SIISelLowering.cpp revision 360784
1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Custom DAG lowering for SI
11//
12//===----------------------------------------------------------------------===//
13
14#if defined(_MSC_VER) || defined(__MINGW32__)
15// Provide M_PI.
16#define _USE_MATH_DEFINES
17#endif
18
19#include "SIISelLowering.h"
20#include "AMDGPU.h"
21#include "AMDGPUSubtarget.h"
22#include "AMDGPUTargetMachine.h"
23#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
24#include "SIDefines.h"
25#include "SIInstrInfo.h"
26#include "SIMachineFunctionInfo.h"
27#include "SIRegisterInfo.h"
28#include "Utils/AMDGPUBaseInfo.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/APInt.h"
31#include "llvm/ADT/ArrayRef.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringRef.h"
36#include "llvm/ADT/StringSwitch.h"
37#include "llvm/ADT/Twine.h"
38#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
39#include "llvm/CodeGen/Analysis.h"
40#include "llvm/CodeGen/CallingConvLower.h"
41#include "llvm/CodeGen/DAGCombine.h"
42#include "llvm/CodeGen/ISDOpcodes.h"
43#include "llvm/CodeGen/MachineBasicBlock.h"
44#include "llvm/CodeGen/MachineFrameInfo.h"
45#include "llvm/CodeGen/MachineFunction.h"
46#include "llvm/CodeGen/MachineInstr.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineLoopInfo.h"
49#include "llvm/CodeGen/MachineMemOperand.h"
50#include "llvm/CodeGen/MachineModuleInfo.h"
51#include "llvm/CodeGen/MachineOperand.h"
52#include "llvm/CodeGen/MachineRegisterInfo.h"
53#include "llvm/CodeGen/SelectionDAG.h"
54#include "llvm/CodeGen/SelectionDAGNodes.h"
55#include "llvm/CodeGen/TargetCallingConv.h"
56#include "llvm/CodeGen/TargetRegisterInfo.h"
57#include "llvm/CodeGen/ValueTypes.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugLoc.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/DiagnosticInfo.h"
63#include "llvm/IR/Function.h"
64#include "llvm/IR/GlobalValue.h"
65#include "llvm/IR/InstrTypes.h"
66#include "llvm/IR/Instruction.h"
67#include "llvm/IR/Instructions.h"
68#include "llvm/IR/IntrinsicInst.h"
69#include "llvm/IR/Type.h"
70#include "llvm/Support/Casting.h"
71#include "llvm/Support/CodeGen.h"
72#include "llvm/Support/CommandLine.h"
73#include "llvm/Support/Compiler.h"
74#include "llvm/Support/ErrorHandling.h"
75#include "llvm/Support/KnownBits.h"
76#include "llvm/Support/MachineValueType.h"
77#include "llvm/Support/MathExtras.h"
78#include "llvm/Target/TargetOptions.h"
79#include <cassert>
80#include <cmath>
81#include <cstdint>
82#include <iterator>
83#include <tuple>
84#include <utility>
85#include <vector>
86
87using namespace llvm;
88
89#define DEBUG_TYPE "si-lower"
90
91STATISTIC(NumTailCalls, "Number of tail calls");
92
93static cl::opt<bool> DisableLoopAlignment(
94  "amdgpu-disable-loop-alignment",
95  cl::desc("Do not align and prefetch loops"),
96  cl::init(false));
97
98static bool hasFP32Denormals(const MachineFunction &MF) {
99  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
100  return Info->getMode().FP32Denormals;
101}
102
103static bool hasFP64FP16Denormals(const MachineFunction &MF) {
104  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
105  return Info->getMode().FP64FP16Denormals;
106}
107
108static unsigned findFirstFreeSGPR(CCState &CCInfo) {
109  unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
110  for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
111    if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
112      return AMDGPU::SGPR0 + Reg;
113    }
114  }
115  llvm_unreachable("Cannot allocate sgpr");
116}
117
118SITargetLowering::SITargetLowering(const TargetMachine &TM,
119                                   const GCNSubtarget &STI)
120    : AMDGPUTargetLowering(TM, STI),
121      Subtarget(&STI) {
122  addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
123  addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
124
125  addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
126  addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
127
128  addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
129  addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
130  addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
131
132  addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
133  addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
134
135  addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
136  addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
137
138  addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
139  addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
140
141  addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
142  addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
143
144  addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
145  addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
146
147  addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
148  addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
149
150  if (Subtarget->has16BitInsts()) {
151    addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
152    addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
153
154    // Unless there are also VOP3P operations, not operations are really legal.
155    addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
156    addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
157    addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
158    addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
159  }
160
161  if (Subtarget->hasMAIInsts()) {
162    addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
163    addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
164  }
165
166  computeRegisterProperties(Subtarget->getRegisterInfo());
167
168  // The boolean content concept here is too inflexible. Compares only ever
169  // really produce a 1-bit result. Any copy/extend from these will turn into a
170  // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
171  // it's what most targets use.
172  setBooleanContents(ZeroOrOneBooleanContent);
173  setBooleanVectorContents(ZeroOrOneBooleanContent);
174
175  // We need to custom lower vector stores from local memory
176  setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
177  setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
178  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
179  setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
180  setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
181  setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
182  setOperationAction(ISD::LOAD, MVT::i1, Custom);
183  setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
184
185  setOperationAction(ISD::STORE, MVT::v2i32, Custom);
186  setOperationAction(ISD::STORE, MVT::v3i32, Custom);
187  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
188  setOperationAction(ISD::STORE, MVT::v5i32, Custom);
189  setOperationAction(ISD::STORE, MVT::v8i32, Custom);
190  setOperationAction(ISD::STORE, MVT::v16i32, Custom);
191  setOperationAction(ISD::STORE, MVT::i1, Custom);
192  setOperationAction(ISD::STORE, MVT::v32i32, Custom);
193
194  setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
195  setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
196  setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
197  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
198  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
199  setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
200  setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
201  setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
202  setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
203  setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
204  setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
205
206  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
207  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
208
209  setOperationAction(ISD::SELECT, MVT::i1, Promote);
210  setOperationAction(ISD::SELECT, MVT::i64, Custom);
211  setOperationAction(ISD::SELECT, MVT::f64, Promote);
212  AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
213
214  setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
215  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
216  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
217  setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
218  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
219
220  setOperationAction(ISD::SETCC, MVT::i1, Promote);
221  setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
222  setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
223  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
224
225  setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
226  setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
227
228  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
229  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
230  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
231  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
232  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
233  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
234  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
235  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
236
237  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
238  setOperationAction(ISD::BR_CC, MVT::i1, Expand);
239  setOperationAction(ISD::BR_CC, MVT::i32, Expand);
240  setOperationAction(ISD::BR_CC, MVT::i64, Expand);
241  setOperationAction(ISD::BR_CC, MVT::f32, Expand);
242  setOperationAction(ISD::BR_CC, MVT::f64, Expand);
243
244  setOperationAction(ISD::UADDO, MVT::i32, Legal);
245  setOperationAction(ISD::USUBO, MVT::i32, Legal);
246
247  setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
248  setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
249
250  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
251  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
252  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
253
254#if 0
255  setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
256  setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
257#endif
258
259  // We only support LOAD/STORE and vector manipulation ops for vectors
260  // with > 4 elements.
261  for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
262                  MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
263                  MVT::v32i32, MVT::v32f32 }) {
264    for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
265      switch (Op) {
266      case ISD::LOAD:
267      case ISD::STORE:
268      case ISD::BUILD_VECTOR:
269      case ISD::BITCAST:
270      case ISD::EXTRACT_VECTOR_ELT:
271      case ISD::INSERT_VECTOR_ELT:
272      case ISD::INSERT_SUBVECTOR:
273      case ISD::EXTRACT_SUBVECTOR:
274      case ISD::SCALAR_TO_VECTOR:
275        break;
276      case ISD::CONCAT_VECTORS:
277        setOperationAction(Op, VT, Custom);
278        break;
279      default:
280        setOperationAction(Op, VT, Expand);
281        break;
282      }
283    }
284  }
285
286  setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
287
288  // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
289  // is expanded to avoid having two separate loops in case the index is a VGPR.
290
291  // Most operations are naturally 32-bit vector operations. We only support
292  // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
293  for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
294    setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
295    AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
296
297    setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
298    AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
299
300    setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
301    AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
302
303    setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
304    AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
305  }
306
307  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
308  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
309  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
310  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
311
312  setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
313  setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
314
315  // Avoid stack access for these.
316  // TODO: Generalize to more vector types.
317  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
318  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
319  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
320  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
321
322  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
323  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
324  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
325  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
326  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
327
328  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
329  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
330  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
331
332  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
333  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
334  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
335  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
336
337  // Deal with vec3 vector operations when widened to vec4.
338  setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
339  setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
340  setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
341  setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
342
343  // Deal with vec5 vector operations when widened to vec8.
344  setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
345  setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
346  setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
347  setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
348
349  // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
350  // and output demarshalling
351  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
352  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
353
354  // We can't return success/failure, only the old value,
355  // let LLVM add the comparison
356  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
357  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
358
359  if (Subtarget->hasFlatAddressSpace()) {
360    setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
361    setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
362  }
363
364  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
365  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
366
367  // On SI this is s_memtime and s_memrealtime on VI.
