ARMISelDAGToDAG.cpp revision 344779
1//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARM.h"
15#include "ARMBaseInstrInfo.h"
16#include "ARMTargetMachine.h"
17#include "MCTargetDesc/ARMAddressingModes.h"
18#include "Utils/ARMBaseInfo.h"
19#include "llvm/ADT/StringSwitch.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SelectionDAGISel.h"
26#include "llvm/CodeGen/TargetLowering.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Target/TargetOptions.h"
37
38using namespace llvm;
39
40#define DEBUG_TYPE "arm-isel"
41
42static cl::opt<bool>
43DisableShifterOp("disable-shifter-op", cl::Hidden,
44  cl::desc("Disable isel of shifter-op"),
45  cl::init(false));
46
47//===--------------------------------------------------------------------===//
48/// ARMDAGToDAGISel - ARM specific code to select ARM machine
49/// instructions for SelectionDAG operations.
50///
51namespace {
52
53class ARMDAGToDAGISel : public SelectionDAGISel {
54  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
55  /// make the right decision when generating code for different targets.
56  const ARMSubtarget *Subtarget;
57
58public:
59  explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel)
60      : SelectionDAGISel(tm, OptLevel) {}
61
62  bool runOnMachineFunction(MachineFunction &MF) override {
63    // Reset the subtarget each time through.
64    Subtarget = &MF.getSubtarget<ARMSubtarget>();
65    SelectionDAGISel::runOnMachineFunction(MF);
66    return true;
67  }
68
69  StringRef getPassName() const override { return "ARM Instruction Selection"; }
70
71  void PreprocessISelDAG() override;
72
73  /// getI32Imm - Return a target constant of type i32 with the specified
74  /// value.
75  inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
76    return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
77  }
78
79  void Select(SDNode *N) override;
80
81  bool hasNoVMLxHazardUse(SDNode *N) const;
82  bool isShifterOpProfitable(const SDValue &Shift,
83                             ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
84  bool SelectRegShifterOperand(SDValue N, SDValue &A,
85                               SDValue &B, SDValue &C,
86                               bool CheckProfitability = true);
87  bool SelectImmShifterOperand(SDValue N, SDValue &A,
88                               SDValue &B, bool CheckProfitability = true);
89  bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
90                                    SDValue &B, SDValue &C) {
91    // Don't apply the profitability check
92    return SelectRegShifterOperand(N, A, B, C, false);
93  }
94  bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
95                                    SDValue &B) {
96    // Don't apply the profitability check
97    return SelectImmShifterOperand(N, A, B, false);
98  }
99
100  bool SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out);
101
102  bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
103  bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
104
105  bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
106    const ConstantSDNode *CN = cast<ConstantSDNode>(N);
107    Pred = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(N), MVT::i32);
108    Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
109    return true;
110  }
111
112  bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
113                             SDValue &Offset, SDValue &Opc);
114  bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
115                             SDValue &Offset, SDValue &Opc);
116  bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
117                             SDValue &Offset, SDValue &Opc);
118  bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
119  bool SelectAddrMode3(SDValue N, SDValue &Base,
120                       SDValue &Offset, SDValue &Opc);
121  bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
122                             SDValue &Offset, SDValue &Opc);
123  bool IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset,
124                         int Lwb, int Upb, bool FP16);
125  bool SelectAddrMode5(SDValue N, SDValue &Base, SDValue &Offset);
126  bool SelectAddrMode5FP16(SDValue N, SDValue &Base, SDValue &Offset);
127  bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
128  bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
129
130  bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
131
132  // Thumb Addressing Modes:
133  bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
134  bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
135                                SDValue &OffImm);
136  bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
137                                 SDValue &OffImm);
138  bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
139                                 SDValue &OffImm);
140  bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
141                                 SDValue &OffImm);
142  bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
143
144  // Thumb 2 Addressing Modes:
145  bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
146  bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
147                            SDValue &OffImm);
148  bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
149                                 SDValue &OffImm);
150  bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
151                             SDValue &OffReg, SDValue &ShImm);
152  bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
153
154  inline bool is_so_imm(unsigned Imm) const {
155    return ARM_AM::getSOImmVal(Imm) != -1;
156  }
157
158  inline bool is_so_imm_not(unsigned Imm) const {
159    return ARM_AM::getSOImmVal(~Imm) != -1;
160  }
161
162  inline bool is_t2_so_imm(unsigned Imm) const {
163    return ARM_AM::getT2SOImmVal(Imm) != -1;
164  }
165
166  inline bool is_t2_so_imm_not(unsigned Imm) const {
167    return ARM_AM::getT2SOImmVal(~Imm) != -1;
168  }
169
170  // Include the pieces autogenerated from the target description.
171#include "ARMGenDAGISel.inc"
172
173private:
174  void transferMemOperands(SDNode *Src, SDNode *Dst);
175
176  /// Indexed (pre/post inc/dec) load matching code for ARM.
177  bool tryARMIndexedLoad(SDNode *N);
178  bool tryT1IndexedLoad(SDNode *N);
179  bool tryT2IndexedLoad(SDNode *N);
180
181  /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
182  /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
183  /// loads of D registers and even subregs and odd subregs of Q registers.
184  /// For NumVecs <= 2, QOpcodes1 is not used.
185  void SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
186                 const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
187                 const uint16_t *QOpcodes1);
188
189  /// SelectVST - Select NEON store intrinsics.  NumVecs should
190  /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
191  /// stores of D registers and even subregs and odd subregs of Q registers.
192  /// For NumVecs <= 2, QOpcodes1 is not used.
193  void SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
194                 const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
195                 const uint16_t *QOpcodes1);
196
197  /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
198  /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
199  /// load/store of D registers and Q registers.
200  void SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
201                       unsigned NumVecs, const uint16_t *DOpcodes,
202                       const uint16_t *QOpcodes);
203
204  /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
205  /// should be 1, 2, 3 or 4.  The opcode array specifies the instructions used
206  /// for loading D registers.
207  void SelectVLDDup(SDNode *N, bool IsIntrinsic, bool isUpdating,
208                    unsigned NumVecs, const uint16_t *DOpcodes,
209                    const uint16_t *QOpcodes0 = nullptr,
210                    const uint16_t *QOpcodes1 = nullptr);
211
212  /// Try to select SBFX/UBFX instructions for ARM.
213  bool tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
214
215  // Select special operations if node forms integer ABS pattern
216  bool tryABSOp(SDNode *N);
217
218  bool tryReadRegister(SDNode *N);
219  bool tryWriteRegister(SDNode *N);
220
221  bool tryInlineAsm(SDNode *N);
222
223  void SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI);
224
225  void SelectCMP_SWAP(SDNode *N);
226
227  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
228  /// inline asm expressions.
229  bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
230                                    std::vector<SDValue> &OutOps) override;
231
232  // Form pairs of consecutive R, S, D, or Q registers.
233  SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
234  SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
235  SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
236  SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
237
238  // Form sequences of 4 consecutive S, D, or Q registers.
239  SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
240  SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
241  SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
242
243  // Get the alignment operand for a NEON VLD or VST instruction.
244  SDValue GetVLDSTAlign(SDValue Align, const SDLoc &dl, unsigned NumVecs,
245                        bool is64BitVector);
246
247  /// Returns the number of instructions required to materialize the given
248  /// constant in a register, or 3 if a literal pool load is needed.
249  unsigned ConstantMaterializationCost(unsigned Val) const;
250
251  /// Checks if N is a multiplication by a constant where we can extract out a
252  /// power of two from the constant so that it can be used in a shift, but only
253  /// if it simplifies the materialization of the constant. Returns true if it
254  /// is, and assigns to PowerOfTwo the power of two that should be extracted
255  /// out and to NewMulConst the new constant to be multiplied by.
256  bool canExtractShiftFromMul(const SDValue &N, unsigned MaxShift,
257                              unsigned &PowerOfTwo, SDValue &NewMulConst) const;
258
259  /// Replace N with M in CurDAG, in a way that also ensures that M gets
260  /// selected when N would have been selected.
261  void replaceDAGValue(const SDValue &N, SDValue M);
262};
263}
264
265/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
266/// operand. If so Imm will receive the 32-bit value.
267static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
268  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
269    Imm = cast<ConstantSDNode>(N)->getZExtValue();
270    return true;
271  }
272  return false;
273}
274
275// isInt32Immediate - This method tests to see if a constant operand.
276// If so Imm will receive the 32 bit value.
277static bool isInt32Immediate(SDValue N, unsigned &Imm) {
278  return isInt32Immediate(N.getNode(), Imm);
279}
280
281// isOpcWithIntImmediate - This method tests to see if the node is a specific
282// opcode and that it has a immediate integer right operand.
283// If so Imm will receive the 32 bit value.
284static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
285  return N->getOpcode() == Opc &&
286         isInt32Immediate(N->getOperand(1).getNode(), Imm);
287}
288
289/// Check whether a particular node is a constant value representable as
290/// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
291///
292/// \param ScaledConstant [out] - On success, the pre-scaled constant value.
293static bool isScaledConstantInRange(SDValue Node, int Scale,
294                                    int RangeMin, int RangeMax,
295                                    int &ScaledConstant) {
296  assert(Scale > 0 && "Invalid scale!");
297
298  // Check that this is a constant.
299  const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
300  if (!C)
301    return false;
302
303  ScaledConstant = (int) C->getZExtValue();
304  if ((ScaledConstant % Scale) != 0)
305    return false;
306
307  ScaledConstant /= Scale;
308  return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
309}
310
311void ARMDAGToDAGISel::PreprocessISelDAG() {
312  if (!Subtarget->hasV6T2Ops())
313    return;
314
315  bool isThumb2 = Subtarget->isThumb();
316  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
317       E = CurDAG->allnodes_end(); I != E; ) {
318    SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
319
320    if (N->getOpcode() != ISD::ADD)
321      continue;
322
323    // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
324    // leading zeros, followed by consecutive set bits, followed by 1 or 2
325    // trailing zeros, e.g. 1020.
326    // Transform the expression to
327    // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
328    // of trailing zeros of c2. The left shift would be folded as an shifter
329    // operand of 'add' and the 'and' and 'srl' would become a bits extraction
330    // node (UBFX).
331
332    SDValue N0 = N->getOperand(0);
333    SDValue N1 = N->getOperand(1);
334    unsigned And_imm = 0;
335    if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
336      if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
337        std::swap(N0, N1);
338    }
339    if (!And_imm)
340      continue;
341
342    // Check if the AND mask is an immediate of the form: 000.....1111111100
343    unsigned TZ = countTrailingZeros(And_imm);
344    if (TZ != 1 && TZ != 2)
345      // Be conservative here. Shifter operands aren't always free. e.g. On
346      // Swift, left shifter operand of 1 / 2 for free but others are not.
347      // e.g.
348      //  ubfx   r3, r1, #16, #8
349      //  ldr.w  r3, [r0, r3, lsl #2]
350      // vs.
351      //  mov.w  r9, #1020
352      //  and.w  r2, r9, r1, lsr #14
353      //  ldr    r2, [r0, r2]
354      continue;
355    And_imm >>= TZ;
356    if (And_imm & (And_imm + 1))
357      continue;
358
359    // Look for (and (srl X, c1), c2).
360    SDValue Srl = N1.getOperand(0);
361    unsigned Srl_imm = 0;
362    if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
363        (Srl_imm <= 2))
364      continue;
365
366    // Make sure first operand is not a shifter operand which would prevent
367    // folding of the left shift.
368    SDValue CPTmp0;
369    SDValue CPTmp1;
370    SDValue CPTmp2;
371    if (isThumb2) {
372      if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1))
373        continue;
374    } else {
375      if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
376          SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
377        continue;
378    }
379
380    // Now make the transformation.
381    Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
382                          Srl.getOperand(0),
383                          CurDAG->getConstant(Srl_imm + TZ, SDLoc(Srl),
384                                              MVT::i32));
385    N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
386                         Srl,
387                         CurDAG->getConstant(And_imm, SDLoc(Srl), MVT::i32));
388    N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
389                         N1, CurDAG->getConstant(TZ, SDLoc(Srl), MVT::i32));
390    CurDAG->UpdateNodeOperands(N, N0, N1);
391  }
392}
393
394/// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
395/// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
396/// least on current ARM implementations) which should be avoidded.
397bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
398  if (OptLevel == CodeGenOpt::None)
399    return true;
400
401  if (!Subtarget->hasVMLxHazards())
402    return true;
403
404  if (!N->hasOneUse())
405    return false;
406
407  SDNode *Use = *N->use_begin();
408  if (Use->getOpcode() == ISD::CopyToReg)
409    return true;
410  if (Use->isMachineOpcode()) {
411    const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
412        CurDAG->getSubtarget().getInstrInfo());
413
414    const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
415    if (MCID.mayStore())
416      return true;
417    unsigned Opcode = MCID.getOpcode();
418    if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
419      return true;
420    // vmlx feeding into another vmlx. We actually want to unfold
421    // the use later in the MLxExpansion pass. e.g.
422    // vmla
423    // vmla (stall 8 cycles)
424    //
425    // vmul (5 cycles)
426    // vadd (5 cycles)
427    // vmla
428    // This adds up to about 18 - 19 cycles.
429    //
430    // vmla
431    // vmul (stall 4 cycles)
432    // vadd adds up to about 14 cycles.
433    return TII->isFpMLxInstruction(Opcode);
434  }
435
436  return false;
437}
438
439bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
440                                            ARM_AM::ShiftOpc ShOpcVal,
441                                            unsigned ShAmt) {
442  if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
443    return true;
444  if (Shift.hasOneUse())
445    return true;
446  // R << 2 is free.
447  return ShOpcVal == ARM_AM::lsl &&
448         (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
449}
450
451unsigned ARMDAGToDAGISel::ConstantMaterializationCost(unsigned Val) const {
452  if (Subtarget->isThumb()) {
453    if (Val <= 255) return 1;                               // MOV
454    if (Subtarget->hasV6T2Ops() &&
455        (Val <= 0xffff || ARM_AM::getT2SOImmValSplatVal(Val) != -1))
456      return 1; // MOVW
457    if (Val <= 510) return 2;                               // MOV + ADDi8
458    if (~Val <= 255) return 2;                              // MOV + MVN
459    if (ARM_AM::isThumbImmShiftedVal(Val)) return 2;        // MOV + LSL
460  } else {
461    if (ARM_AM::getSOImmVal(Val) != -1) return 1;           // MOV
462    if (ARM_AM::getSOImmVal(~Val) != -1) return 1;          // MVN
463    if (Subtarget->hasV6T2Ops() && Val <= 0xffff) return 1; // MOVW
464    if (ARM_AM::isSOImmTwoPartVal(Val)) return 2;           // two instrs
465  }
466  if (Subtarget->useMovt(*MF)) return 2; // MOVW + MOVT
467  return 3; // Literal pool load
468}
469
470bool ARMDAGToDAGISel::canExtractShiftFromMul(const SDValue &N,
471                                             unsigned MaxShift,
472                                             unsigned &PowerOfTwo,
473                                             SDValue &NewMulConst) const {
474  assert(N.getOpcode() == ISD::MUL);
475  assert(MaxShift > 0);
476
477  // If the multiply is used in more than one place then changing the constant
478  // will make other uses incorrect, so don't.
479  if (!N.hasOneUse()) return false;
480  // Check if the multiply is by a constant
481  ConstantSDNode *MulConst = dyn_cast<ConstantSDNode>(N.getOperand(1));
482  if (!MulConst) return false;
483  // If the constant is used in more than one place then modifying it will mean
484  // we need to materialize two constants instead of one, which is a bad idea.
485  if (!MulConst->hasOneUse()) return false;
486  unsigned MulConstVal = MulConst->getZExtValue();
487  if (MulConstVal == 0) return false;
488
489  // Find the largest power of 2 that MulConstVal is a multiple of
490  PowerOfTwo = MaxShift;
491  while ((MulConstVal % (1 << PowerOfTwo)) != 0) {
492    --PowerOfTwo;
493    if (PowerOfTwo == 0) return false;
494  }
495
496  // Only optimise if the new cost is better
497  unsigned NewMulConstVal = MulConstVal / (1 << PowerOfTwo);
498  NewMulConst = CurDAG->getConstant(NewMulConstVal, SDLoc(N), MVT::i32);
499  unsigned OldCost = ConstantMaterializationCost(MulConstVal);
500  unsigned NewCost = ConstantMaterializationCost(NewMulConstVal);
501  return NewCost < OldCost;
502}
503
504void ARMDAGToDAGISel::replaceDAGValue(const SDValue &N, SDValue M) {
505  CurDAG->RepositionNode(N.getNode()->getIterator(), M.getNode());
506  ReplaceUses(N, M);
507}
508
509bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
510                                              SDValue &BaseReg,
511                                              SDValue &Opc,
512                                              bool CheckProfitability) {
513  if (DisableShifterOp)
514    return false;
515
516  // If N is a multiply-by-constant and it's profitable to extract a shift and
517  // use it in a shifted operand do so.
518  if (N.getOpcode() == ISD::MUL) {
519    unsigned PowerOfTwo = 0;
520    SDValue NewMulConst;
521    if (canExtractShiftFromMul(N, 31, PowerOfTwo, NewMulConst)) {
522      HandleSDNode Handle(N);
523      SDLoc Loc(N);
524      replaceDAGValue(N.getOperand(1), NewMulConst);
525      BaseReg = Handle.getValue();
526      Opc = CurDAG->getTargetConstant(
527          ARM_AM::getSORegOpc(ARM_AM::lsl, PowerOfTwo), Loc, MVT::i32);
528      return true;
529    }
530  }
531
532  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
533
534  // Don't match base register only case. That is matched to a separate
535  // lower complexity pattern with explicit register operand.
536  if (ShOpcVal == ARM_AM::no_shift) return false;
537
538  BaseReg = N.getOperand(0);
539  unsigned ShImmVal = 0;
540  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
541  if (!RHS) return false;
542  ShImmVal = RHS->getZExtValue() & 31;
543  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
544                                  SDLoc(N), MVT::i32);
545  return true;
546}
547
548bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
549                                              SDValue &BaseReg,
550                                              SDValue &ShReg,
551                                              SDValue &Opc,
552                                              bool CheckProfitability) {
553  if (DisableShifterOp)
554    return false;
555
556  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
557
558  // Don't match base register only case. That is matched to a separate
559  // lower complexity pattern with explicit register operand.
560  if (ShOpcVal == ARM_AM::no_shift) return false;
561
562  BaseReg = N.getOperand(0);
563  unsigned ShImmVal = 0;
564  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
565  if (RHS) return false;
566
567  ShReg = N.getOperand(1);
568  if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
569    return false;
570  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
571                                  SDLoc(N), MVT::i32);
572  return true;
573}
574
575// Determine whether an ISD::OR's operands are suitable to turn the operation
576// into an addition, which often has more compact encodings.
