ARMISelDAGToDAG.cpp revision 208599
1//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARM.h"
15#include "ARMAddressingModes.h"
16#include "ARMTargetMachine.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SelectionDAGISel.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35
36using namespace llvm;
37
38static cl::opt<bool>
39UseRegSeq("neon-reg-sequence", cl::Hidden,
40          cl::desc("Use reg_sequence to model ld / st of multiple neon regs"),
41          cl::init(true));
42
43//===--------------------------------------------------------------------===//
44/// ARMDAGToDAGISel - ARM specific code to select ARM machine
45/// instructions for SelectionDAG operations.
46///
47namespace {
48class ARMDAGToDAGISel : public SelectionDAGISel {
49  ARMBaseTargetMachine &TM;
50
51  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
52  /// make the right decision when generating code for different targets.
53  const ARMSubtarget *Subtarget;
54
55public:
56  explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
57                           CodeGenOpt::Level OptLevel)
58    : SelectionDAGISel(tm, OptLevel), TM(tm),
59    Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
60  }
61
62  virtual const char *getPassName() const {
63    return "ARM Instruction Selection";
64  }
65
66  /// getI32Imm - Return a target constant of type i32 with the specified
67  /// value.
68  inline SDValue getI32Imm(unsigned Imm) {
69    return CurDAG->getTargetConstant(Imm, MVT::i32);
70  }
71
72  SDNode *Select(SDNode *N);
73
74  bool SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &A,
75                               SDValue &B, SDValue &C);
76  bool SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base,
77                       SDValue &Offset, SDValue &Opc);
78  bool SelectAddrMode2Offset(SDNode *Op, SDValue N,
79                             SDValue &Offset, SDValue &Opc);
80  bool SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base,
81                       SDValue &Offset, SDValue &Opc);
82  bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
83                             SDValue &Offset, SDValue &Opc);
84  bool SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr,
85                       SDValue &Mode);
86  bool SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base,
87                       SDValue &Offset);
88  bool SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Align);
89
90  bool SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset,
91                        SDValue &Label);
92
93  bool SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base,
94                             SDValue &Offset);
95  bool SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale,
96                              SDValue &Base, SDValue &OffImm,
97                              SDValue &Offset);
98  bool SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base,
99                             SDValue &OffImm, SDValue &Offset);
100  bool SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base,
101                             SDValue &OffImm, SDValue &Offset);
102  bool SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base,
103                             SDValue &OffImm, SDValue &Offset);
104  bool SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base,
105                             SDValue &OffImm);
106
107  bool SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
108                                 SDValue &BaseReg, SDValue &Opc);
109  bool SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base,
110                             SDValue &OffImm);
111  bool SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base,
112                            SDValue &OffImm);
113  bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
114                                 SDValue &OffImm);
115  bool SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base,
116                              SDValue &OffImm);
117  bool SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base,
118                             SDValue &OffReg, SDValue &ShImm);
119
120  // Include the pieces autogenerated from the target description.
121#include "ARMGenDAGISel.inc"
122
123private:
124  /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
125  /// ARM.
126  SDNode *SelectARMIndexedLoad(SDNode *N);
127  SDNode *SelectT2IndexedLoad(SDNode *N);
128
129  /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
130  /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
131  /// loads of D registers and even subregs and odd subregs of Q registers.
132  /// For NumVecs <= 2, QOpcodes1 is not used.
133  SDNode *SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
134                    unsigned *QOpcodes0, unsigned *QOpcodes1);
135
136  /// SelectVST - Select NEON store intrinsics.  NumVecs should
137  /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
138  /// stores of D registers and even subregs and odd subregs of Q registers.
139  /// For NumVecs <= 2, QOpcodes1 is not used.
140  SDNode *SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
141                    unsigned *QOpcodes0, unsigned *QOpcodes1);
142
143  /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
144  /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
145  /// load/store of D registers and even subregs and odd subregs of Q registers.
146  SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs,
147                          unsigned *DOpcodes, unsigned *QOpcodes0,
148                          unsigned *QOpcodes1);
149
150  /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
151  SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
152
153  /// SelectCMOVOp - Select CMOV instructions for ARM.
154  SDNode *SelectCMOVOp(SDNode *N);
155  SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
156                              ARMCC::CondCodes CCVal, SDValue CCR,
157                              SDValue InFlag);
158  SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
159                               ARMCC::CondCodes CCVal, SDValue CCR,
160                               SDValue InFlag);
161  SDNode *SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
162                              ARMCC::CondCodes CCVal, SDValue CCR,
163                              SDValue InFlag);
164  SDNode *SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
165                               ARMCC::CondCodes CCVal, SDValue CCR,
166                               SDValue InFlag);
167
168  SDNode *SelectConcatVector(SDNode *N);
169
170  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
171  /// inline asm expressions.
172  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
173                                            char ConstraintCode,
174                                            std::vector<SDValue> &OutOps);
175
176  /// PairDRegs - Form a quad register from a pair of D registers.
177  ///
178  SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
179
180  /// PairDRegs - Form a quad register pair from a pair of Q registers.
181  ///
182  SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1);
183
184  /// QuadDRegs - Form a quad register pair from a quad of D registers.
185  ///
186  SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
187
188  /// QuadQRegs - Form 4 consecutive Q registers.
189  ///
190  SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
191
192  /// OctoDRegs - Form 8 consecutive D registers.
193  ///
194  SDNode *OctoDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3,
195                    SDValue V4, SDValue V5, SDValue V6, SDValue V7);
196};
197}
198
199/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
200/// operand. If so Imm will receive the 32-bit value.
201static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
202  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
203    Imm = cast<ConstantSDNode>(N)->getZExtValue();
204    return true;
205  }
206  return false;
207}
208
209// isInt32Immediate - This method tests to see if a constant operand.
210// If so Imm will receive the 32 bit value.
211static bool isInt32Immediate(SDValue N, unsigned &Imm) {
212  return isInt32Immediate(N.getNode(), Imm);
213}
214
215// isOpcWithIntImmediate - This method tests to see if the node is a specific
216// opcode and that it has a immediate integer right operand.
217// If so Imm will receive the 32 bit value.
218static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
219  return N->getOpcode() == Opc &&
220         isInt32Immediate(N->getOperand(1).getNode(), Imm);
221}
222
223
224bool ARMDAGToDAGISel::SelectShifterOperandReg(SDNode *Op,
225                                              SDValue N,
226                                              SDValue &BaseReg,
227                                              SDValue &ShReg,
228                                              SDValue &Opc) {
229  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
230
231  // Don't match base register only case. That is matched to a separate
232  // lower complexity pattern with explicit register operand.
233  if (ShOpcVal == ARM_AM::no_shift) return false;
234
235  BaseReg = N.getOperand(0);
236  unsigned ShImmVal = 0;
237  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
238    ShReg = CurDAG->getRegister(0, MVT::i32);
239    ShImmVal = RHS->getZExtValue() & 31;
240  } else {
241    ShReg = N.getOperand(1);
242  }
243  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
244                                  MVT::i32);
245  return true;
246}
247
248bool ARMDAGToDAGISel::SelectAddrMode2(SDNode *Op, SDValue N,
249                                      SDValue &Base, SDValue &Offset,
250                                      SDValue &Opc) {
251  if (N.getOpcode() == ISD::MUL) {
252    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
253      // X * [3,5,9] -> X + X * [2,4,8] etc.
254      int RHSC = (int)RHS->getZExtValue();
255      if (RHSC & 1) {
256        RHSC = RHSC & ~1;
257        ARM_AM::AddrOpc AddSub = ARM_AM::add;
258        if (RHSC < 0) {
259          AddSub = ARM_AM::sub;
260          RHSC = - RHSC;
261        }
262        if (isPowerOf2_32(RHSC)) {
263          unsigned ShAmt = Log2_32(RHSC);
264          Base = Offset = N.getOperand(0);
265          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
266                                                            ARM_AM::lsl),
267                                          MVT::i32);
268          return true;
269        }
270      }
271    }
272  }
273
274  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
275    Base = N;
276    if (N.getOpcode() == ISD::FrameIndex) {
277      int FI = cast<FrameIndexSDNode>(N)->getIndex();
278      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
279    } else if (N.getOpcode() == ARMISD::Wrapper &&
280               !(Subtarget->useMovt() &&
281                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
282      Base = N.getOperand(0);
283    }
284    Offset = CurDAG->getRegister(0, MVT::i32);
285    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
286                                                      ARM_AM::no_shift),
287                                    MVT::i32);
288    return true;
289  }
290
291  // Match simple R +/- imm12 operands.
292  if (N.getOpcode() == ISD::ADD)
293    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
294      int RHSC = (int)RHS->getZExtValue();
295      if ((RHSC >= 0 && RHSC < 0x1000) ||
296          (RHSC < 0 && RHSC > -0x1000)) { // 12 bits.
297        Base = N.getOperand(0);
298        if (Base.getOpcode() == ISD::FrameIndex) {
299          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
300          Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
301        }
302        Offset = CurDAG->getRegister(0, MVT::i32);
303
304        ARM_AM::AddrOpc AddSub = ARM_AM::add;
305        if (RHSC < 0) {
306          AddSub = ARM_AM::sub;
307          RHSC = - RHSC;
308        }
309        Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
310                                                          ARM_AM::no_shift),
311                                        MVT::i32);
312        return true;
313      }
314    }
315
316  // Otherwise this is R +/- [possibly shifted] R.
317  ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub;
318  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1));
319  unsigned ShAmt = 0;
320
321  Base   = N.getOperand(0);
322  Offset = N.getOperand(1);
323
324  if (ShOpcVal != ARM_AM::no_shift) {
325    // Check to see if the RHS of the shift is a constant, if not, we can't fold
326    // it.
327    if (ConstantSDNode *Sh =
328           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
329      ShAmt = Sh->getZExtValue();
330      Offset = N.getOperand(1).getOperand(0);
331    } else {
332      ShOpcVal = ARM_AM::no_shift;
333    }
334  }
335
336  // Try matching (R shl C) + (R).