368  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
369  setOperationAction(ISD::TRAP, MVT::Other, Custom);
370  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
371
372  if (Subtarget->has16BitInsts()) {
373    setOperationAction(ISD::FPOW, MVT::f16, Promote);
374    setOperationAction(ISD::FLOG, MVT::f16, Custom);
375    setOperationAction(ISD::FEXP, MVT::f16, Custom);
376    setOperationAction(ISD::FLOG10, MVT::f16, Custom);
377  }
378
379  // v_mad_f32 does not support denormals. We report it as unconditionally
380  // legal, and the context where it is formed will disallow it when fp32
381  // denormals are enabled.
382  setOperationAction(ISD::FMAD, MVT::f32, Legal);
383
384  if (!Subtarget->hasBFI()) {
385    // fcopysign can be done in a single instruction with BFI.
386    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
387    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
388  }
389
390  if (!Subtarget->hasBCNT(32))
391    setOperationAction(ISD::CTPOP, MVT::i32, Expand);
392
393  if (!Subtarget->hasBCNT(64))
394    setOperationAction(ISD::CTPOP, MVT::i64, Expand);
395
396  if (Subtarget->hasFFBH())
397    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
398
399  if (Subtarget->hasFFBL())
400    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
401
402  // We only really have 32-bit BFE instructions (and 16-bit on VI).
403  //
404  // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
405  // effort to match them now. We want this to be false for i64 cases when the
406  // extraction isn't restricted to the upper or lower half. Ideally we would
407  // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
408  // span the midpoint are probably relatively rare, so don't worry about them
409  // for now.
410  if (Subtarget->hasBFE())
411    setHasExtractBitsInsn(true);
412
413  setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
414  setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
415  setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
416  setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
417
418
419  // These are really only legal for ieee_mode functions. We should be avoiding
420  // them for functions that don't have ieee_mode enabled, so just say they are
421  // legal.
422  setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
423  setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
424  setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
425  setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
426
427
428  if (Subtarget->haveRoundOpsF64()) {
429    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
430    setOperationAction(ISD::FCEIL, MVT::f64, Legal);
431    setOperationAction(ISD::FRINT, MVT::f64, Legal);
432  } else {
433    setOperationAction(ISD::FCEIL, MVT::f64, Custom);
434    setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
435    setOperationAction(ISD::FRINT, MVT::f64, Custom);
436    setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
437  }
438
439  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
440
441  setOperationAction(ISD::FSIN, MVT::f32, Custom);
442  setOperationAction(ISD::FCOS, MVT::f32, Custom);
443  setOperationAction(ISD::FDIV, MVT::f32, Custom);
444  setOperationAction(ISD::FDIV, MVT::f64, Custom);
445
446  if (Subtarget->has16BitInsts()) {
447    setOperationAction(ISD::Constant, MVT::i16, Legal);
448
449    setOperationAction(ISD::SMIN, MVT::i16, Legal);
450    setOperationAction(ISD::SMAX, MVT::i16, Legal);
451
452    setOperationAction(ISD::UMIN, MVT::i16, Legal);
453    setOperationAction(ISD::UMAX, MVT::i16, Legal);
454
455    setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
456    AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
457
458    setOperationAction(ISD::ROTR, MVT::i16, Promote);
459    setOperationAction(ISD::ROTL, MVT::i16, Promote);
460
461    setOperationAction(ISD::SDIV, MVT::i16, Promote);
462    setOperationAction(ISD::UDIV, MVT::i16, Promote);
463    setOperationAction(ISD::SREM, MVT::i16, Promote);
464    setOperationAction(ISD::UREM, MVT::i16, Promote);
465
466    setOperationAction(ISD::BSWAP, MVT::i16, Promote);
467    setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
468
469    setOperationAction(ISD::CTTZ, MVT::i16, Promote);
470    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
471    setOperationAction(ISD::CTLZ, MVT::i16, Promote);
472    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
473    setOperationAction(ISD::CTPOP, MVT::i16, Promote);
474
475    setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
476
477    setOperationAction(ISD::BR_CC, MVT::i16, Expand);
478
479    setOperationAction(ISD::LOAD, MVT::i16, Custom);
480
481    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
482
483    setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
484    AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
485    setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
486    AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
487
488    setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
489    setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
490
491    // F16 - Constant Actions.
492    setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
493
494    // F16 - Load/Store Actions.
495    setOperationAction(ISD::LOAD, MVT::f16, Promote);
496    AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
497    setOperationAction(ISD::STORE, MVT::f16, Promote);
498    AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
499
500    // F16 - VOP1 Actions.
501    setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
502    setOperationAction(ISD::FCOS, MVT::f16, Promote);
503    setOperationAction(ISD::FSIN, MVT::f16, Promote);
504
505    setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
506    setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
507
508    setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
509    setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
510    setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
511    setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
512    setOperationAction(ISD::FROUND, MVT::f16, Custom);
513
514    // F16 - VOP2 Actions.
515    setOperationAction(ISD::BR_CC, MVT::f16, Expand);
516    setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
517
518    setOperationAction(ISD::FDIV, MVT::f16, Custom);
519
520    // F16 - VOP3 Actions.
521    setOperationAction(ISD::FMA, MVT::f16, Legal);
522    if (STI.hasMadF16())
523      setOperationAction(ISD::FMAD, MVT::f16, Legal);
524
525    for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
526      for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
527        switch (Op) {
528        case ISD::LOAD:
529        case ISD::STORE:
530        case ISD::BUILD_VECTOR:
531        case ISD::BITCAST:
532        case ISD::EXTRACT_VECTOR_ELT:
533        case ISD::INSERT_VECTOR_ELT:
534        case ISD::INSERT_SUBVECTOR:
535        case ISD::EXTRACT_SUBVECTOR:
536        case ISD::SCALAR_TO_VECTOR:
537          break;
538        case ISD::CONCAT_VECTORS:
539          setOperationAction(Op, VT, Custom);
540          break;
541        default:
542          setOperationAction(Op, VT, Expand);
543          break;
544        }
545      }
546    }
547
548    // XXX - Do these do anything? Vector constants turn into build_vector.
549    setOperationAction(ISD::Constant, MVT::v2i16, Legal);
550    setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
551
552    setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
553    setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
554
555    setOperationAction(ISD::STORE, MVT::v2i16, Promote);
556    AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
557    setOperationAction(ISD::STORE, MVT::v2f16, Promote);
558    AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
559
560    setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
561    AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
562    setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
563    AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
564
565    setOperationAction(ISD::AND, MVT::v2i16, Promote);
566    AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
567    setOperationAction(ISD::OR, MVT::v2i16, Promote);
568    AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
569    setOperationAction(ISD::XOR, MVT::v2i16, Promote);
570    AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
571
572    setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
573    AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
574    setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
575    AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
576
577    setOperationAction(ISD::STORE, MVT::v4i16, Promote);
578    AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
579    setOperationAction(ISD::STORE, MVT::v4f16, Promote);
580    AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
581
582    setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
583    setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
584    setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
585    setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
586
587    setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
588    setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
589    setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
590
591    if (!Subtarget->hasVOP3PInsts()) {
592      setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
593      setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
594    }
595
596    setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
597    // This isn't really legal, but this avoids the legalizer unrolling it (and
598    // allows matching fneg (fabs x) patterns)
599    setOperationAction(ISD::FABS, MVT::v2f16, Legal);
600
601    setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
602    setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
603    setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
604    setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
605
606    setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
607    setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
608
609    setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
610    setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
611  }
612
613  if (Subtarget->hasVOP3PInsts()) {
614    setOperationAction(ISD::ADD, MVT::v2i16, Legal);
615    setOperationAction(ISD::SUB, MVT::v2i16, Legal);
616    setOperationAction(ISD::MUL, MVT::v2i16, Legal);
617    setOperationAction(ISD::SHL, MVT::v2i16, Legal);
618    setOperationAction(ISD::SRL, MVT::v2i16, Legal);
619    setOperationAction(ISD::SRA, MVT::v2i16, Legal);
620    setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
621    setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
622    setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
623    setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
624
625    setOperationAction(ISD::FADD, MVT::v2f16, Legal);
626    setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
627    setOperationAction(ISD::FMA, MVT::v2f16, Legal);
628
629    setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
630    setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
631
632    setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
633
634    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
635    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
636
637    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
638    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
639
640    setOperationAction(ISD::SHL, MVT::v4i16, Custom);
641    setOperationAction(ISD::SRA, MVT::v4i16, Custom);
642    setOperationAction(ISD::SRL, MVT::v4i16, Custom);
643    setOperationAction(ISD::ADD, MVT::v4i16, Custom);
644    setOperationAction(ISD::SUB, MVT::v4i16, Custom);
645    setOperationAction(ISD::MUL, MVT::v4i16, Custom);
646
647    setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
648    setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
649    setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
650    setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
651
652    setOperationAction(ISD::FADD, MVT::v4f16, Custom);
653    setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
654    setOperationAction(ISD::FMA, MVT::v4f16, Custom);
655
656    setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
657    setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
658
659    setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
660    setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
661    setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
662
663    setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
664    setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
665    setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
666  }
667
668  setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
669  setOperationAction(ISD::FABS, MVT::v4f16, Custom);
670
671  if (Subtarget->has16BitInsts()) {
672    setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
673    AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
674    setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
675    AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
676  } else {
677    // Legalization hack.