577bool ARMDAGToDAGISel::SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out) {
578  assert(Parent->getOpcode() == ISD::OR && "unexpected parent");
579  Out = N;
580  return CurDAG->haveNoCommonBitsSet(N, Parent->getOperand(1));
581}
582
583
584bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
585                                          SDValue &Base,
586                                          SDValue &OffImm) {
587  // Match simple R + imm12 operands.
588
589  // Base only.
590  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
591      !CurDAG->isBaseWithConstantOffset(N)) {
592    if (N.getOpcode() == ISD::FrameIndex) {
593      // Match frame index.
594      int FI = cast<FrameIndexSDNode>(N)->getIndex();
595      Base = CurDAG->getTargetFrameIndex(
596          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
597      OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
598      return true;
599    }
600
601    if (N.getOpcode() == ARMISD::Wrapper &&
602        N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
603        N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
604        N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
605      Base = N.getOperand(0);
606    } else
607      Base = N;
608    OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
609    return true;
610  }
611
612  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
613    int RHSC = (int)RHS->getSExtValue();
614    if (N.getOpcode() == ISD::SUB)
615      RHSC = -RHSC;
616
617    if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits
618      Base   = N.getOperand(0);
619      if (Base.getOpcode() == ISD::FrameIndex) {
620        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
621        Base = CurDAG->getTargetFrameIndex(
622            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
623      }
624      OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
625      return true;
626    }
627  }
628
629  // Base only.
630  Base = N;
631  OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
632  return true;
633}
634
635
636
637bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
638                                      SDValue &Opc) {
639  if (N.getOpcode() == ISD::MUL &&
640      ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
641    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
642      // X * [3,5,9] -> X + X * [2,4,8] etc.
643      int RHSC = (int)RHS->getZExtValue();
644      if (RHSC & 1) {
645        RHSC = RHSC & ~1;
646        ARM_AM::AddrOpc AddSub = ARM_AM::add;
647        if (RHSC < 0) {
648          AddSub = ARM_AM::sub;
649          RHSC = - RHSC;
650        }
651        if (isPowerOf2_32(RHSC)) {
652          unsigned ShAmt = Log2_32(RHSC);
653          Base = Offset = N.getOperand(0);
654          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
655                                                            ARM_AM::lsl),
656                                          SDLoc(N), MVT::i32);
657          return true;
658        }
659      }
660    }
661  }
662
663  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
664      // ISD::OR that is equivalent to an ISD::ADD.
665      !CurDAG->isBaseWithConstantOffset(N))
666    return false;
667
668  // Leave simple R +/- imm12 operands for LDRi12
669  if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
670    int RHSC;
671    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
672                                -0x1000+1, 0x1000, RHSC)) // 12 bits.
673      return false;
674  }
675
676  // Otherwise this is R +/- [possibly shifted] R.
677  ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
678  ARM_AM::ShiftOpc ShOpcVal =
679    ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
680  unsigned ShAmt = 0;
681
682  Base   = N.getOperand(0);
683  Offset = N.getOperand(1);
684
685  if (ShOpcVal != ARM_AM::no_shift) {
686    // Check to see if the RHS of the shift is a constant, if not, we can't fold
687    // it.
688    if (ConstantSDNode *Sh =
689           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
690      ShAmt = Sh->getZExtValue();
691      if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
692        Offset = N.getOperand(1).getOperand(0);
693      else {
694        ShAmt = 0;
695        ShOpcVal = ARM_AM::no_shift;
696      }
697    } else {
698      ShOpcVal = ARM_AM::no_shift;
699    }
700  }
701
702  // Try matching (R shl C) + (R).
703  if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
704      !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
705        N.getOperand(0).hasOneUse())) {
706    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
707    if (ShOpcVal != ARM_AM::no_shift) {
708      // Check to see if the RHS of the shift is a constant, if not, we can't
709      // fold it.
710      if (ConstantSDNode *Sh =
711          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
712        ShAmt = Sh->getZExtValue();
713        if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
714          Offset = N.getOperand(0).getOperand(0);
715          Base = N.getOperand(1);
716        } else {
717          ShAmt = 0;
718          ShOpcVal = ARM_AM::no_shift;
719        }
720      } else {
721        ShOpcVal = ARM_AM::no_shift;
722      }
723    }
724  }
725
726  // If Offset is a multiply-by-constant and it's profitable to extract a shift
727  // and use it in a shifted operand do so.
728  if (Offset.getOpcode() == ISD::MUL && N.hasOneUse()) {
729    unsigned PowerOfTwo = 0;
730    SDValue NewMulConst;
731    if (canExtractShiftFromMul(Offset, 31, PowerOfTwo, NewMulConst)) {
732      HandleSDNode Handle(Offset);
733      replaceDAGValue(Offset.getOperand(1), NewMulConst);
734      Offset = Handle.getValue();
735      ShAmt = PowerOfTwo;
736      ShOpcVal = ARM_AM::lsl;
737    }
738  }
739
740  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
741                                  SDLoc(N), MVT::i32);
742  return true;
743}
744
745bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
746                                            SDValue &Offset, SDValue &Opc) {
747  unsigned Opcode = Op->getOpcode();
748  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
749    ? cast<LoadSDNode>(Op)->getAddressingMode()
750    : cast<StoreSDNode>(Op)->getAddressingMode();
751  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
752    ? ARM_AM::add : ARM_AM::sub;
753  int Val;
754  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
755    return false;
756
757  Offset = N;
758  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
759  unsigned ShAmt = 0;
760  if (ShOpcVal != ARM_AM::no_shift) {
761    // Check to see if the RHS of the shift is a constant, if not, we can't fold
762    // it.
763    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
764      ShAmt = Sh->getZExtValue();
765      if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
766        Offset = N.getOperand(0);
767      else {
768        ShAmt = 0;
769        ShOpcVal = ARM_AM::no_shift;
770      }
771    } else {
772      ShOpcVal = ARM_AM::no_shift;
773    }
774  }
775
776  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
777                                  SDLoc(N), MVT::i32);
778  return true;
779}
780
781bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
782                                            SDValue &Offset, SDValue &Opc) {
783  unsigned Opcode = Op->getOpcode();
784  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
785    ? cast<LoadSDNode>(Op)->getAddressingMode()
786    : cast<StoreSDNode>(Op)->getAddressingMode();
787  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
788    ? ARM_AM::add : ARM_AM::sub;
789  int Val;
790  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
791    if (AddSub == ARM_AM::sub) Val *= -1;
792    Offset = CurDAG->getRegister(0, MVT::i32);
793    Opc = CurDAG->getTargetConstant(Val, SDLoc(Op), MVT::i32);
794    return true;
795  }
796
797  return false;
798}
799
800
801bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
802                                            SDValue &Offset, SDValue &Opc) {
803  unsigned Opcode = Op->getOpcode();
804  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
805    ? cast<LoadSDNode>(Op)->getAddressingMode()
806    : cast<StoreSDNode>(Op)->getAddressingMode();
807  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
808    ? ARM_AM::add : ARM_AM::sub;
809  int Val;
810  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
811    Offset = CurDAG->getRegister(0, MVT::i32);
812    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
813                                                      ARM_AM::no_shift),
814                                    SDLoc(Op), MVT::i32);
815    return true;
816  }
817
818  return false;
819}
820
821bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
822  Base = N;
823  return true;
824}
825
826bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
827                                      SDValue &Base, SDValue &Offset,
828                                      SDValue &Opc) {
829  if (N.getOpcode() == ISD::SUB) {
830    // X - C  is canonicalize to X + -C, no need to handle it here.
831    Base = N.getOperand(0);
832    Offset = N.getOperand(1);
833    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0), SDLoc(N),
834                                    MVT::i32);
835    return true;
836  }
837
838  if (!CurDAG->isBaseWithConstantOffset(N)) {
839    Base = N;
840    if (N.getOpcode() == ISD::FrameIndex) {
841      int FI = cast<FrameIndexSDNode>(N)->getIndex();
842      Base = CurDAG->getTargetFrameIndex(
843          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
844    }
845    Offset = CurDAG->getRegister(0, MVT::i32);
846    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
847                                    MVT::i32);
848    return true;
849  }
850
851  // If the RHS is +/- imm8, fold into addr mode.
852  int RHSC;
853  if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
854                              -256 + 1, 256, RHSC)) { // 8 bits.
855    Base = N.getOperand(0);
856    if (Base.getOpcode() == ISD::FrameIndex) {
857      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
858      Base = CurDAG->getTargetFrameIndex(
859          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
860    }
861    Offset = CurDAG->getRegister(0, MVT::i32);
862
863    ARM_AM::AddrOpc AddSub = ARM_AM::add;
864    if (RHSC < 0) {
865      AddSub = ARM_AM::sub;
866      RHSC = -RHSC;
867    }
868    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC), SDLoc(N),
869                                    MVT::i32);
870    return true;
871  }
872
873  Base = N.getOperand(0);
874  Offset = N.getOperand(1);
875  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
876                                  MVT::i32);
877  return true;
878}
879
880bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
881                                            SDValue &Offset, SDValue &Opc) {
882  unsigned Opcode = Op->getOpcode();
883  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
884    ? cast<LoadSDNode>(Op)->getAddressingMode()
885    : cast<StoreSDNode>(Op)->getAddressingMode();
886  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
887    ? ARM_AM::add : ARM_AM::sub;
888  int Val;
889  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
890    Offset = CurDAG->getRegister(0, MVT::i32);
891    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), SDLoc(Op),
892                                    MVT::i32);
893    return true;
894  }
895
896  Offset = N;
897  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), SDLoc(Op),
898                                  MVT::i32);
899  return true;
900}
901
902bool ARMDAGToDAGISel::IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset,
903                                        int Lwb, int Upb, bool FP16) {
904  if (!CurDAG->isBaseWithConstantOffset(N)) {
905    Base = N;
906    if (N.getOpcode() == ISD::FrameIndex) {
907      int FI = cast<FrameIndexSDNode>(N)->getIndex();
908      Base = CurDAG->getTargetFrameIndex(
909          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
910    } else if (N.getOpcode() == ARMISD::Wrapper &&
911               N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
912               N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
913               N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
914      Base = N.getOperand(0);
915    }
916    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
917                                       SDLoc(N), MVT::i32);
918    return true;
919  }
920
921  // If the RHS is +/- imm8, fold into addr mode.
922  int RHSC;
923  const int Scale = FP16 ? 2 : 4;
924
925  if (isScaledConstantInRange(N.getOperand(1), Scale, Lwb, Upb, RHSC)) {
926    Base = N.getOperand(0);
927    if (Base.getOpcode() == ISD::FrameIndex) {
928      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
929      Base = CurDAG->getTargetFrameIndex(
930          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
931    }
932
933    ARM_AM::AddrOpc AddSub = ARM_AM::add;
934    if (RHSC < 0) {
935      AddSub = ARM_AM::sub;
936      RHSC = -RHSC;
937    }
938
939    if (FP16)
940      Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(AddSub, RHSC),
941                                         SDLoc(N), MVT::i32);
942    else
943      Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
944                                         SDLoc(N), MVT::i32);
945
946    return true;
947  }
948
949  Base = N;
950
951  if (FP16)
952    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(ARM_AM::add, 0),
953                                       SDLoc(N), MVT::i32);
954  else
955    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
956                                       SDLoc(N), MVT::i32);
957
958  return true;
959}
960
961bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
962                                      SDValue &Base, SDValue &Offset) {
963  int Lwb = -256 + 1;
964  int Upb = 256;
965  return IsAddressingMode5(N, Base, Offset, Lwb, Upb, /*FP16=*/ false);
966}
967
968bool ARMDAGToDAGISel::SelectAddrMode5FP16(SDValue N,
969                                          SDValue &Base, SDValue &Offset) {
970  int Lwb = -512 + 1;
971  int Upb = 512;
972  return IsAddressingMode5(N, Base, Offset, Lwb, Upb, /*FP16=*/ true);
973}
974
975bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
976                                      SDValue &Align) {
977  Addr = N;
978
979  unsigned Alignment = 0;
980
981  MemSDNode *MemN = cast<MemSDNode>(Parent);
982
983  if (isa<LSBaseSDNode>(MemN) ||
984      ((MemN->getOpcode() == ARMISD::VST1_UPD ||
985        MemN->getOpcode() == ARMISD::VLD1_UPD) &&
986       MemN->getConstantOperandVal(MemN->getNumOperands() - 1) == 1)) {
987    // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
988    // The maximum alignment is equal to the memory size being referenced.
989    unsigned MMOAlign = MemN->getAlignment();
990    unsigned MemSize = MemN->getMemoryVT().getSizeInBits() / 8;
991    if (MMOAlign >= MemSize && MemSize > 1)
992      Alignment = MemSize;
993  } else {
994    // All other uses of addrmode6 are for intrinsics.  For now just record
995    // the raw alignment value; it will be refined later based on the legal
996    // alignment operands for the intrinsic.
997    Alignment = MemN->getAlignment();
998  }
999
1000  Align = CurDAG->getTargetConstant(Alignment, SDLoc(N), MVT::i32);
1001  return true;
1002}
1003
1004bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
1005                                            SDValue &Offset) {
1006  LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
1007  ISD::MemIndexedMode AM = LdSt->getAddressingMode();
1008  if (AM != ISD::POST_INC)
1009    return false;
1010  Offset = N;
1011  if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
1012    if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
1013      Offset = CurDAG->getRegister(0, MVT::i32);
1014  }
1015  return true;
1016}
1017
1018bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
1019                                       SDValue &Offset, SDValue &Label) {
1020  if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
1021    Offset = N.getOperand(0);
1022    SDValue N1 = N.getOperand(1);
1023    Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
1024                                      SDLoc(N), MVT::i32);
1025    return true;
1026  }
1027
1028  return false;
1029}
1030
1031
1032//===----------------------------------------------------------------------===//
1033//                         Thumb Addressing Modes
1034//===----------------------------------------------------------------------===//
1035
1036bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
1037                                            SDValue &Base, SDValue &Offset){
1038  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
1039    ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
1040    if (!NC || !NC->isNullValue())
1041      return false;
1042
1043    Base = Offset = N;
1044    return true;
1045  }
1046
1047  Base = N.getOperand(0);
1048  Offset = N.getOperand(1);
1049  return true;
1050}
1051
1052bool
1053ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
1054                                          SDValue &Base, SDValue &OffImm) {
1055  if (!CurDAG->isBaseWithConstantOffset(N)) {
1056    if (N.getOpcode() == ISD::ADD) {
1057      return false; // We want to select register offset instead
1058    } else if (N.getOpcode() == ARMISD::Wrapper &&
1059        N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
1060        N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
1061        N.getOperand(0).getOpcode() != ISD::TargetConstantPool &&
1062        N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
1063      Base = N.getOperand(0);
1064    } else {
1065      Base = N;
1066    }
1067
1068    OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1069    return true;
1070  }
1071
1072  // If the RHS is + imm5 * scale, fold into addr mode.
1073  int RHSC;
1074  if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
1075    Base = N.getOperand(0);
1076    OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1077    return true;
1078  }
1079
1080  // Offset is too large, so use register offset instead.
1081  return false;
1082}
1083
1084bool
1085ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
1086                                           SDValue &OffImm) {
1087  return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
1088}
1089
1090bool
1091ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
1092                                           SDValue &OffImm) {
1093  return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
1094}
1095
1096bool
1097ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
1098                                           SDValue &OffImm) {
1099  return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
1100}
1101
1102bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
1103                                            SDValue &Base, SDValue &OffImm) {
1104  if (N.getOpcode() == ISD::FrameIndex) {
1105    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1106    // Only multiples of 4 are allowed for the offset, so the frame object
1107    // alignment must be at least 4.
1108    MachineFrameInfo &MFI = MF->getFrameInfo();
1109    if (MFI.getObjectAlignment(FI) < 4)
1110      MFI.setObjectAlignment(FI, 4);
1111    Base = CurDAG->getTargetFrameIndex(
1112        FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1113    OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1114    return true;
1115  }
1116
1117  if (!CurDAG->isBaseWithConstantOffset(N))
1118    return false;
1119
1120  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1121  if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
1122      (LHSR && LHSR->getReg() == ARM::SP)) {
1123    // If the RHS is + imm8 * scale, fold into addr mode.
1124    int RHSC;
1125    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
1126      Base = N.getOperand(0);
1127      if (Base.getOpcode() == ISD::FrameIndex) {
1128        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1129        // For LHS+RHS to result in an offset that's a multiple of 4 the object
1130        // indexed by the LHS must be 4-byte aligned.
1131        MachineFrameInfo &MFI = MF->getFrameInfo();
1132        if (MFI.getObjectAlignment(FI) < 4)
1133          MFI.setObjectAlignment(FI, 4);
1134        Base = CurDAG->getTargetFrameIndex(
1135            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1136      }
1137      OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1138      return true;
1139    }
1140  }
1141
1142  return false;
1143}
1144
1145
1146//===----------------------------------------------------------------------===//
1147//                        Thumb 2 Addressing Modes
1148//===----------------------------------------------------------------------===//
1149
1150
1151bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
1152                                            SDValue &Base, SDValue &OffImm) {
1153  // Match simple R + imm12 operands.
1154
1155  // Base only.
1156  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1157      !CurDAG->isBaseWithConstantOffset(N)) {
1158    if (N.getOpcode() == ISD::FrameIndex) {
1159      // Match frame index.
1160      int FI = cast<FrameIndexSDNode>(N)->getIndex();
1161      Base = CurDAG->getTargetFrameIndex(
1162          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1163      OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1164      return true;
1165    }
1166
1167    if (N.getOpcode() == ARMISD::Wrapper &&
1168        N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
1169        N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
1170        N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
1171      Base = N.getOperand(0);
1172      if (Base.getOpcode() == ISD::TargetConstantPool)
1173        return false;  // We want to select t2LDRpci instead.
1174    } else
1175      Base = N;
1176    OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1177    return true;
1178  }
1179
1180  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1181    if (SelectT2AddrModeImm8(N, Base, OffImm))
1182      // Let t2LDRi8 handle (R - imm8).
1183      return false;
1184
1185    int RHSC = (int)RHS->getZExtValue();
1186    if (N.getOpcode() == ISD::SUB)
1187      RHSC = -RHSC;
1188
1189    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
1190      Base   = N.getOperand(0);
1191      if (Base.getOpcode() == ISD::FrameIndex) {
1192        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1193        Base = CurDAG->getTargetFrameIndex(
1194            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1195      }
1196      OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1197      return true;
1198    }
1199  }
1200
1201  // Base only.
1202  Base = N;
1203  OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1204  return true;
1205}
1206
1207bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
1208                                           SDValue &Base, SDValue &OffImm) {
1209  // Match simple R - imm8 operands.
