;
354  let Inst{47-32} = addr{15-0}; // offset
355  let BPFClass = BPF_STX;
356}
357
358class STOREi64<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode>
359    : STORE<Opc, OpcodeStr, [(OpNode i64:$src, ADDRri:$addr)]>;
360
361let Predicates = [BPFNoALU32] in {
362  def STW : STOREi64<BPF_W, "u32", truncstorei32>;
363  def STH : STOREi64<BPF_H, "u16", truncstorei16>;
364  def STB : STOREi64<BPF_B, "u8", truncstorei8>;
365}
366def STD : STOREi64<BPF_DW, "u64", store>;
367
368// LOAD instructions
369class LOAD<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
370    : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
371                 (outs GPR:$dst),
372                 (ins MEMri:$addr),
373                 "$dst = *("#OpcodeStr#" *)($addr)",
374                 Pattern> {
375  bits<4> dst;
376  bits<20> addr;
377
378  let Inst{51-48} = dst;
379  let Inst{55-52} = addr{19-16};
380  let Inst{47-32} = addr{15-0};
381  let BPFClass = BPF_LDX;
382}
383
384class LOADi64<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
385    : LOAD<SizeOp, OpcodeStr, [(set i64:$dst, (OpNode ADDRri:$addr))]>;
386
387
388let Predicates = [BPFNoALU32] in {
389  def LDW : LOADi64<BPF_W, "u32", zextloadi32>;
390  def LDH : LOADi64<BPF_H, "u16", zextloadi16>;
391  def LDB : LOADi64<BPF_B, "u8", zextloadi8>;
392}
393
394def LDD : LOADi64<BPF_DW, "u64", load>;
395
396class BRANCH<BPFJumpOp Opc, string OpcodeStr, list<dag> Pattern>
397    : TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
398                   (outs),
399                   (ins brtarget:$BrDst),
400                   !strconcat(OpcodeStr, " $BrDst"),
401                   Pattern> {
402  bits<16> BrDst;
403
404  let Inst{47-32} = BrDst;
405  let BPFClass = BPF_JMP;
406}
407
408class CALL<string OpcodeStr>
409    : TYPE_ALU_JMP<BPF_CALL.Value, BPF_K.Value,
410                   (outs),
411                   (ins calltarget:$BrDst),
412                   !strconcat(OpcodeStr, " $BrDst"),
413                   []> {
414  bits<32> BrDst;
415
416  let Inst{31-0} = BrDst;
417  let BPFClass = BPF_JMP;
418}
419
420class CALLX<string OpcodeStr>
421    : TYPE_ALU_JMP<BPF_CALL.Value, BPF_X.Value,
422                   (outs),
423                   (ins calltarget:$BrDst),
424                   !strconcat(OpcodeStr, " $BrDst"),
425                   []> {
426  bits<32> BrDst;
427
428  let Inst{31-0} = BrDst;
429  let BPFClass = BPF_JMP;
430}
431
432// Jump always
433let isBranch = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1 in {
434  def JMP : BRANCH<BPF_JA, "goto", [(br bb:$BrDst)]>;
435}
436
437// Jump and link
438let isCall=1, hasDelaySlot=0, Uses = [R11],
439    // Potentially clobbered registers
440    Defs = [R0, R1, R2, R3, R4, R5] in {
441  def JAL  : CALL<"call">;
442  def JALX  : CALLX<"callx">;
443}
444
445class NOP_I<string OpcodeStr>
446    : TYPE_ALU_JMP<BPF_MOV.Value, BPF_X.Value,
447                   (outs),
448                   (ins i32imm:$imm),
449                   !strconcat(OpcodeStr, "\t$imm"),
450                   []> {
451  // mov r0, r0 == nop
452  let Inst{55-52} = 0;
453  let Inst{51-48} = 0;
454  let BPFClass = BPF_ALU64;
455}
456
457let hasSideEffects = 0 in
458  def NOP : NOP_I<"nop">;
459
460class RET<string OpcodeStr>
461    : TYPE_ALU_JMP<BPF_EXIT.Value, BPF_K.Value,
462                   (outs),
463                   (ins),
464                   !strconcat(OpcodeStr, ""),
465                   [(BPFretflag)]> {
466  let Inst{31-0} = 0;
467  let BPFClass = BPF_JMP;
468}
469
470let isReturn = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1,
471    isNotDuplicable = 1 in {
472  def RET : RET<"exit">;
473}
474
475// ADJCALLSTACKDOWN/UP pseudo insns
476let Defs = [R11], Uses = [R11], isCodeGenOnly = 1 in {
477def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
478                              "#ADJCALLSTACKDOWN $amt1 $amt2",