337  if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) {
338    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0));
339    if (ShOpcVal != ARM_AM::no_shift) {
340      // Check to see if the RHS of the shift is a constant, if not, we can't
341      // fold it.
342      if (ConstantSDNode *Sh =
343          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
344        ShAmt = Sh->getZExtValue();
345        Offset = N.getOperand(0).getOperand(0);
346        Base = N.getOperand(1);
347      } else {
348        ShOpcVal = ARM_AM::no_shift;
349      }
350    }
351  }
352
353  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
354                                  MVT::i32);
355  return true;
356}
357
358bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode *Op, SDValue N,
359                                            SDValue &Offset, SDValue &Opc) {
360  unsigned Opcode = Op->getOpcode();
361  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
362    ? cast<LoadSDNode>(Op)->getAddressingMode()
363    : cast<StoreSDNode>(Op)->getAddressingMode();
364  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
365    ? ARM_AM::add : ARM_AM::sub;
366  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
367    int Val = (int)C->getZExtValue();
368    if (Val >= 0 && Val < 0x1000) { // 12 bits.
369      Offset = CurDAG->getRegister(0, MVT::i32);
370      Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
371                                                        ARM_AM::no_shift),
372                                      MVT::i32);
373      return true;
374    }
375  }
376
377  Offset = N;
378  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
379  unsigned ShAmt = 0;
380  if (ShOpcVal != ARM_AM::no_shift) {
381    // Check to see if the RHS of the shift is a constant, if not, we can't fold
382    // it.
383    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
384      ShAmt = Sh->getZExtValue();
385      Offset = N.getOperand(0);
386    } else {
387      ShOpcVal = ARM_AM::no_shift;
388    }
389  }
390
391  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
392                                  MVT::i32);
393  return true;
394}
395
396
397bool ARMDAGToDAGISel::SelectAddrMode3(SDNode *Op, SDValue N,
398                                      SDValue &Base, SDValue &Offset,
399                                      SDValue &Opc) {
400  if (N.getOpcode() == ISD::SUB) {
401    // X - C  is canonicalize to X + -C, no need to handle it here.
402    Base = N.getOperand(0);
403    Offset = N.getOperand(1);
404    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
405    return true;
406  }
407
408  if (N.getOpcode() != ISD::ADD) {
409    Base = N;
410    if (N.getOpcode() == ISD::FrameIndex) {
411      int FI = cast<FrameIndexSDNode>(N)->getIndex();
412      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
413    }
414    Offset = CurDAG->getRegister(0, MVT::i32);
415    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
416    return true;
417  }
418
419  // If the RHS is +/- imm8, fold into addr mode.
420  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
421    int RHSC = (int)RHS->getZExtValue();
422    if ((RHSC >= 0 && RHSC < 256) ||
423        (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
424      Base = N.getOperand(0);
425      if (Base.getOpcode() == ISD::FrameIndex) {
426        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
427        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
428      }
429      Offset = CurDAG->getRegister(0, MVT::i32);
430
431      ARM_AM::AddrOpc AddSub = ARM_AM::add;
432      if (RHSC < 0) {
433        AddSub = ARM_AM::sub;
434        RHSC = - RHSC;
435      }
436      Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
437      return true;
438    }
439  }
440
441  Base = N.getOperand(0);
442  Offset = N.getOperand(1);
443  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
444  return true;
445}
446
447bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
448                                            SDValue &Offset, SDValue &Opc) {
449  unsigned Opcode = Op->getOpcode();
450  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
451    ? cast<LoadSDNode>(Op)->getAddressingMode()
452    : cast<StoreSDNode>(Op)->getAddressingMode();
453  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
454    ? ARM_AM::add : ARM_AM::sub;
455  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
456    int Val = (int)C->getZExtValue();
457    if (Val >= 0 && Val < 256) {
458      Offset = CurDAG->getRegister(0, MVT::i32);
459      Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
460      return true;
461    }
462  }
463
464  Offset = N;
465  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
466  return true;
467}
468
469bool ARMDAGToDAGISel::SelectAddrMode4(SDNode *Op, SDValue N,
470                                      SDValue &Addr, SDValue &Mode) {
471  Addr = N;
472  Mode = CurDAG->getTargetConstant(0, MVT::i32);
473  return true;
474}
475
476bool ARMDAGToDAGISel::SelectAddrMode5(SDNode *Op, SDValue N,
477                                      SDValue &Base, SDValue &Offset) {
478  if (N.getOpcode() != ISD::ADD) {
479    Base = N;
480    if (N.getOpcode() == ISD::FrameIndex) {
481      int FI = cast<FrameIndexSDNode>(N)->getIndex();
482      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
483    } else if (N.getOpcode() == ARMISD::Wrapper &&
484               !(Subtarget->useMovt() &&
485                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
486      Base = N.getOperand(0);
487    }
488    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
489                                       MVT::i32);
490    return true;
491  }
492
493  // If the RHS is +/- imm8, fold into addr mode.
494  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
495    int RHSC = (int)RHS->getZExtValue();
496    if ((RHSC & 3) == 0) {  // The constant is implicitly multiplied by 4.
497      RHSC >>= 2;
498      if ((RHSC >= 0 && RHSC < 256) ||
499          (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
500        Base = N.getOperand(0);
501        if (Base.getOpcode() == ISD::FrameIndex) {
502          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
503          Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
504        }
505
506        ARM_AM::AddrOpc AddSub = ARM_AM::add;
507        if (RHSC < 0) {
508          AddSub = ARM_AM::sub;
509          RHSC = - RHSC;
510        }
511        Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
512                                           MVT::i32);
513        return true;
514      }
515    }
516  }
517
518  Base = N;
519  Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
520                                     MVT::i32);
521  return true;
522}
523
524bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Op, SDValue N,
525                                      SDValue &Addr, SDValue &Align) {
526  Addr = N;
527  // Default to no alignment.
528  Align = CurDAG->getTargetConstant(0, MVT::i32);
529  return true;
530}
531
532bool ARMDAGToDAGISel::SelectAddrModePC(SDNode *Op, SDValue N,
533                                       SDValue &Offset, SDValue &Label) {
534  if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
535    Offset = N.getOperand(0);
536    SDValue N1 = N.getOperand(1);
537    Label  = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
538                                       MVT::i32);
539    return true;
540  }
541  return false;
542}
543
544bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDNode *Op, SDValue N,
545                                            SDValue &Base, SDValue &Offset){
546  // FIXME dl should come from the parent load or store, not the address
547  DebugLoc dl = Op->getDebugLoc();
548  if (N.getOpcode() != ISD::ADD) {
549    ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
550    if (!NC || NC->getZExtValue() != 0)
551      return false;
552
553    Base = Offset = N;
554    return true;
555  }
556
557  Base = N.getOperand(0);
558  Offset = N.getOperand(1);
559  return true;
560}
561
562bool
563ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDNode *Op, SDValue N,
564                                        unsigned Scale, SDValue &Base,
565                                        SDValue &OffImm, SDValue &Offset) {
566  if (Scale == 4) {
567    SDValue TmpBase, TmpOffImm;
568    if (SelectThumbAddrModeSP(Op, N, TmpBase, TmpOffImm))
569      return false;  // We want to select tLDRspi / tSTRspi instead.
570    if (N.getOpcode() == ARMISD::Wrapper &&
571        N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
572      return false;  // We want to select tLDRpci instead.
573  }
574
575  if (N.getOpcode() != ISD::ADD) {
576    if (N.getOpcode() == ARMISD::Wrapper &&
577        !(Subtarget->useMovt() &&
578          N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
579      Base = N.getOperand(0);
580    } else
581      Base = N;
582
583    Offset = CurDAG->getRegister(0, MVT::i32);
584    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
585    return true;
586  }
587
588  // Thumb does not have [sp, r] address mode.
589  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
590  RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
591  if ((LHSR && LHSR->getReg() == ARM::SP) ||
592      (RHSR && RHSR->getReg() == ARM::SP)) {
593    Base = N;
594    Offset = CurDAG->getRegister(0, MVT::i32);
595    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
596    return true;
597  }
598
599  // If the RHS is + imm5 * scale, fold into addr mode.
600  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
601    int RHSC = (int)RHS->getZExtValue();
602    if ((RHSC & (Scale-1)) == 0) {  // The constant is implicitly multiplied.
603      RHSC /= Scale;
604      if (RHSC >= 0 && RHSC < 32) {
605        Base = N.getOperand(0);
606        Offset = CurDAG->getRegister(0, MVT::i32);
607        OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
608        return true;
609      }
610    }
611  }
612
613  Base = N.getOperand(0);
614  Offset = N.getOperand(1);
615  OffImm = CurDAG->getTargetConstant(0, MVT::i32);
616  return true;
617}
618
619bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDNode *Op, SDValue N,
620                                            SDValue &Base, SDValue &OffImm,
621                                            SDValue &Offset) {
622  return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset);
623}
624
625bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDNode *Op, SDValue N,
626                                            SDValue &Base, SDValue &OffImm,
627                                            SDValue &Offset) {
628  return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset);
629}
630
631bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDNode *Op, SDValue N,
632                                            SDValue &Base, SDValue &OffImm,
633                                            SDValue &Offset) {
634  return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset);
635}
636
637bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDNode *Op, SDValue N,
638                                           SDValue &Base, SDValue &OffImm) {
639  if (N.getOpcode() == ISD::FrameIndex) {
640    int FI = cast<FrameIndexSDNode>(N)->getIndex();
641    Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
642    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
643    return true;
644  }
645
646  if (N.getOpcode() != ISD::ADD)
647    return false;
648
649  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
650  if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
651      (LHSR && LHSR->getReg() == ARM::SP)) {
652    // If the RHS is + imm8 * scale, fold into addr mode.
653    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
654      int RHSC = (int)RHS->getZExtValue();
655      if ((RHSC & 3) == 0) {  // The constant is implicitly multiplied.