678    setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
679    setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
680
681    setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
682    setOperationAction(ISD::FABS, MVT::v2f16, Custom);
683  }
684
685  for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
686    setOperationAction(ISD::SELECT, VT, Custom);
687  }
688
689  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
690  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
691  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
692  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
693  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
694  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
695  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
696
697  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
698  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
699  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
700  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
701  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
702  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
703  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
704  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
705  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
706
707  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
708  setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
709  setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
710  setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
711  setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
712  setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
713  setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
714  setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
715
716  setTargetDAGCombine(ISD::ADD);
717  setTargetDAGCombine(ISD::ADDCARRY);
718  setTargetDAGCombine(ISD::SUB);
719  setTargetDAGCombine(ISD::SUBCARRY);
720  setTargetDAGCombine(ISD::FADD);
721  setTargetDAGCombine(ISD::FSUB);
722  setTargetDAGCombine(ISD::FMINNUM);
723  setTargetDAGCombine(ISD::FMAXNUM);
724  setTargetDAGCombine(ISD::FMINNUM_IEEE);
725  setTargetDAGCombine(ISD::FMAXNUM_IEEE);
726  setTargetDAGCombine(ISD::FMA);
727  setTargetDAGCombine(ISD::SMIN);
728  setTargetDAGCombine(ISD::SMAX);
729  setTargetDAGCombine(ISD::UMIN);
730  setTargetDAGCombine(ISD::UMAX);
731  setTargetDAGCombine(ISD::SETCC);
732  setTargetDAGCombine(ISD::AND);
733  setTargetDAGCombine(ISD::OR);
734  setTargetDAGCombine(ISD::XOR);
735  setTargetDAGCombine(ISD::SINT_TO_FP);
736  setTargetDAGCombine(ISD::UINT_TO_FP);
737  setTargetDAGCombine(ISD::FCANONICALIZE);
738  setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
739  setTargetDAGCombine(ISD::ZERO_EXTEND);
740  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
741  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
742  setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
743
744  // All memory operations. Some folding on the pointer operand is done to help
745  // matching the constant offsets in the addressing modes.
746  setTargetDAGCombine(ISD::LOAD);
747  setTargetDAGCombine(ISD::STORE);
748  setTargetDAGCombine(ISD::ATOMIC_LOAD);
749  setTargetDAGCombine(ISD::ATOMIC_STORE);
750  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
751  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
752  setTargetDAGCombine(ISD::ATOMIC_SWAP);
753  setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
754  setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
755  setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
756  setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
757  setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
758  setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
759  setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
760  setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
761  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
762  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
763  setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
764
765  setSchedulingPreference(Sched::RegPressure);
766}
767
768const GCNSubtarget *SITargetLowering::getSubtarget() const {
769  return Subtarget;
770}
771
772//===----------------------------------------------------------------------===//
773// TargetLowering queries
774//===----------------------------------------------------------------------===//
775
776// v_mad_mix* support a conversion from f16 to f32.
777//
778// There is only one special case when denormals are enabled we don't currently,
779// where this is OK to use.
780bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
781                                       EVT DestVT, EVT SrcVT) const {
782  return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
783          (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
784    DestVT.getScalarType() == MVT::f32 &&
785    SrcVT.getScalarType() == MVT::f16 &&
786    !hasFP32Denormals(DAG.getMachineFunction());
787}
788
789bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
790  // SI has some legal vector types, but no legal vector operations. Say no
791  // shuffles are legal in order to prefer scalarizing some vector operations.
792  return false;
793}
794
795MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
796                                                    CallingConv::ID CC,
797                                                    EVT VT) const {
798  if (CC == CallingConv::AMDGPU_KERNEL)
799    return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
800
801  if (VT.isVector()) {
802    EVT ScalarVT = VT.getScalarType();
803    unsigned Size = ScalarVT.getSizeInBits();
804    if (Size == 32)
805      return ScalarVT.getSimpleVT();
806
807    if (Size > 32)
808      return MVT::i32;
809
810    if (Size == 16 && Subtarget->has16BitInsts())
811      return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
812  } else if (VT.getSizeInBits() > 32)
813    return MVT::i32;
814
815  return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
816}
817
818unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
819                                                         CallingConv::ID CC,
820                                                         EVT VT) const {
821  if (CC == CallingConv::AMDGPU_KERNEL)
822    return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
823
824  if (VT.isVector()) {
825    unsigned NumElts = VT.getVectorNumElements();
826    EVT ScalarVT = VT.getScalarType();
827    unsigned Size = ScalarVT.getSizeInBits();
828
829    if (Size == 32)
830      return NumElts;
831
832    if (Size > 32)
833      return NumElts * ((Size + 31) / 32);
834
835    if (Size == 16 && Subtarget->has16BitInsts())
836      return (NumElts + 1) / 2;
837  } else if (VT.getSizeInBits() > 32)
838    return (VT.getSizeInBits() + 31) / 32;
839
840  return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
841}
842
843unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
844  LLVMContext &Context, CallingConv::ID CC,
845  EVT VT, EVT &IntermediateVT,
846  unsigned &NumIntermediates, MVT &RegisterVT) const {
847  if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
848    unsigned NumElts = VT.getVectorNumElements();
849    EVT ScalarVT = VT.getScalarType();
850    unsigned Size = ScalarVT.getSizeInBits();
851    if (Size == 32) {
852      RegisterVT = ScalarVT.getSimpleVT();
853      IntermediateVT = RegisterVT;
854      NumIntermediates = NumElts;
855      return NumIntermediates;
856    }
857
858    if (Size > 32) {
859      RegisterVT = MVT::i32;
860      IntermediateVT = RegisterVT;
861      NumIntermediates = NumElts * ((Size + 31) / 32);
862      return NumIntermediates;
863    }
864
865    // FIXME: We should fix the ABI to be the same on targets without 16-bit
866    // support, but unless we can properly handle 3-vectors, it will be still be
867    // inconsistent.
868    if (Size == 16 && Subtarget->has16BitInsts()) {
869      RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
870      IntermediateVT = RegisterVT;
871      NumIntermediates = (NumElts + 1) / 2;
872      return NumIntermediates;
873    }
874  }
875
876  return TargetLowering::getVectorTypeBreakdownForCallingConv(
877    Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
878}
879
880static MVT memVTFromAggregate(Type *Ty) {
881  // Only limited forms of aggregate type currently expected.
882  assert(Ty->isStructTy() && "Expected struct type");
883
884
885  Type *ElementType = nullptr;
886  unsigned NumElts;
887  if (Ty->getContainedType(0)->isVectorTy()) {
888    VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0));
889    ElementType = VecComponent->getElementType();
890    NumElts = VecComponent->getNumElements();
891  } else {
892    ElementType = Ty->getContainedType(0);
893    NumElts = 1;
894  }
895
896  assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type");
897
898  // Calculate the size of the memVT type from the aggregate
899  unsigned Pow2Elts = 0;
900  unsigned ElementSize;
901  switch (ElementType->getTypeID()) {
902    default:
903      llvm_unreachable("Unknown type!");
904    case Type::IntegerTyID:
905      ElementSize = cast<IntegerType>(ElementType)->getBitWidth();
906      break;
907    case Type::HalfTyID:
908      ElementSize = 16;
909      break;
910    case Type::FloatTyID:
911      ElementSize = 32;
912      break;
913  }
914  unsigned AdditionalElts = ElementSize == 16 ? 2 : 1;
915  Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts);
916
917  return MVT::getVectorVT(MVT::getVT(ElementType, false),
918                          Pow2Elts);
919}
920
921bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
922                                          const CallInst &CI,
923                                          MachineFunction &MF,
924                                          unsigned IntrID) const {
925  if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
926          AMDGPU::lookupRsrcIntrinsic(IntrID)) {
927    AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
928                                                  (Intrinsic::ID)IntrID);
929    if (Attr.hasFnAttribute(Attribute::ReadNone))
930      return false;
931
932    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
933
934    if (RsrcIntr->IsImage) {
935      Info.ptrVal = MFI->getImagePSV(
936        *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
937        CI.getArgOperand(RsrcIntr->RsrcArg));
938      Info.align.reset();
939    } else {
940      Info.ptrVal = MFI->getBufferPSV(
941        *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
942        CI.getArgOperand(RsrcIntr->RsrcArg));
943    }
944
945    Info.flags = MachineMemOperand::MODereferenceable;
946    if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
947      Info.opc = ISD::INTRINSIC_W_CHAIN;
948      Info.memVT = MVT::getVT(CI.getType(), true);
949      if (Info.memVT == MVT::Other) {
950        // Some intrinsics return an aggregate type - special case to work out
951        // the correct memVT
952        Info.memVT = memVTFromAggregate(CI.getType());
953      }
954      Info.flags |= MachineMemOperand::MOLoad;
955    } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
956      Info.opc = ISD::INTRINSIC_VOID;
957      Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
958      Info.flags |= MachineMemOperand::MOStore;
959    } else {
960      // Atomic
961      Info.opc = ISD::INTRINSIC_W_CHAIN;
962      Info.memVT = MVT::getVT(CI.getType());
963      Info.flags = MachineMemOperand::MOLoad |
964                   MachineMemOperand::MOStore |
965                   MachineMemOperand::MODereferenceable;
966
967      // XXX - Should this be volatile without known ordering?