479                              [(BPFcallseq_start timm:$amt1, timm:$amt2)]>;
480def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
481                              "#ADJCALLSTACKUP $amt1 $amt2",
482                              [(BPFcallseq_end timm:$amt1, timm:$amt2)]>;
483}
484
485let usesCustomInserter = 1, isCodeGenOnly = 1 in {
486  def Select : Pseudo<(outs GPR:$dst),
487                      (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR:$src, GPR:$src2),
488                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
489                      [(set i64:$dst,
490                       (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i64:$src, i64:$src2))]>;
491  def Select_Ri : Pseudo<(outs GPR:$dst),
492                      (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR:$src, GPR:$src2),
493                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
494                      [(set i64:$dst,
495                       (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i64:$src, i64:$src2))]>;
496  def Select_64_32 : Pseudo<(outs GPR32:$dst),
497                      (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2),
498                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
499                      [(set i32:$dst,
500                       (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i32:$src, i32:$src2))]>;
501  def Select_Ri_64_32 : Pseudo<(outs GPR32:$dst),
502                      (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2),
503                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
504                      [(set i32:$dst,
505                       (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i32:$src, i32:$src2))]>;
506  def Select_32 : Pseudo<(outs GPR32:$dst),
507                      (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2),
508                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
509                      [(set i32:$dst,
510                       (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i32:$src, i32:$src2))]>;
511  def Select_Ri_32 : Pseudo<(outs GPR32:$dst),
512                      (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2),
513                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
514                      [(set i32:$dst,
515                       (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i32:$src, i32:$src2))]>;
516  def Select_32_64 : Pseudo<(outs GPR:$dst),
517                      (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR:$src, GPR:$src2),
518                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
519                      [(set i64:$dst,
520                       (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i64:$src, i64:$src2))]>;
521  def Select_Ri_32_64 : Pseudo<(outs GPR:$dst),
522                      (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR:$src, GPR:$src2),
523                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
524                      [(set i64:$dst,
525                       (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i64:$src, i64:$src2))]>;
526}
527
528// load 64-bit global addr into register
529def : Pat<(BPFWrapper tglobaladdr:$in), (LD_imm64 tglobaladdr:$in)>;
530
531// 0xffffFFFF doesn't fit into simm32, optimize common case
532def : Pat<(i64 (and (i64 GPR:$src), 0xffffFFFF)),
533          (SRL_ri (SLL_ri (i64 GPR:$src), 32), 32)>;
534
535// Calls
536def : Pat<(BPFcall tglobaladdr:$dst), (JAL tglobaladdr:$dst)>;
537def : Pat<(BPFcall texternalsym:$dst), (JAL texternalsym:$dst)>;
538def : Pat<(BPFcall imm:$dst), (JAL imm:$dst)>;
539def : Pat<(BPFcall GPR:$dst), (JALX GPR:$dst)>;
540
541// Loads
542let Predicates = [BPFNoALU32] in {
543  def : Pat<(i64 (extloadi8  ADDRri:$src)), (i64 (LDB ADDRri:$src))>;
544  def : Pat<(i64 (extloadi16 ADDRri:$src)), (i64 (LDH ADDRri:$src))>;