656        RHSC >>= 2;
657        if (RHSC >= 0 && RHSC < 256) {
658          Base = N.getOperand(0);
659          if (Base.getOpcode() == ISD::FrameIndex) {
660            int FI = cast<FrameIndexSDNode>(Base)->getIndex();
661            Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
662          }
663          OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
664          return true;
665        }
666      }
667    }
668  }
669
670  return false;
671}
672
673bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
674                                                SDValue &BaseReg,
675                                                SDValue &Opc) {
676  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
677
678  // Don't match base register only case. That is matched to a separate
679  // lower complexity pattern with explicit register operand.
680  if (ShOpcVal == ARM_AM::no_shift) return false;
681
682  BaseReg = N.getOperand(0);
683  unsigned ShImmVal = 0;
684  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
685    ShImmVal = RHS->getZExtValue() & 31;
686    Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
687    return true;
688  }
689
690  return false;
691}
692
693bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDNode *Op, SDValue N,
694                                            SDValue &Base, SDValue &OffImm) {
695  // Match simple R + imm12 operands.
696
697  // Base only.
698  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
699    if (N.getOpcode() == ISD::FrameIndex) {
700      // Match frame index...
701      int FI = cast<FrameIndexSDNode>(N)->getIndex();
702      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
703      OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
704      return true;
705    } else if (N.getOpcode() == ARMISD::Wrapper &&
706               !(Subtarget->useMovt() &&
707                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
708      Base = N.getOperand(0);
709      if (Base.getOpcode() == ISD::TargetConstantPool)
710        return false;  // We want to select t2LDRpci instead.
711    } else
712      Base = N;
713    OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
714    return true;
715  }
716
717  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
718    if (SelectT2AddrModeImm8(Op, N, Base, OffImm))
719      // Let t2LDRi8 handle (R - imm8).
720      return false;
721
722    int RHSC = (int)RHS->getZExtValue();
723    if (N.getOpcode() == ISD::SUB)
724      RHSC = -RHSC;
725
726    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
727      Base   = N.getOperand(0);
728      if (Base.getOpcode() == ISD::FrameIndex) {
729        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
730        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
731      }
732      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
733      return true;
734    }
735  }
736
737  // Base only.
738  Base = N;
739  OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
740  return true;
741}
742
743bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDNode *Op, SDValue N,
744                                           SDValue &Base, SDValue &OffImm) {
745  // Match simple R - imm8 operands.
746  if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) {
747    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
748      int RHSC = (int)RHS->getSExtValue();
749      if (N.getOpcode() == ISD::SUB)
750        RHSC = -RHSC;
751
752      if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
753        Base = N.getOperand(0);
754        if (Base.getOpcode() == ISD::FrameIndex) {
755          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
756          Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
757        }
758        OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
759        return true;
760      }
761    }
762  }
763
764  return false;
765}
766
767bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
768                                                 SDValue &OffImm){
769  unsigned Opcode = Op->getOpcode();
770  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
771    ? cast<LoadSDNode>(Op)->getAddressingMode()
772    : cast<StoreSDNode>(Op)->getAddressingMode();
773  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N)) {
774    int RHSC = (int)RHS->getZExtValue();
775    if (RHSC >= 0 && RHSC < 0x100) { // 8 bits.
776      OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
777        ? CurDAG->getTargetConstant(RHSC, MVT::i32)
778        : CurDAG->getTargetConstant(-RHSC, MVT::i32);
779      return true;
780    }
781  }
782
783  return false;
784}
785
786bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDNode *Op, SDValue N,
787                                             SDValue &Base, SDValue &OffImm) {
788  if (N.getOpcode() == ISD::ADD) {
789    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
790      int RHSC = (int)RHS->getZExtValue();
791      if (((RHSC & 0x3) == 0) &&
792          ((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) { // 8 bits.
793        Base   = N.getOperand(0);
794        OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
795        return true;
796      }
797    }
798  } else if (N.getOpcode() == ISD::SUB) {
799    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
800      int RHSC = (int)RHS->getZExtValue();
801      if (((RHSC & 0x3) == 0) && (RHSC >= 0 && RHSC < 0x400)) { // 8 bits.
802        Base   = N.getOperand(0);
803        OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32);
804        return true;
805      }
806    }
807  }
808
809  return false;
810}
811
812bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDNode *Op, SDValue N,
813                                            SDValue &Base,
814                                            SDValue &OffReg, SDValue &ShImm) {
815  // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
816  if (N.getOpcode() != ISD::ADD)
817    return false;
818
819  // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
820  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
821    int RHSC = (int)RHS->getZExtValue();
822    if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
823      return false;
824    else if (RHSC < 0 && RHSC >= -255) // 8 bits
825      return false;
826  }
827
828  // Look for (R + R) or (R + (R << [1,2,3])).
829  unsigned ShAmt = 0;
830  Base   = N.getOperand(0);
831  OffReg = N.getOperand(1);
832
833  // Swap if it is ((R << c) + R).
834  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg);
835  if (ShOpcVal != ARM_AM::lsl) {
836    ShOpcVal = ARM_AM::getShiftOpcForNode(Base);
837    if (ShOpcVal == ARM_AM::lsl)
838      std::swap(Base, OffReg);
839  }
840
841  if (ShOpcVal == ARM_AM::lsl) {
842    // Check to see if the RHS of the shift is a constant, if not, we can't fold
843    // it.
844    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
845      ShAmt = Sh->getZExtValue();
846      if (ShAmt >= 4) {
847        ShAmt = 0;
848        ShOpcVal = ARM_AM::no_shift;
849      } else
850        OffReg = OffReg.getOperand(0);
851    } else {
852      ShOpcVal = ARM_AM::no_shift;
853    }
854  }
855
856  ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
857
858  return true;
859}
860
861//===--------------------------------------------------------------------===//
862
863/// getAL - Returns a ARMCC::AL immediate node.
864static inline SDValue getAL(SelectionDAG *CurDAG) {
865  return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
866}
867
868SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
869  LoadSDNode *LD = cast<LoadSDNode>(N);
870  ISD::MemIndexedMode AM = LD->getAddressingMode();
871  if (AM == ISD::UNINDEXED)
872    return NULL;
873
874  EVT LoadedVT = LD->getMemoryVT();
875  SDValue Offset, AMOpc;
876  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
877  unsigned Opcode = 0;
878  bool Match = false;
879  if (LoadedVT == MVT::i32 &&
880      SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
881    Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST;
882    Match = true;
883  } else if (LoadedVT == MVT::i16 &&
884             SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
885    Match = true;
886    Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
887      ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
888      : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
889  } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
890    if (LD->getExtensionType() == ISD::SEXTLOAD) {
891      if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
892        Match = true;
893        Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
894      }
895    } else {
896      if (SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
897        Match = true;
898        Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST;
899      }
900    }
901  }
902
903  if (Match) {
904    SDValue Chain = LD->getChain();
905    SDValue Base = LD->getBasePtr();
906    SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
907                     CurDAG->getRegister(0, MVT::i32), Chain };
908    return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
909                                  MVT::Other, Ops, 6);
910  }
911
912  return NULL;
913}
914
915SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
916  LoadSDNode *LD = cast<LoadSDNode>(N);
917  ISD::MemIndexedMode AM = LD->getAddressingMode();
918  if (AM == ISD::UNINDEXED)
919    return NULL;
920
921  EVT LoadedVT = LD->getMemoryVT();
922  bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
923  SDValue Offset;
924  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
925  unsigned Opcode = 0;
926  bool Match = false;
927  if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
928    switch (LoadedVT.getSimpleVT().SimpleTy) {
929    case MVT::i32:
930      Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
931      break;
932    case MVT::i16:
933      if (isSExtLd)
934        Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
935      else
936        Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
937      break;
938    case MVT::i8:
939    case MVT::i1:
940      if (isSExtLd)
941        Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
942      else
943        Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
944      break;
945    default:
946      return NULL;
947    }
948    Match = true;
949  }
950
951  if (Match) {
952    SDValue Chain = LD->getChain();
953    SDValue Base = LD->getBasePtr();
954    SDValue Ops[]= { Base, Offset, getAL(CurDAG),
955                     CurDAG->getRegister(0, MVT::i32), Chain };
956    return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
957                                  MVT::Other, Ops, 5);
958  }
959
960  return NULL;
961}
962
963/// PairDRegs - Form a quad register from a pair of D registers.
964///
965SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
966  DebugLoc dl = V0.getNode()->getDebugLoc();
967  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
968  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
969  if (llvm::ModelWithRegSequence()) {
970    const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
971    return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
972  }
973  SDValue Undef =
974    SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0);
975  SDNode *Pair = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
976                                        VT, Undef, V0, SubReg0);
977  return CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
978                                VT, SDValue(Pair, 0), V1, SubReg1);
979}
980
981/// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
982///
983SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) {
984  DebugLoc dl = V0.getNode()->getDebugLoc();
985  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
986  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
987  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
988  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
989}
990
991/// QuadDRegs - Form 4 consecutive D registers.
992///
993SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1,
994                                   SDValue V2, SDValue V3) {
995  DebugLoc dl = V0.getNode()->getDebugLoc();
996  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
997  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
998  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
999  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1000  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
1001  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
1002}
1003
1004/// QuadQRegs - Form 4 consecutive Q registers.
1005///
1006SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1,
1007                                   SDValue V2, SDValue V3) {
1008  DebugLoc dl = V0.getNode()->getDebugLoc();
1009  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1010  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1011  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
1012  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
1013  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
1014  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
1015}
1016
1017/// OctoDRegs - Form 8 consecutive D registers.