968      Info.flags |= MachineMemOperand::MOVolatile;
969    }
970    return true;
971  }
972
973  switch (IntrID) {
974  case Intrinsic::amdgcn_atomic_inc:
975  case Intrinsic::amdgcn_atomic_dec:
976  case Intrinsic::amdgcn_ds_ordered_add:
977  case Intrinsic::amdgcn_ds_ordered_swap:
978  case Intrinsic::amdgcn_ds_fadd:
979  case Intrinsic::amdgcn_ds_fmin:
980  case Intrinsic::amdgcn_ds_fmax: {
981    Info.opc = ISD::INTRINSIC_W_CHAIN;
982    Info.memVT = MVT::getVT(CI.getType());
983    Info.ptrVal = CI.getOperand(0);
984    Info.align.reset();
985    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
986
987    const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
988    if (!Vol->isZero())
989      Info.flags |= MachineMemOperand::MOVolatile;
990
991    return true;
992  }
993  case Intrinsic::amdgcn_buffer_atomic_fadd: {
994    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
995
996    Info.opc = ISD::INTRINSIC_VOID;
997    Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
998    Info.ptrVal = MFI->getBufferPSV(
999      *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1000      CI.getArgOperand(1));
1001    Info.align.reset();
1002    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1003
1004    const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1005    if (!Vol || !Vol->isZero())
1006      Info.flags |= MachineMemOperand::MOVolatile;
1007
1008    return true;
1009  }
1010  case Intrinsic::amdgcn_global_atomic_fadd: {
1011    Info.opc = ISD::INTRINSIC_VOID;
1012    Info.memVT = MVT::getVT(CI.getOperand(0)->getType()
1013                            ->getPointerElementType());
1014    Info.ptrVal = CI.getOperand(0);
1015    Info.align.reset();
1016    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1017
1018    return true;
1019  }
1020  case Intrinsic::amdgcn_ds_append:
1021  case Intrinsic::amdgcn_ds_consume: {
1022    Info.opc = ISD::INTRINSIC_W_CHAIN;
1023    Info.memVT = MVT::getVT(CI.getType());
1024    Info.ptrVal = CI.getOperand(0);
1025    Info.align.reset();
1026    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1027
1028    const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1029    if (!Vol->isZero())
1030      Info.flags |= MachineMemOperand::MOVolatile;
1031
1032    return true;
1033  }
1034  case Intrinsic::amdgcn_ds_gws_init:
1035  case Intrinsic::amdgcn_ds_gws_barrier:
1036  case Intrinsic::amdgcn_ds_gws_sema_v:
1037  case Intrinsic::amdgcn_ds_gws_sema_br:
1038  case Intrinsic::amdgcn_ds_gws_sema_p:
1039  case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1040    Info.opc = ISD::INTRINSIC_VOID;
1041
1042    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1043    Info.ptrVal =
1044        MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1045
1046    // This is an abstract access, but we need to specify a type and size.
1047    Info.memVT = MVT::i32;
1048    Info.size = 4;
1049    Info.align = Align(4);
1050
1051    Info.flags = MachineMemOperand::MOStore;
1052    if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1053      Info.flags = MachineMemOperand::MOLoad;
1054    return true;
1055  }
1056  default:
1057    return false;
1058  }
1059}
1060
1061bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1062                                            SmallVectorImpl<Value*> &Ops,
1063                                            Type *&AccessTy) const {
1064  switch (II->getIntrinsicID()) {
1065  case Intrinsic::amdgcn_atomic_inc:
1066  case Intrinsic::amdgcn_atomic_dec:
1067  case Intrinsic::amdgcn_ds_ordered_add:
1068  case Intrinsic::amdgcn_ds_ordered_swap:
1069  case Intrinsic::amdgcn_ds_fadd:
1070  case Intrinsic::amdgcn_ds_fmin:
1071  case Intrinsic::amdgcn_ds_fmax: {
1072    Value *Ptr = II->getArgOperand(0);
1073    AccessTy = II->getType();
1074    Ops.push_back(Ptr);
1075    return true;
1076  }
1077  default:
1078    return false;
1079  }
1080}
1081
1082bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1083  if (!Subtarget->hasFlatInstOffsets()) {
1084    // Flat instructions do not have offsets, and only have the register
1085    // address.
1086    return AM.BaseOffs == 0 && AM.Scale == 0;
1087  }
1088
1089  return AM.Scale == 0 &&
1090         (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1091                                  AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS,
1092                                  /*Signed=*/false));
1093}
1094
1095bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1096  if (Subtarget->hasFlatGlobalInsts())
1097    return AM.Scale == 0 &&
1098           (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1099                                    AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1100                                    /*Signed=*/true));
1101
1102  if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1103      // Assume the we will use FLAT for all global memory accesses
1104      // on VI.
1105      // FIXME: This assumption is currently wrong.  On VI we still use
1106      // MUBUF instructions for the r + i addressing mode.  As currently
1107      // implemented, the MUBUF instructions only work on buffer < 4GB.
1108      // It may be possible to support > 4GB buffers with MUBUF instructions,
1109      // by setting the stride value in the resource descriptor which would
1110      // increase the size limit to (stride * 4GB).  However, this is risky,
1111      // because it has never been validated.
1112    return isLegalFlatAddressingMode(AM);
1113  }
1114
1115  return isLegalMUBUFAddressingMode(AM);
1116}
1117
1118bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1119  // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1120  // additionally can do r + r + i with addr64. 32-bit has more addressing
1121  // mode options. Depending on the resource constant, it can also do
1122  // (i64 r0) + (i32 r1) * (i14 i).
1123  //
1124  // Private arrays end up using a scratch buffer most of the time, so also
1125  // assume those use MUBUF instructions. Scratch loads / stores are currently
1126  // implemented as mubuf instructions with offen bit set, so slightly
1127  // different than the normal addr64.
1128  if (!isUInt<12>(AM.BaseOffs))
1129    return false;
1130
1131  // FIXME: Since we can split immediate into soffset and immediate offset,
1132  // would it make sense to allow any immediate?
1133
1134  switch (AM.Scale) {
1135  case 0: // r + i or just i, depending on HasBaseReg.
1136    return true;
1137  case 1:
1138    return true; // We have r + r or r + i.
1139  case 2:
1140    if (AM.HasBaseReg) {
1141      // Reject 2 * r + r.
1142      return false;
1143    }
1144
1145    // Allow 2 * r as r + r
1146    // Or  2 * r + i is allowed as r + r + i.
1147    return true;
1148  default: // Don't allow n * r
1149    return false;
1150  }
1151}
1152
1153bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1154                                             const AddrMode &AM, Type *Ty,
1155                                             unsigned AS, Instruction *I) const {
1156  // No global is ever allowed as a base.
1157  if (AM.BaseGV)
1158    return false;
1159
1160  if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1161    return isLegalGlobalAddressingMode(AM);
1162
1163  if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1164      AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1165      AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1166    // If the offset isn't a multiple of 4, it probably isn't going to be
1167    // correctly aligned.
1168    // FIXME: Can we get the real alignment here?
1169    if (AM.BaseOffs % 4 != 0)
1170      return isLegalMUBUFAddressingMode(AM);
1171
1172    // There are no SMRD extloads, so if we have to do a small type access we
1173    // will use a MUBUF load.
1174    // FIXME?: We also need to do this if unaligned, but we don't know the
1175    // alignment here.
1176    if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1177      return isLegalGlobalAddressingMode(AM);
1178
1179    if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1180      // SMRD instructions have an 8-bit, dword offset on SI.
1181      if (!isUInt<8>(AM.BaseOffs / 4))
1182        return false;
1183    } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1184      // On CI+, this can also be a 32-bit literal constant offset. If it fits
1185      // in 8-bits, it can use a smaller encoding.
1186      if (!isUInt<32>(AM.BaseOffs / 4))
1187        return false;
1188    } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1189      // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1190      if (!isUInt<20>(AM.BaseOffs))
1191        return false;
1192    } else
1193      llvm_unreachable("unhandled generation");
1194
1195    if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1196      return true;
1197
1198    if (AM.Scale == 1 && AM.HasBaseReg)
1199      return true;
1200
1201    return false;
1202
1203  } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1204    return isLegalMUBUFAddressingMode(AM);
1205  } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1206             AS == AMDGPUAS::REGION_ADDRESS) {
1207    // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1208    // field.
1209    // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1210    // an 8-bit dword offset but we don't know the alignment here.
1211    if (!isUInt<16>(AM.BaseOffs))
1212      return false;
1213
1214    if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1215      return true;
1216
1217    if (AM.Scale == 1 && AM.HasBaseReg)
1218      return true;
1219
1220    return false;
1221  } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1222             AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1223    // For an unknown address space, this usually means that this is for some
1224    // reason being used for pure arithmetic, and not based on some addressing
1225    // computation. We don't have instructions that compute pointers with any
1226    // addressing modes, so treat them as having no offset like flat
1227    // instructions.
1228    return isLegalFlatAddressingMode(AM);
1229  } else {
1230    llvm_unreachable("unhandled address space");
1231  }
1232}
1233
1234bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1235                                        const SelectionDAG &DAG) const {
1236  if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1237    return (MemVT.getSizeInBits() <= 4 * 32);
1238  } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1239    unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1240    return (MemVT.getSizeInBits() <= MaxPrivateBits);
1241  } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1242    return (MemVT.getSizeInBits() <= 2 * 32);
1243  }
1244  return true;
1245}
1246
1247bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1248    unsigned Size, unsigned AddrSpace, unsigned Align,
1249    MachineMemOperand::Flags Flags, bool *IsFast) const {
1250  if (IsFast)
1251    *IsFast = false;
1252
1253  if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1254      AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1255    // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1256    // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1257    // with adjacent offsets.
1258    bool AlignedBy4 = (Align % 4 == 0);
1259    if (IsFast)
1260      *IsFast = AlignedBy4;
1261
1262    return AlignedBy4;
1263  }
1264
1265  // FIXME: We have to be conservative here and assume that flat operations
1266  // will access scratch.  If we had access to the IR function, then we
1267  // could determine if any private memory was used in the function.
