ARMSubtarget.cpp revision 360784
1//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the ARM specific subclass of TargetSubtargetInfo.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ARM.h"
14
15#include "ARMCallLowering.h"
16#include "ARMLegalizerInfo.h"
17#include "ARMRegisterBankInfo.h"
18#include "ARMSubtarget.h"
19#include "ARMFrameLowering.h"
20#include "ARMInstrInfo.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "MCTargetDesc/ARMMCTargetDesc.h"
24#include "Thumb1FrameLowering.h"
25#include "Thumb1InstrInfo.h"
26#include "Thumb2InstrInfo.h"
27#include "llvm/ADT/StringRef.h"
28#include "llvm/ADT/Triple.h"
29#include "llvm/ADT/Twine.h"
30#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GlobalValue.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include "llvm/MC/MCTargetOptions.h"
36#include "llvm/Support/CodeGen.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/TargetParser.h"
39#include "llvm/Target/TargetOptions.h"
40
41using namespace llvm;
42
43#define DEBUG_TYPE "arm-subtarget"
44
45#define GET_SUBTARGETINFO_TARGET_DESC
46#define GET_SUBTARGETINFO_CTOR
47#include "ARMGenSubtargetInfo.inc"
48
49static cl::opt<bool>
50UseFusedMulOps("arm-use-mulops",
51               cl::init(true), cl::Hidden);
52
53enum ITMode {
54  DefaultIT,
55  RestrictedIT,
56  NoRestrictedIT
57};
58
59static cl::opt<ITMode>
60IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
61   cl::ZeroOrMore,
62   cl::values(clEnumValN(DefaultIT, "arm-default-it",
63                         "Generate IT block based on arch"),
64              clEnumValN(RestrictedIT, "arm-restrict-it",
65                         "Disallow deprecated IT based on ARMv8"),
66              clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
67                         "Allow IT blocks based on ARMv7")));
68
69/// ForceFastISel - Use the fast-isel, even for subtargets where it is not
70/// currently supported (for testing only).
71static cl::opt<bool>
72ForceFastISel("arm-force-fast-isel",
73               cl::init(false), cl::Hidden);
74
75static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness",
76                                          cl::init(false), cl::Hidden);
77
78/// initializeSubtargetDependencies - Initializes using a CPU and feature string
79/// so that we can use initializer lists for subtarget initialization.
80ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
81                                                            StringRef FS) {
82  initializeEnvironment();
83  initSubtargetFeatures(CPU, FS);
84  return *this;
85}
86
87ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
88                                                        StringRef FS) {
89  ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
90  if (STI.isThumb1Only())
91    return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
92
93  return new ARMFrameLowering(STI);
94}
95
96ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
97                           const std::string &FS,
98                           const ARMBaseTargetMachine &TM, bool IsLittle,
99                           bool MinSize)
100    : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps),
101      CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle),
102      TargetTriple(TT), Options(TM.Options), TM(TM),
103      FrameLowering(initializeFrameLowering(CPU, FS)),
104      // At this point initializeSubtargetDependencies has been called so
105      // we can query directly.
106      InstrInfo(isThumb1Only()
107                    ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
108                    : !isThumb()
109                          ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
110                          : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
111      TLInfo(TM, *this) {
112
113  CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
114  Legalizer.reset(new ARMLegalizerInfo(*this));
115
116  auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
117
118  // FIXME: At this point, we can't rely on Subtarget having RBI.
119  // It's awkward to mix passing RBI and the Subtarget; should we pass
120  // TII/TRI as well?
121  InstSelector.reset(createARMInstructionSelector(
122      *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
123
124  RegBankInfo.reset(RBI);
125}
126
127const CallLowering *ARMSubtarget::getCallLowering() const {
128  return CallLoweringInfo.get();
129}
130
131InstructionSelector *ARMSubtarget::getInstructionSelector() const {
132  return InstSelector.get();
133}
134
135const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
136  return Legalizer.get();
137}
138
139const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
140  return RegBankInfo.get();
141}
142
143bool ARMSubtarget::isXRaySupported() const {
144  // We don't currently suppport Thumb, but Windows requires Thumb.
145  return hasV6Ops() && hasARMOps() && !isTargetWindows();
146}
147
148void ARMSubtarget::initializeEnvironment() {
149  // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
150  // directly from it, but we can try to make sure they're consistent when both
151  // available.
152  UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
153               Options.ExceptionModel == ExceptionHandling::None) ||
154              Options.ExceptionModel == ExceptionHandling::SjLj;
155  assert((!TM.getMCAsmInfo() ||
156          (TM.getMCAsmInfo()->getExceptionHandlingType() ==
157           ExceptionHandling::SjLj) == UseSjLjEH) &&
158         "inconsistent sjlj choice between CodeGen and MC");
159}
160
161void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
162  if (CPUString.empty()) {
163    CPUString = "generic";
164
165    if (isTargetDarwin()) {
166      StringRef ArchName = TargetTriple.getArchName();
167      ARM::ArchKind AK = ARM::parseArch(ArchName);
168      if (AK == ARM::ArchKind::ARMV7S)
169        // Default to the Swift CPU when targeting armv7s/thumbv7s.