1018///
1019SDNode *ARMDAGToDAGISel::OctoDRegs(EVT VT, SDValue V0, SDValue V1,
1020                                   SDValue V2, SDValue V3,
1021                                   SDValue V4, SDValue V5,
1022                                   SDValue V6, SDValue V7) {
1023  DebugLoc dl = V0.getNode()->getDebugLoc();
1024  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1025  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1026  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1027  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1028  SDValue SubReg4 = CurDAG->getTargetConstant(ARM::dsub_4, MVT::i32);
1029  SDValue SubReg5 = CurDAG->getTargetConstant(ARM::dsub_5, MVT::i32);
1030  SDValue SubReg6 = CurDAG->getTargetConstant(ARM::dsub_6, MVT::i32);
1031  SDValue SubReg7 = CurDAG->getTargetConstant(ARM::dsub_7, MVT::i32);
1032  const SDValue Ops[] ={ V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3,
1033                         V4, SubReg4, V5, SubReg5, V6, SubReg6, V7, SubReg7 };
1034  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 16);
1035}
1036
1037/// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type
1038/// for a 64-bit subregister of the vector.
1039static EVT GetNEONSubregVT(EVT VT) {
1040  switch (VT.getSimpleVT().SimpleTy) {
1041  default: llvm_unreachable("unhandled NEON type");
1042  case MVT::v16i8: return MVT::v8i8;
1043  case MVT::v8i16: return MVT::v4i16;
1044  case MVT::v4f32: return MVT::v2f32;
1045  case MVT::v4i32: return MVT::v2i32;
1046  case MVT::v2i64: return MVT::v1i64;
1047  }
1048}
1049
1050SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
1051                                   unsigned *DOpcodes, unsigned *QOpcodes0,
1052                                   unsigned *QOpcodes1) {
1053  assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1054  DebugLoc dl = N->getDebugLoc();
1055
1056  SDValue MemAddr, Align;
1057  if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
1058    return NULL;
1059
1060  SDValue Chain = N->getOperand(0);
1061  EVT VT = N->getValueType(0);
1062  bool is64BitVector = VT.is64BitVector();
1063
1064  unsigned OpcodeIndex;
1065  switch (VT.getSimpleVT().SimpleTy) {
1066  default: llvm_unreachable("unhandled vld type");
1067    // Double-register operations:
1068  case MVT::v8i8:  OpcodeIndex = 0; break;
1069  case MVT::v4i16: OpcodeIndex = 1; break;
1070  case MVT::v2f32:
1071  case MVT::v2i32: OpcodeIndex = 2; break;
1072  case MVT::v1i64: OpcodeIndex = 3; break;
1073    // Quad-register operations:
1074  case MVT::v16i8: OpcodeIndex = 0; break;
1075  case MVT::v8i16: OpcodeIndex = 1; break;
1076  case MVT::v4f32:
1077  case MVT::v4i32: OpcodeIndex = 2; break;
1078  case MVT::v2i64: OpcodeIndex = 3;
1079    assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
1080    break;
1081  }
1082
1083  SDValue Pred = getAL(CurDAG);
1084  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1085  if (is64BitVector) {
1086    unsigned Opc = DOpcodes[OpcodeIndex];
1087    const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
1088    std::vector<EVT> ResTys(NumVecs, VT);
1089    ResTys.push_back(MVT::Other);
1090    SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
1091    if (!llvm::ModelWithRegSequence() || NumVecs < 2)
1092      return VLd;
1093
1094    SDValue RegSeq;
1095    SDValue V0 = SDValue(VLd, 0);
1096    SDValue V1 = SDValue(VLd, 1);
1097
1098    // Form a REG_SEQUENCE to force register allocation.
1099    if (NumVecs == 2)
1100      RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1101    else {
1102      SDValue V2 = SDValue(VLd, 2);
1103      // If it's a vld3, form a quad D-register but discard the last part.
1104      SDValue V3 = (NumVecs == 3)
1105          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1106          : SDValue(VLd, 3);
1107      RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1108    }
1109
1110    assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
1111    for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1112      SDValue D = CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec,
1113                                                 dl, VT, RegSeq);
1114      ReplaceUses(SDValue(N, Vec), D);
1115    }
1116    ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, NumVecs));
1117    return NULL;
1118  }
1119
1120  EVT RegVT = GetNEONSubregVT(VT);
1121  if (NumVecs <= 2) {
1122    // Quad registers are directly supported for VLD1 and VLD2,
1123    // loading pairs of D regs.
1124    unsigned Opc = QOpcodes0[OpcodeIndex];
1125    const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
1126    std::vector<EVT> ResTys(2 * NumVecs, RegVT);
1127    ResTys.push_back(MVT::Other);
1128    SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
1129    Chain = SDValue(VLd, 2 * NumVecs);
1130
1131    // Combine the even and odd subregs to produce the result.
1132    if (llvm::ModelWithRegSequence()) {
1133      if (NumVecs == 1) {
1134        SDNode *Q = PairDRegs(VT, SDValue(VLd, 0), SDValue(VLd, 1));
1135        ReplaceUses(SDValue(N, 0), SDValue(Q, 0));
1136      } else {
1137        SDValue QQ = SDValue(QuadDRegs(MVT::v4i64,
1138                                       SDValue(VLd, 0), SDValue(VLd, 1),
1139                                       SDValue(VLd, 2), SDValue(VLd, 3)), 0);
1140        SDValue Q0 = CurDAG->getTargetExtractSubreg(ARM::qsub_0, dl, VT, QQ);
1141        SDValue Q1 = CurDAG->getTargetExtractSubreg(ARM::qsub_1, dl, VT, QQ);
1142        ReplaceUses(SDValue(N, 0), Q0);
1143        ReplaceUses(SDValue(N, 1), Q1);
1144      }
1145    } else {
1146      for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1147        SDNode *Q = PairDRegs(VT, SDValue(VLd, 2*Vec), SDValue(VLd, 2*Vec+1));
1148        ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
1149      }
1150    }
1151  } else {
1152    // Otherwise, quad registers are loaded with two separate instructions,
1153    // where one loads the even registers and the other loads the odd registers.
1154
1155    std::vector<EVT> ResTys(NumVecs, RegVT);
1156    ResTys.push_back(MemAddr.getValueType());
1157    ResTys.push_back(MVT::Other);
1158
1159    // Load the even subregs.
1160    unsigned Opc = QOpcodes0[OpcodeIndex];
1161    const SDValue OpsA[] = { MemAddr, Align, Reg0, Pred, Reg0, Chain };
1162    SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 6);
1163    Chain = SDValue(VLdA, NumVecs+1);
1164
1165    // Load the odd subregs.
1166    Opc = QOpcodes1[OpcodeIndex];
1167    const SDValue OpsB[] = { SDValue(VLdA, NumVecs),
1168                             Align, Reg0, Pred, Reg0, Chain };
1169    SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 6);
1170    Chain = SDValue(VLdB, NumVecs+1);
1171
1172    if (llvm::ModelWithRegSequence()) {
1173      SDValue V0 = SDValue(VLdA, 0);
1174      SDValue V1 = SDValue(VLdB, 0);
1175      SDValue V2 = SDValue(VLdA, 1);
1176      SDValue V3 = SDValue(VLdB, 1);
1177      SDValue V4 = SDValue(VLdA, 2);
1178      SDValue V5 = SDValue(VLdB, 2);
1179      SDValue V6 = (NumVecs == 3)
1180          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT),
1181                    0)
1182          : SDValue(VLdA, 3);
1183      SDValue V7 = (NumVecs == 3)
1184          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT),
1185                    0)
1186          : SDValue(VLdB, 3);
1187      SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V0, V1, V2, V3,
1188                                         V4, V5, V6, V7), 0);
1189
1190      // Extract out the 3 / 4 Q registers.
1191      assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1192      for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1193        SDValue Q = CurDAG->getTargetExtractSubreg(ARM::qsub_0+Vec,
1194                                                   dl, VT, RegSeq);
1195        ReplaceUses(SDValue(N, Vec), Q);
1196      }
1197    } else {
1198      // Combine the even and odd subregs to produce the result.
1199      for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1200        SDNode *Q = PairDRegs(VT, SDValue(VLdA, Vec), SDValue(VLdB, Vec));
1201        ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
1202      }
1203    }
1204  }
1205  ReplaceUses(SDValue(N, NumVecs), Chain);
1206  return NULL;
1207}
1208
1209SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
1210                                   unsigned *DOpcodes, unsigned *QOpcodes0,
1211                                   unsigned *QOpcodes1) {
1212  assert(NumVecs >=1 && NumVecs <= 4 && "VST NumVecs out-of-range");
1213  DebugLoc dl = N->getDebugLoc();
1214
1215  SDValue MemAddr, Align;
1216  if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
1217    return NULL;
1218
1219  SDValue Chain = N->getOperand(0);
1220  EVT VT = N->getOperand(3).getValueType();
1221  bool is64BitVector = VT.is64BitVector();
1222
1223  unsigned OpcodeIndex;
1224  switch (VT.getSimpleVT().SimpleTy) {
1225  default: llvm_unreachable("unhandled vst type");
1226    // Double-register operations:
1227  case MVT::v8i8:  OpcodeIndex = 0; break;
1228  case MVT::v4i16: OpcodeIndex = 1; break;
1229  case MVT::v2f32:
1230  case MVT::v2i32: OpcodeIndex = 2; break;
1231  case MVT::v1i64: OpcodeIndex = 3; break;
1232    // Quad-register operations:
1233  case MVT::v16i8: OpcodeIndex = 0; break;
1234  case MVT::v8i16: OpcodeIndex = 1; break;
1235  case MVT::v4f32:
1236  case MVT::v4i32: OpcodeIndex = 2; break;
1237  case MVT::v2i64: OpcodeIndex = 3;
1238    assert(NumVecs == 1 && "v2i64 type only supported for VST1");
1239    break;
1240  }
1241
1242  SDValue Pred = getAL(CurDAG);
1243  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1244
1245  SmallVector<SDValue, 10> Ops;
1246  Ops.push_back(MemAddr);
1247  Ops.push_back(Align);
1248
1249  if (is64BitVector) {
1250    if (llvm::ModelWithRegSequence() && NumVecs >= 2) {
1251      SDValue RegSeq;
1252      SDValue V0 = N->getOperand(0+3);
1253      SDValue V1 = N->getOperand(1+3);
1254
1255      // Form a REG_SEQUENCE to force register allocation.