1268  if (!Subtarget->hasUnalignedScratchAccess() &&
1269      (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1270       AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1271    bool AlignedBy4 = Align >= 4;
1272    if (IsFast)
1273      *IsFast = AlignedBy4;
1274
1275    return AlignedBy4;
1276  }
1277
1278  if (Subtarget->hasUnalignedBufferAccess()) {
1279    // If we have an uniform constant load, it still requires using a slow
1280    // buffer instruction if unaligned.
1281    if (IsFast) {
1282      *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1283                 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1284        (Align % 4 == 0) : true;
1285    }
1286
1287    return true;
1288  }
1289
1290  // Smaller than dword value must be aligned.
1291  if (Size < 32)
1292    return false;
1293
1294  // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1295  // byte-address are ignored, thus forcing Dword alignment.
1296  // This applies to private, global, and constant memory.
1297  if (IsFast)
1298    *IsFast = true;
1299
1300  return Size >= 32 && Align >= 4;
1301}
1302
1303bool SITargetLowering::allowsMisalignedMemoryAccesses(
1304    EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1305    bool *IsFast) const {
1306  if (IsFast)
1307    *IsFast = false;
1308
1309  // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1310  // which isn't a simple VT.
1311  // Until MVT is extended to handle this, simply check for the size and
1312  // rely on the condition below: allow accesses if the size is a multiple of 4.
1313  if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1314                           VT.getStoreSize() > 16)) {
1315    return false;
1316  }
1317
1318  return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1319                                            Align, Flags, IsFast);
1320}
1321
1322EVT SITargetLowering::getOptimalMemOpType(
1323    uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
1324    bool ZeroMemset, bool MemcpyStrSrc,
1325    const AttributeList &FuncAttributes) const {
1326  // FIXME: Should account for address space here.
1327
1328  // The default fallback uses the private pointer size as a guess for a type to
1329  // use. Make sure we switch these to 64-bit accesses.
1330
1331  if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
1332    return MVT::v4i32;
1333
1334  if (Size >= 8 && DstAlign >= 4)
1335    return MVT::v2i32;
1336
1337  // Use the default.
1338  return MVT::Other;
1339}
1340
1341bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1342                                           unsigned DestAS) const {
1343  return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
1344}
1345
1346bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1347  const MemSDNode *MemNode = cast<MemSDNode>(N);
1348  const Value *Ptr = MemNode->getMemOperand()->getValue();
1349  const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1350  return I && I->getMetadata("amdgpu.noclobber");
1351}
1352
1353bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1354                                           unsigned DestAS) const {
1355  // Flat -> private/local is a simple truncate.
1356  // Flat -> global is no-op
1357  if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1358    return true;
1359
1360  return isNoopAddrSpaceCast(SrcAS, DestAS);
1361}
1362
1363bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1364  const MemSDNode *MemNode = cast<MemSDNode>(N);
1365
1366  return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1367}
1368
1369TargetLoweringBase::LegalizeTypeAction
1370SITargetLowering::getPreferredVectorAction(MVT VT) const {
1371  int NumElts = VT.getVectorNumElements();
1372  if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1373    return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1374  return TargetLoweringBase::getPreferredVectorAction(VT);
1375}
1376
1377bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1378                                                         Type *Ty) const {
1379  // FIXME: Could be smarter if called for vector constants.
1380  return true;
1381}
1382
1383bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1384  if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1385    switch (Op) {
1386    case ISD::LOAD:
1387    case ISD::STORE:
1388
1389    // These operations are done with 32-bit instructions anyway.
1390    case ISD::AND:
1391    case ISD::OR:
1392    case ISD::XOR:
1393    case ISD::SELECT:
1394      // TODO: Extensions?
1395      return true;
1396    default:
1397      return false;
1398    }
1399  }
1400
1401  // SimplifySetCC uses this function to determine whether or not it should
1402  // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1403  if (VT == MVT::i1 && Op == ISD::SETCC)
1404    return false;
1405
1406  return TargetLowering::isTypeDesirableForOp(Op, VT);
1407}
1408
1409SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1410                                                   const SDLoc &SL,
1411                                                   SDValue Chain,
1412                                                   uint64_t Offset) const {
1413  const DataLayout &DL = DAG.getDataLayout();
1414  MachineFunction &MF = DAG.getMachineFunction();
1415  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1416
1417  const ArgDescriptor *InputPtrReg;
1418  const TargetRegisterClass *RC;
1419
1420  std::tie(InputPtrReg, RC)
1421    = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1422
1423  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1424  MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1425  SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1426    MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1427
1428  return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
1429}
1430
1431SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1432                                            const SDLoc &SL) const {
1433  uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1434                                               FIRST_IMPLICIT);
1435  return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1436}
1437
1438SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1439                                         const SDLoc &SL, SDValue Val,
1440                                         bool Signed,
1441                                         const ISD::InputArg *Arg) const {
1442  // First, if it is a widened vector, narrow it.
1443  if (VT.isVector() &&
1444      VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1445    EVT NarrowedVT =
1446        EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1447                         VT.getVectorNumElements());
1448    Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1449                      DAG.getConstant(0, SL, MVT::i32));
1450  }
1451
1452  // Then convert the vector elements or scalar value.
1453  if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1454      VT.bitsLT(MemVT)) {
1455    unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1456    Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1457  }
1458
1459  if (MemVT.isFloatingPoint())
1460    Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1461  else if (Signed)
1462    Val = DAG.getSExtOrTrunc(Val, SL, VT);
1463  else
1464    Val = DAG.getZExtOrTrunc(Val, SL, VT);
1465
1466  return Val;
1467}
1468
1469SDValue SITargetLowering::lowerKernargMemParameter(
1470  SelectionDAG &DAG, EVT VT, EVT MemVT,
1471  const SDLoc &SL, SDValue Chain,
1472  uint64_t Offset, unsigned Align, bool Signed,
1473  const ISD::InputArg *Arg) const {
1474  MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1475
1476  // Try to avoid using an extload by loading earlier than the argument address,
1477  // and extracting the relevant bits. The load should hopefully be merged with
1478  // the previous argument.
1479  if (MemVT.getStoreSize() < 4 && Align < 4) {
1480    // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1481    int64_t AlignDownOffset = alignDown(Offset, 4);
1482    int64_t OffsetDiff = Offset - AlignDownOffset;
1483
1484    EVT IntVT = MemVT.changeTypeToInteger();
1485
1486    // TODO: If we passed in the base kernel offset we could have a better
1487    // alignment than 4, but we don't really need it.
1488    SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1489    SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
1490                               MachineMemOperand::MODereferenceable |
1491                               MachineMemOperand::MOInvariant);
1492
1493    SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1494    SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1495
1496    SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1497    ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1498    ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1499
1500
1501    return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1502  }
1503
1504  SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1505  SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1506                             MachineMemOperand::MODereferenceable |
1507                             MachineMemOperand::MOInvariant);
1508
1509  SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1510  return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1511}
1512
1513SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1514                                              const SDLoc &SL, SDValue Chain,
1515                                              const ISD::InputArg &Arg) const {
1516  MachineFunction &MF = DAG.getMachineFunction();
1517  MachineFrameInfo &MFI = MF.getFrameInfo();
1518
1519  if (Arg.Flags.isByVal()) {
1520    unsigned Size = Arg.Flags.getByValSize();
1521    int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1522    return DAG.getFrameIndex(FrameIdx, MVT::i32);
1523  }
1524
1525  unsigned ArgOffset = VA.getLocMemOffset();
1526  unsigned ArgSize = VA.getValVT().getStoreSize();
1527
1528  int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1529
1530  // Create load nodes to retrieve arguments from the stack.
1531  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1532  SDValue ArgValue;
1533
1534  // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1535  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1536  MVT MemVT = VA.getValVT();
1537
1538  switch (VA.getLocInfo()) {
1539  default:
1540    break;
1541  case CCValAssign::BCvt:
1542    MemVT = VA.getLocVT();
1543    break;
1544  case CCValAssign::SExt:
1545    ExtType = ISD::SEXTLOAD;
1546    break;
1547  case CCValAssign::ZExt:
1548    ExtType = ISD::ZEXTLOAD;
1549    break;
1550  case CCValAssign::AExt:
1551    ExtType = ISD::EXTLOAD;
1552    break;
1553  }
1554
1555  ArgValue = DAG.getExtLoad(
1556    ExtType, SL, VA.getLocVT(), Chain, FIN,
1557    MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1558    MemVT);
1559  return ArgValue;
1560}
1561
1562SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1563  const SIMachineFunctionInfo &MFI,
1564  EVT VT,
1565  AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1566  const ArgDescriptor *Reg;
1567  const TargetRegisterClass *RC;
1568
1569  std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1570  return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1571}
1572
1573static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1574                                   CallingConv::ID CallConv,
1575                                   ArrayRef<ISD::InputArg> Ins,
1576                                   BitVector &Skipped,
1577                                   FunctionType *FType,
1578                                   SIMachineFunctionInfo *Info) {
1579  for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1580    const ISD::InputArg *Arg = &Ins[I];
1581
1582    assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1583           "vector type argument should have been split");
1584
1585    // First check if it's a PS input addr.
1586    if (CallConv == CallingConv::AMDGPU_PS &&
1587        !Arg->Flags.isInReg() && PSInputNum <= 15) {
1588      bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1589
1590      // Inconveniently only the first part of the split is marked as isSplit,
1591      // so skip to the end. We only want to increment PSInputNum once for the
1592      // entire split argument.
1593      if (Arg->Flags.isSplit()) {
1594        while (!Arg->Flags.isSplitEnd()) {
1595          assert((!Arg->VT.isVector() ||
1596                  Arg->VT.getScalarSizeInBits() == 16) &&
1597                 "unexpected vector split in ps argument type");
1598          if (!SkipArg)
1599            Splits.push_back(*Arg);
1600          Arg = &Ins[++I];
1601        }
1602      }
1603
1604      if (SkipArg) {
1605        // We can safely skip PS inputs.