545  def : Pat<(i64 (extloadi32 ADDRri:$src)), (i64 (LDW ADDRri:$src))>;
546}
547
548// Atomics
549class XADD<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
550    : TYPE_LD_ST<BPF_XADD.Value, SizeOp.Value,
551                 (outs GPR:$dst),
552                 (ins MEMri:$addr, GPR:$val),
553                 "lock *("#OpcodeStr#" *)($addr) += $val",
554                 [(set GPR:$dst, (OpNode ADDRri:$addr, GPR:$val))]> {
555  bits<4> dst;
556  bits<20> addr;
557
558  let Inst{51-48} = addr{19-16}; // base reg
559  let Inst{55-52} = dst;
560  let Inst{47-32} = addr{15-0}; // offset
561  let BPFClass = BPF_STX;
562}
563
564let Constraints = "$dst = $val" in {
565def XADD32 : XADD<BPF_W, "u32", atomic_load_add_32>;
566def XADD64 : XADD<BPF_DW, "u64", atomic_load_add_64>;
567// undefined def XADD16 : XADD<1, "xadd16", atomic_load_add_16>;
568// undefined def XADD8  : XADD<2, "xadd8", atomic_load_add_8>;
569}
570
571// bswap16, bswap32, bswap64
572class BSWAP<bits<32> SizeOp, string OpcodeStr, BPFSrcType SrcType, list<dag> Pattern>
573    : TYPE_ALU_JMP<BPF_END.Value, SrcType.Value,
574                   (outs GPR:$dst),
575                   (ins GPR:$src),
576                   "$dst = "#OpcodeStr#" $src",
577                   Pattern> {
578  bits<4> dst;
579
580  let Inst{51-48} = dst;
581  let Inst{31-0} = SizeOp;
582  let BPFClass = BPF_ALU;
583}
584
585
586let Constraints = "$dst = $src" in {
587    let Predicates = [BPFIsLittleEndian] in {
588        def BE16 : BSWAP<16, "be16", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>;
589        def BE32 : BSWAP<32, "be32", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>;
590        def BE64 : BSWAP<64, "be64", BPF_TO_BE, [(set GPR:$dst, (bswap GPR:$src))]>;
591    }
592    let Predicates = [BPFIsBigEndian] in {
593        def LE16 : BSWAP<16, "le16", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>;
594        def LE32 : BSWAP<32, "le32", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>;
595        def LE64 : BSWAP<64, "le64", BPF_TO_LE, [(set GPR:$dst, (bswap GPR:$src))]>;
596    }
597}
598
599let Defs = [R0, R1, R2, R3, R4, R5], Uses = [R6], hasSideEffects = 1,
600    hasExtraDefRegAllocReq = 1, hasExtraSrcRegAllocReq = 1, mayLoad = 1 in {
601class LOAD_ABS<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode>
602    : TYPE_LD_ST<BPF_ABS.Value, SizeOp.Value,
603                 (outs),
604                 (ins GPR:$skb, i64imm:$imm),
605                 "r0 = *("#OpcodeStr#" *)skb[$imm]",
606                 [(set R0, (OpNode GPR:$skb, i64immSExt32:$imm))]> {
607  bits<32> imm;
608
609  let Inst{31-0} = imm;
610  let BPFClass = BPF_LD;
611}
612
613class LOAD_IND<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode>
614    : TYPE_LD_ST<BPF_IND.Value, SizeOp.Value,
615                 (outs),
616                 (ins GPR:$skb, GPR:$val),
617                 "r0 = *("#OpcodeStr#" *)skb[$val]",
618                 [(set R0, (OpNode GPR:$skb, GPR:$val))]> {
619  bits<4> val;
620
621  let Inst{55-52} = val;
622  let BPFClass = BPF_LD;
623}
624}
625
626def LD_ABS_B : LOAD_ABS<BPF_B, "u8", int_bpf_load_byte>;
627def LD_ABS_H : LOAD_ABS<BPF_H, "u16", int_bpf_load_half>;
628def LD_ABS_W : LOAD_ABS<BPF_W, "u32", int_bpf_load_word>;
629
630def LD_IND_B : LOAD_IND<BPF_B, "u8", int_bpf_load_byte>;
631def LD_IND_H : LOAD_IND<BPF_H, "u16", int_bpf_load_half>;
632def LD_IND_W : LOAD_IND<BPF_W, "u32", int_bpf_load_word>;
633
634let isCodeGenOnly = 1 in {
635  def MOV_32_64 : ALU_RR<BPF_ALU, BPF_MOV,
636                         (outs GPR:$dst), (ins GPR32:$src),
637                         "$dst = $src", []>;
638}
639
640def : Pat<(i64 (sext GPR32:$src)),
641          (SRA_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>;
642
643def : Pat<(i64 (zext GPR32:$src)),
644          (SRL_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>;
645
646// For i64 -> i32 truncation, use the 32-bit subregister directly.