1256      if (NumVecs == 2)
1257        RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1258      else {
1259        SDValue V2 = N->getOperand(2+3);
1260        // If it's a vld3, form a quad D-register and leave the last part as
1261        // an undef.
1262        SDValue V3 = (NumVecs == 3)
1263          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1264          : N->getOperand(3+3);
1265        RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1266      }
1267
1268      // Now extract the D registers back out.
1269      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT,
1270                                                   RegSeq));
1271      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT,
1272                                                   RegSeq));
1273      if (NumVecs > 2)
1274        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT,
1275                                                     RegSeq));
1276      if (NumVecs > 3)
1277        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT,
1278                                                     RegSeq));
1279    } else {
1280      for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1281        Ops.push_back(N->getOperand(Vec+3));
1282    }
1283    Ops.push_back(Pred);
1284    Ops.push_back(Reg0); // predicate register
1285    Ops.push_back(Chain);
1286    unsigned Opc = DOpcodes[OpcodeIndex];
1287    return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+5);
1288  }
1289
1290  EVT RegVT = GetNEONSubregVT(VT);
1291  if (NumVecs <= 2) {
1292    // Quad registers are directly supported for VST1 and VST2,
1293    // storing pairs of D regs.
1294    unsigned Opc = QOpcodes0[OpcodeIndex];
1295    if (llvm::ModelWithRegSequence() && NumVecs == 2) {
1296      // First extract the pair of Q registers.
1297      SDValue Q0 = N->getOperand(3);
1298      SDValue Q1 = N->getOperand(4);
1299
1300      // Form a QQ register.
1301      SDValue QQ = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0);
1302
1303      // Now extract the D registers back out.
1304      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1305                                                   QQ));
1306      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1307                                                   QQ));
1308      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, RegVT,
1309                                                   QQ));
1310      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, RegVT,
1311                                                   QQ));
1312      Ops.push_back(Pred);
1313      Ops.push_back(Reg0); // predicate register
1314      Ops.push_back(Chain);
1315      return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), 5 + 4);
1316    } else {
1317      for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1318        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1319                                                     N->getOperand(Vec+3)));
1320        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1321                                                     N->getOperand(Vec+3)));
1322      }
1323      Ops.push_back(Pred);
1324      Ops.push_back(Reg0); // predicate register
1325      Ops.push_back(Chain);
1326      return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(),
1327                                    5 + 2 * NumVecs);
1328    }
1329  }
1330
1331  // Otherwise, quad registers are stored with two separate instructions,
1332  // where one stores the even registers and the other stores the odd registers.
1333  if (llvm::ModelWithRegSequence()) {
1334    // Form the QQQQ REG_SEQUENCE.
1335    SDValue V[8];
1336    for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) {
1337      V[i]   = CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1338                                              N->getOperand(Vec+3));
1339      V[i+1] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1340                                              N->getOperand(Vec+3));
1341    }
1342    if (NumVecs == 3)
1343      V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1344                                                   dl, RegVT), 0);
1345
1346    SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3],
1347                                       V[4], V[5], V[6], V[7]), 0);
1348
1349    // Store the even D registers.
1350    assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
1351    Ops.push_back(Reg0); // post-access address offset
1352    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1353      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec*2, dl,
1354                                                   RegVT, RegSeq));
1355    Ops.push_back(Pred);
1356    Ops.push_back(Reg0); // predicate register
1357    Ops.push_back(Chain);
1358    unsigned Opc = QOpcodes0[OpcodeIndex];
1359    SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1360                                          MVT::Other, Ops.data(), NumVecs+6);
1361    Chain = SDValue(VStA, 1);
1362
1363    // Store the odd D registers.
1364    Ops[0] = SDValue(VStA, 0); // MemAddr
1365    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1366      Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1+Vec*2, dl,
1367                                                  RegVT, RegSeq);
1368    Ops[NumVecs+5] = Chain;
1369    Opc = QOpcodes1[OpcodeIndex];
1370    SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1371                                          MVT::Other, Ops.data(), NumVecs+6);
1372    Chain = SDValue(VStB, 1);
1373    ReplaceUses(SDValue(N, 0), Chain);
1374    return NULL;
1375  } else {
1376    Ops.push_back(Reg0); // post-access address offset
1377
1378    // Store the even subregs.
1379    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1380      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1381                                                   N->getOperand(Vec+3)));
1382    Ops.push_back(Pred);
1383    Ops.push_back(Reg0); // predicate register
1384    Ops.push_back(Chain);
1385    unsigned Opc = QOpcodes0[OpcodeIndex];
1386    SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1387                                          MVT::Other, Ops.data(), NumVecs+6);
1388    Chain = SDValue(VStA, 1);
1389
1390    // Store the odd subregs.
1391    Ops[0] = SDValue(VStA, 0); // MemAddr
1392    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1393      Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1394                                                  N->getOperand(Vec+3));
1395    Ops[NumVecs+5] = Chain;
1396    Opc = QOpcodes1[OpcodeIndex];
1397    SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1398                                          MVT::Other, Ops.data(), NumVecs+6);
1399    Chain = SDValue(VStB, 1);
1400    ReplaceUses(SDValue(N, 0), Chain);
1401    return NULL;
1402  }
1403}
1404
1405SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
1406                                         unsigned NumVecs, unsigned *DOpcodes,
1407                                         unsigned *QOpcodes0,
1408                                         unsigned *QOpcodes1) {
1409  assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
1410  DebugLoc dl = N->getDebugLoc();
1411
1412  SDValue MemAddr, Align;
1413  if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
1414    return NULL;
1415
1416  SDValue Chain = N->getOperand(0);
1417  unsigned Lane =
1418    cast<ConstantSDNode>(N->getOperand(NumVecs+3))->getZExtValue();
1419  EVT VT = IsLoad ? N->getValueType(0) : N->getOperand(3).getValueType();
1420  bool is64BitVector = VT.is64BitVector();
1421
1422  // Quad registers are handled by load/store of subregs. Find the subreg info.
1423  unsigned NumElts = 0;
1424  int SubregIdx = 0;
1425  bool Even = false;
1426  EVT RegVT = VT;
1427  if (!is64BitVector) {
1428    RegVT = GetNEONSubregVT(VT);
1429    NumElts = RegVT.getVectorNumElements();
1430    SubregIdx = (Lane < NumElts) ? ARM::dsub_0 : ARM::dsub_1;
1431    Even = Lane < NumElts;
1432  }
1433
1434  unsigned OpcodeIndex;
1435  switch (VT.getSimpleVT().SimpleTy) {
1436  default: llvm_unreachable("unhandled vld/vst lane type");
1437    // Double-register operations:
1438  case MVT::v8i8:  OpcodeIndex = 0; break;
1439  case MVT::v4i16: OpcodeIndex = 1; break;
1440  case MVT::v2f32:
1441  case MVT::v2i32: OpcodeIndex = 2; break;
1442    // Quad-register operations:
1443  case MVT::v8i16: OpcodeIndex = 0; break;
1444  case MVT::v4f32:
1445  case MVT::v4i32: OpcodeIndex = 1; break;
1446  }
1447
1448  SDValue Pred = getAL(CurDAG);
1449  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1450
1451  SmallVector<SDValue, 10> Ops;
1452  Ops.push_back(MemAddr);
1453  Ops.push_back(Align);
1454
1455  unsigned Opc = 0;
1456  if (is64BitVector) {
1457    Opc = DOpcodes[OpcodeIndex];
1458    if (llvm::ModelWithRegSequence()) {
1459      SDValue RegSeq;
1460      SDValue V0 = N->getOperand(0+3);
1461      SDValue V1 = N->getOperand(1+3);
1462      if (NumVecs == 2) {
1463        RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1464      } else {
1465        SDValue V2 = N->getOperand(2+3);
1466        SDValue V3 = (NumVecs == 3)
1467          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1468          : N->getOperand(3+3);
1469        RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1470      }
1471
1472      // Now extract the D registers back out.
1473      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT,
1474                                                   RegSeq));
1475      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT,
1476                                                   RegSeq));
1477      if (NumVecs > 2)
1478        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT,
1479                                                     RegSeq));
1480      if (NumVecs > 3)
1481        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT,
1482                                                     RegSeq));
1483    } else {
1484      for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1485        Ops.push_back(N->getOperand(Vec+3));
1486    }
1487  } else {
1488    // Check if this is loading the even or odd subreg of a Q register.
1489    if (Lane < NumElts) {
1490      Opc = QOpcodes0[OpcodeIndex];
1491    } else {
1492      Lane -= NumElts;
1493      Opc = QOpcodes1[OpcodeIndex];
1494    }
1495
1496    if (llvm::ModelWithRegSequence()) {
1497      SDValue RegSeq;
1498      SDValue V0 = N->getOperand(0+3);
1499      SDValue V1 = N->getOperand(1+3);
1500      if (NumVecs == 2) {
1501        RegSeq = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0);
1502      } else {
1503        SDValue V2 = N->getOperand(2+3);
1504        SDValue V3 = (NumVecs == 3)
1505          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1506          : N->getOperand(3+3);
1507        RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
1508      }
1509
1510      // Extract the subregs of the input vector.
1511      unsigned SubIdx = Even ? ARM::dsub_0 : ARM::dsub_1;
1512      for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1513        Ops.push_back(CurDAG->getTargetExtractSubreg(SubIdx+Vec*2, dl, RegVT,
1514                                                     RegSeq));
1515    } else {
1516      // Extract the subregs of the input vector.