1606        Skipped.set(Arg->getOrigArgIndex());
1607        ++PSInputNum;
1608        continue;
1609      }
1610
1611      Info->markPSInputAllocated(PSInputNum);
1612      if (Arg->Used)
1613        Info->markPSInputEnabled(PSInputNum);
1614
1615      ++PSInputNum;
1616    }
1617
1618    Splits.push_back(*Arg);
1619  }
1620}
1621
1622// Allocate special inputs passed in VGPRs.
1623void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1624                                                      MachineFunction &MF,
1625                                                      const SIRegisterInfo &TRI,
1626                                                      SIMachineFunctionInfo &Info) const {
1627  const LLT S32 = LLT::scalar(32);
1628  MachineRegisterInfo &MRI = MF.getRegInfo();
1629
1630  if (Info.hasWorkItemIDX()) {
1631    Register Reg = AMDGPU::VGPR0;
1632    MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1633
1634    CCInfo.AllocateReg(Reg);
1635    Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1636  }
1637
1638  if (Info.hasWorkItemIDY()) {
1639    Register Reg = AMDGPU::VGPR1;
1640    MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1641
1642    CCInfo.AllocateReg(Reg);
1643    Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1644  }
1645
1646  if (Info.hasWorkItemIDZ()) {
1647    Register Reg = AMDGPU::VGPR2;
1648    MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1649
1650    CCInfo.AllocateReg(Reg);
1651    Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1652  }
1653}
1654
1655// Try to allocate a VGPR at the end of the argument list, or if no argument
1656// VGPRs are left allocating a stack slot.
1657// If \p Mask is is given it indicates bitfield position in the register.
1658// If \p Arg is given use it with new ]p Mask instead of allocating new.
1659static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1660                                         ArgDescriptor Arg = ArgDescriptor()) {
1661  if (Arg.isSet())
1662    return ArgDescriptor::createArg(Arg, Mask);
1663
1664  ArrayRef<MCPhysReg> ArgVGPRs
1665    = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1666  unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1667  if (RegIdx == ArgVGPRs.size()) {
1668    // Spill to stack required.
1669    int64_t Offset = CCInfo.AllocateStack(4, 4);
1670
1671    return ArgDescriptor::createStack(Offset, Mask);
1672  }
1673
1674  unsigned Reg = ArgVGPRs[RegIdx];
1675  Reg = CCInfo.AllocateReg(Reg);
1676  assert(Reg != AMDGPU::NoRegister);
1677
1678  MachineFunction &MF = CCInfo.getMachineFunction();
1679  Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1680  MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1681  return ArgDescriptor::createRegister(Reg, Mask);
1682}
1683
1684static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1685                                             const TargetRegisterClass *RC,
1686                                             unsigned NumArgRegs) {
1687  ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1688  unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1689  if (RegIdx == ArgSGPRs.size())
1690    report_fatal_error("ran out of SGPRs for arguments");
1691
1692  unsigned Reg = ArgSGPRs[RegIdx];
1693  Reg = CCInfo.AllocateReg(Reg);
1694  assert(Reg != AMDGPU::NoRegister);
1695
1696  MachineFunction &MF = CCInfo.getMachineFunction();
1697  MF.addLiveIn(Reg, RC);
1698  return ArgDescriptor::createRegister(Reg);
1699}
1700
1701static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1702  return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1703}
1704
1705static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1706  return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1707}
1708
1709void SITargetLowering::allocateSpecialInputVGPRs(CCState &CCInfo,
1710                                                 MachineFunction &MF,
1711                                                 const SIRegisterInfo &TRI,
1712                                                 SIMachineFunctionInfo &Info) const {
1713  const unsigned Mask = 0x3ff;
1714  ArgDescriptor Arg;
1715
1716  if (Info.hasWorkItemIDX()) {
1717    Arg = allocateVGPR32Input(CCInfo, Mask);
1718    Info.setWorkItemIDX(Arg);
1719  }
1720
1721  if (Info.hasWorkItemIDY()) {
1722    Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1723    Info.setWorkItemIDY(Arg);
1724  }
1725
1726  if (Info.hasWorkItemIDZ())
1727    Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1728}
1729
1730void SITargetLowering::allocateSpecialInputSGPRs(
1731  CCState &CCInfo,
1732  MachineFunction &MF,
1733  const SIRegisterInfo &TRI,
1734  SIMachineFunctionInfo &Info) const {
1735  auto &ArgInfo = Info.getArgInfo();
1736
1737  // TODO: Unify handling with private memory pointers.
1738
1739  if (Info.hasDispatchPtr())
1740    ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1741
1742  if (Info.hasQueuePtr())
1743    ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1744
1745  if (Info.hasKernargSegmentPtr())
1746    ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1747
1748  if (Info.hasDispatchID())
1749    ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1750
1751  // flat_scratch_init is not applicable for non-kernel functions.
1752
1753  if (Info.hasWorkGroupIDX())
1754    ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1755
1756  if (Info.hasWorkGroupIDY())
1757    ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1758
1759  if (Info.hasWorkGroupIDZ())
1760    ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1761
1762  if (Info.hasImplicitArgPtr())
1763    ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1764}
1765
1766// Allocate special inputs passed in user SGPRs.
1767void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1768                                            MachineFunction &MF,
1769                                            const SIRegisterInfo &TRI,
1770                                            SIMachineFunctionInfo &Info) const {
1771  if (Info.hasImplicitBufferPtr()) {
1772    unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1773    MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1774    CCInfo.AllocateReg(ImplicitBufferPtrReg);
1775  }
1776
1777  // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1778  if (Info.hasPrivateSegmentBuffer()) {
1779    unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1780    MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1781    CCInfo.AllocateReg(PrivateSegmentBufferReg);
1782  }
1783
1784  if (Info.hasDispatchPtr()) {
1785    unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1786    MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1787    CCInfo.AllocateReg(DispatchPtrReg);
1788  }
1789
1790  if (Info.hasQueuePtr()) {
1791    unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1792    MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1793    CCInfo.AllocateReg(QueuePtrReg);
1794  }
1795
1796  if (Info.hasKernargSegmentPtr()) {
1797    MachineRegisterInfo &MRI = MF.getRegInfo();
1798    Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
1799    CCInfo.AllocateReg(InputPtrReg);
1800
1801    Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1802    MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1803  }
1804
1805  if (Info.hasDispatchID()) {
1806    unsigned DispatchIDReg = Info.addDispatchID(TRI);
1807    MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1808    CCInfo.AllocateReg(DispatchIDReg);
1809  }
1810
1811  if (Info.hasFlatScratchInit()) {
1812    unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1813    MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1814    CCInfo.AllocateReg(FlatScratchInitReg);
1815  }
1816
1817  // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1818  // these from the dispatch pointer.
1819}
1820
1821// Allocate special input registers that are initialized per-wave.
1822void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
1823                                           MachineFunction &MF,
1824                                           SIMachineFunctionInfo &Info,
1825                                           CallingConv::ID CallConv,
1826                                           bool IsShader) const {
1827  if (Info.hasWorkGroupIDX()) {
1828    unsigned Reg = Info.addWorkGroupIDX();
1829    MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1830    CCInfo.AllocateReg(Reg);
1831  }
1832
1833  if (Info.hasWorkGroupIDY()) {
1834    unsigned Reg = Info.addWorkGroupIDY();
1835    MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1836    CCInfo.AllocateReg(Reg);
1837  }
1838
1839  if (Info.hasWorkGroupIDZ()) {
1840    unsigned Reg = Info.addWorkGroupIDZ();
1841    MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1842    CCInfo.AllocateReg(Reg);
1843  }
1844
1845  if (Info.hasWorkGroupInfo()) {
1846    unsigned Reg = Info.addWorkGroupInfo();
1847    MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1848    CCInfo.AllocateReg(Reg);
1849  }
1850
1851  if (Info.hasPrivateSegmentWaveByteOffset()) {
1852    // Scratch wave offset passed in system SGPR.
1853    unsigned PrivateSegmentWaveByteOffsetReg;
1854
1855    if (IsShader) {
1856      PrivateSegmentWaveByteOffsetReg =
1857        Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1858
1859      // This is true if the scratch wave byte offset doesn't have a fixed
1860      // location.
1861      if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1862        PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1863        Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1864      }
1865    } else
1866      PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1867
1868    MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1869    CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1870  }
1871}
1872
1873static void reservePrivateMemoryRegs(const TargetMachine &TM,
1874                                     MachineFunction &MF,
1875                                     const SIRegisterInfo &TRI,
1876                                     SIMachineFunctionInfo &Info) {
1877  // Now that we've figured out where the scratch register inputs are, see if
1878  // should reserve the arguments and use them directly.
1879  MachineFrameInfo &MFI = MF.getFrameInfo();
1880  bool HasStackObjects = MFI.hasStackObjects();
1881  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1882
1883  // Record that we know we have non-spill stack objects so we don't need to
1884  // check all stack objects later.
1885  if (HasStackObjects)
1886    Info.setHasNonSpillStackObjects(true);
1887
1888  // Everything live out of a block is spilled with fast regalloc, so it's
1889  // almost certain that spilling will be required.
1890  if (TM.getOptLevel() == CodeGenOpt::None)
1891    HasStackObjects = true;
1892
1893  // For now assume stack access is needed in any callee functions, so we need
1894  // the scratch registers to pass in.