1210  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1211      !CurDAG->isBaseWithConstantOffset(N))
1212    return false;
1213
1214  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1215    int RHSC = (int)RHS->getSExtValue();
1216    if (N.getOpcode() == ISD::SUB)
1217      RHSC = -RHSC;
1218
1219    if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
1220      Base = N.getOperand(0);
1221      if (Base.getOpcode() == ISD::FrameIndex) {
1222        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1223        Base = CurDAG->getTargetFrameIndex(
1224            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1225      }
1226      OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1227      return true;
1228    }
1229  }
1230
1231  return false;
1232}
1233
1234bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
1235                                                 SDValue &OffImm){
1236  unsigned Opcode = Op->getOpcode();
1237  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1238    ? cast<LoadSDNode>(Op)->getAddressingMode()
1239    : cast<StoreSDNode>(Op)->getAddressingMode();
1240  int RHSC;
1241  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
1242    OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1243      ? CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32)
1244      : CurDAG->getTargetConstant(-RHSC, SDLoc(N), MVT::i32);
1245    return true;
1246  }
1247
1248  return false;
1249}
1250
1251bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
1252                                            SDValue &Base,
1253                                            SDValue &OffReg, SDValue &ShImm) {
1254  // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1255  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
1256    return false;
1257
1258  // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1259  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1260    int RHSC = (int)RHS->getZExtValue();
1261    if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
1262      return false;
1263    else if (RHSC < 0 && RHSC >= -255) // 8 bits
1264      return false;
1265  }
1266
1267  // Look for (R + R) or (R + (R << [1,2,3])).
1268  unsigned ShAmt = 0;
1269  Base   = N.getOperand(0);
1270  OffReg = N.getOperand(1);
1271
1272  // Swap if it is ((R << c) + R).
1273  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
1274  if (ShOpcVal != ARM_AM::lsl) {
1275    ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
1276    if (ShOpcVal == ARM_AM::lsl)
1277      std::swap(Base, OffReg);
1278  }
1279
1280  if (ShOpcVal == ARM_AM::lsl) {
1281    // Check to see if the RHS of the shift is a constant, if not, we can't fold
1282    // it.
1283    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
1284      ShAmt = Sh->getZExtValue();
1285      if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
1286        OffReg = OffReg.getOperand(0);
1287      else {
1288        ShAmt = 0;
1289      }
1290    }
1291  }
1292
1293  // If OffReg is a multiply-by-constant and it's profitable to extract a shift
1294  // and use it in a shifted operand do so.
1295  if (OffReg.getOpcode() == ISD::MUL && N.hasOneUse()) {
1296    unsigned PowerOfTwo = 0;
1297    SDValue NewMulConst;
1298    if (canExtractShiftFromMul(OffReg, 3, PowerOfTwo, NewMulConst)) {
1299      HandleSDNode Handle(OffReg);
1300      replaceDAGValue(OffReg.getOperand(1), NewMulConst);
1301      OffReg = Handle.getValue();
1302      ShAmt = PowerOfTwo;
1303    }
1304  }
1305
1306  ShImm = CurDAG->getTargetConstant(ShAmt, SDLoc(N), MVT::i32);
1307
1308  return true;
1309}
1310
1311bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
1312                                                SDValue &OffImm) {
1313  // This *must* succeed since it's used for the irreplaceable ldrex and strex
1314  // instructions.
1315  Base = N;
1316  OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1317
1318  if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
1319    return true;
1320
1321  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1322  if (!RHS)
1323    return true;
1324
1325  uint32_t RHSC = (int)RHS->getZExtValue();
1326  if (RHSC > 1020 || RHSC % 4 != 0)
1327    return true;
1328
1329  Base = N.getOperand(0);
1330  if (Base.getOpcode() == ISD::FrameIndex) {
1331    int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1332    Base = CurDAG->getTargetFrameIndex(
1333        FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1334  }
1335
1336  OffImm = CurDAG->getTargetConstant(RHSC/4, SDLoc(N), MVT::i32);
1337  return true;
1338}
1339
1340//===--------------------------------------------------------------------===//
1341
1342/// getAL - Returns a ARMCC::AL immediate node.
1343static inline SDValue getAL(SelectionDAG *CurDAG, const SDLoc &dl) {
1344  return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, dl, MVT::i32);
1345}
1346
1347void ARMDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
1348  MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
1349  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
1350}
1351
1352bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode *N) {
1353  LoadSDNode *LD = cast<LoadSDNode>(N);
1354  ISD::MemIndexedMode AM = LD->getAddressingMode();
1355  if (AM == ISD::UNINDEXED)
1356    return false;
1357
1358  EVT LoadedVT = LD->getMemoryVT();
1359  SDValue Offset, AMOpc;
1360  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1361  unsigned Opcode = 0;
1362  bool Match = false;
1363  if (LoadedVT == MVT::i32 && isPre &&
1364      SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1365    Opcode = ARM::LDR_PRE_IMM;
1366    Match = true;
1367  } else if (LoadedVT == MVT::i32 && !isPre &&
1368      SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1369    Opcode = ARM::LDR_POST_IMM;
1370    Match = true;
1371  } else if (LoadedVT == MVT::i32 &&
1372      SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1373    Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
1374    Match = true;
1375
1376  } else if (LoadedVT == MVT::i16 &&
1377             SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1378    Match = true;
1379    Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
1380      ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
1381      : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
1382  } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
1383    if (LD->getExtensionType() == ISD::SEXTLOAD) {
1384      if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1385        Match = true;
1386        Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
1387      }
1388    } else {
1389      if (isPre &&
1390          SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1391        Match = true;
1392        Opcode = ARM::LDRB_PRE_IMM;
1393      } else if (!isPre &&
1394                  SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1395        Match = true;
1396        Opcode = ARM::LDRB_POST_IMM;
1397      } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1398        Match = true;
1399        Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
1400      }
1401    }
1402  }
1403
1404  if (Match) {
1405    if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
1406      SDValue Chain = LD->getChain();
1407      SDValue Base = LD->getBasePtr();
1408      SDValue Ops[]= { Base, AMOpc, getAL(CurDAG, SDLoc(N)),
1409                       CurDAG->getRegister(0, MVT::i32), Chain };
1410      SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1411                                           MVT::Other, Ops);
1412      transferMemOperands(N, New);
1413      ReplaceNode(N, New);
1414      return true;
1415    } else {
1416      SDValue Chain = LD->getChain();
1417      SDValue Base = LD->getBasePtr();
1418      SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG, SDLoc(N)),
1419                       CurDAG->getRegister(0, MVT::i32), Chain };
1420      SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1421                                           MVT::Other, Ops);
1422      transferMemOperands(N, New);
1423      ReplaceNode(N, New);
1424      return true;
1425    }
1426  }
1427
1428  return false;
1429}
1430
1431bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode *N) {
1432  LoadSDNode *LD = cast<LoadSDNode>(N);
1433  EVT LoadedVT = LD->getMemoryVT();
1434  ISD::MemIndexedMode AM = LD->getAddressingMode();
1435  if (AM != ISD::POST_INC || LD->getExtensionType() != ISD::NON_EXTLOAD ||
1436      LoadedVT.getSimpleVT().SimpleTy != MVT::i32)
1437    return false;
1438
1439  auto *COffs = dyn_cast<ConstantSDNode>(LD->getOffset());
1440  if (!COffs || COffs->getZExtValue() != 4)
1441    return false;
1442
1443  // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}.
1444  // The encoding of LDM is not how the rest of ISel expects a post-inc load to
1445  // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after
1446  // ISel.
1447  SDValue Chain = LD->getChain();
1448  SDValue Base = LD->getBasePtr();
1449  SDValue Ops[]= { Base, getAL(CurDAG, SDLoc(N)),
1450                   CurDAG->getRegister(0, MVT::i32), Chain };
1451  SDNode *New = CurDAG->getMachineNode(ARM::tLDR_postidx, SDLoc(N), MVT::i32,
1452                                       MVT::i32, MVT::Other, Ops);
1453  transferMemOperands(N, New);
1454  ReplaceNode(N, New);
1455  return true;
1456}
1457
1458bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode *N) {
1459  LoadSDNode *LD = cast<LoadSDNode>(N);
1460  ISD::MemIndexedMode AM = LD->getAddressingMode();
1461  if (AM == ISD::UNINDEXED)
1462    return false;
1463
1464  EVT LoadedVT = LD->getMemoryVT();
1465  bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1466  SDValue Offset;
1467  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1468  unsigned Opcode = 0;
1469  bool Match = false;
1470  if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
1471    switch (LoadedVT.getSimpleVT().SimpleTy) {
1472    case MVT::i32:
1473      Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
1474      break;
1475    case MVT::i16:
1476      if (isSExtLd)
1477        Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
1478      else
1479        Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
1480      break;
1481    case MVT::i8:
1482    case MVT::i1:
1483      if (isSExtLd)
1484        Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
1485      else
1486        Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
1487      break;
1488    default:
1489      return false;
1490    }
1491    Match = true;
1492  }
1493
1494  if (Match) {
1495    SDValue Chain = LD->getChain();
1496    SDValue Base = LD->getBasePtr();
1497    SDValue Ops[]= { Base, Offset, getAL(CurDAG, SDLoc(N)),
1498                     CurDAG->getRegister(0, MVT::i32), Chain };
1499    SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1500                                         MVT::Other, Ops);
1501    transferMemOperands(N, New);
1502    ReplaceNode(N, New);
1503    return true;
1504  }
1505
1506  return false;
1507}
1508
1509/// Form a GPRPair pseudo register from a pair of GPR regs.
1510SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
1511  SDLoc dl(V0.getNode());
1512  SDValue RegClass =
1513    CurDAG->getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
1514  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
1515  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
1516  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1517  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1518}
1519
1520/// Form a D register from a pair of S registers.
1521SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1522  SDLoc dl(V0.getNode());
1523  SDValue RegClass =
1524    CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, dl, MVT::i32);
1525  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
1526  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
1527  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1528  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1529}
1530
1531/// Form a quad register from a pair of D registers.
1532SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1533  SDLoc dl(V0.getNode());
1534  SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, dl,
1535                                               MVT::i32);
1536  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
1537  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
1538  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1539  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1540}
1541
1542/// Form 4 consecutive D registers from a pair of Q registers.
1543SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1544  SDLoc dl(V0.getNode());
1545  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
1546                                               MVT::i32);
1547  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
1548  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
1549  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1550  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1551}
1552
1553/// Form 4 consecutive S registers.
1554SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
1555                                   SDValue V2, SDValue V3) {
1556  SDLoc dl(V0.getNode());
1557  SDValue RegClass =
1558    CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, dl, MVT::i32);
1559  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
1560  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
1561  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, dl, MVT::i32);
1562  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, dl, MVT::i32);
1563  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1564                                    V2, SubReg2, V3, SubReg3 };
1565  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1566}
1567
1568/// Form 4 consecutive D registers.
1569SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
1570                                   SDValue V2, SDValue V3) {
1571  SDLoc dl(V0.getNode());
1572  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
1573                                               MVT::i32);
1574  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
1575  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
1576  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, dl, MVT::i32);
1577  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, dl, MVT::i32);
1578  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1579                                    V2, SubReg2, V3, SubReg3 };
1580  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1581}
1582
1583/// Form 4 consecutive Q registers.
1584SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
1585                                   SDValue V2, SDValue V3) {
1586  SDLoc dl(V0.getNode());
1587  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, dl,
1588                                               MVT::i32);
1589  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
1590  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
1591  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, dl, MVT::i32);
1592  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, dl, MVT::i32);
1593  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1594                                    V2, SubReg2, V3, SubReg3 };
1595  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1596}
1597
1598/// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1599/// of a NEON VLD or VST instruction.  The supported values depend on the
1600/// number of registers being loaded.
1601SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, const SDLoc &dl,
1602                                       unsigned NumVecs, bool is64BitVector) {
1603  unsigned NumRegs = NumVecs;
1604  if (!is64BitVector && NumVecs < 3)
1605    NumRegs *= 2;
1606
1607  unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1608  if (Alignment >= 32 && NumRegs == 4)
1609    Alignment = 32;
1610  else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
1611    Alignment = 16;
1612  else if (Alignment >= 8)
1613    Alignment = 8;
1614  else
1615    Alignment = 0;
1616
1617  return CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
1618}
1619
1620static bool isVLDfixed(unsigned Opc)
1621{
1622  switch (Opc) {
1623  default: return false;
1624  case ARM::VLD1d8wb_fixed : return true;
1625  case ARM::VLD1d16wb_fixed : return true;
1626  case ARM::VLD1d64Qwb_fixed : return true;
1627  case ARM::VLD1d32wb_fixed : return true;
1628  case ARM::VLD1d64wb_fixed : return true;
1629  case ARM::VLD1d64TPseudoWB_fixed : return true;
1630  case ARM::VLD1d64QPseudoWB_fixed : return true;
1631  case ARM::VLD1q8wb_fixed : return true;
1632  case ARM::VLD1q16wb_fixed : return true;
1633  case ARM::VLD1q32wb_fixed : return true;
1634  case ARM::VLD1q64wb_fixed : return true;
1635  case ARM::VLD1DUPd8wb_fixed : return true;
1636  case ARM::VLD1DUPd16wb_fixed : return true;
1637  case ARM::VLD1DUPd32wb_fixed : return true;
1638  case ARM::VLD1DUPq8wb_fixed : return true;
1639  case ARM::VLD1DUPq16wb_fixed : return true;
1640  case ARM::VLD1DUPq32wb_fixed : return true;
1641  case ARM::VLD2d8wb_fixed : return true;
1642  case ARM::VLD2d16wb_fixed : return true;
1643  case ARM::VLD2d32wb_fixed : return true;
1644  case ARM::VLD2q8PseudoWB_fixed : return true;
1645  case ARM::VLD2q16PseudoWB_fixed : return true;
1646  case ARM::VLD2q32PseudoWB_fixed : return true;
1647  case ARM::VLD2DUPd8wb_fixed : return true;
1648  case ARM::VLD2DUPd16wb_fixed : return true;
1649  case ARM::VLD2DUPd32wb_fixed : return true;
1650  }
1651}
1652
1653static bool isVSTfixed(unsigned Opc)
1654{
1655  switch (Opc) {
1656  default: return false;
1657  case ARM::VST1d8wb_fixed : return true;
1658  case ARM::VST1d16wb_fixed : return true;
1659  case ARM::VST1d32wb_fixed : return true;
1660  case ARM::VST1d64wb_fixed : return true;
1661  case ARM::VST1q8wb_fixed : return true;
1662  case ARM::VST1q16wb_fixed : return true;
1663  case ARM::VST1q32wb_fixed : return true;
1664  case ARM::VST1q64wb_fixed : return true;
1665  case ARM::VST1d64TPseudoWB_fixed : return true;
1666  case ARM::VST1d64QPseudoWB_fixed : return true;
1667  case ARM::VST2d8wb_fixed : return true;
1668  case ARM::VST2d16wb_fixed : return true;
1669  case ARM::VST2d32wb_fixed : return true;
1670  case ARM::VST2q8PseudoWB_fixed : return true;
1671  case ARM::VST2q16PseudoWB_fixed : return true;
1672  case ARM::VST2q32PseudoWB_fixed : return true;
1673  }
1674}
1675
1676// Get the register stride update opcode of a VLD/VST instruction that
1677// is otherwise equivalent to the given fixed stride updating instruction.
1678static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
1679  assert((isVLDfixed(Opc) || isVSTfixed(Opc))
1680    && "Incorrect fixed stride updating instruction.");
1681  switch (Opc) {
1682  default: break;
1683  case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
1684  case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
1685  case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
1686  case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
1687  case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
1688  case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
1689  case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
1690  case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
1691  case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register;
1692  case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register;
1693  case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register;
1694  case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register;
1695  case ARM::VLD1DUPd8wb_fixed : return ARM::VLD1DUPd8wb_register;
1696  case ARM::VLD1DUPd16wb_fixed : return ARM::VLD1DUPd16wb_register;
1697  case ARM::VLD1DUPd32wb_fixed : return ARM::VLD1DUPd32wb_register;
1698  case ARM::VLD1DUPq8wb_fixed : return ARM::VLD1DUPq8wb_register;
1699  case ARM::VLD1DUPq16wb_fixed : return ARM::VLD1DUPq16wb_register;
1700  case ARM::VLD1DUPq32wb_fixed : return ARM::VLD1DUPq32wb_register;
1701
1702  case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
1703  case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
1704  case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
1705  case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
1706  case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
1707  case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
1708  case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
1709  case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
1710  case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
1711  case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
1712
1713  case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
1714  case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
1715  case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
1716  case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
1717  case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
1718  case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
1719
1720  case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
1721  case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
1722  case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
1723  case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
1724  case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
1725  case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
1726
1727  case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
1728  case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
1729  case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
1730  }
1731  return Opc; // If not one we handle, return it unchanged.
1732}
1733
1734/// Returns true if the given increment is a Constant known to be equal to the
1735/// access size performed by a NEON load/store. This means the "[rN]!" form can
1736/// be used.
1737static bool isPerfectIncrement(SDValue Inc, EVT VecTy, unsigned NumVecs) {
1738  auto C = dyn_cast<ConstantSDNode>(Inc);
1739  return C && C->getZExtValue() == VecTy.getSizeInBits() / 8 * NumVecs;
1740}
1741
1742void ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
1743                                const uint16_t *DOpcodes,
1744                                const uint16_t *QOpcodes0,
1745                                const uint16_t *QOpcodes1) {
1746  assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1747  SDLoc dl(N);
1748
1749  SDValue MemAddr, Align;
1750  bool IsIntrinsic = !isUpdating;  // By coincidence, all supported updating
1751                                   // nodes are not intrinsics.
1752  unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
1753  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1754    return;
1755
1756  SDValue Chain = N->getOperand(0);
1757  EVT VT = N->getValueType(0);
1758  bool is64BitVector = VT.is64BitVector();
1759  Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
1760
1761  unsigned OpcodeIndex;
1762  switch (VT.getSimpleVT().SimpleTy) {
1763  default: llvm_unreachable("unhandled vld type");
1764    // Double-register operations:
1765  case MVT::v8i8:  OpcodeIndex = 0; break;
1766  case MVT::v4f16:
1767  case MVT::v4i16: OpcodeIndex = 1; break;
1768  case MVT::v2f32:
1769  case MVT::v2i32: OpcodeIndex = 2; break;
1770  case MVT::v1i64: OpcodeIndex = 3; break;
1771    // Quad-register operations:
1772  case MVT::v16i8: OpcodeIndex = 0; break;
1773  case MVT::v8f16:
1774  case MVT::v8i16: OpcodeIndex = 1; break;
1775  case MVT::v4f32:
1776  case MVT::v4i32: OpcodeIndex = 2; break;
1777  case MVT::v2f64:
1778  case MVT::v2i64: OpcodeIndex = 3; break;
1779  }
1780
1781  EVT ResTy;
1782  if (NumVecs == 1)
1783    ResTy = VT;
1784  else {
1785    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1786    if (!is64BitVector)
1787      ResTyElts *= 2;
1788    ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
1789  }
1790  std::vector<EVT> ResTys;
1791  ResTys.push_back(ResTy);
1792  if (isUpdating)
1793    ResTys.push_back(MVT::i32);
1794  ResTys.push_back(MVT::Other);
1795
1796  SDValue Pred = getAL(CurDAG, dl);
1797  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1798  SDNode *VLd;
1799  SmallVector<SDValue, 7> Ops;
1800
1801  // Double registers and VLD1/VLD2 quad registers are directly supported.