1517      for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1518        Ops.push_back(CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
1519                                                     N->getOperand(Vec+3)));
1520    }
1521  }
1522  Ops.push_back(getI32Imm(Lane));
1523  Ops.push_back(Pred);
1524  Ops.push_back(Reg0);
1525  Ops.push_back(Chain);
1526
1527  if (!IsLoad)
1528    return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+6);
1529
1530  std::vector<EVT> ResTys(NumVecs, RegVT);
1531  ResTys.push_back(MVT::Other);
1532  SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(),NumVecs+6);
1533
1534  if (llvm::ModelWithRegSequence()) {
1535    // Form a REG_SEQUENCE to force register allocation.
1536    SDValue RegSeq;
1537    if (is64BitVector) {
1538      SDValue V0 = SDValue(VLdLn, 0);
1539      SDValue V1 = SDValue(VLdLn, 1);
1540      if (NumVecs == 2) {
1541        RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1542      } else {
1543        SDValue V2 = SDValue(VLdLn, 2);
1544        // If it's a vld3, form a quad D-register but discard the last part.
1545        SDValue V3 = (NumVecs == 3)
1546          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1547          : SDValue(VLdLn, 3);
1548        RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1549      }
1550    } else {
1551      // For 128-bit vectors, take the 64-bit results of the load and insert them
1552      // as subregs into the result.
1553      SDValue V[8];
1554      for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) {
1555        if (Even) {
1556          V[i]   = SDValue(VLdLn, Vec);
1557          V[i+1] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1558                                                  dl, RegVT), 0);
1559        } else {
1560          V[i]   = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1561                                                  dl, RegVT), 0);
1562          V[i+1] = SDValue(VLdLn, Vec);
1563        }
1564      }
1565      if (NumVecs == 3)
1566        V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1567                                                     dl, RegVT), 0);
1568
1569      if (NumVecs == 2)
1570        RegSeq = SDValue(QuadDRegs(MVT::v4i64, V[0], V[1], V[2], V[3]), 0);
1571      else
1572        RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3],
1573                                   V[4], V[5], V[6], V[7]), 0);
1574    }
1575
1576    assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
1577    assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1578    unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
1579    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1580      ReplaceUses(SDValue(N, Vec),
1581                  CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, RegSeq));
1582    ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, NumVecs));
1583    return NULL;
1584  }
1585
1586  // For a 64-bit vector load to D registers, nothing more needs to be done.
1587  if (is64BitVector)
1588    return VLdLn;
1589
1590  // For 128-bit vectors, take the 64-bit results of the load and insert them
1591  // as subregs into the result.
1592  for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1593    SDValue QuadVec = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
1594                                                    N->getOperand(Vec+3),
1595                                                    SDValue(VLdLn, Vec));
1596    ReplaceUses(SDValue(N, Vec), QuadVec);
1597  }
1598
1599  Chain = SDValue(VLdLn, NumVecs);
1600  ReplaceUses(SDValue(N, NumVecs), Chain);
1601  return NULL;
1602}
1603
1604SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
1605                                                     bool isSigned) {
1606  if (!Subtarget->hasV6T2Ops())
1607    return NULL;
1608
1609  unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
1610    : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
1611
1612
1613  // For unsigned extracts, check for a shift right and mask
1614  unsigned And_imm = 0;
1615  if (N->getOpcode() == ISD::AND) {
1616    if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
1617
1618      // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1619      if (And_imm & (And_imm + 1))
1620        return NULL;
1621
1622      unsigned Srl_imm = 0;
1623      if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
1624                                Srl_imm)) {
1625        assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
1626
1627        unsigned Width = CountTrailingOnes_32(And_imm);
1628        unsigned LSB = Srl_imm;
1629        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1630        SDValue Ops[] = { N->getOperand(0).getOperand(0),
1631                          CurDAG->getTargetConstant(LSB, MVT::i32),
1632                          CurDAG->getTargetConstant(Width, MVT::i32),
1633          getAL(CurDAG), Reg0 };
1634        return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
1635      }
1636    }
1637    return NULL;
1638  }
1639
1640  // Otherwise, we're looking for a shift of a shift
1641  unsigned Shl_imm = 0;
1642  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
1643    assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
1644    unsigned Srl_imm = 0;
1645    if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
1646      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
1647      unsigned Width = 32 - Srl_imm;
1648      int LSB = Srl_imm - Shl_imm;
1649      if (LSB < 0)
1650        return NULL;
1651      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1652      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1653                        CurDAG->getTargetConstant(LSB, MVT::i32),
1654                        CurDAG->getTargetConstant(Width, MVT::i32),
1655                        getAL(CurDAG), Reg0 };
1656      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
1657    }
1658  }
1659  return NULL;
1660}
1661
1662SDNode *ARMDAGToDAGISel::
1663SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1664                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1665  SDValue CPTmp0;
1666  SDValue CPTmp1;
1667  if (SelectT2ShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1)) {
1668    unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
1669    unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
1670    unsigned Opc = 0;
1671    switch (SOShOp) {
1672    case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
1673    case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
1674    case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
1675    case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
1676    default:
1677      llvm_unreachable("Unknown so_reg opcode!");
1678      break;
1679    }
1680    SDValue SOShImm =
1681      CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
1682    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1683    SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
1684    return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
1685  }
1686  return 0;
1687}
1688
1689SDNode *ARMDAGToDAGISel::
1690SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1691                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1692  SDValue CPTmp0;
1693  SDValue CPTmp1;
1694  SDValue CPTmp2;
1695  if (SelectShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
1696    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1697    SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
1698    return CurDAG->SelectNodeTo(N, ARM::MOVCCs, MVT::i32, Ops, 7);
1699  }
1700  return 0;
1701}
1702
1703SDNode *ARMDAGToDAGISel::
1704SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1705                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1706  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
1707  if (!T)
1708    return 0;
1709
1710  if (Predicate_t2_so_imm(TrueVal.getNode())) {
1711    SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
1712    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1713    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
1714    return CurDAG->SelectNodeTo(N,
1715                                ARM::t2MOVCCi, MVT::i32, Ops, 5);
1716  }
1717  return 0;
1718}
1719
1720SDNode *ARMDAGToDAGISel::
1721SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1722                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1723  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
1724  if (!T)
1725    return 0;
1726
1727  if (Predicate_so_imm(TrueVal.getNode())) {
1728    SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
1729    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1730    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
1731    return CurDAG->SelectNodeTo(N,
1732                                ARM::MOVCCi, MVT::i32, Ops, 5);
1733  }
1734  return 0;
1735}
1736
1737SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
1738  EVT VT = N->getValueType(0);
1739  SDValue FalseVal = N->getOperand(0);
1740  SDValue TrueVal  = N->getOperand(1);
1741  SDValue CC = N->getOperand(2);
1742  SDValue CCR = N->getOperand(3);
1743  SDValue InFlag = N->getOperand(4);
1744  assert(CC.getOpcode() == ISD::Constant);
1745  assert(CCR.getOpcode() == ISD::Register);
1746  ARMCC::CondCodes CCVal =
1747    (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
1748
1749  if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
1750    // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
1751    // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
1752    // Pattern complexity = 18  cost = 1  size = 0
1753    SDValue CPTmp0;
1754    SDValue CPTmp1;
1755    SDValue CPTmp2;
1756    if (Subtarget->isThumb()) {
1757      SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
1758                                        CCVal, CCR, InFlag);
1759      if (!Res)
1760        Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
1761                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1762      if (Res)
1763        return Res;
1764    } else {
1765      SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
1766                                         CCVal, CCR, InFlag);
1767      if (!Res)
1768        Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
1769                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1770      if (Res)
1771        return Res;
1772    }
1773
1774    // Pattern: (ARMcmov:i32 GPR:i32:$false,
1775    //             (imm:i32)<<P:Predicate_so_imm>>:$true,
1776    //             (imm:i32):$cc)
1777    // Emits: (MOVCCi:i32 GPR:i32:$false,
1778    //           (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
1779    // Pattern complexity = 10  cost = 1  size = 0
1780    if (Subtarget->isThumb()) {
1781      SDNode *Res = SelectT2CMOVSoImmOp(N, FalseVal, TrueVal,
1782                                        CCVal, CCR, InFlag);
1783      if (!Res)
1784        Res = SelectT2CMOVSoImmOp(N, TrueVal, FalseVal,
1785                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1786      if (Res)
1787        return Res;
1788    } else {
1789      SDNode *Res = SelectARMCMOVSoImmOp(N, FalseVal, TrueVal,
1790                                         CCVal, CCR, InFlag);
1791      if (!Res)
1792        Res = SelectARMCMOVSoImmOp(N, TrueVal, FalseVal,
1793                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1794      if (Res)
1795        return Res;
1796    }
1797  }
1798
1799  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1800  // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1801  // Pattern complexity = 6  cost = 1  size = 0
1802  //
1803  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1804  // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1805  // Pattern complexity = 6  cost = 11  size = 0
1806  //
1807  // Also FCPYScc and FCPYDcc.
1808  SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
1809  SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
1810  unsigned Opc = 0;
1811  switch (VT.getSimpleVT().SimpleTy) {
1812  default: assert(false && "Illegal conditional move type!");
1813    break;
1814  case MVT::i32:
1815    Opc = Subtarget->isThumb()
1816      ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
1817      : ARM::MOVCCr;
1818    break;
1819  case MVT::f32:
1820    Opc = ARM::VMOVScc;
1821    break;
1822  case MVT::f64:
1823    Opc = ARM::VMOVDcc;
1824    break;
1825  }
1826  return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
1827}
1828
1829SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
1830  // The only time a CONCAT_VECTORS operation can have legal types is when
1831  // two 64-bit vectors are concatenated to a 128-bit vector.
1832  EVT VT = N->getValueType(0);
1833  if (!VT.is128BitVector() || N->getNumOperands() != 2)
1834    llvm_unreachable("unexpected CONCAT_VECTORS");
1835  DebugLoc dl = N->getDebugLoc();
1836  SDValue V0 = N->getOperand(0);
1837  SDValue V1 = N->getOperand(1);
1838  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1839  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1840  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
1841  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
1842}
1843
1844SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
1845  DebugLoc dl = N->getDebugLoc();
1846
1847  if (N->isMachineOpcode())
1848    return NULL;   // Already selected.