1895  bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1896
1897  if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
1898    // If we have stack objects, we unquestionably need the private buffer
1899    // resource. For the Code Object V2 ABI, this will be the first 4 user
1900    // SGPR inputs. We can reserve those and use them directly.
1901
1902    Register PrivateSegmentBufferReg =
1903        Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1904    Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1905  } else {
1906    unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1907    // We tentatively reserve the last registers (skipping the last registers
1908    // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
1909    // we'll replace these with the ones immediately after those which were
1910    // really allocated. In the prologue copies will be inserted from the
1911    // argument to these reserved registers.
1912
1913    // Without HSA, relocations are used for the scratch pointer and the
1914    // buffer resource setup is always inserted in the prologue. Scratch wave
1915    // offset is still in an input SGPR.
1916    Info.setScratchRSrcReg(ReservedBufferReg);
1917  }
1918
1919  // hasFP should be accurate for kernels even before the frame is finalized.
1920  if (ST.getFrameLowering()->hasFP(MF)) {
1921    MachineRegisterInfo &MRI = MF.getRegInfo();
1922
1923    // Try to use s32 as the SP, but move it if it would interfere with input
1924    // arguments. This won't work with calls though.
1925    //
1926    // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
1927    // registers.
1928    if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
1929      Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
1930    } else {
1931      assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
1932
1933      if (MFI.hasCalls())
1934        report_fatal_error("call in graphics shader with too many input SGPRs");
1935
1936      for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
1937        if (!MRI.isLiveIn(Reg)) {
1938          Info.setStackPtrOffsetReg(Reg);
1939          break;
1940        }
1941      }
1942
1943      if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
1944        report_fatal_error("failed to find register for SP");
1945    }
1946
1947    if (MFI.hasCalls()) {
1948      Info.setScratchWaveOffsetReg(AMDGPU::SGPR33);
1949      Info.setFrameOffsetReg(AMDGPU::SGPR33);
1950    } else {
1951      unsigned ReservedOffsetReg =
1952        TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1953      Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1954      Info.setFrameOffsetReg(ReservedOffsetReg);
1955    }
1956  } else if (RequiresStackAccess) {
1957    assert(!MFI.hasCalls());
1958    // We know there are accesses and they will be done relative to SP, so just
1959    // pin it to the input.
1960    //
1961    // FIXME: Should not do this if inline asm is reading/writing these
1962    // registers.
1963    Register PreloadedSP = Info.getPreloadedReg(
1964        AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1965
1966    Info.setStackPtrOffsetReg(PreloadedSP);
1967    Info.setScratchWaveOffsetReg(PreloadedSP);
1968    Info.setFrameOffsetReg(PreloadedSP);
1969  } else {
1970    assert(!MFI.hasCalls());
1971
1972    // There may not be stack access at all. There may still be spills, or
1973    // access of a constant pointer (in which cases an extra copy will be
1974    // emitted in the prolog).
1975    unsigned ReservedOffsetReg
1976      = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1977    Info.setStackPtrOffsetReg(ReservedOffsetReg);
1978    Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1979    Info.setFrameOffsetReg(ReservedOffsetReg);
1980  }
1981}
1982
1983bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1984  const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1985  return !Info->isEntryFunction();
1986}
1987
1988void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1989
1990}
1991
1992void SITargetLowering::insertCopiesSplitCSR(
1993  MachineBasicBlock *Entry,
1994  const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1995  const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1996
1997  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1998  if (!IStart)
1999    return;
2000
2001  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2002  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2003  MachineBasicBlock::iterator MBBI = Entry->begin();
2004  for (const MCPhysReg *I = IStart; *I; ++I) {
2005    const TargetRegisterClass *RC = nullptr;
2006    if (AMDGPU::SReg_64RegClass.contains(*I))
2007      RC = &AMDGPU::SGPR_64RegClass;
2008    else if (AMDGPU::SReg_32RegClass.contains(*I))
2009      RC = &AMDGPU::SGPR_32RegClass;
2010    else
2011      llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2012
2013    Register NewVR = MRI->createVirtualRegister(RC);
2014    // Create copy from CSR to a virtual register.
2015    Entry->addLiveIn(*I);
2016    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2017      .addReg(*I);
2018
2019    // Insert the copy-back instructions right before the terminator.
2020    for (auto *Exit : Exits)
2021      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2022              TII->get(TargetOpcode::COPY), *I)
2023        .addReg(NewVR);
2024  }
2025}
2026
2027SDValue SITargetLowering::LowerFormalArguments(
2028    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2029    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2030    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2031  const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2032
2033  MachineFunction &MF = DAG.getMachineFunction();
2034  const Function &Fn = MF.getFunction();
2035  FunctionType *FType = MF.getFunction().getFunctionType();
2036  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2037
2038  if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
2039    DiagnosticInfoUnsupported NoGraphicsHSA(
2040        Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2041    DAG.getContext()->diagnose(NoGraphicsHSA);
2042    return DAG.getEntryNode();
2043  }
2044
2045  SmallVector<ISD::InputArg, 16> Splits;
2046  SmallVector<CCValAssign, 16> ArgLocs;
2047  BitVector Skipped(Ins.size());
2048  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2049                 *DAG.getContext());
2050
2051  bool IsShader = AMDGPU::isShader(CallConv);
2052  bool IsKernel = AMDGPU::isKernel(CallConv);
2053  bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2054
2055  if (IsShader) {
2056    processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2057
2058    // At least one interpolation mode must be enabled or else the GPU will
2059    // hang.
2060    //
2061    // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2062    // set PSInputAddr, the user wants to enable some bits after the compilation
2063    // based on run-time states. Since we can't know what the final PSInputEna
2064    // will look like, so we shouldn't do anything here and the user should take
2065    // responsibility for the correct programming.
2066    //
2067    // Otherwise, the following restrictions apply:
2068    // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2069    // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2070    //   enabled too.
2071    if (CallConv == CallingConv::AMDGPU_PS) {
2072      if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2073           ((Info->getPSInputAddr() & 0xF) == 0 &&
2074            Info->isPSInputAllocated(11))) {
2075        CCInfo.AllocateReg(AMDGPU::VGPR0);
2076        CCInfo.AllocateReg(AMDGPU::VGPR1);
2077        Info->markPSInputAllocated(0);
2078        Info->markPSInputEnabled(0);
2079      }
2080      if (Subtarget->isAmdPalOS()) {
2081        // For isAmdPalOS, the user does not enable some bits after compilation
2082        // based on run-time states; the register values being generated here are
2083        // the final ones set in hardware. Therefore we need to apply the
2084        // workaround to PSInputAddr and PSInputEnable together.  (The case where
2085        // a bit is set in PSInputAddr but not PSInputEnable is where the
2086        // frontend set up an input arg for a particular interpolation mode, but
2087        // nothing uses that input arg. Really we should have an earlier pass
2088        // that removes such an arg.)
2089        unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2090        if ((PsInputBits & 0x7F) == 0 ||
2091            ((PsInputBits & 0xF) == 0 &&
2092             (PsInputBits >> 11 & 1)))
2093          Info->markPSInputEnabled(
2094              countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2095      }
2096    }
2097
2098    assert(!Info->hasDispatchPtr() &&
2099           !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
2100           !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2101           !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2102           !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2103           !Info->hasWorkItemIDZ());
2104  } else if (IsKernel) {
2105    assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2106  } else {
2107    Splits.append(Ins.begin(), Ins.end());
2108  }
2109
2110  if (IsEntryFunc) {
2111    allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2112    allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2113  }
2114
2115  if (IsKernel) {
2116    analyzeFormalArgumentsCompute(CCInfo, Ins);
2117  } else {
2118    CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2119    CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2120  }
2121
2122  SmallVector<SDValue, 16> Chains;
2123
2124  // FIXME: This is the minimum kernel argument alignment. We should improve
2125  // this to the maximum alignment of the arguments.
2126  //
2127  // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2128  // kern arg offset.
2129  const unsigned KernelArgBaseAlign = 16;
2130
2131   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2132    const ISD::InputArg &Arg = Ins[i];
2133    if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2134      InVals.push_back(DAG.getUNDEF(Arg.VT));
2135      continue;
2136    }
2137
2138    CCValAssign &VA = ArgLocs[ArgIdx++];
2139    MVT VT = VA.getLocVT();
2140
2141    if (IsEntryFunc && VA.isMemLoc()) {
2142      VT = Ins[i].VT;
2143      EVT MemVT = VA.getLocVT();
2144
2145      const uint64_t Offset = VA.getLocMemOffset();
2146      unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
2147
2148      SDValue Arg = lowerKernargMemParameter(
2149        DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
2150      Chains.push_back(Arg.getValue(1));
2151
2152      auto *ParamTy =
2153        dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2154      if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2155          ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2156                      ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2157        // On SI local pointers are just offsets into LDS, so they are always
2158        // less than 16-bits.  On CI and newer they could potentially be
2159        // real pointers, so we can't guarantee their size.
2160        Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2161                          DAG.getValueType(MVT::i16));
2162      }
2163
2164      InVals.push_back(Arg);
2165      continue;
2166    } else if (!IsEntryFunc && VA.isMemLoc()) {
2167      SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2168      InVals.push_back(Val);
2169      if (!Arg.Flags.isByVal())
2170        Chains.push_back(Val.getValue(1));
2171      continue;
2172    }
2173
2174    assert(VA.isRegLoc() && "Parameter must be in a register!");
2175
2176    Register Reg = VA.getLocReg();
2177    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2178    EVT ValVT = VA.getValVT();
2179
2180    Reg = MF.addLiveIn(Reg, RC);
2181    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2182
2183    if (Arg.Flags.isSRet()) {
2184      // The return object should be reasonably addressable.