1802  if (is64BitVector || NumVecs <= 2) {
1803    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1804                    QOpcodes0[OpcodeIndex]);
1805    Ops.push_back(MemAddr);
1806    Ops.push_back(Align);
1807    if (isUpdating) {
1808      SDValue Inc = N->getOperand(AddrOpIdx + 1);
1809      bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
1810      if (!IsImmUpdate) {
1811        // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
1812        // check for the opcode rather than the number of vector elements.
1813        if (isVLDfixed(Opc))
1814          Opc = getVLDSTRegisterUpdateOpcode(Opc);
1815        Ops.push_back(Inc);
1816      // VLD1/VLD2 fixed increment does not need Reg0 so only include it in
1817      // the operands if not such an opcode.
1818      } else if (!isVLDfixed(Opc))
1819        Ops.push_back(Reg0);
1820    }
1821    Ops.push_back(Pred);
1822    Ops.push_back(Reg0);
1823    Ops.push_back(Chain);
1824    VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1825
1826  } else {
1827    // Otherwise, quad registers are loaded with two separate instructions,
1828    // where one loads the even registers and the other loads the odd registers.
1829    EVT AddrTy = MemAddr.getValueType();
1830
1831    // Load the even subregs.  This is always an updating load, so that it
1832    // provides the address to the second load for the odd subregs.
1833    SDValue ImplDef =
1834      SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
1835    const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
1836    SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1837                                          ResTy, AddrTy, MVT::Other, OpsA);
1838    Chain = SDValue(VLdA, 2);
1839
1840    // Load the odd subregs.
1841    Ops.push_back(SDValue(VLdA, 1));
1842    Ops.push_back(Align);
1843    if (isUpdating) {
1844      SDValue Inc = N->getOperand(AddrOpIdx + 1);
1845      assert(isa<ConstantSDNode>(Inc.getNode()) &&
1846             "only constant post-increment update allowed for VLD3/4");
1847      (void)Inc;
1848      Ops.push_back(Reg0);
1849    }
1850    Ops.push_back(SDValue(VLdA, 0));
1851    Ops.push_back(Pred);
1852    Ops.push_back(Reg0);
1853    Ops.push_back(Chain);
1854    VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
1855  }
1856
1857  // Transfer memoperands.
1858  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1859  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLd), {MemOp});
1860
1861  if (NumVecs == 1) {
1862    ReplaceNode(N, VLd);
1863    return;
1864  }
1865
1866  // Extract out the subregisters.
1867  SDValue SuperReg = SDValue(VLd, 0);
1868  static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
1869                    ARM::qsub_3 == ARM::qsub_0 + 3,
1870                "Unexpected subreg numbering");
1871  unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
1872  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1873    ReplaceUses(SDValue(N, Vec),
1874                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
1875  ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
1876  if (isUpdating)
1877    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
1878  CurDAG->RemoveDeadNode(N);
1879}
1880
1881void ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
1882                                const uint16_t *DOpcodes,
1883                                const uint16_t *QOpcodes0,
1884                                const uint16_t *QOpcodes1) {
1885  assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
1886  SDLoc dl(N);
1887
1888  SDValue MemAddr, Align;
1889  bool IsIntrinsic = !isUpdating;  // By coincidence, all supported updating
1890                                   // nodes are not intrinsics.
1891  unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
1892  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1893  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1894    return;
1895
1896  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1897
1898  SDValue Chain = N->getOperand(0);
1899  EVT VT = N->getOperand(Vec0Idx).getValueType();
1900  bool is64BitVector = VT.is64BitVector();
1901  Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
1902
1903  unsigned OpcodeIndex;
1904  switch (VT.getSimpleVT().SimpleTy) {
1905  default: llvm_unreachable("unhandled vst type");
1906    // Double-register operations:
1907  case MVT::v8i8:  OpcodeIndex = 0; break;
1908  case MVT::v4f16:
1909  case MVT::v4i16: OpcodeIndex = 1; break;
1910  case MVT::v2f32:
1911  case MVT::v2i32: OpcodeIndex = 2; break;
1912  case MVT::v1i64: OpcodeIndex = 3; break;
1913    // Quad-register operations:
1914  case MVT::v16i8: OpcodeIndex = 0; break;
1915  case MVT::v8f16:
1916  case MVT::v8i16: OpcodeIndex = 1; break;
1917  case MVT::v4f32:
1918  case MVT::v4i32: OpcodeIndex = 2; break;
1919  case MVT::v2f64:
1920  case MVT::v2i64: OpcodeIndex = 3; break;
1921  }
1922
1923  std::vector<EVT> ResTys;
1924  if (isUpdating)
1925    ResTys.push_back(MVT::i32);
1926  ResTys.push_back(MVT::Other);
1927
1928  SDValue Pred = getAL(CurDAG, dl);
1929  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1930  SmallVector<SDValue, 7> Ops;
1931
1932  // Double registers and VST1/VST2 quad registers are directly supported.
1933  if (is64BitVector || NumVecs <= 2) {
1934    SDValue SrcReg;
1935    if (NumVecs == 1) {
1936      SrcReg = N->getOperand(Vec0Idx);
1937    } else if (is64BitVector) {
1938      // Form a REG_SEQUENCE to force register allocation.
1939      SDValue V0 = N->getOperand(Vec0Idx + 0);
1940      SDValue V1 = N->getOperand(Vec0Idx + 1);
1941      if (NumVecs == 2)
1942        SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
1943      else {
1944        SDValue V2 = N->getOperand(Vec0Idx + 2);
1945        // If it's a vst3, form a quad D-register and leave the last part as
1946        // an undef.
1947        SDValue V3 = (NumVecs == 3)
1948          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1949          : N->getOperand(Vec0Idx + 3);
1950        SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
1951      }
1952    } else {
1953      // Form a QQ register.
1954      SDValue Q0 = N->getOperand(Vec0Idx);
1955      SDValue Q1 = N->getOperand(Vec0Idx + 1);
1956      SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
1957    }
1958
1959    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1960                    QOpcodes0[OpcodeIndex]);
1961    Ops.push_back(MemAddr);
1962    Ops.push_back(Align);
1963    if (isUpdating) {
1964      SDValue Inc = N->getOperand(AddrOpIdx + 1);
1965      bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
1966      if (!IsImmUpdate) {
1967        // We use a VST1 for v1i64 even if the pseudo says VST2/3/4, so
1968        // check for the opcode rather than the number of vector elements.
1969        if (isVSTfixed(Opc))
1970          Opc = getVLDSTRegisterUpdateOpcode(Opc);
1971        Ops.push_back(Inc);
1972      }
1973      // VST1/VST2 fixed increment does not need Reg0 so only include it in
1974      // the operands if not such an opcode.
1975      else if (!isVSTfixed(Opc))
1976        Ops.push_back(Reg0);
1977    }
1978    Ops.push_back(SrcReg);
1979    Ops.push_back(Pred);
1980    Ops.push_back(Reg0);
1981    Ops.push_back(Chain);
1982    SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1983
1984    // Transfer memoperands.
1985    CurDAG->setNodeMemRefs(cast<MachineSDNode>(VSt), {MemOp});
1986
1987    ReplaceNode(N, VSt);
1988    return;
1989  }
1990
1991  // Otherwise, quad registers are stored with two separate instructions,
1992  // where one stores the even registers and the other stores the odd registers.
1993
1994  // Form the QQQQ REG_SEQUENCE.
1995  SDValue V0 = N->getOperand(Vec0Idx + 0);
1996  SDValue V1 = N->getOperand(Vec0Idx + 1);
1997  SDValue V2 = N->getOperand(Vec0Idx + 2);
1998  SDValue V3 = (NumVecs == 3)
1999    ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2000    : N->getOperand(Vec0Idx + 3);
2001  SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2002
2003  // Store the even D registers.  This is always an updating store, so that it
2004  // provides the address to the second store for the odd subregs.
2005  const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
2006  SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
2007                                        MemAddr.getValueType(),
2008                                        MVT::Other, OpsA);
2009  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStA), {MemOp});
2010  Chain = SDValue(VStA, 1);
2011
2012  // Store the odd D registers.
2013  Ops.push_back(SDValue(VStA, 0));
2014  Ops.push_back(Align);
2015  if (isUpdating) {
2016    SDValue Inc = N->getOperand(AddrOpIdx + 1);
2017    assert(isa<ConstantSDNode>(Inc.getNode()) &&
2018           "only constant post-increment update allowed for VST3/4");
2019    (void)Inc;
2020    Ops.push_back(Reg0);
2021  }
2022  Ops.push_back(RegSeq);
2023  Ops.push_back(Pred);
2024  Ops.push_back(Reg0);
2025  Ops.push_back(Chain);
2026  SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
2027                                        Ops);
2028  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStB), {MemOp});
2029  ReplaceNode(N, VStB);
2030}
2031
2032void ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
2033                                      unsigned NumVecs,
2034                                      const uint16_t *DOpcodes,
2035                                      const uint16_t *QOpcodes) {
2036  assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
2037  SDLoc dl(N);
2038
2039  SDValue MemAddr, Align;
2040  bool IsIntrinsic = !isUpdating;  // By coincidence, all supported updating
2041                                   // nodes are not intrinsics.
2042  unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2043  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2044  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2045    return;
2046
2047  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2048
2049  SDValue Chain = N->getOperand(0);
2050  unsigned Lane =
2051    cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
2052  EVT VT = N->getOperand(Vec0Idx).getValueType();
2053  bool is64BitVector = VT.is64BitVector();
2054
2055  unsigned Alignment = 0;
2056  if (NumVecs != 3) {
2057    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2058    unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
2059    if (Alignment > NumBytes)
2060      Alignment = NumBytes;
2061    if (Alignment < 8 && Alignment < NumBytes)
2062      Alignment = 0;
2063    // Alignment must be a power of two; make sure of that.
2064    Alignment = (Alignment & -Alignment);
2065    if (Alignment == 1)
2066      Alignment = 0;
2067  }
2068  Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
2069
2070  unsigned OpcodeIndex;
2071  switch (VT.getSimpleVT().SimpleTy) {
2072  default: llvm_unreachable("unhandled vld/vst lane type");
2073    // Double-register operations:
2074  case MVT::v8i8:  OpcodeIndex = 0; break;
2075  case MVT::v4i16: OpcodeIndex = 1; break;
2076  case MVT::v2f32:
2077  case MVT::v2i32: OpcodeIndex = 2; break;
2078    // Quad-register operations:
2079  case MVT::v8i16: OpcodeIndex = 0; break;
2080  case MVT::v4f32:
2081  case MVT::v4i32: OpcodeIndex = 1; break;
2082  }
2083
2084  std::vector<EVT> ResTys;
2085  if (IsLoad) {
2086    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2087    if (!is64BitVector)
2088      ResTyElts *= 2;
2089    ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
2090                                      MVT::i64, ResTyElts));
2091  }
2092  if (isUpdating)
2093    ResTys.push_back(MVT::i32);
2094  ResTys.push_back(MVT::Other);
2095
2096  SDValue Pred = getAL(CurDAG, dl);
2097  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2098
2099  SmallVector<SDValue, 8> Ops;
2100  Ops.push_back(MemAddr);
2101  Ops.push_back(Align);
2102  if (isUpdating) {
2103    SDValue Inc = N->getOperand(AddrOpIdx + 1);
2104    bool IsImmUpdate =
2105        isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
2106    Ops.push_back(IsImmUpdate ? Reg0 : Inc);
2107  }
2108
2109  SDValue SuperReg;
2110  SDValue V0 = N->getOperand(Vec0Idx + 0);
2111  SDValue V1 = N->getOperand(Vec0Idx + 1);
2112  if (NumVecs == 2) {
2113    if (is64BitVector)
2114      SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
2115    else
2116      SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
2117  } else {
2118    SDValue V2 = N->getOperand(Vec0Idx + 2);
2119    SDValue V3 = (NumVecs == 3)
2120      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2121      : N->getOperand(Vec0Idx + 3);
2122    if (is64BitVector)
2123      SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2124    else
2125      SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2126  }
2127  Ops.push_back(SuperReg);
2128  Ops.push_back(getI32Imm(Lane, dl));
2129  Ops.push_back(Pred);
2130  Ops.push_back(Reg0);
2131  Ops.push_back(Chain);
2132
2133  unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2134                                  QOpcodes[OpcodeIndex]);
2135  SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2136  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdLn), {MemOp});
2137  if (!IsLoad) {
2138    ReplaceNode(N, VLdLn);
2139    return;
2140  }
2141
2142  // Extract the subregisters.
2143  SuperReg = SDValue(VLdLn, 0);
2144  static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
2145                    ARM::qsub_3 == ARM::qsub_0 + 3,
2146                "Unexpected subreg numbering");
2147  unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
2148  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2149    ReplaceUses(SDValue(N, Vec),
2150                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2151  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
2152  if (isUpdating)
2153    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
2154  CurDAG->RemoveDeadNode(N);
2155}
2156
2157void ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool IsIntrinsic,
2158                                   bool isUpdating, unsigned NumVecs,
2159                                   const uint16_t *DOpcodes,
2160                                   const uint16_t *QOpcodes0,
2161                                   const uint16_t *QOpcodes1) {
2162  assert(NumVecs >= 1 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
2163  SDLoc dl(N);
2164
2165  SDValue MemAddr, Align;
2166  unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2167  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2168    return;
2169
2170  SDValue Chain = N->getOperand(0);
2171  EVT VT = N->getValueType(0);
2172  bool is64BitVector = VT.is64BitVector();
2173
2174  unsigned Alignment = 0;
2175  if (NumVecs != 3) {
2176    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2177    unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
2178    if (Alignment > NumBytes)
2179      Alignment = NumBytes;
2180    if (Alignment < 8 && Alignment < NumBytes)
2181      Alignment = 0;
2182    // Alignment must be a power of two; make sure of that.
2183    Alignment = (Alignment & -Alignment);
2184    if (Alignment == 1)
2185      Alignment = 0;
2186  }
2187  Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
2188
2189  unsigned OpcodeIndex;
2190  switch (VT.getSimpleVT().SimpleTy) {
2191  default: llvm_unreachable("unhandled vld-dup type");
2192  case MVT::v8i8:
2193  case MVT::v16i8: OpcodeIndex = 0; break;
2194  case MVT::v4i16:
2195  case MVT::v8i16: OpcodeIndex = 1; break;
2196  case MVT::v2f32:
2197  case MVT::v2i32:
2198  case MVT::v4f32:
2199  case MVT::v4i32: OpcodeIndex = 2; break;
2200  case MVT::v1f64:
2201  case MVT::v1i64: OpcodeIndex = 3; break;
2202  }
2203
2204  unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2205  if (!is64BitVector)
2206    ResTyElts *= 2;
2207  EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
2208
2209  std::vector<EVT> ResTys;
2210  ResTys.push_back(ResTy);
2211  if (isUpdating)
2212    ResTys.push_back(MVT::i32);
2213  ResTys.push_back(MVT::Other);
2214
2215  SDValue Pred = getAL(CurDAG, dl);
2216  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2217
2218  SDNode *VLdDup;
2219  if (is64BitVector || NumVecs == 1) {
2220    SmallVector<SDValue, 6> Ops;
2221    Ops.push_back(MemAddr);
2222    Ops.push_back(Align);
2223    unsigned Opc = is64BitVector ? DOpcodes[OpcodeIndex] :
2224                                   QOpcodes0[OpcodeIndex];
2225    if (isUpdating) {
2226      // fixed-stride update instructions don't have an explicit writeback
2227      // operand. It's implicit in the opcode itself.
2228      SDValue Inc = N->getOperand(2);
2229      bool IsImmUpdate =
2230          isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
2231      if (NumVecs <= 2 && !IsImmUpdate)
2232        Opc = getVLDSTRegisterUpdateOpcode(Opc);
2233      if (!IsImmUpdate)
2234        Ops.push_back(Inc);
2235      // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
2236      else if (NumVecs > 2)
2237        Ops.push_back(Reg0);
2238    }
2239    Ops.push_back(Pred);
2240    Ops.push_back(Reg0);
2241    Ops.push_back(Chain);
2242    VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2243  } else if (NumVecs == 2) {
2244    const SDValue OpsA[] = { MemAddr, Align, Pred, Reg0, Chain };
2245    SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex],
2246                                          dl, ResTys, OpsA);
2247
2248    Chain = SDValue(VLdA, 1);
2249    const SDValue OpsB[] = { MemAddr, Align, Pred, Reg0, Chain };
2250    VLdDup = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, OpsB);
2251  } else {
2252    SDValue ImplDef =
2253      SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
2254    const SDValue OpsA[] = { MemAddr, Align, ImplDef, Pred, Reg0, Chain };
2255    SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex],
2256                                          dl, ResTys, OpsA);
2257
2258    SDValue SuperReg = SDValue(VLdA, 0);
2259    Chain = SDValue(VLdA, 1);
2260    const SDValue OpsB[] = { MemAddr, Align, SuperReg, Pred, Reg0, Chain };
2261    VLdDup = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, OpsB);
2262  }
2263
2264  // Transfer memoperands.
2265  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2266  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdDup), {MemOp});
2267
2268  // Extract the subregisters.
2269  if (NumVecs == 1) {
2270    ReplaceUses(SDValue(N, 0), SDValue(VLdDup, 0));
2271  } else {
2272    SDValue SuperReg = SDValue(VLdDup, 0);
2273    static_assert(ARM::dsub_7 == ARM::dsub_0 + 7, "Unexpected subreg numbering");
2274    unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
2275    for (unsigned Vec = 0; Vec != NumVecs; ++Vec) {
2276      ReplaceUses(SDValue(N, Vec),
2277                  CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
2278    }
2279  }
2280  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
2281  if (isUpdating)
2282    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
2283  CurDAG->RemoveDeadNode(N);
2284}
2285
2286bool ARMDAGToDAGISel::tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned) {
2287  if (!Subtarget->hasV6T2Ops())
2288    return false;
2289
2290  unsigned Opc = isSigned
2291    ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
2292    : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
2293  SDLoc dl(N);
2294
2295  // For unsigned extracts, check for a shift right and mask
2296  unsigned And_imm = 0;
2297  if (N->getOpcode() == ISD::AND) {
2298    if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
2299
2300      // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2301      if (And_imm & (And_imm + 1))
2302        return false;
2303
2304      unsigned Srl_imm = 0;
2305      if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
2306                                Srl_imm)) {
2307        assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2308
2309        // Mask off the unnecessary bits of the AND immediate; normally
2310        // DAGCombine will do this, but that might not happen if
2311        // targetShrinkDemandedConstant chooses a different immediate.