1849
1850  switch (N->getOpcode()) {
1851  default: break;
1852  case ISD::Constant: {
1853    unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
1854    bool UseCP = true;
1855    if (Subtarget->hasThumb2())
1856      // Thumb2-aware targets have the MOVT instruction, so all immediates can
1857      // be done with MOV + MOVT, at worst.
1858      UseCP = 0;
1859    else {
1860      if (Subtarget->isThumb()) {
1861        UseCP = (Val > 255 &&                          // MOV
1862                 ~Val > 255 &&                         // MOV + MVN
1863                 !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL
1864      } else
1865        UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV
1866                 ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN
1867                 !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs.
1868    }
1869
1870    if (UseCP) {
1871      SDValue CPIdx =
1872        CurDAG->getTargetConstantPool(ConstantInt::get(
1873                                  Type::getInt32Ty(*CurDAG->getContext()), Val),
1874                                      TLI.getPointerTy());
1875
1876      SDNode *ResNode;
1877      if (Subtarget->isThumb1Only()) {
1878        SDValue Pred = getAL(CurDAG);
1879        SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
1880        SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
1881        ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other,
1882                                         Ops, 4);
1883      } else {
1884        SDValue Ops[] = {
1885          CPIdx,
1886          CurDAG->getRegister(0, MVT::i32),
1887          CurDAG->getTargetConstant(0, MVT::i32),
1888          getAL(CurDAG),
1889          CurDAG->getRegister(0, MVT::i32),
1890          CurDAG->getEntryNode()
1891        };
1892        ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
1893                                       Ops, 6);
1894      }
1895      ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
1896      return NULL;
1897    }
1898
1899    // Other cases are autogenerated.
1900    break;
1901  }
1902  case ISD::FrameIndex: {
1903    // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
1904    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1905    SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1906    if (Subtarget->isThumb1Only()) {
1907      return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI,
1908                                  CurDAG->getTargetConstant(0, MVT::i32));
1909    } else {
1910      unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
1911                      ARM::t2ADDri : ARM::ADDri);
1912      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
1913                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
1914                        CurDAG->getRegister(0, MVT::i32) };
1915      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
1916    }
1917  }
1918  case ISD::SRL:
1919    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
1920      return I;
1921    break;
1922  case ISD::SRA:
1923    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
1924      return I;
1925    break;
1926  case ISD::MUL:
1927    if (Subtarget->isThumb1Only())
1928      break;
1929    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1930      unsigned RHSV = C->getZExtValue();
1931      if (!RHSV) break;
1932      if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
1933        unsigned ShImm = Log2_32(RHSV-1);
1934        if (ShImm >= 32)
1935          break;
1936        SDValue V = N->getOperand(0);
1937        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
1938        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
1939        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1940        if (Subtarget->isThumb()) {
1941          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1942          return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
1943        } else {
1944          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1945          return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7);
1946        }
1947      }
1948      if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
1949        unsigned ShImm = Log2_32(RHSV+1);
1950        if (ShImm >= 32)
1951          break;
1952        SDValue V = N->getOperand(0);
1953        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
1954        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
1955        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1956        if (Subtarget->isThumb()) {
1957          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0 };
1958          return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 5);
1959        } else {
1960          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1961          return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7);
1962        }
1963      }
1964    }
1965    break;
1966  case ISD::AND: {
1967    // Check for unsigned bitfield extract
1968    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
1969      return I;
1970
1971    // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
1972    // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
1973    // are entirely contributed by c2 and lower 16-bits are entirely contributed
1974    // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
1975    // Select it to: "movt x, ((c1 & 0xffff) >> 16)
1976    EVT VT = N->getValueType(0);
1977    if (VT != MVT::i32)
1978      break;
1979    unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
1980      ? ARM::t2MOVTi16
1981      : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
1982    if (!Opc)
1983      break;
1984    SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
1985    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1986    if (!N1C)
1987      break;
1988    if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
1989      SDValue N2 = N0.getOperand(1);
1990      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1991      if (!N2C)
1992        break;
1993      unsigned N1CVal = N1C->getZExtValue();
1994      unsigned N2CVal = N2C->getZExtValue();
1995      if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
1996          (N1CVal & 0xffffU) == 0xffffU &&
1997          (N2CVal & 0xffffU) == 0x0U) {
1998        SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
1999                                                  MVT::i32);
2000        SDValue Ops[] = { N0.getOperand(0), Imm16,
2001                          getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2002        return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
2003      }
2004    }
2005    break;
2006  }
2007  case ARMISD::VMOVRRD:
2008    return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
2009                                  N->getOperand(0), getAL(CurDAG),
2010                                  CurDAG->getRegister(0, MVT::i32));
2011  case ISD::UMUL_LOHI: {
2012    if (Subtarget->isThumb1Only())
2013      break;
2014    if (Subtarget->isThumb()) {
2015      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2016                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2017                        CurDAG->getRegister(0, MVT::i32) };
2018      return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops,4);
2019    } else {
2020      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2021                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2022                        CurDAG->getRegister(0, MVT::i32) };
2023      return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5);
2024    }
2025  }
2026  case ISD::SMUL_LOHI: {
2027    if (Subtarget->isThumb1Only())
2028      break;
2029    if (Subtarget->isThumb()) {
2030      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2031                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2032      return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops,4);
2033    } else {
2034      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2035                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2036                        CurDAG->getRegister(0, MVT::i32) };
2037      return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5);
2038    }
2039  }
2040  case ISD::LOAD: {
2041    SDNode *ResNode = 0;
2042    if (Subtarget->isThumb() && Subtarget->hasThumb2())
2043      ResNode = SelectT2IndexedLoad(N);
2044    else
2045      ResNode = SelectARMIndexedLoad(N);
2046    if (ResNode)
2047      return ResNode;
2048
2049    // VLDMQ must be custom-selected for "v2f64 load" to set the AM5Opc value.
2050    if (Subtarget->hasVFP2() &&
2051        N->getValueType(0).getSimpleVT().SimpleTy == MVT::v2f64) {
2052      SDValue Chain = N->getOperand(0);
2053      SDValue AM5Opc =
2054        CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
2055      SDValue Pred = getAL(CurDAG);
2056      SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2057      SDValue Ops[] = { N->getOperand(1), AM5Opc, Pred, PredReg, Chain };
2058      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2059      MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2060      SDNode *Ret = CurDAG->getMachineNode(ARM::VLDMQ, dl,
2061                                           MVT::v2f64, MVT::Other, Ops, 5);
2062      cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
2063      return Ret;
2064    }
2065    // Other cases are autogenerated.
2066    break;
2067  }
2068  case ISD::STORE: {
2069    // VSTMQ must be custom-selected for "v2f64 store" to set the AM5Opc value.
2070    if (Subtarget->hasVFP2() &&
2071        N->getOperand(1).getValueType().getSimpleVT().SimpleTy == MVT::v2f64) {
2072      SDValue Chain = N->getOperand(0);
2073      SDValue AM5Opc =
2074        CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
2075      SDValue Pred = getAL(CurDAG);
2076      SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2077      SDValue Ops[] = { N->getOperand(1), N->getOperand(2),
2078                        AM5Opc, Pred, PredReg, Chain };
2079      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2080      MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2081      SDNode *Ret = CurDAG->getMachineNode(ARM::VSTMQ, dl, MVT::Other, Ops, 6);
2082      cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
2083      return Ret;
2084    }
2085    // Other cases are autogenerated.
2086    break;
2087  }
2088  case ARMISD::BRCOND: {
2089    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2090    // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2091    // Pattern complexity = 6  cost = 1  size = 0
2092
2093    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2094    // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2095    // Pattern complexity = 6  cost = 1  size = 0
2096
2097    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2098    // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2099    // Pattern complexity = 6  cost = 1  size = 0
2100
2101    unsigned Opc = Subtarget->isThumb() ?