647def : Pat<(i32 (trunc GPR:$src)),
648          (i32 (EXTRACT_SUBREG GPR:$src, sub_32))>;
649
650// For i32 -> i64 anyext, we don't care about the high bits.
651def : Pat<(i64 (anyext GPR32:$src)),
652          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
653
654class STORE32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
655    : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
656                 (outs),
657                 (ins GPR32:$src, MEMri:$addr),
658                 "*("#OpcodeStr#" *)($addr) = $src",
659                 Pattern> {
660  bits<4> src;
661  bits<20> addr;
662
663  let Inst{51-48} = addr{19-16}; // base reg
664  let Inst{55-52} = src;
665  let Inst{47-32} = addr{15-0}; // offset
666  let BPFClass = BPF_STX;
667}
668
669class STOREi32<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode>
670    : STORE32<Opc, OpcodeStr, [(OpNode i32:$src, ADDRri:$addr)]>;
671
672let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
673  def STW32 : STOREi32<BPF_W, "u32", store>;
674  def STH32 : STOREi32<BPF_H, "u16", truncstorei16>;
675  def STB32 : STOREi32<BPF_B, "u8", truncstorei8>;
676}
677
678class LOAD32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
679    : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
680                (outs GPR32:$dst),
681                (ins MEMri:$addr),
682                "$dst = *("#OpcodeStr#" *)($addr)",
683                Pattern> {
684  bits<4> dst;
685  bits<20> addr;
686
687  let Inst{51-48} = dst;
688  let Inst{55-52} = addr{19-16};
689  let Inst{47-32} = addr{15-0};
690  let BPFClass = BPF_LDX;
691}
692
693class LOADi32<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
694    : LOAD32<SizeOp, OpcodeStr, [(set i32:$dst, (OpNode ADDRri:$addr))]>;
695
696let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
697  def LDW32 : LOADi32<BPF_W, "u32", load>;
698  def LDH32 : LOADi32<BPF_H, "u16", zextloadi16>;
699  def LDB32 : LOADi32<BPF_B, "u8", zextloadi8>;
700}
701
702let Predicates = [BPFHasALU32] in {
703  def : Pat<(truncstorei8 GPR:$src, ADDRri:$dst),
704            (STB32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
705  def : Pat<(truncstorei16 GPR:$src, ADDRri:$dst),
706            (STH32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
707  def : Pat<(truncstorei32 GPR:$src, ADDRri:$dst),
708            (STW32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
709  def : Pat<(i32 (extloadi8 ADDRri:$src)), (i32 (LDB32 ADDRri:$src))>;
710  def : Pat<(i32 (extloadi16 ADDRri:$src)), (i32 (LDH32 ADDRri:$src))>;
711  def : Pat<(i64 (zextloadi8  ADDRri:$src)),
712            (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>;
713  def : Pat<(i64 (zextloadi16 ADDRri:$src)),
714            (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>;
715  def : Pat<(i64 (zextloadi32 ADDRri:$src)),
716            (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>;
717  def : Pat<(i64 (extloadi8  ADDRri:$src)),
718            (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>;
719  def : Pat<(i64 (extloadi16 ADDRri:$src)),
720            (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>;
721  def : Pat<(i64 (extloadi32 ADDRri:$src)),
722            (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>;
723}
724
725let usesCustomInserter = 1, isCodeGenOnly = 1 in {
726    def MEMCPY : Pseudo<
727      (outs),
728      (ins GPR:$dst, GPR:$src, i64imm:$len, i64imm:$align, variable_ops),
729      "#memcpy dst: $dst, src: $src, len: $len, align: $align",
730      [(BPFmemcpy GPR:$dst, GPR:$src, imm:$len, imm:$align)]>;
731}
732