2312        And_imm &= -1U >> Srl_imm;
2313
2314        // Note: The width operand is encoded as width-1.
2315        unsigned Width = countTrailingOnes(And_imm) - 1;
2316        unsigned LSB = Srl_imm;
2317
2318        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2319
2320        if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
2321          // It's cheaper to use a right shift to extract the top bits.
2322          if (Subtarget->isThumb()) {
2323            Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
2324            SDValue Ops[] = { N->getOperand(0).getOperand(0),
2325                              CurDAG->getTargetConstant(LSB, dl, MVT::i32),
2326                              getAL(CurDAG, dl), Reg0, Reg0 };
2327            CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2328            return true;
2329          }
2330
2331          // ARM models shift instructions as MOVsi with shifter operand.
2332          ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
2333          SDValue ShOpc =
2334            CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB), dl,
2335                                      MVT::i32);
2336          SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
2337                            getAL(CurDAG, dl), Reg0, Reg0 };
2338          CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops);
2339          return true;
2340        }
2341
2342        assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
2343        SDValue Ops[] = { N->getOperand(0).getOperand(0),
2344                          CurDAG->getTargetConstant(LSB, dl, MVT::i32),
2345                          CurDAG->getTargetConstant(Width, dl, MVT::i32),
2346                          getAL(CurDAG, dl), Reg0 };
2347        CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2348        return true;
2349      }
2350    }
2351    return false;
2352  }
2353
2354  // Otherwise, we're looking for a shift of a shift
2355  unsigned Shl_imm = 0;
2356  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
2357    assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
2358    unsigned Srl_imm = 0;
2359    if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
2360      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2361      // Note: The width operand is encoded as width-1.
2362      unsigned Width = 32 - Srl_imm - 1;
2363      int LSB = Srl_imm - Shl_imm;
2364      if (LSB < 0)
2365        return false;
2366      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2367      assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
2368      SDValue Ops[] = { N->getOperand(0).getOperand(0),
2369                        CurDAG->getTargetConstant(LSB, dl, MVT::i32),
2370                        CurDAG->getTargetConstant(Width, dl, MVT::i32),
2371                        getAL(CurDAG, dl), Reg0 };
2372      CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2373      return true;
2374    }
2375  }
2376
2377  // Or we are looking for a shift of an and, with a mask operand
2378  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_imm) &&
2379      isShiftedMask_32(And_imm)) {
2380    unsigned Srl_imm = 0;
2381    unsigned LSB = countTrailingZeros(And_imm);
2382    // Shift must be the same as the ands lsb
2383    if (isInt32Immediate(N->getOperand(1), Srl_imm) && Srl_imm == LSB) {
2384      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2385      unsigned MSB = 31 - countLeadingZeros(And_imm);
2386      // Note: The width operand is encoded as width-1.
2387      unsigned Width = MSB - LSB;
2388      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2389      assert(Srl_imm + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
2390      SDValue Ops[] = { N->getOperand(0).getOperand(0),
2391                        CurDAG->getTargetConstant(Srl_imm, dl, MVT::i32),
2392                        CurDAG->getTargetConstant(Width, dl, MVT::i32),
2393                        getAL(CurDAG, dl), Reg0 };
2394      CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2395      return true;
2396    }
2397  }
2398
2399  if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
2400    unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2401    unsigned LSB = 0;
2402    if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) &&
2403        !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB))
2404      return false;
2405
2406    if (LSB + Width > 32)
2407      return false;
2408
2409    SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2410    assert(LSB + Width <= 32 && "Shouldn't create an invalid ubfx");
2411    SDValue Ops[] = { N->getOperand(0).getOperand(0),
2412                      CurDAG->getTargetConstant(LSB, dl, MVT::i32),
2413                      CurDAG->getTargetConstant(Width - 1, dl, MVT::i32),
2414                      getAL(CurDAG, dl), Reg0 };
2415    CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2416    return true;
2417  }
2418
2419  return false;
2420}
2421
2422/// Target-specific DAG combining for ISD::XOR.
2423/// Target-independent combining lowers SELECT_CC nodes of the form
2424/// select_cc setg[ge] X,  0,  X, -X
2425/// select_cc setgt    X, -1,  X, -X
2426/// select_cc setl[te] X,  0, -X,  X
2427/// select_cc setlt    X,  1, -X,  X
2428/// which represent Integer ABS into:
2429/// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
2430/// ARM instruction selection detects the latter and matches it to
2431/// ARM::ABS or ARM::t2ABS machine node.
2432bool ARMDAGToDAGISel::tryABSOp(SDNode *N){
2433  SDValue XORSrc0 = N->getOperand(0);
2434  SDValue XORSrc1 = N->getOperand(1);
2435  EVT VT = N->getValueType(0);
2436
2437  if (Subtarget->isThumb1Only())
2438    return false;
2439
2440  if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
2441    return false;
2442
2443  SDValue ADDSrc0 = XORSrc0.getOperand(0);
2444  SDValue ADDSrc1 = XORSrc0.getOperand(1);
2445  SDValue SRASrc0 = XORSrc1.getOperand(0);
2446  SDValue SRASrc1 = XORSrc1.getOperand(1);
2447  ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
2448  EVT XType = SRASrc0.getValueType();
2449  unsigned Size = XType.getSizeInBits() - 1;
2450
2451  if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
2452      XType.isInteger() && SRAConstant != nullptr &&
2453      Size == SRAConstant->getZExtValue()) {
2454    unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
2455    CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
2456    return true;
2457  }
2458
2459  return false;
2460}
2461
2462/// We've got special pseudo-instructions for these
2463void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
2464  unsigned Opcode;
2465  EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
2466  if (MemTy == MVT::i8)
2467    Opcode = ARM::CMP_SWAP_8;
2468  else if (MemTy == MVT::i16)
2469    Opcode = ARM::CMP_SWAP_16;
2470  else if (MemTy == MVT::i32)
2471    Opcode = ARM::CMP_SWAP_32;
2472  else
2473    llvm_unreachable("Unknown AtomicCmpSwap type");
2474
2475  SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
2476                   N->getOperand(0)};
2477  SDNode *CmpSwap = CurDAG->getMachineNode(
2478      Opcode, SDLoc(N),
2479      CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other), Ops);
2480
2481  MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
2482  CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
2483
2484  ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
2485  ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
2486  CurDAG->RemoveDeadNode(N);
2487}
2488
2489static Optional<std::pair<unsigned, unsigned>>
2490getContiguousRangeOfSetBits(const APInt &A) {
2491  unsigned FirstOne = A.getBitWidth() - A.countLeadingZeros() - 1;
2492  unsigned LastOne = A.countTrailingZeros();
2493  if (A.countPopulation() != (FirstOne - LastOne + 1))
2494    return Optional<std::pair<unsigned,unsigned>>();
2495  return std::make_pair(FirstOne, LastOne);
2496}
2497
2498void ARMDAGToDAGISel::SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI) {
2499  assert(N->getOpcode() == ARMISD::CMPZ);
2500  SwitchEQNEToPLMI = false;
2501
2502  if (!Subtarget->isThumb())
2503    // FIXME: Work out whether it is profitable to do this in A32 mode - LSL and
2504    // LSR don't exist as standalone instructions - they need the barrel shifter.
2505    return;
2506
2507  // select (cmpz (and X, C), #0) -> (LSLS X) or (LSRS X) or (LSRS (LSLS X))
2508  SDValue And = N->getOperand(0);
2509  if (!And->hasOneUse())
2510    return;
2511
2512  SDValue Zero = N->getOperand(1);
2513  if (!isa<ConstantSDNode>(Zero) || !cast<ConstantSDNode>(Zero)->isNullValue() ||
2514      And->getOpcode() != ISD::AND)
2515    return;
2516  SDValue X = And.getOperand(0);
2517  auto C = dyn_cast<ConstantSDNode>(And.getOperand(1));
2518
2519  if (!C)
2520    return;
2521  auto Range = getContiguousRangeOfSetBits(C->getAPIntValue());
2522  if (!Range)
2523    return;
2524
2525  // There are several ways to lower this:
2526  SDNode *NewN;
2527  SDLoc dl(N);
2528
2529  auto EmitShift = [&](unsigned Opc, SDValue Src, unsigned Imm) -> SDNode* {
2530    if (Subtarget->isThumb2()) {
2531      Opc = (Opc == ARM::tLSLri) ? ARM::t2LSLri : ARM::t2LSRri;
2532      SDValue Ops[] = { Src, CurDAG->getTargetConstant(Imm, dl, MVT::i32),
2533                        getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
2534                        CurDAG->getRegister(0, MVT::i32) };
2535      return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
2536    } else {
2537      SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), Src,
2538                       CurDAG->getTargetConstant(Imm, dl, MVT::i32),
2539                       getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
2540      return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
2541    }
2542  };
2543
2544  if (Range->second == 0) {
2545    //  1. Mask includes the LSB -> Simply shift the top N bits off
2546    NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
2547    ReplaceNode(And.getNode(), NewN);
2548  } else if (Range->first == 31) {
2549    //  2. Mask includes the MSB -> Simply shift the bottom N bits off
2550    NewN = EmitShift(ARM::tLSRri, X, Range->second);
2551    ReplaceNode(And.getNode(), NewN);
2552  } else if (Range->first == Range->second) {
2553    //  3. Only one bit is set. We can shift this into the sign bit and use a
2554    //     PL/MI comparison.
2555    NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
2556    ReplaceNode(And.getNode(), NewN);
2557
2558    SwitchEQNEToPLMI = true;
2559  } else if (!Subtarget->hasV6T2Ops()) {
2560    //  4. Do a double shift to clear bottom and top bits, but only in
2561    //     thumb-1 mode as in thumb-2 we can use UBFX.
2562    NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
2563    NewN = EmitShift(ARM::tLSRri, SDValue(NewN, 0),
2564                     Range->second + (31 - Range->first));
2565    ReplaceNode(And.getNode(), NewN);
2566  }
2567
2568}
2569
2570void ARMDAGToDAGISel::Select(SDNode *N) {
2571  SDLoc dl(N);
2572
2573  if (N->isMachineOpcode()) {
2574    N->setNodeId(-1);
2575    return;   // Already selected.
2576  }
2577
2578  switch (N->getOpcode()) {
2579  default: break;
2580  case ISD::WRITE_REGISTER:
2581    if (tryWriteRegister(N))
2582      return;
2583    break;
2584  case ISD::READ_REGISTER:
2585    if (tryReadRegister(N))
2586      return;
2587    break;
2588  case ISD::INLINEASM:
2589    if (tryInlineAsm(N))
2590      return;
2591    break;
2592  case ISD::XOR:
2593    // Select special operations if XOR node forms integer ABS pattern
2594    if (tryABSOp(N))
2595      return;
2596    // Other cases are autogenerated.
2597    break;
2598  case ISD::Constant: {
2599    unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
2600    // If we can't materialize the constant we need to use a literal pool
2601    if (ConstantMaterializationCost(Val) > 2) {
2602      SDValue CPIdx = CurDAG->getTargetConstantPool(
2603          ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val),
2604          TLI->getPointerTy(CurDAG->getDataLayout()));
2605
2606      SDNode *ResNode;
2607      if (Subtarget->isThumb()) {
2608        SDValue Ops[] = {
2609          CPIdx,
2610          getAL(CurDAG, dl),
2611          CurDAG->getRegister(0, MVT::i32),
2612          CurDAG->getEntryNode()
2613        };
2614        ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
2615                                         Ops);
2616      } else {
2617        SDValue Ops[] = {
2618          CPIdx,
2619          CurDAG->getTargetConstant(0, dl, MVT::i32),
2620          getAL(CurDAG, dl),
2621          CurDAG->getRegister(0, MVT::i32),
2622          CurDAG->getEntryNode()
2623        };
2624        ResNode = CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
2625                                         Ops);
2626      }
2627      // Annotate the Node with memory operand information so that MachineInstr
2628      // queries work properly. This e.g. gives the register allocation the
2629      // required information for rematerialization.
2630      MachineFunction& MF = CurDAG->getMachineFunction();
2631      MachineMemOperand *MemOp =
2632          MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
2633                                  MachineMemOperand::MOLoad, 4, 4);
2634
2635      CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
2636
2637      ReplaceNode(N, ResNode);
2638      return;
2639    }
2640
2641    // Other cases are autogenerated.
2642    break;
2643  }
2644  case ISD::FrameIndex: {
2645    // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2646    int FI = cast<FrameIndexSDNode>(N)->getIndex();
2647    SDValue TFI = CurDAG->getTargetFrameIndex(
2648        FI, TLI->getPointerTy(CurDAG->getDataLayout()));
2649    if (Subtarget->isThumb1Only()) {
2650      // Set the alignment of the frame object to 4, to avoid having to generate
2651      // more than one ADD
2652      MachineFrameInfo &MFI = MF->getFrameInfo();
2653      if (MFI.getObjectAlignment(FI) < 4)
2654        MFI.setObjectAlignment(FI, 4);
2655      CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI,
2656                           CurDAG->getTargetConstant(0, dl, MVT::i32));
2657      return;
2658    } else {
2659      unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
2660                      ARM::t2ADDri : ARM::ADDri);
2661      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, dl, MVT::i32),
2662                        getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
2663                        CurDAG->getRegister(0, MVT::i32) };
2664      CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2665      return;
2666    }
2667  }
2668  case ISD::SRL:
2669    if (tryV6T2BitfieldExtractOp(N, false))
2670      return;
2671    break;
2672  case ISD::SIGN_EXTEND_INREG:
2673  case ISD::SRA:
2674    if (tryV6T2BitfieldExtractOp(N, true))
2675      return;
2676    break;
2677  case ISD::MUL:
2678    if (Subtarget->isThumb1Only())
2679      break;
2680    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
2681      unsigned RHSV = C->getZExtValue();
2682      if (!RHSV) break;
2683      if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
2684        unsigned ShImm = Log2_32(RHSV-1);
2685        if (ShImm >= 32)
2686          break;
2687        SDValue V = N->getOperand(0);
2688        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2689        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
2690        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2691        if (Subtarget->isThumb()) {
2692          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
2693          CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops);
2694          return;
2695        } else {
2696          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
2697                            Reg0 };
2698          CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops);
2699          return;
2700        }
2701      }
2702      if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
2703        unsigned ShImm = Log2_32(RHSV+1);
2704        if (ShImm >= 32)
2705          break;
2706        SDValue V = N->getOperand(0);
2707        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2708        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
2709        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2710        if (Subtarget->isThumb()) {
2711          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
2712          CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops);
2713          return;
2714        } else {
2715          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
2716                            Reg0 };
2717          CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops);
2718          return;
2719        }
2720      }
2721    }
2722    break;
2723  case ISD::AND: {
2724    // Check for unsigned bitfield extract
2725    if (tryV6T2BitfieldExtractOp(N, false))
2726      return;
2727
2728    // If an immediate is used in an AND node, it is possible that the immediate
2729    // can be more optimally materialized when negated. If this is the case we
2730    // can negate the immediate and use a BIC instead.
2731    auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2732    if (N1C && N1C->hasOneUse() && Subtarget->isThumb()) {
2733      uint32_t Imm = (uint32_t) N1C->getZExtValue();
2734
2735      // In Thumb2 mode, an AND can take a 12-bit immediate. If this
2736      // immediate can be negated and fit in the immediate operand of
2737      // a t2BIC, don't do any manual transform here as this can be
2738      // handled by the generic ISel machinery.
2739      bool PreferImmediateEncoding =
2740        Subtarget->hasThumb2() && (is_t2_so_imm(Imm) || is_t2_so_imm_not(Imm));
2741      if (!PreferImmediateEncoding &&
2742          ConstantMaterializationCost(Imm) >
2743              ConstantMaterializationCost(~Imm)) {
2744        // The current immediate costs more to materialize than a negated
2745        // immediate, so negate the immediate and use a BIC.
2746        SDValue NewImm =
2747          CurDAG->getConstant(~N1C->getZExtValue(), dl, MVT::i32);
2748        // If the new constant didn't exist before, reposition it in the topological
2749        // ordering so it is just before N. Otherwise, don't touch its location.