2102      ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
2103    SDValue Chain = N->getOperand(0);
2104    SDValue N1 = N->getOperand(1);
2105    SDValue N2 = N->getOperand(2);
2106    SDValue N3 = N->getOperand(3);
2107    SDValue InFlag = N->getOperand(4);
2108    assert(N1.getOpcode() == ISD::BasicBlock);
2109    assert(N2.getOpcode() == ISD::Constant);
2110    assert(N3.getOpcode() == ISD::Register);
2111
2112    SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2113                               cast<ConstantSDNode>(N2)->getZExtValue()),
2114                               MVT::i32);
2115    SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
2116    SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
2117                                             MVT::Flag, Ops, 5);
2118    Chain = SDValue(ResNode, 0);
2119    if (N->getNumValues() == 2) {
2120      InFlag = SDValue(ResNode, 1);
2121      ReplaceUses(SDValue(N, 1), InFlag);
2122    }
2123    ReplaceUses(SDValue(N, 0),
2124                SDValue(Chain.getNode(), Chain.getResNo()));
2125    return NULL;
2126  }
2127  case ARMISD::CMOV:
2128    return SelectCMOVOp(N);
2129  case ARMISD::CNEG: {
2130    EVT VT = N->getValueType(0);
2131    SDValue N0 = N->getOperand(0);
2132    SDValue N1 = N->getOperand(1);
2133    SDValue N2 = N->getOperand(2);
2134    SDValue N3 = N->getOperand(3);
2135    SDValue InFlag = N->getOperand(4);
2136    assert(N2.getOpcode() == ISD::Constant);
2137    assert(N3.getOpcode() == ISD::Register);
2138
2139    SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2140                               cast<ConstantSDNode>(N2)->getZExtValue()),
2141                               MVT::i32);
2142    SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag };
2143    unsigned Opc = 0;
2144    switch (VT.getSimpleVT().SimpleTy) {
2145    default: assert(false && "Illegal conditional move type!");
2146      break;
2147    case MVT::f32:
2148      Opc = ARM::VNEGScc;
2149      break;
2150    case MVT::f64:
2151      Opc = ARM::VNEGDcc;
2152      break;
2153    }
2154    return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
2155  }
2156
2157  case ARMISD::VZIP: {
2158    unsigned Opc = 0;
2159    EVT VT = N->getValueType(0);
2160    switch (VT.getSimpleVT().SimpleTy) {
2161    default: return NULL;
2162    case MVT::v8i8:  Opc = ARM::VZIPd8; break;
2163    case MVT::v4i16: Opc = ARM::VZIPd16; break;
2164    case MVT::v2f32:
2165    case MVT::v2i32: Opc = ARM::VZIPd32; break;
2166    case MVT::v16i8: Opc = ARM::VZIPq8; break;
2167    case MVT::v8i16: Opc = ARM::VZIPq16; break;
2168    case MVT::v4f32:
2169    case MVT::v4i32: Opc = ARM::VZIPq32; break;
2170    }
2171    SDValue Pred = getAL(CurDAG);
2172    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2173    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2174    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2175  }
2176  case ARMISD::VUZP: {
2177    unsigned Opc = 0;
2178    EVT VT = N->getValueType(0);
2179    switch (VT.getSimpleVT().SimpleTy) {
2180    default: return NULL;
2181    case MVT::v8i8:  Opc = ARM::VUZPd8; break;
2182    case MVT::v4i16: Opc = ARM::VUZPd16; break;
2183    case MVT::v2f32:
2184    case MVT::v2i32: Opc = ARM::VUZPd32; break;
2185    case MVT::v16i8: Opc = ARM::VUZPq8; break;
2186    case MVT::v8i16: Opc = ARM::VUZPq16; break;
2187    case MVT::v4f32:
2188    case MVT::v4i32: Opc = ARM::VUZPq32; break;
2189    }
2190    SDValue Pred = getAL(CurDAG);
2191    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2192    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2193    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2194  }
2195  case ARMISD::VTRN: {
2196    unsigned Opc = 0;
2197    EVT VT = N->getValueType(0);
2198    switch (VT.getSimpleVT().SimpleTy) {
2199    default: return NULL;
2200    case MVT::v8i8:  Opc = ARM::VTRNd8; break;
2201    case MVT::v4i16: Opc = ARM::VTRNd16; break;
2202    case MVT::v2f32:
2203    case MVT::v2i32: Opc = ARM::VTRNd32; break;
2204    case MVT::v16i8: Opc = ARM::VTRNq8; break;
2205    case MVT::v8i16: Opc = ARM::VTRNq16; break;
2206    case MVT::v4f32:
2207    case MVT::v4i32: Opc = ARM::VTRNq32; break;
2208    }
2209    SDValue Pred = getAL(CurDAG);
2210    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2211    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2212    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2213  }
2214
2215  case ISD::INTRINSIC_VOID:
2216  case ISD::INTRINSIC_W_CHAIN: {
2217    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2218    switch (IntNo) {
2219    default:
2220      break;
2221
2222    case Intrinsic::arm_neon_vld1: {
2223      unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
2224                              ARM::VLD1d32, ARM::VLD1d64 };
2225      unsigned QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
2226                              ARM::VLD1q32, ARM::VLD1q64 };
2227      return SelectVLD(N, 1, DOpcodes, QOpcodes, 0);
2228    }
2229
2230    case Intrinsic::arm_neon_vld2: {
2231      unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
2232                              ARM::VLD2d32, ARM::VLD1q64 };
2233      unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 };
2234      return SelectVLD(N, 2, DOpcodes, QOpcodes, 0);
2235    }
2236
2237    case Intrinsic::arm_neon_vld3: {
2238      unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16,
2239                              ARM::VLD3d32, ARM::VLD1d64T };
2240      unsigned QOpcodes0[] = { ARM::VLD3q8_UPD,
2241                               ARM::VLD3q16_UPD,
2242                               ARM::VLD3q32_UPD };
2243      unsigned QOpcodes1[] = { ARM::VLD3q8odd_UPD,
2244                               ARM::VLD3q16odd_UPD,
2245                               ARM::VLD3q32odd_UPD };
2246      return SelectVLD(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
2247    }
2248
2249    case Intrinsic::arm_neon_vld4: {
2250      unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16,
2251                              ARM::VLD4d32, ARM::VLD1d64Q };
2252      unsigned QOpcodes0[] = { ARM::VLD4q8_UPD,
2253                               ARM::VLD4q16_UPD,
2254                               ARM::VLD4q32_UPD };
2255      unsigned QOpcodes1[] = { ARM::VLD4q8odd_UPD,
2256                               ARM::VLD4q16odd_UPD,
2257                               ARM::VLD4q32odd_UPD };
2258      return SelectVLD(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
2259    }
2260
2261    case Intrinsic::arm_neon_vld2lane: {
2262      unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 };
2263      unsigned QOpcodes0[] = { ARM::VLD2LNq16, ARM::VLD2LNq32 };
2264      unsigned QOpcodes1[] = { ARM::VLD2LNq16odd, ARM::VLD2LNq32odd };
2265      return SelectVLDSTLane(N, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
2266    }
2267
2268    case Intrinsic::arm_neon_vld3lane: {
2269      unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 };
2270      unsigned QOpcodes0[] = { ARM::VLD3LNq16, ARM::VLD3LNq32 };
2271      unsigned QOpcodes1[] = { ARM::VLD3LNq16odd, ARM::VLD3LNq32odd };
2272      return SelectVLDSTLane(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2273    }
2274
2275    case Intrinsic::arm_neon_vld4lane: {
2276      unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 };
2277      unsigned QOpcodes0[] = { ARM::VLD4LNq16, ARM::VLD4LNq32 };
2278      unsigned QOpcodes1[] = { ARM::VLD4LNq16odd, ARM::VLD4LNq32odd };
2279      return SelectVLDSTLane(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2280    }
2281
2282    case Intrinsic::arm_neon_vst1: {
2283      unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
2284                              ARM::VST1d32, ARM::VST1d64 };
2285      unsigned QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
2286                              ARM::VST1q32, ARM::VST1q64 };
2287      return SelectVST(N, 1, DOpcodes, QOpcodes, 0);
2288    }
2289
2290    case Intrinsic::arm_neon_vst2: {
2291      unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
2292                              ARM::VST2d32, ARM::VST1q64 };
2293      unsigned QOpcodes[] = { ARM::VST2q8, ARM::VST2q16, ARM::VST2q32 };
2294      return SelectVST(N, 2, DOpcodes, QOpcodes, 0);
2295    }
2296
2297    case Intrinsic::arm_neon_vst3: {
2298      unsigned DOpcodes[] = { ARM::VST3d8, ARM::VST3d16,
2299                              ARM::VST3d32, ARM::VST1d64T };
2300      unsigned QOpcodes0[] = { ARM::VST3q8_UPD,
2301                               ARM::VST3q16_UPD,
2302                               ARM::VST3q32_UPD };
2303      unsigned QOpcodes1[] = { ARM::VST3q8odd_UPD,
2304                               ARM::VST3q16odd_UPD,
2305                               ARM::VST3q32odd_UPD };
2306      return SelectVST(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
2307    }
2308
2309    case Intrinsic::arm_neon_vst4: {
2310      unsigned DOpcodes[] = { ARM::VST4d8, ARM::VST4d16,
2311                              ARM::VST4d32, ARM::VST1d64Q };
2312      unsigned QOpcodes0[] = { ARM::VST4q8_UPD,
2313                               ARM::VST4q16_UPD,
2314                               ARM::VST4q32_UPD };
2315      unsigned QOpcodes1[] = { ARM::VST4q8odd_UPD,
2316                               ARM::VST4q16odd_UPD,
2317                               ARM::VST4q32odd_UPD };
2318      return SelectVST(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
2319    }
2320
2321    case Intrinsic::arm_neon_vst2lane: {
2322      unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 };
2323      unsigned QOpcodes0[] = { ARM::VST2LNq16, ARM::VST2LNq32 };
2324      unsigned QOpcodes1[] = { ARM::VST2LNq16odd, ARM::VST2LNq32odd };
2325      return SelectVLDSTLane(N, false, 2, DOpcodes, QOpcodes0, QOpcodes1);
2326    }
2327
2328    case Intrinsic::arm_neon_vst3lane: {
2329      unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 };
2330      unsigned QOpcodes0[] = { ARM::VST3LNq16, ARM::VST3LNq32 };
2331      unsigned QOpcodes1[] = { ARM::VST3LNq16odd, ARM::VST3LNq32odd };
2332      return SelectVLDSTLane(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
2333    }
2334
2335    case Intrinsic::arm_neon_vst4lane: {
2336      unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 };
2337      unsigned QOpcodes0[] = { ARM::VST4LNq16, ARM::VST4LNq32 };
2338      unsigned QOpcodes1[] = { ARM::VST4LNq16odd, ARM::VST4LNq32odd };
2339      return SelectVLDSTLane(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
2340    }
2341    }
2342    break;
2343  }
2344
2345  case ISD::CONCAT_VECTORS:
2346    return SelectConcatVector(N);
2347  }
2348
2349  return SelectCode(N);
2350}
2351
2352bool ARMDAGToDAGISel::
2353SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2354                             std::vector<SDValue> &OutOps) {
2355  assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
2356  // Require the address to be in a register.  That is safe for all ARM
2357  // variants and it is hard to do anything much smarter without knowing
2358  // how the operand is used.
2359  OutOps.push_back(Op);
2360  return false;
2361}
2362
2363/// createARMISelDag - This pass converts a legalized DAG into a
2364/// ARM-specific DAG, ready for instruction scheduling.
2365///
2366FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
2367                                     CodeGenOpt::Level OptLevel) {
2368  return new ARMDAGToDAGISel(TM, OptLevel);
2369}
2370
2371/// ModelWithRegSequence - Return true if isel should use REG_SEQUENCE to model
2372/// operations involving sub-registers.
2373bool llvm::ModelWithRegSequence() {
2374  return UseRegSeq;
2375}
2376