170        CPUString = "swift";
171      else if (AK == ARM::ArchKind::ARMV7K)
172        // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
173        // ARMv7k does not use SjLj exception handling.
174        CPUString = "cortex-a7";
175    }
176  }
177
178  // Insert the architecture feature derived from the target triple into the
179  // feature string. This is important for setting features that are implied
180  // based on the architecture version.
181  std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
182  if (!FS.empty()) {
183    if (!ArchFS.empty())
184      ArchFS = (Twine(ArchFS) + "," + FS).str();
185    else
186      ArchFS = FS;
187  }
188  ParseSubtargetFeatures(CPUString, ArchFS);
189
190  // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
191  // Assert this for now to make the change obvious.
192  assert(hasV6T2Ops() || !hasThumb2());
193
194  // Execute only support requires movt support
195  if (genExecuteOnly()) {
196    NoMovt = false;
197    assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
198  }
199
200  // Keep a pointer to static instruction cost data for the specified CPU.
201  SchedModel = getSchedModelForCPU(CPUString);
202
203  // Initialize scheduling itinerary for the specified CPU.
204  InstrItins = getInstrItineraryForCPU(CPUString);
205
206  // FIXME: this is invalid for WindowsCE
207  if (isTargetWindows())
208    NoARM = true;
209
210  if (isAAPCS_ABI())
211    stackAlignment = Align(8);
212  if (isTargetNaCl() || isAAPCS16_ABI())
213    stackAlignment = Align(16);
214
215  // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
216  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
217  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
218  // support in the assembler and linker to be used. This would need to be
219  // fixed to fully support tail calls in Thumb1.
220  //
221  // For ARMv8-M, we /do/ implement tail calls.  Doing this is tricky for v8-M
222  // baseline, since the LDM/POP instruction on Thumb doesn't take LR.  This
223  // means if we need to reload LR, it takes extra instructions, which outweighs
224  // the value of the tail call; but here we don't know yet whether LR is going
225  // to be used. We take the optimistic approach of generating the tail call and
226  // perhaps taking a hit if we need to restore the LR.
227
228  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
229  // but we need to make sure there are enough registers; the only valid
230  // registers are the 4 used for parameters.  We don't currently do this
231  // case.
232
233  SupportsTailCall = !isThumb() || hasV8MBaselineOps();
234
235  if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
236    SupportsTailCall = false;
237
238  switch (IT) {
239  case DefaultIT:
240    RestrictIT = hasV8Ops();
241    break;
242  case RestrictedIT:
243    RestrictIT = true;
244    break;
245  case NoRestrictedIT:
246    RestrictIT = false;
247    break;
248  }
249
250  // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
251  const FeatureBitset &Bits = getFeatureBits();
252  if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
253      (Options.UnsafeFPMath || isTargetDarwin()))
254    UseNEONForSinglePrecisionFP = true;
255
256  if (isRWPI())
257    ReserveR9 = true;
258
259  // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
260  if (MVEVectorCostFactor == 0)
261    MVEVectorCostFactor = 2;
262
263  // FIXME: Teach TableGen to deal with these instead of doing it manually here.
264  switch (ARMProcFamily) {
265  case Others:
266  case CortexA5:
267    break;
268  case CortexA7:
269    LdStMultipleTiming = DoubleIssue;
270    break;
271  case CortexA8:
272    LdStMultipleTiming = DoubleIssue;
273    break;
274  case CortexA9:
275    LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
276    PreISelOperandLatencyAdjustment = 1;
277    break;
278  case CortexA12:
279    break;
280  case CortexA15:
281    MaxInterleaveFactor = 2;
282    PreISelOperandLatencyAdjustment = 1;
283    PartialUpdateClearance = 12;
284    break;
285  case CortexA17:
286  case CortexA32:
287  case CortexA35:
288  case CortexA53:
289  case CortexA55:
290  case CortexA57:
291  case CortexA72:
292  case CortexA73:
293  case CortexA75:
294  case CortexA76:
295  case CortexR4:
296  case CortexR4F:
297  case CortexR5:
298  case CortexR7:
299  case CortexM3:
300  case CortexR52:
301    break;
302  case Exynos:
303    LdStMultipleTiming = SingleIssuePlusExtras;
304    MaxInterleaveFactor = 4;
305    if (!isThumb())
306      PrefLoopLogAlignment = 3;
307    break;
308  case Kryo:
309    break;
310  case Krait:
311    PreISelOperandLatencyAdjustment = 1;
312    break;
313  case NeoverseN1:
314    break;
315  case Swift:
316    MaxInterleaveFactor = 2;
317    LdStMultipleTiming = SingleIssuePlusExtras;
318    PreISelOperandLatencyAdjustment = 1;
319    PartialUpdateClearance = 12;
320    break;
321  }
322}
323
324bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
325
326bool ARMSubtarget::isAPCS_ABI() const {
327  assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
328  return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
329}
330bool ARMSubtarget::isAAPCS_ABI() const {
331  assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
332  return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
333         TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
334}
335bool ARMSubtarget::isAAPCS16_ABI() const {
336  assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
337  return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
338}
339
340bool ARMSubtarget::isROPI() const {
341  return TM.getRelocationModel() == Reloc::ROPI ||
342         TM.getRelocationModel() == Reloc::ROPI_RWPI;
343}
344bool ARMSubtarget::isRWPI() const {
345  return TM.getRelocationModel() == Reloc::RWPI ||
346         TM.getRelocationModel() == Reloc::ROPI_RWPI;
347}
348
349bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
350  if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
351    return true;
352
353  // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
354  // the section that is being relocated. This means we have to use o load even
355  // for GVs that are known to be local to the dso.