2750        if (NewImm->getNodeId() == -1)
2751          CurDAG->RepositionNode(N->getIterator(), NewImm.getNode());
2752
2753        if (!Subtarget->hasThumb2()) {
2754          SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32),
2755                           N->getOperand(0), NewImm, getAL(CurDAG, dl),
2756                           CurDAG->getRegister(0, MVT::i32)};
2757          ReplaceNode(N, CurDAG->getMachineNode(ARM::tBIC, dl, MVT::i32, Ops));
2758          return;
2759        } else {
2760          SDValue Ops[] = {N->getOperand(0), NewImm, getAL(CurDAG, dl),
2761                           CurDAG->getRegister(0, MVT::i32),
2762                           CurDAG->getRegister(0, MVT::i32)};
2763          ReplaceNode(N,
2764                      CurDAG->getMachineNode(ARM::t2BICrr, dl, MVT::i32, Ops));
2765          return;
2766        }
2767      }
2768    }
2769
2770    // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2771    // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2772    // are entirely contributed by c2 and lower 16-bits are entirely contributed
2773    // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2774    // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2775    EVT VT = N->getValueType(0);
2776    if (VT != MVT::i32)
2777      break;
2778    unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
2779      ? ARM::t2MOVTi16
2780      : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
2781    if (!Opc)
2782      break;
2783    SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2784    N1C = dyn_cast<ConstantSDNode>(N1);
2785    if (!N1C)
2786      break;
2787    if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
2788      SDValue N2 = N0.getOperand(1);
2789      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2790      if (!N2C)
2791        break;
2792      unsigned N1CVal = N1C->getZExtValue();
2793      unsigned N2CVal = N2C->getZExtValue();
2794      if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
2795          (N1CVal & 0xffffU) == 0xffffU &&
2796          (N2CVal & 0xffffU) == 0x0U) {
2797        SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
2798                                                  dl, MVT::i32);
2799        SDValue Ops[] = { N0.getOperand(0), Imm16,
2800                          getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32) };
2801        ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
2802        return;
2803      }
2804    }
2805
2806    break;
2807  }
2808  case ARMISD::UMAAL: {
2809    unsigned Opc = Subtarget->isThumb() ? ARM::t2UMAAL : ARM::UMAAL;
2810    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2811                      N->getOperand(2), N->getOperand(3),
2812                      getAL(CurDAG, dl),
2813                      CurDAG->getRegister(0, MVT::i32) };
2814    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::i32, Ops));
2815    return;
2816  }
2817  case ARMISD::UMLAL:{
2818    if (Subtarget->isThumb()) {
2819      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2820                        N->getOperand(3), getAL(CurDAG, dl),
2821                        CurDAG->getRegister(0, MVT::i32)};
2822      ReplaceNode(
2823          N, CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops));
2824      return;
2825    }else{
2826      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2827                        N->getOperand(3), getAL(CurDAG, dl),
2828                        CurDAG->getRegister(0, MVT::i32),
2829                        CurDAG->getRegister(0, MVT::i32) };
2830      ReplaceNode(N, CurDAG->getMachineNode(
2831                         Subtarget->hasV6Ops() ? ARM::UMLAL : ARM::UMLALv5, dl,
2832                         MVT::i32, MVT::i32, Ops));
2833      return;
2834    }
2835  }
2836  case ARMISD::SMLAL:{
2837    if (Subtarget->isThumb()) {
2838      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2839                        N->getOperand(3), getAL(CurDAG, dl),
2840                        CurDAG->getRegister(0, MVT::i32)};
2841      ReplaceNode(
2842          N, CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops));
2843      return;
2844    }else{
2845      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2846                        N->getOperand(3), getAL(CurDAG, dl),
2847                        CurDAG->getRegister(0, MVT::i32),
2848                        CurDAG->getRegister(0, MVT::i32) };
2849      ReplaceNode(N, CurDAG->getMachineNode(
2850                         Subtarget->hasV6Ops() ? ARM::SMLAL : ARM::SMLALv5, dl,
2851                         MVT::i32, MVT::i32, Ops));
2852      return;
2853    }
2854  }
2855  case ARMISD::SUBE: {
2856    if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
2857      break;
2858    // Look for a pattern to match SMMLS
2859    // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b))))
2860    if (N->getOperand(1).getOpcode() != ISD::SMUL_LOHI ||
2861        N->getOperand(2).getOpcode() != ARMISD::SUBC ||
2862        !SDValue(N, 1).use_empty())
2863      break;
2864
2865    if (Subtarget->isThumb())
2866      assert(Subtarget->hasThumb2() &&
2867             "This pattern should not be generated for Thumb");
2868
2869    SDValue SmulLoHi = N->getOperand(1);
2870    SDValue Subc = N->getOperand(2);
2871    auto *Zero = dyn_cast<ConstantSDNode>(Subc.getOperand(0));
2872
2873    if (!Zero || Zero->getZExtValue() != 0 ||
2874        Subc.getOperand(1) != SmulLoHi.getValue(0) ||
2875        N->getOperand(1) != SmulLoHi.getValue(1) ||
2876        N->getOperand(2) != Subc.getValue(1))
2877      break;
2878
2879    unsigned Opc = Subtarget->isThumb2() ? ARM::t2SMMLS : ARM::SMMLS;
2880    SDValue Ops[] = { SmulLoHi.getOperand(0), SmulLoHi.getOperand(1),
2881                      N->getOperand(0), getAL(CurDAG, dl),
2882                      CurDAG->getRegister(0, MVT::i32) };
2883    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops));
2884    return;
2885  }
2886  case ISD::LOAD: {
2887    if (Subtarget->isThumb() && Subtarget->hasThumb2()) {
2888      if (tryT2IndexedLoad(N))
2889        return;
2890    } else if (Subtarget->isThumb()) {
2891      if (tryT1IndexedLoad(N))
2892        return;
2893    } else if (tryARMIndexedLoad(N))
2894      return;
2895    // Other cases are autogenerated.
2896    break;
2897  }
2898  case ARMISD::BRCOND: {
2899    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2900    // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2901    // Pattern complexity = 6  cost = 1  size = 0
2902
2903    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2904    // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2905    // Pattern complexity = 6  cost = 1  size = 0
2906
2907    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2908    // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2909    // Pattern complexity = 6  cost = 1  size = 0
2910
2911    unsigned Opc = Subtarget->isThumb() ?
2912      ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
2913    SDValue Chain = N->getOperand(0);
2914    SDValue N1 = N->getOperand(1);
2915    SDValue N2 = N->getOperand(2);
2916    SDValue N3 = N->getOperand(3);
2917    SDValue InFlag = N->getOperand(4);
2918    assert(N1.getOpcode() == ISD::BasicBlock);
2919    assert(N2.getOpcode() == ISD::Constant);
2920    assert(N3.getOpcode() == ISD::Register);
2921
2922    unsigned CC = (unsigned) cast<ConstantSDNode>(N2)->getZExtValue();
2923
2924    if (InFlag.getOpcode() == ARMISD::CMPZ) {
2925      bool SwitchEQNEToPLMI;
2926      SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI);
2927      InFlag = N->getOperand(4);
2928
2929      if (SwitchEQNEToPLMI) {
2930        switch ((ARMCC::CondCodes)CC) {
2931        default: llvm_unreachable("CMPZ must be either NE or EQ!");
2932        case ARMCC::NE:
2933          CC = (unsigned)ARMCC::MI;
2934          break;
2935        case ARMCC::EQ:
2936          CC = (unsigned)ARMCC::PL;
2937          break;
2938        }
2939      }
2940    }
2941
2942    SDValue Tmp2 = CurDAG->getTargetConstant(CC, dl, MVT::i32);
2943    SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
2944    SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
2945                                             MVT::Glue, Ops);
2946    Chain = SDValue(ResNode, 0);
2947    if (N->getNumValues() == 2) {
2948      InFlag = SDValue(ResNode, 1);
2949      ReplaceUses(SDValue(N, 1), InFlag);
2950    }
2951    ReplaceUses(SDValue(N, 0),
2952                SDValue(Chain.getNode(), Chain.getResNo()));
2953    CurDAG->RemoveDeadNode(N);
2954    return;
2955  }
2956
2957  case ARMISD::CMPZ: {
2958    // select (CMPZ X, #-C) -> (CMPZ (ADDS X, #C), #0)
2959    //   This allows us to avoid materializing the expensive negative constant.
2960    //   The CMPZ #0 is useless and will be peepholed away but we need to keep it
2961    //   for its glue output.
2962    SDValue X = N->getOperand(0);
2963    auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1).getNode());
2964    if (C && C->getSExtValue() < 0 && Subtarget->isThumb()) {
2965      int64_t Addend = -C->getSExtValue();
2966
2967      SDNode *Add = nullptr;
2968      // ADDS can be better than CMN if the immediate fits in a
2969      // 16-bit ADDS, which means either [0,256) for tADDi8 or [0,8) for tADDi3.
2970      // Outside that range we can just use a CMN which is 32-bit but has a
2971      // 12-bit immediate range.
2972      if (Addend < 1<<8) {
2973        if (Subtarget->isThumb2()) {
2974          SDValue Ops[] = { X, CurDAG->getTargetConstant(Addend, dl, MVT::i32),
2975                            getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
2976                            CurDAG->getRegister(0, MVT::i32) };
2977          Add = CurDAG->getMachineNode(ARM::t2ADDri, dl, MVT::i32, Ops);
2978        } else {
2979          unsigned Opc = (Addend < 1<<3) ? ARM::tADDi3 : ARM::tADDi8;
2980          SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), X,
2981                           CurDAG->getTargetConstant(Addend, dl, MVT::i32),
2982                           getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
2983          Add = CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
2984        }
2985      }
2986      if (Add) {
2987        SDValue Ops2[] = {SDValue(Add, 0), CurDAG->getConstant(0, dl, MVT::i32)};
2988        CurDAG->MorphNodeTo(N, ARMISD::CMPZ, CurDAG->getVTList(MVT::Glue), Ops2);
2989      }
2990    }
2991    // Other cases are autogenerated.
2992    break;
2993  }
2994
2995  case ARMISD::CMOV: {
2996    SDValue InFlag = N->getOperand(4);
2997
2998    if (InFlag.getOpcode() == ARMISD::CMPZ) {
2999      bool SwitchEQNEToPLMI;
3000      SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI);
3001
3002      if (SwitchEQNEToPLMI) {
3003        SDValue ARMcc = N->getOperand(2);
3004        ARMCC::CondCodes CC =
3005          (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
3006
3007        switch (CC) {
3008        default: llvm_unreachable("CMPZ must be either NE or EQ!");
3009        case ARMCC::NE:
3010          CC = ARMCC::MI;
3011          break;
3012        case ARMCC::EQ:
3013          CC = ARMCC::PL;
3014          break;
3015        }
3016        SDValue NewARMcc = CurDAG->getConstant((unsigned)CC, dl, MVT::i32);
3017        SDValue Ops[] = {N->getOperand(0), N->getOperand(1), NewARMcc,
3018                         N->getOperand(3), N->getOperand(4)};
3019        CurDAG->MorphNodeTo(N, ARMISD::CMOV, N->getVTList(), Ops);
3020      }
3021
3022    }
3023    // Other cases are autogenerated.
3024    break;
3025  }
3026
3027  case ARMISD::VZIP: {
3028    unsigned Opc = 0;
3029    EVT VT = N->getValueType(0);
3030    switch (VT.getSimpleVT().SimpleTy) {
3031    default: return;
3032    case MVT::v8i8:  Opc = ARM::VZIPd8; break;
3033    case MVT::v4f16:
3034    case MVT::v4i16: Opc = ARM::VZIPd16; break;
3035    case MVT::v2f32:
3036    // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
3037    case MVT::v2i32: Opc = ARM::VTRNd32; break;
3038    case MVT::v16i8: Opc = ARM::VZIPq8; break;
3039    case MVT::v8f16:
3040    case MVT::v8i16: Opc = ARM::VZIPq16; break;
3041    case MVT::v4f32:
3042    case MVT::v4i32: Opc = ARM::VZIPq32; break;
3043    }
3044    SDValue Pred = getAL(CurDAG, dl);
3045    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
3046    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
3047    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
3048    return;
3049  }
3050  case ARMISD::VUZP: {
3051    unsigned Opc = 0;
3052    EVT VT = N->getValueType(0);
3053    switch (VT.getSimpleVT().SimpleTy) {
3054    default: return;
3055    case MVT::v8i8:  Opc = ARM::VUZPd8; break;
3056    case MVT::v4f16:
3057    case MVT::v4i16: Opc = ARM::VUZPd16; break;
3058    case MVT::v2f32:
3059    // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
3060    case MVT::v2i32: Opc = ARM::VTRNd32; break;
3061    case MVT::v16i8: Opc = ARM::VUZPq8; break;
3062    case MVT::v8f16:
3063    case MVT::v8i16: Opc = ARM::VUZPq16; break;
3064    case MVT::v4f32:
3065    case MVT::v4i32: Opc = ARM::VUZPq32; break;
3066    }
3067    SDValue Pred = getAL(CurDAG, dl);
3068    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
3069    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
3070    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
3071    return;
3072  }
3073  case ARMISD::VTRN: {
3074    unsigned Opc = 0;
3075    EVT VT = N->getValueType(0);
3076    switch (VT.getSimpleVT().SimpleTy) {
3077    default: return;
3078    case MVT::v8i8:  Opc = ARM::VTRNd8; break;
3079    case MVT::v4f16:
3080    case MVT::v4i16: Opc = ARM::VTRNd16; break;
3081    case MVT::v2f32:
3082    case MVT::v2i32: Opc = ARM::VTRNd32; break;
3083    case MVT::v16i8: Opc = ARM::VTRNq8; break;
3084    case MVT::v8f16:
3085    case MVT::v8i16: Opc = ARM::VTRNq16; break;
3086    case MVT::v4f32:
3087    case MVT::v4i32: Opc = ARM::VTRNq32; break;
3088    }
3089    SDValue Pred = getAL(CurDAG, dl);
3090    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
3091    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
3092    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
3093    return;
3094  }
3095  case ARMISD::BUILD_VECTOR: {
3096    EVT VecVT = N->getValueType(0);
3097    EVT EltVT = VecVT.getVectorElementType();
3098    unsigned NumElts = VecVT.getVectorNumElements();
3099    if (EltVT == MVT::f64) {
3100      assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
3101      ReplaceNode(
3102          N, createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
3103      return;
3104    }
3105    assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
3106    if (NumElts == 2) {
3107      ReplaceNode(
3108          N, createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
3109      return;
3110    }
3111    assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
3112    ReplaceNode(N,
3113                createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
3114                                    N->getOperand(2), N->getOperand(3)));
3115    return;
3116  }
3117
3118  case ARMISD::VLD1DUP: {
3119    static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8, ARM::VLD1DUPd16,
3120                                         ARM::VLD1DUPd32 };
3121    static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8, ARM::VLD1DUPq16,
3122                                         ARM::VLD1DUPq32 };
3123    SelectVLDDup(N, /* IsIntrinsic= */ false, false, 1, DOpcodes, QOpcodes);
3124    return;
3125  }
3126
3127  case ARMISD::VLD2DUP: {
3128    static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
3129                                        ARM::VLD2DUPd32 };
3130    SelectVLDDup(N, /* IsIntrinsic= */ false, false, 2, Opcodes);
3131    return;
3132  }
3133
3134  case ARMISD::VLD3DUP: {
3135    static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
3136                                        ARM::VLD3DUPd16Pseudo,
3137                                        ARM::VLD3DUPd32Pseudo };
3138    SelectVLDDup(N, /* IsIntrinsic= */ false, false, 3, Opcodes);
3139    return;
3140  }
3141
3142  case ARMISD::VLD4DUP: {
3143    static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
3144                                        ARM::VLD4DUPd16Pseudo,
3145                                        ARM::VLD4DUPd32Pseudo };
3146    SelectVLDDup(N, /* IsIntrinsic= */ false, false, 4, Opcodes);
3147    return;
3148  }
3149
3150  case ARMISD::VLD1DUP_UPD: {
3151    static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8wb_fixed,
3152                                         ARM::VLD1DUPd16wb_fixed,
3153                                         ARM::VLD1DUPd32wb_fixed };
3154    static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8wb_fixed,
3155                                         ARM::VLD1DUPq16wb_fixed,
3156                                         ARM::VLD1DUPq32wb_fixed };
3157    SelectVLDDup(N, /* IsIntrinsic= */ false, true, 1, DOpcodes, QOpcodes);
3158    return;
3159  }
3160
3161  case ARMISD::VLD2DUP_UPD: {
3162    static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
3163                                        ARM::VLD2DUPd16wb_fixed,
3164                                        ARM::VLD2DUPd32wb_fixed };
3165    SelectVLDDup(N, /* IsIntrinsic= */ false, true, 2, Opcodes);
3166    return;
3167  }
3168
3169  case ARMISD::VLD3DUP_UPD: {
3170    static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
3171                                        ARM::VLD3DUPd16Pseudo_UPD,
3172                                        ARM::VLD3DUPd32Pseudo_UPD };
3173    SelectVLDDup(N, /* IsIntrinsic= */ false, true, 3, Opcodes);
3174    return;
3175  }
3176
3177  case ARMISD::VLD4DUP_UPD: {
3178    static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
3179                                        ARM::VLD4DUPd16Pseudo_UPD,
3180                                        ARM::VLD4DUPd32Pseudo_UPD };
3181    SelectVLDDup(N, /* IsIntrinsic= */ false, true, 4, Opcodes);
3182    return;
3183  }
3184
3185  case ARMISD::VLD1_UPD: {
3186    static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
3187                                         ARM::VLD1d16wb_fixed,
3188                                         ARM::VLD1d32wb_fixed,
3189                                         ARM::VLD1d64wb_fixed };
3190    static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
3191                                         ARM::VLD1q16wb_fixed,
3192                                         ARM::VLD1q32wb_fixed,
3193                                         ARM::VLD1q64wb_fixed };
3194    SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr);
3195    return;
3196  }
3197
3198  case ARMISD::VLD2_UPD: {
3199    static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
3200                                         ARM::VLD2d16wb_fixed,
3201                                         ARM::VLD2d32wb_fixed,
3202                                         ARM::VLD1q64wb_fixed};
3203    static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
3204                                         ARM::VLD2q16PseudoWB_fixed,
3205                                         ARM::VLD2q32PseudoWB_fixed };
3206    SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
3207    return;
3208  }
3209
3210  case ARMISD::VLD3_UPD: {
3211    static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
3212                                         ARM::VLD3d16Pseudo_UPD,
3213                                         ARM::VLD3d32Pseudo_UPD,
3214                                         ARM::VLD1d64TPseudoWB_fixed};
3215    static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
3216                                          ARM::VLD3q16Pseudo_UPD,
3217                                          ARM::VLD3q32Pseudo_UPD };
3218    static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
3219                                          ARM::VLD3q16oddPseudo_UPD,
3220                                          ARM::VLD3q32oddPseudo_UPD };
3221    SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
3222    return;
3223  }
3224
3225  case ARMISD::VLD4_UPD: {
3226    static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
3227                                         ARM::VLD4d16Pseudo_UPD,
3228                                         ARM::VLD4d32Pseudo_UPD,
3229                                         ARM::VLD1d64QPseudoWB_fixed};
3230    static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
3231                                          ARM::VLD4q16Pseudo_UPD,
3232                                          ARM::VLD4q32Pseudo_UPD };
3233    static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
3234                                          ARM::VLD4q16oddPseudo_UPD,
3235                                          ARM::VLD4q32oddPseudo_UPD };
3236    SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
3237    return;
3238  }
3239
3240  case ARMISD::VLD2LN_UPD: {
3241    static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
3242                                         ARM::VLD2LNd16Pseudo_UPD,
3243                                         ARM::VLD2LNd32Pseudo_UPD };
3244    static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
3245                                         ARM::VLD2LNq32Pseudo_UPD };
3246    SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
3247    return;
3248  }
3249
3250  case ARMISD::VLD3LN_UPD: {
3251    static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
3252                                         ARM::VLD3LNd16Pseudo_UPD,
3253                                         ARM::VLD3LNd32Pseudo_UPD };
3254    static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
3255                                         ARM::VLD3LNq32Pseudo_UPD };
3256    SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
3257    return;
3258  }
3259
3260  case ARMISD::VLD4LN_UPD: {
3261    static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
3262                                         ARM::VLD4LNd16Pseudo_UPD,
3263                                         ARM::VLD4LNd32Pseudo_UPD };
3264    static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
3265                                         ARM::VLD4LNq32Pseudo_UPD };
3266    SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
3267    return;
3268  }
3269
3270  case ARMISD::VST1_UPD: {
3271    static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
3272                                         ARM::VST1d16wb_fixed,
3273                                         ARM::VST1d32wb_fixed,
3274                                         ARM::VST1d64wb_fixed };
3275    static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
3276                                         ARM::VST1q16wb_fixed,
3277                                         ARM::VST1q32wb_fixed,
3278                                         ARM::VST1q64wb_fixed };
3279    SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr);
3280    return;
3281  }
3282
3283  case ARMISD::VST2_UPD: {
3284    static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
3285                                         ARM::VST2d16wb_fixed,
3286                                         ARM::VST2d32wb_fixed,
3287                                         ARM::VST1q64wb_fixed};
3288    static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
3289                                         ARM::VST2q16PseudoWB_fixed,
3290                                         ARM::VST2q32PseudoWB_fixed };
3291    SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
3292    return;
3293  }
3294
3295  case ARMISD::VST3_UPD: {
3296    static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
3297                                         ARM::VST3d16Pseudo_UPD,
3298                                         ARM::VST3d32Pseudo_UPD,
3299                                         ARM::VST1d64TPseudoWB_fixed};
3300    static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3301                                          ARM::VST3q16Pseudo_UPD,
3302                                          ARM::VST3q32Pseudo_UPD };
3303    static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
3304                                          ARM::VST3q16oddPseudo_UPD,
3305                                          ARM::VST3q32oddPseudo_UPD };
3306    SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
3307    return;
3308  }
3309
3310  case ARMISD::VST4_UPD: {
3311    static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
3312                                         ARM::VST4d16Pseudo_UPD,
3313                                         ARM::VST4d32Pseudo_UPD,
3314                                         ARM::VST1d64QPseudoWB_fixed};
3315    static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3316                                          ARM::VST4q16Pseudo_UPD,
3317                                          ARM::VST4q32Pseudo_UPD };
3318    static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
3319                                          ARM::VST4q16oddPseudo_UPD,
3320                                          ARM::VST4q32oddPseudo_UPD };
3321    SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
3322    return;
3323  }
3324
3325  case ARMISD::VST2LN_UPD: {
3326    static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
3327                                         ARM::VST2LNd16Pseudo_UPD,
3328                                         ARM::VST2LNd32Pseudo_UPD };
3329    static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
3330                                         ARM::VST2LNq32Pseudo_UPD };
3331    SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
3332    return;
3333  }
3334
3335  case ARMISD::VST3LN_UPD: {
3336    static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
3337                                         ARM::VST3LNd16Pseudo_UPD,
3338                                         ARM::VST3LNd32Pseudo_UPD };
3339    static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
3340                                         ARM::VST3LNq32Pseudo_UPD };
3341    SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
3342    return;
3343  }
3344
3345  case ARMISD::VST4LN_UPD: {
3346    static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
3347                                         ARM::VST4LNd16Pseudo_UPD,
3348                                         ARM::VST4LNd32Pseudo_UPD };
3349    static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
3350                                         ARM::VST4LNq32Pseudo_UPD };
3351    SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
3352    return;
3353  }
3354
3355  case ISD::INTRINSIC_VOID:
3356  case ISD::INTRINSIC_W_CHAIN: {
3357    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
3358    switch (IntNo) {
3359    default:
3360      break;
3361
3362    case Intrinsic::arm_mrrc:
3363    case Intrinsic::arm_mrrc2: {
3364      SDLoc dl(N);
3365      SDValue Chain = N->getOperand(0);
3366      unsigned Opc;
3367
3368      if (Subtarget->isThumb())
3369        Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::t2MRRC : ARM::t2MRRC2);
3370      else
3371        Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::MRRC : ARM::MRRC2);
3372
3373      SmallVector<SDValue, 5> Ops;
3374      Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(), dl)); /* coproc */
3375      Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(), dl)); /* opc */
3376      Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(4))->getZExtValue(), dl)); /* CRm */
3377
3378      // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded
3379      // instruction will always be '1111' but it is possible in assembly language to specify
3380      // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction.