356  if (isTargetMachO() && TM.isPositionIndependent() &&
357      (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
358    return true;
359
360  return false;
361}
362
363bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
364  return isTargetELF() && TM.isPositionIndependent() &&
365         !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
366}
367
368unsigned ARMSubtarget::getMispredictionPenalty() const {
369  return SchedModel.MispredictPenalty;
370}
371
372bool ARMSubtarget::enableMachineScheduler() const {
373  // The MachineScheduler can increase register usage, so we use more high
374  // registers and end up with more T2 instructions that cannot be converted to
375  // T1 instructions. At least until we do better at converting to thumb1
376  // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
377  // Machine scheduler, relying on the DAG register pressure scheduler instead.
378  if (isMClass() && hasMinSize())
379    return false;
380  // Enable the MachineScheduler before register allocation for subtargets
381  // with the use-misched feature.
382  return useMachineScheduler();
383}
384
385bool ARMSubtarget::enableSubRegLiveness() const { return EnableSubRegLiveness; }
386
387// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
388bool ARMSubtarget::enablePostRAScheduler() const {
389  if (enableMachineScheduler())
390    return false;
391  if (disablePostRAScheduler())
392    return false;
393  // Thumb1 cores will generally not benefit from post-ra scheduling
394  return !isThumb1Only();
395}
396
397bool ARMSubtarget::enablePostRAMachineScheduler() const {
398  if (!enableMachineScheduler())
399    return false;
400  if (disablePostRAScheduler())
401    return false;
402  return !isThumb1Only();
403}
404
405bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
406
407bool ARMSubtarget::useStride4VFPs() const {
408  // For general targets, the prologue can grow when VFPs are allocated with
409  // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
410  // format which it's more important to get right.
411  return isTargetWatchABI() ||
412         (useWideStrideVFP() && !OptMinSize);
413}
414
415bool ARMSubtarget::useMovt() const {
416  // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
417  // immediates as it is inherently position independent, and may be out of
418  // range otherwise.
419  return !NoMovt && hasV8MBaselineOps() &&
420         (isTargetWindows() || !OptMinSize || genExecuteOnly());
421}
422
423bool ARMSubtarget::useFastISel() const {
424  // Enable fast-isel for any target, for testing only.
425  if (ForceFastISel)
426    return true;
427
428  // Limit fast-isel to the targets that are or have been tested.
429  if (!hasV6Ops())
430    return false;
431
432  // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
433  return TM.Options.EnableFastISel &&
434         ((isTargetMachO() && !isThumb1Only()) ||
435          (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
436}
437
438unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
439  // The GPR register class has multiple possible allocation orders, with
440  // tradeoffs preferred by different sub-architectures and optimisation goals.
441  // The allocation orders are:
442  // 0: (the default tablegen order, not used)
443  // 1: r14, r0-r13
444  // 2: r0-r7
445  // 3: r0-r7, r12, lr, r8-r11
446  // Note that the register allocator will change this order so that
447  // callee-saved registers are used later, as they require extra work in the
448  // prologue/epilogue (though we sometimes override that).
449
450  // For thumb1-only targets, only the low registers are allocatable.
451  if (isThumb1Only())
452    return 2;
453
454  // Allocate low registers first, so we can select more 16-bit instructions.
455  // We also (in ignoreCSRForAllocationOrder) override  the default behaviour
456  // with regards to callee-saved registers, because pushing extra registers is
457  // much cheaper (in terms of code size) than using high registers. After
458  // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
459  // can return with the pop, don't need an extra "bx lr") and then the rest of
460  // the high registers.
461  if (isThumb2() && MF.getFunction().hasMinSize())
462    return 3;
463
464  // Otherwise, allocate in the default order, using LR first because saving it
465  // allows a shorter epilogue sequence.
466  return 1;
467}
468
469bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
470                                               unsigned PhysReg) const {
471  // To minimize code size in Thumb2, we prefer the usage of low regs (lower
472  // cost per use) so we can  use narrow encoding. By default, caller-saved
473  // registers (e.g. lr, r12) are always  allocated first, regardless of
474  // their cost per use. When optForMinSize, we prefer the low regs even if
475  // they are CSR because usually push/pop can be folded into existing ones.
476  return isThumb2() && MF.getFunction().hasMinSize() &&
477         ARM::GPRRegClass.contains(PhysReg);
478}
479