3381      if (Opc != ARM::MRRC2) {
3382        Ops.push_back(getAL(CurDAG, dl));
3383        Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3384      }
3385
3386      Ops.push_back(Chain);
3387
3388      // Writes to two registers.
3389      const EVT RetType[] = {MVT::i32, MVT::i32, MVT::Other};
3390
3391      ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, RetType, Ops));
3392      return;
3393    }
3394    case Intrinsic::arm_ldaexd:
3395    case Intrinsic::arm_ldrexd: {
3396      SDLoc dl(N);
3397      SDValue Chain = N->getOperand(0);
3398      SDValue MemAddr = N->getOperand(2);
3399      bool isThumb = Subtarget->isThumb() && Subtarget->hasV8MBaselineOps();
3400
3401      bool IsAcquire = IntNo == Intrinsic::arm_ldaexd;
3402      unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD)
3403                                : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD);
3404
3405      // arm_ldrexd returns a i64 value in {i32, i32}
3406      std::vector<EVT> ResTys;
3407      if (isThumb) {
3408        ResTys.push_back(MVT::i32);
3409        ResTys.push_back(MVT::i32);
3410      } else
3411        ResTys.push_back(MVT::Untyped);
3412      ResTys.push_back(MVT::Other);
3413
3414      // Place arguments in the right order.
3415      SDValue Ops[] = {MemAddr, getAL(CurDAG, dl),
3416                       CurDAG->getRegister(0, MVT::i32), Chain};
3417      SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
3418      // Transfer memoperands.
3419      MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3420      CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
3421
3422      // Remap uses.
3423      SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
3424      if (!SDValue(N, 0).use_empty()) {
3425        SDValue Result;
3426        if (isThumb)
3427          Result = SDValue(Ld, 0);
3428        else {
3429          SDValue SubRegIdx =
3430            CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
3431          SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3432              dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3433          Result = SDValue(ResNode,0);
3434        }
3435        ReplaceUses(SDValue(N, 0), Result);
3436      }
3437      if (!SDValue(N, 1).use_empty()) {
3438        SDValue Result;
3439        if (isThumb)
3440          Result = SDValue(Ld, 1);
3441        else {
3442          SDValue SubRegIdx =
3443            CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
3444          SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3445              dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3446          Result = SDValue(ResNode,0);
3447        }
3448        ReplaceUses(SDValue(N, 1), Result);
3449      }
3450      ReplaceUses(SDValue(N, 2), OutChain);
3451      CurDAG->RemoveDeadNode(N);
3452      return;
3453    }
3454    case Intrinsic::arm_stlexd:
3455    case Intrinsic::arm_strexd: {
3456      SDLoc dl(N);
3457      SDValue Chain = N->getOperand(0);
3458      SDValue Val0 = N->getOperand(2);
3459      SDValue Val1 = N->getOperand(3);
3460      SDValue MemAddr = N->getOperand(4);
3461
3462      // Store exclusive double return a i32 value which is the return status
3463      // of the issued store.
3464      const EVT ResTys[] = {MVT::i32, MVT::Other};
3465
3466      bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
3467      // Place arguments in the right order.
3468      SmallVector<SDValue, 7> Ops;
3469      if (isThumb) {
3470        Ops.push_back(Val0);
3471        Ops.push_back(Val1);
3472      } else
3473        // arm_strexd uses GPRPair.
3474        Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
3475      Ops.push_back(MemAddr);
3476      Ops.push_back(getAL(CurDAG, dl));
3477      Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3478      Ops.push_back(Chain);
3479
3480      bool IsRelease = IntNo == Intrinsic::arm_stlexd;
3481      unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD)
3482                                : (IsRelease ? ARM::STLEXD : ARM::STREXD);
3483
3484      SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
3485      // Transfer memoperands.
3486      MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3487      CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
3488
3489      ReplaceNode(N, St);
3490      return;
3491    }
3492
3493    case Intrinsic::arm_neon_vld1: {
3494      static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
3495                                           ARM::VLD1d32, ARM::VLD1d64 };
3496      static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
3497                                           ARM::VLD1q32, ARM::VLD1q64};
3498      SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr);
3499      return;
3500    }
3501
3502    case Intrinsic::arm_neon_vld1x2: {
3503      static const uint16_t DOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
3504                                           ARM::VLD1q32, ARM::VLD1q64 };
3505      static const uint16_t QOpcodes[] = { ARM::VLD1d8QPseudo,
3506                                           ARM::VLD1d16QPseudo,
3507                                           ARM::VLD1d32QPseudo,
3508                                           ARM::VLD1d64QPseudo };
3509      SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
3510      return;
3511    }
3512
3513    case Intrinsic::arm_neon_vld1x3: {
3514      static const uint16_t DOpcodes[] = { ARM::VLD1d8TPseudo,
3515                                           ARM::VLD1d16TPseudo,
3516                                           ARM::VLD1d32TPseudo,
3517                                           ARM::VLD1d64TPseudo };
3518      static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowTPseudo_UPD,
3519                                            ARM::VLD1q16LowTPseudo_UPD,
3520                                            ARM::VLD1q32LowTPseudo_UPD,
3521                                            ARM::VLD1q64LowTPseudo_UPD };
3522      static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighTPseudo,
3523                                            ARM::VLD1q16HighTPseudo,
3524                                            ARM::VLD1q32HighTPseudo,
3525                                            ARM::VLD1q64HighTPseudo };
3526      SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3527      return;
3528    }
3529
3530    case Intrinsic::arm_neon_vld1x4: {
3531      static const uint16_t DOpcodes[] = { ARM::VLD1d8QPseudo,
3532                                           ARM::VLD1d16QPseudo,
3533                                           ARM::VLD1d32QPseudo,
3534                                           ARM::VLD1d64QPseudo };
3535      static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowQPseudo_UPD,
3536                                            ARM::VLD1q16LowQPseudo_UPD,
3537                                            ARM::VLD1q32LowQPseudo_UPD,
3538                                            ARM::VLD1q64LowQPseudo_UPD };
3539      static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighQPseudo,
3540                                            ARM::VLD1q16HighQPseudo,
3541                                            ARM::VLD1q32HighQPseudo,
3542                                            ARM::VLD1q64HighQPseudo };
3543      SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3544      return;
3545    }
3546
3547    case Intrinsic::arm_neon_vld2: {
3548      static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
3549                                           ARM::VLD2d32, ARM::VLD1q64 };
3550      static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
3551                                           ARM::VLD2q32Pseudo };
3552      SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
3553      return;
3554    }
3555
3556    case Intrinsic::arm_neon_vld3: {
3557      static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
3558                                           ARM::VLD3d16Pseudo,
3559                                           ARM::VLD3d32Pseudo,
3560                                           ARM::VLD1d64TPseudo };
3561      static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
3562                                            ARM::VLD3q16Pseudo_UPD,
3563                                            ARM::VLD3q32Pseudo_UPD };
3564      static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
3565                                            ARM::VLD3q16oddPseudo,
3566                                            ARM::VLD3q32oddPseudo };
3567      SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3568      return;
3569    }
3570
3571    case Intrinsic::arm_neon_vld4: {
3572      static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
3573                                           ARM::VLD4d16Pseudo,
3574                                           ARM::VLD4d32Pseudo,
3575                                           ARM::VLD1d64QPseudo };
3576      static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
3577                                            ARM::VLD4q16Pseudo_UPD,
3578                                            ARM::VLD4q32Pseudo_UPD };
3579      static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
3580                                            ARM::VLD4q16oddPseudo,
3581                                            ARM::VLD4q32oddPseudo };
3582      SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3583      return;
3584    }
3585
3586    case Intrinsic::arm_neon_vld2dup: {
3587      static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
3588                                           ARM::VLD2DUPd32, ARM::VLD1q64 };
3589      static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo,
3590                                            ARM::VLD2DUPq16EvenPseudo,
3591                                            ARM::VLD2DUPq32EvenPseudo };
3592      static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudo,
3593                                            ARM::VLD2DUPq16OddPseudo,
3594                                            ARM::VLD2DUPq32OddPseudo };
3595      SelectVLDDup(N, /* IsIntrinsic= */ true, false, 2,
3596                   DOpcodes, QOpcodes0, QOpcodes1);
3597      return;
3598    }
3599
3600    case Intrinsic::arm_neon_vld3dup: {
3601      static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo,
3602                                           ARM::VLD3DUPd16Pseudo,
3603                                           ARM::VLD3DUPd32Pseudo,
3604                                           ARM::VLD1d64TPseudo };
3605      static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo,
3606                                            ARM::VLD3DUPq16EvenPseudo,
3607                                            ARM::VLD3DUPq32EvenPseudo };
3608      static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo,
3609                                            ARM::VLD3DUPq16OddPseudo,
3610                                            ARM::VLD3DUPq32OddPseudo };
3611      SelectVLDDup(N, /* IsIntrinsic= */ true, false, 3,
3612                   DOpcodes, QOpcodes0, QOpcodes1);
3613      return;
3614    }
3615
3616    case Intrinsic::arm_neon_vld4dup: {
3617      static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo,
3618                                           ARM::VLD4DUPd16Pseudo,
3619                                           ARM::VLD4DUPd32Pseudo,
3620                                           ARM::VLD1d64QPseudo };
3621      static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo,
3622                                            ARM::VLD4DUPq16EvenPseudo,
3623                                            ARM::VLD4DUPq32EvenPseudo };
3624      static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo,
3625                                            ARM::VLD4DUPq16OddPseudo,
3626                                            ARM::VLD4DUPq32OddPseudo };
3627      SelectVLDDup(N, /* IsIntrinsic= */ true, false, 4,
3628                   DOpcodes, QOpcodes0, QOpcodes1);
3629      return;
3630    }
3631
3632    case Intrinsic::arm_neon_vld2lane: {
3633      static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
3634                                           ARM::VLD2LNd16Pseudo,
3635                                           ARM::VLD2LNd32Pseudo };
3636      static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
3637                                           ARM::VLD2LNq32Pseudo };
3638      SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
3639      return;
3640    }
3641
3642    case Intrinsic::arm_neon_vld3lane: {
3643      static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
3644                                           ARM::VLD3LNd16Pseudo,
3645                                           ARM::VLD3LNd32Pseudo };
3646      static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
3647                                           ARM::VLD3LNq32Pseudo };
3648      SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
3649      return;
3650    }
3651
3652    case Intrinsic::arm_neon_vld4lane: {
3653      static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
3654                                           ARM::VLD4LNd16Pseudo,
3655                                           ARM::VLD4LNd32Pseudo };
3656      static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
3657                                           ARM::VLD4LNq32Pseudo };
3658      SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
3659      return;
3660    }
3661
3662    case Intrinsic::arm_neon_vst1: {
3663      static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
3664                                           ARM::VST1d32, ARM::VST1d64 };
3665      static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
3666                                           ARM::VST1q32, ARM::VST1q64 };
3667      SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr);
3668      return;
3669    }
3670
3671    case Intrinsic::arm_neon_vst1x2: {
3672      static const uint16_t DOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
3673                                           ARM::VST1q32, ARM::VST1q64 };
3674      static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudo,
3675                                           ARM::VST1d16QPseudo,
3676                                           ARM::VST1d32QPseudo,
3677                                           ARM::VST1d64QPseudo };
3678      SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
3679      return;
3680    }
3681
3682    case Intrinsic::arm_neon_vst1x3: {
3683      static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudo,
3684                                           ARM::VST1d16TPseudo,
3685                                           ARM::VST1d32TPseudo,
3686                                           ARM::VST1d64TPseudo };
3687      static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD,
3688                                            ARM::VST1q16LowTPseudo_UPD,
3689                                            ARM::VST1q32LowTPseudo_UPD,
3690                                            ARM::VST1q64LowTPseudo_UPD };
3691      static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo,
3692                                            ARM::VST1q16HighTPseudo,
3693                                            ARM::VST1q32HighTPseudo,
3694                                            ARM::VST1q64HighTPseudo };
3695      SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3696      return;
3697    }
3698
3699    case Intrinsic::arm_neon_vst1x4: {
3700      static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudo,
3701                                           ARM::VST1d16QPseudo,
3702                                           ARM::VST1d32QPseudo,
3703                                           ARM::VST1d64QPseudo };
3704      static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD,
3705                                            ARM::VST1q16LowQPseudo_UPD,
3706                                            ARM::VST1q32LowQPseudo_UPD,
3707                                            ARM::VST1q64LowQPseudo_UPD };
3708      static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo,
3709                                            ARM::VST1q16HighQPseudo,
3710                                            ARM::VST1q32HighQPseudo,
3711                                            ARM::VST1q64HighQPseudo };
3712      SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3713      return;
3714    }
3715
3716    case Intrinsic::arm_neon_vst2: {
3717      static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
3718                                           ARM::VST2d32, ARM::VST1q64 };
3719      static const uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
3720                                           ARM::VST2q32Pseudo };
3721      SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
3722      return;
3723    }
3724
3725    case Intrinsic::arm_neon_vst3: {
3726      static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
3727                                           ARM::VST3d16Pseudo,
3728                                           ARM::VST3d32Pseudo,
3729                                           ARM::VST1d64TPseudo };
3730      static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3731                                            ARM::VST3q16Pseudo_UPD,
3732                                            ARM::VST3q32Pseudo_UPD };
3733      static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
3734                                            ARM::VST3q16oddPseudo,
3735                                            ARM::VST3q32oddPseudo };
3736      SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3737      return;
3738    }
3739
3740    case Intrinsic::arm_neon_vst4: {
3741      static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
3742                                           ARM::VST4d16Pseudo,
3743                                           ARM::VST4d32Pseudo,
3744                                           ARM::VST1d64QPseudo };
3745      static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3746                                            ARM::VST4q16Pseudo_UPD,
3747                                            ARM::VST4q32Pseudo_UPD };
3748      static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
3749                                            ARM::VST4q16oddPseudo,
3750                                            ARM::VST4q32oddPseudo };
3751      SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3752      return;
3753    }
3754
3755    case Intrinsic::arm_neon_vst2lane: {
3756      static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
3757                                           ARM::VST2LNd16Pseudo,
3758                                           ARM::VST2LNd32Pseudo };
3759      static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
3760                                           ARM::VST2LNq32Pseudo };
3761      SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
3762      return;
3763    }
3764
3765    case Intrinsic::arm_neon_vst3lane: {
3766      static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
3767                                           ARM::VST3LNd16Pseudo,
3768                                           ARM::VST3LNd32Pseudo };
3769      static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
3770                                           ARM::VST3LNq32Pseudo };
3771      SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
3772      return;
3773    }
3774
3775    case Intrinsic::arm_neon_vst4lane: {
3776      static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
3777                                           ARM::VST4LNd16Pseudo,
3778                                           ARM::VST4LNd32Pseudo };
3779      static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
3780                                           ARM::VST4LNq32Pseudo };
3781      SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
3782      return;
3783    }
3784    }
3785    break;
3786  }
3787
3788  case ISD::ATOMIC_CMP_SWAP:
3789    SelectCMP_SWAP(N);
3790    return;
3791  }
3792
3793  SelectCode(N);
3794}
3795
3796// Inspect a register string of the form
3797// cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
3798// cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
3799// and obtain the integer operands from them, adding these operands to the
3800// provided vector.
3801static void getIntOperandsFromRegisterString(StringRef RegString,
3802                                             SelectionDAG *CurDAG,
3803                                             const SDLoc &DL,
3804                                             std::vector<SDValue> &Ops) {
3805  SmallVector<StringRef, 5> Fields;
3806  RegString.split(Fields, ':');
3807
3808  if (Fields.size() > 1) {
3809    bool AllIntFields = true;
3810
3811    for (StringRef Field : Fields) {
3812      // Need to trim out leading 'cp' characters and get the integer field.
3813      unsigned IntField;
3814      AllIntFields &= !Field.trim("CPcp").getAsInteger(10, IntField);
3815      Ops.push_back(CurDAG->getTargetConstant(IntField, DL, MVT::i32));
3816    }
3817
3818    assert(AllIntFields &&
3819            "Unexpected non-integer value in special register string.");
3820  }
3821}
3822
3823// Maps a Banked Register string to its mask value. The mask value returned is
3824// for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
3825// mask operand, which expresses which register is to be used, e.g. r8, and in
3826// which mode it is to be used, e.g. usr. Returns -1 to signify that the string
3827// was invalid.
3828static inline int getBankedRegisterMask(StringRef RegString) {
3829  auto TheReg = ARMBankedReg::lookupBankedRegByName(RegString.lower());
3830  if (!TheReg)
3831     return -1;
3832  return TheReg->Encoding;
3833}
3834
3835// The flags here are common to those allowed for apsr in the A class cores and
3836// those allowed for the special registers in the M class cores. Returns a
3837// value representing which flags were present, -1 if invalid.
3838static inline int getMClassFlagsMask(StringRef Flags) {
3839  return StringSwitch<int>(Flags)
3840          .Case("", 0x2) // no flags means nzcvq for psr registers, and 0x2 is
3841                         // correct when flags are not permitted
3842          .Case("g", 0x1)
3843          .Case("nzcvq", 0x2)
3844          .Case("nzcvqg", 0x3)
3845          .Default(-1);
3846}
3847
3848// Maps MClass special registers string to its value for use in the
3849// t2MRS_M/t2MSR_M instruction nodes as the SYSm value operand.
3850// Returns -1 to signify that the string was invalid.
3851static int getMClassRegisterMask(StringRef Reg, const ARMSubtarget *Subtarget) {
3852  auto TheReg = ARMSysReg::lookupMClassSysRegByName(Reg);
3853  const FeatureBitset &FeatureBits = Subtarget->getFeatureBits();
3854  if (!TheReg || !TheReg->hasRequiredFeatures(FeatureBits))
3855    return -1;
3856  return (int)(TheReg->Encoding & 0xFFF); // SYSm value
3857}
3858
3859static int getARClassRegisterMask(StringRef Reg, StringRef Flags) {
3860  // The mask operand contains the special register (R Bit) in bit 4, whether
3861  // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
3862  // bits 3-0 contains the fields to be accessed in the special register, set by
3863  // the flags provided with the register.
3864  int Mask = 0;
3865  if (Reg == "apsr") {
3866    // The flags permitted for apsr are the same flags that are allowed in
3867    // M class registers. We get the flag value and then shift the flags into
3868    // the correct place to combine with the mask.
3869    Mask = getMClassFlagsMask(Flags);
3870    if (Mask == -1)
3871      return -1;
3872    return Mask << 2;
3873  }
3874
3875  if (Reg != "cpsr" && Reg != "spsr") {
3876    return -1;
3877  }
3878
3879  // This is the same as if the flags were "fc"
3880  if (Flags.empty() || Flags == "all")
3881    return Mask | 0x9;
3882
3883  // Inspect the supplied flags string and set the bits in the mask for
3884  // the relevant and valid flags allowed for cpsr and spsr.
3885  for (char Flag : Flags) {
3886    int FlagVal;
3887    switch (Flag) {
3888      case 'c':
3889        FlagVal = 0x1;
3890        break;
3891      case 'x':
3892        FlagVal = 0x2;
3893        break;
3894      case 's':
3895        FlagVal = 0x4;
3896        break;
3897      case 'f':
3898        FlagVal = 0x8;
3899        break;
3900      default:
3901        FlagVal = 0;
3902    }
3903
3904    // This avoids allowing strings where the same flag bit appears twice.
3905    if (!FlagVal || (Mask & FlagVal))
3906      return -1;
3907    Mask |= FlagVal;
3908  }
3909
3910  // If the register is spsr then we need to set the R bit.
3911  if (Reg == "spsr")
3912    Mask |= 0x10;
3913
3914  return Mask;
3915}
3916
3917// Lower the read_register intrinsic to ARM specific DAG nodes
3918// using the supplied metadata string to select the instruction node to use
3919// and the registers/masks to construct as operands for the node.
3920bool ARMDAGToDAGISel::tryReadRegister(SDNode *N){
3921  const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
3922  const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
3923  bool IsThumb2 = Subtarget->isThumb2();
3924  SDLoc DL(N);
3925
3926  std::vector<SDValue> Ops;
3927  getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
3928
3929  if (!Ops.empty()) {
3930    // If the special register string was constructed of fields (as defined
3931    // in the ACLE) then need to lower to MRC node (32 bit) or
3932    // MRRC node(64 bit), we can make the distinction based on the number of
3933    // operands we have.
3934    unsigned Opcode;
3935    SmallVector<EVT, 3> ResTypes;
3936    if (Ops.size() == 5){
3937      Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC;
3938      ResTypes.append({ MVT::i32, MVT::Other });
3939    } else {
3940      assert(Ops.size() == 3 &&
3941              "Invalid number of fields in special register string.");
3942      Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC;
3943      ResTypes.append({ MVT::i32, MVT::i32, MVT::Other });
3944    }
3945
3946    Ops.push_back(getAL(CurDAG, DL));
3947    Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3948    Ops.push_back(N->getOperand(0));
3949    ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, ResTypes, Ops));
3950    return true;
3951  }
3952
3953  std::string SpecialReg = RegString->getString().lower();
3954
3955  int BankedReg = getBankedRegisterMask(SpecialReg);
3956  if (BankedReg != -1) {
3957    Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32),
3958            getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
3959            N->getOperand(0) };
3960    ReplaceNode(
3961        N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked,
3962                                  DL, MVT::i32, MVT::Other, Ops));
3963    return true;
3964  }
3965
3966  // The VFP registers are read by creating SelectionDAG nodes with opcodes
3967  // corresponding to the register that is being read from. So we switch on the
3968  // string to find which opcode we need to use.
3969  unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
3970                    .Case("fpscr", ARM::VMRS)
3971                    .Case("fpexc", ARM::VMRS_FPEXC)
3972                    .Case("fpsid", ARM::VMRS_FPSID)
3973                    .Case("mvfr0", ARM::VMRS_MVFR0)
3974                    .Case("mvfr1", ARM::VMRS_MVFR1)
3975                    .Case("mvfr2", ARM::VMRS_MVFR2)
3976                    .Case("fpinst", ARM::VMRS_FPINST)
3977                    .Case("fpinst2", ARM::VMRS_FPINST2)
3978                    .Default(0);
3979
3980  // If an opcode was found then we can lower the read to a VFP instruction.
3981  if (Opcode) {
3982    if (!Subtarget->hasVFP2())
3983      return false;
3984    if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8())
3985      return false;
3986
3987    Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
3988            N->getOperand(0) };
3989    ReplaceNode(N,
3990                CurDAG->getMachineNode(Opcode, DL, MVT::i32, MVT::Other, Ops));
3991    return true;
3992  }
3993
3994  // If the target is M Class then need to validate that the register string
3995  // is an acceptable value, so check that a mask can be constructed from the
3996  // string.
3997  if (Subtarget->isMClass()) {
3998    int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
3999    if (SYSmValue == -1)
4000      return false;
4001
4002    SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
4003                      getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4004                      N->getOperand(0) };
4005    ReplaceNode(
4006        N, CurDAG->getMachineNode(ARM::t2MRS_M, DL, MVT::i32, MVT::Other, Ops));
4007    return true;
4008  }
4009
4010  // Here we know the target is not M Class so we need to check if it is one
4011  // of the remaining possible values which are apsr, cpsr or spsr.
4012  if (SpecialReg == "apsr" || SpecialReg == "cpsr") {
4013    Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4014            N->getOperand(0) };
4015    ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRS_AR : ARM::MRS,
4016                                          DL, MVT::i32, MVT::Other, Ops));
4017    return true;
4018  }
4019
4020  if (SpecialReg == "spsr") {
4021    Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4022            N->getOperand(0) };
4023    ReplaceNode(
4024        N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys, DL,
4025                                  MVT::i32, MVT::Other, Ops));
4026    return true;
4027  }
4028
4029  return false;
4030}
4031
4032// Lower the write_register intrinsic to ARM specific DAG nodes
4033// using the supplied metadata string to select the instruction node to use
4034// and the registers/masks to use in the nodes
4035bool ARMDAGToDAGISel::tryWriteRegister(SDNode *N){
4036  const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
4037  const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
4038  bool IsThumb2 = Subtarget->isThumb2();
4039  SDLoc DL(N);
4040
4041  std::vector<SDValue> Ops;
4042  getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
4043
4044  if (!Ops.empty()) {
4045    // If the special register string was constructed of fields (as defined
4046    // in the ACLE) then need to lower to MCR node (32 bit) or
4047    // MCRR node(64 bit), we can make the distinction based on the number of
4048    // operands we have.
4049    unsigned Opcode;
4050    if (Ops.size() == 5) {
4051      Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR;
4052      Ops.insert(Ops.begin()+2, N->getOperand(2));
4053    } else {
4054      assert(Ops.size() == 3 &&
4055              "Invalid number of fields in special register string.");
4056      Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR;
4057      SDValue WriteValue[] = { N->getOperand(2), N->getOperand(3) };
4058      Ops.insert(Ops.begin()+2, WriteValue, WriteValue+2);
4059    }
4060
4061    Ops.push_back(getAL(CurDAG, DL));
4062    Ops.push_back(CurDAG->getRegister(0, MVT::i32));
4063    Ops.push_back(N->getOperand(0));
4064
4065    ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
4066    return true;
4067  }
4068
4069  std::string SpecialReg = RegString->getString().lower();
4070  int BankedReg = getBankedRegisterMask(SpecialReg);
4071  if (BankedReg != -1) {
4072    Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), N->getOperand(2),
4073            getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4074            N->getOperand(0) };
4075    ReplaceNode(
4076        N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked,
4077                                  DL, MVT::Other, Ops));
4078    return true;
4079  }
4080
4081  // The VFP registers are written to by creating SelectionDAG nodes with
4082  // opcodes corresponding to the register that is being written. So we switch
4083  // on the string to find which opcode we need to use.
4084  unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
4085                    .Case("fpscr", ARM::VMSR)
4086                    .Case("fpexc", ARM::VMSR_FPEXC)
4087                    .Case("fpsid", ARM::VMSR_FPSID)
4088                    .Case("fpinst", ARM::VMSR_FPINST)
4089                    .Case("fpinst2", ARM::VMSR_FPINST2)
4090                    .Default(0);
4091
4092  if (Opcode) {
4093    if (!Subtarget->hasVFP2())
4094      return false;
4095    Ops = { N->getOperand(2), getAL(CurDAG, DL),
4096            CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
4097    ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
4098    return true;
4099  }
4100
4101  std::pair<StringRef, StringRef> Fields;
4102  Fields = StringRef(SpecialReg).rsplit('_');
4103  std::string Reg = Fields.first.str();
4104  StringRef Flags = Fields.second;
4105
4106  // If the target was M Class then need to validate the special register value
4107  // and retrieve the mask for use in the instruction node.
4108  if (Subtarget->isMClass()) {
4109    int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
4110    if (SYSmValue == -1)
4111      return false;
4112
4113    SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
4114                      N->getOperand(2), getAL(CurDAG, DL),
4115                      CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
4116    ReplaceNode(N, CurDAG->getMachineNode(ARM::t2MSR_M, DL, MVT::Other, Ops));
4117    return true;
4118  }
4119
4120  // We then check to see if a valid mask can be constructed for one of the
4121  // register string values permitted for the A and R class cores. These values
4122  // are apsr, spsr and cpsr; these are also valid on older cores.
4123  int Mask = getARClassRegisterMask(Reg, Flags);
4124  if (Mask != -1) {
4125    Ops = { CurDAG->getTargetConstant(Mask, DL, MVT::i32), N->getOperand(2),
4126            getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4127            N->getOperand(0) };
4128    ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSR_AR : ARM::MSR,
4129                                          DL, MVT::Other, Ops));
4130    return true;
4131  }
4132
4133  return false;
4134}
4135
4136bool ARMDAGToDAGISel::tryInlineAsm(SDNode *N){
4137  std::vector<SDValue> AsmNodeOperands;
4138  unsigned Flag, Kind;
4139  bool Changed = false;
4140  unsigned NumOps = N->getNumOperands();
4141
4142  // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
4143  // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
4144  // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
4145  // respectively. Since there is no constraint to explicitly specify a
4146  // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
4147  // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
4148  // them into a GPRPair.
4149
4150  SDLoc dl(N);
4151  SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1)
4152                                   : SDValue(nullptr,0);
4153
4154  SmallVector<bool, 8> OpChanged;
4155  // Glue node will be appended late.
4156  for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
4157    SDValue op = N->getOperand(i);
4158    AsmNodeOperands.push_back(op);
4159
4160    if (i < InlineAsm::Op_FirstOperand)
4161      continue;
4162
4163    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
4164      Flag = C->getZExtValue();
4165      Kind = InlineAsm::getKind(Flag);
4166    }
4167    else
4168      continue;
4169
4170    // Immediate operands to inline asm in the SelectionDAG are modeled with
4171    // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
4172    // the second is a constant with the value of the immediate. If we get here
4173    // and we have a Kind_Imm, skip the next operand, and continue.
4174    if (Kind == InlineAsm::Kind_Imm) {
4175      SDValue op = N->getOperand(++i);
4176      AsmNodeOperands.push_back(op);
4177      continue;
4178    }
4179
4180    unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
4181    if (NumRegs)
4182      OpChanged.push_back(false);
4183
4184    unsigned DefIdx = 0;
4185    bool IsTiedToChangedOp = false;
4186    // If it's a use that is tied with a previous def, it has no
4187    // reg class constraint.
4188    if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
4189      IsTiedToChangedOp = OpChanged[DefIdx];
4190
4191    // Memory operands to inline asm in the SelectionDAG are modeled with two
4192    // operands: a constant of value InlineAsm::Kind_Mem followed by the input
4193    // operand. If we get here and we have a Kind_Mem, skip the next operand (so
4194    // it doesn't get misinterpreted), and continue. We do this here because
4195    // it's important to update the OpChanged array correctly before moving on.
4196    if (Kind == InlineAsm::Kind_Mem) {
4197      SDValue op = N->getOperand(++i);
4198      AsmNodeOperands.push_back(op);
4199      continue;
4200    }
4201
4202    if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
4203        && Kind != InlineAsm::Kind_RegDefEarlyClobber)
4204      continue;
4205
4206    unsigned RC;
4207    bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
4208    if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
4209        || NumRegs != 2)
4210      continue;
4211
4212    assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
4213    SDValue V0 = N->getOperand(i+1);
4214    SDValue V1 = N->getOperand(i+2);
4215    unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
4216    unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
4217    SDValue PairedReg;
4218    MachineRegisterInfo &MRI = MF->getRegInfo();
4219
4220    if (Kind == InlineAsm::Kind_RegDef ||
4221        Kind == InlineAsm::Kind_RegDefEarlyClobber) {
4222      // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
4223      // the original GPRs.
4224
4225      unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
4226      PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
4227      SDValue Chain = SDValue(N,0);
4228
4229      SDNode *GU = N->getGluedUser();
4230      SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
4231                                               Chain.getValue(1));
4232
4233      // Extract values from a GPRPair reg and copy to the original GPR reg.
4234      SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
4235                                                    RegCopy);
4236      SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
4237                                                    RegCopy);
4238      SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
4239                                        RegCopy.getValue(1));
4240      SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
4241
4242      // Update the original glue user.
4243      std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
4244      Ops.push_back(T1.getValue(1));
4245      CurDAG->UpdateNodeOperands(GU, Ops);
4246    }
4247    else {
4248      // For Kind  == InlineAsm::Kind_RegUse, we first copy two GPRs into a
4249      // GPRPair and then pass the GPRPair to the inline asm.
4250      SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
4251
4252      // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
4253      SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
4254                                          Chain.getValue(1));
4255      SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
4256                                          T0.getValue(1));
4257      SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
4258
4259      // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
4260      // i32 VRs of inline asm with it.
4261      unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
4262      PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
4263      Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
4264
4265      AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
4266      Glue = Chain.getValue(1);
4267    }
4268
4269    Changed = true;
4270
4271    if(PairedReg.getNode()) {
4272      OpChanged[OpChanged.size() -1 ] = true;
4273      Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
4274      if (IsTiedToChangedOp)
4275        Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
4276      else
4277        Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
4278      // Replace the current flag.
4279      AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
4280          Flag, dl, MVT::i32);
4281      // Add the new register node and skip the original two GPRs.
4282      AsmNodeOperands.push_back(PairedReg);
4283      // Skip the next two GPRs.
4284      i += 2;
4285    }
4286  }
4287
4288  if (Glue.getNode())
4289    AsmNodeOperands.push_back(Glue);
4290  if (!Changed)
4291    return false;
4292
4293  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
4294      CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
4295  New->setNodeId(-1);
4296  ReplaceNode(N, New.getNode());
4297  return true;
4298}
4299
4300
4301bool ARMDAGToDAGISel::
4302SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
4303                             std::vector<SDValue> &OutOps) {
4304  switch(ConstraintID) {
4305  default:
4306    llvm_unreachable("Unexpected asm memory constraint");
4307  case InlineAsm::Constraint_i:
4308    // FIXME: It seems strange that 'i' is needed here since it's supposed to
4309    //        be an immediate and not a memory constraint.
4310    LLVM_FALLTHROUGH;
4311  case InlineAsm::Constraint_m:
4312  case InlineAsm::Constraint_o:
4313  case InlineAsm::Constraint_Q:
4314  case InlineAsm::Constraint_Um:
4315  case InlineAsm::Constraint_Un:
4316  case InlineAsm::Constraint_Uq:
4317  case InlineAsm::Constraint_Us:
4318  case InlineAsm::Constraint_Ut:
4319  case InlineAsm::Constraint_Uv:
4320  case InlineAsm::Constraint_Uy:
4321    // Require the address to be in a register.  That is safe for all ARM
4322    // variants and it is hard to do anything much smarter without knowing
4323    // how the operand is used.
4324    OutOps.push_back(Op);
4325    return false;
4326  }
4327  return true;
4328}
4329
4330/// createARMISelDag - This pass converts a legalized DAG into a
4331/// ARM-specific DAG, ready for instruction scheduling.
4332///
4333FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
4334                                     CodeGenOpt::Level OptLevel) {
4335  return new ARMDAGToDAGISel(TM, OptLevel);
4336}
4337