2185
2186      // FIXME: This helps when the return is a real sret. If it is a
2187      // automatically inserted sret (i.e. CanLowerReturn returns false), an
2188      // extra copy is inserted in SelectionDAGBuilder which obscures this.
2189      unsigned NumBits
2190        = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2191      Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2192        DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2193    }
2194
2195    // If this is an 8 or 16-bit value, it is really passed promoted
2196    // to 32 bits. Insert an assert[sz]ext to capture this, then
2197    // truncate to the right size.
2198    switch (VA.getLocInfo()) {
2199    case CCValAssign::Full:
2200      break;
2201    case CCValAssign::BCvt:
2202      Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2203      break;
2204    case CCValAssign::SExt:
2205      Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2206                        DAG.getValueType(ValVT));
2207      Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2208      break;
2209    case CCValAssign::ZExt:
2210      Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2211                        DAG.getValueType(ValVT));
2212      Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2213      break;
2214    case CCValAssign::AExt:
2215      Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2216      break;
2217    default:
2218      llvm_unreachable("Unknown loc info!");
2219    }
2220
2221    InVals.push_back(Val);
2222  }
2223
2224  if (!IsEntryFunc) {
2225    // Special inputs come after user arguments.
2226    allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2227  }
2228
2229  // Start adding system SGPRs.
2230  if (IsEntryFunc) {
2231    allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2232  } else {
2233    CCInfo.AllocateReg(Info->getScratchRSrcReg());
2234    CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
2235    CCInfo.AllocateReg(Info->getFrameOffsetReg());
2236    allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2237  }
2238
2239  auto &ArgUsageInfo =
2240    DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2241  ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2242
2243  unsigned StackArgSize = CCInfo.getNextStackOffset();
2244  Info->setBytesInStackArgArea(StackArgSize);
2245
2246  return Chains.empty() ? Chain :
2247    DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2248}
2249
2250// TODO: If return values can't fit in registers, we should return as many as
2251// possible in registers before passing on stack.
2252bool SITargetLowering::CanLowerReturn(
2253  CallingConv::ID CallConv,
2254  MachineFunction &MF, bool IsVarArg,
2255  const SmallVectorImpl<ISD::OutputArg> &Outs,
2256  LLVMContext &Context) const {
2257  // Replacing returns with sret/stack usage doesn't make sense for shaders.
2258  // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2259  // for shaders. Vector types should be explicitly handled by CC.
2260  if (AMDGPU::isEntryFunctionCC(CallConv))
2261    return true;
2262
2263  SmallVector<CCValAssign, 16> RVLocs;
2264  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2265  return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2266}
2267
2268SDValue
2269SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2270                              bool isVarArg,
2271                              const SmallVectorImpl<ISD::OutputArg> &Outs,
2272                              const SmallVectorImpl<SDValue> &OutVals,
2273                              const SDLoc &DL, SelectionDAG &DAG) const {
2274  MachineFunction &MF = DAG.getMachineFunction();
2275  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2276
2277  if (AMDGPU::isKernel(CallConv)) {
2278    return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2279                                             OutVals, DL, DAG);
2280  }
2281
2282  bool IsShader = AMDGPU::isShader(CallConv);
2283
2284  Info->setIfReturnsVoid(Outs.empty());
2285  bool IsWaveEnd = Info->returnsVoid() && IsShader;
2286
2287  // CCValAssign - represent the assignment of the return value to a location.
2288  SmallVector<CCValAssign, 48> RVLocs;
2289  SmallVector<ISD::OutputArg, 48> Splits;
2290
2291  // CCState - Info about the registers and stack slots.
2292  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2293                 *DAG.getContext());
2294
2295  // Analyze outgoing return values.
2296  CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2297
2298  SDValue Flag;
2299  SmallVector<SDValue, 48> RetOps;
2300  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2301
2302  // Add return address for callable functions.
2303  if (!Info->isEntryFunction()) {
2304    const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2305    SDValue ReturnAddrReg = CreateLiveInRegister(
2306      DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2307
2308    SDValue ReturnAddrVirtualReg = DAG.getRegister(
2309        MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2310        MVT::i64);
2311    Chain =
2312        DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2313    Flag = Chain.getValue(1);
2314    RetOps.push_back(ReturnAddrVirtualReg);
2315  }
2316
2317  // Copy the result values into the output registers.
2318  for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2319       ++I, ++RealRVLocIdx) {
2320    CCValAssign &VA = RVLocs[I];
2321    assert(VA.isRegLoc() && "Can only return in registers!");
2322    // TODO: Partially return in registers if return values don't fit.
2323    SDValue Arg = OutVals[RealRVLocIdx];
2324
2325    // Copied from other backends.
2326    switch (VA.getLocInfo()) {
2327    case CCValAssign::Full:
2328      break;
2329    case CCValAssign::BCvt:
2330      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2331      break;
2332    case CCValAssign::SExt:
2333      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2334      break;
2335    case CCValAssign::ZExt:
2336      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2337      break;
2338    case CCValAssign::AExt:
2339      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2340      break;
2341    default:
2342      llvm_unreachable("Unknown loc info!");
2343    }
2344
2345    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2346    Flag = Chain.getValue(1);
2347    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2348  }
2349
2350  // FIXME: Does sret work properly?
2351  if (!Info->isEntryFunction()) {
2352    const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2353    const MCPhysReg *I =
2354      TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2355    if (I) {
2356      for (; *I; ++I) {
2357        if (AMDGPU::SReg_64RegClass.contains(*I))
2358          RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2359        else if (AMDGPU::SReg_32RegClass.contains(*I))
2360          RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2361        else
2362          llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2363      }
2364    }
2365  }
2366
2367  // Update chain and glue.
2368  RetOps[0] = Chain;
2369  if (Flag.getNode())
2370    RetOps.push_back(Flag);
2371
2372  unsigned Opc = AMDGPUISD::ENDPGM;
2373  if (!IsWaveEnd)
2374    Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2375  return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2376}
2377
2378SDValue SITargetLowering::LowerCallResult(
2379    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2380    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2381    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2382    SDValue ThisVal) const {
2383  CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2384
2385  // Assign locations to each value returned by this call.
2386  SmallVector<CCValAssign, 16> RVLocs;
2387  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2388                 *DAG.getContext());
2389  CCInfo.AnalyzeCallResult(Ins, RetCC);
2390
2391  // Copy all of the result registers out of their specified physreg.
2392  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2393    CCValAssign VA = RVLocs[i];
2394    SDValue Val;
2395
2396    if (VA.isRegLoc()) {
2397      Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2398      Chain = Val.getValue(1);
2399      InFlag = Val.getValue(2);
2400    } else if (VA.isMemLoc()) {
2401      report_fatal_error("TODO: return values in memory");
2402    } else
2403      llvm_unreachable("unknown argument location type");
2404
2405    switch (VA.getLocInfo()) {
2406    case CCValAssign::Full:
2407      break;
2408    case CCValAssign::BCvt:
2409      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2410      break;
2411    case CCValAssign::ZExt:
2412      Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2413                        DAG.getValueType(VA.getValVT()));
2414      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2415      break;
2416    case CCValAssign::SExt:
2417      Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2418                        DAG.getValueType(VA.getValVT()));
2419      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2420      break;
2421    case CCValAssign::AExt:
2422      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2423      break;
2424    default:
2425      llvm_unreachable("Unknown loc info!");
2426    }
2427
2428    InVals.push_back(Val);
2429  }
2430
2431  return Chain;
2432}
2433
2434// Add code to pass special inputs required depending on used features separate
2435// from the explicit user arguments present in the IR.
2436void SITargetLowering::passSpecialInputs(
2437    CallLoweringInfo &CLI,
2438    CCState &CCInfo,
2439    const SIMachineFunctionInfo &Info,
2440    SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2441    SmallVectorImpl<SDValue> &MemOpChains,
2442    SDValue Chain) const {
2443  // If we don't have a call site, this was a call inserted by
2444  // legalization. These can never use special inputs.
2445  if (!CLI.CS)
2446    return;
2447
2448  const Function *CalleeFunc = CLI.CS.getCalledFunction();
2449  assert(CalleeFunc);
2450
2451  SelectionDAG &DAG = CLI.DAG;
2452  const SDLoc &DL = CLI.DL;
2453
2454  const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2455
2456  auto &ArgUsageInfo =
2457    DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2458  const AMDGPUFunctionArgInfo &CalleeArgInfo
2459    = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2460
2461  const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2462
2463  // TODO: Unify with private memory register handling. This is complicated by
2464  // the fact that at least in kernels, the input argument is not necessarily
2465  // in the same location as the input.
2466  AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2467    AMDGPUFunctionArgInfo::DISPATCH_PTR,
2468    AMDGPUFunctionArgInfo::QUEUE_PTR,
2469    AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2470    AMDGPUFunctionArgInfo::DISPATCH_ID,
2471    AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2472    AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2473    AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2474    AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2475  };
2476
2477  for (auto InputID : InputRegs) {
2478    const ArgDescriptor *OutgoingArg;
2479    const TargetRegisterClass *ArgRC;
2480
2481    std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2482    if (!OutgoingArg)
2483      continue;
2484
2485    const ArgDescriptor *IncomingArg;
2486    const TargetRegisterClass *IncomingArgRC;
2487    std::tie(IncomingArg, IncomingArgRC)
2488      = CallerArgInfo.getPreloadedValue(InputID);
2489    assert(IncomingArgRC == ArgRC);
2490
2491    // All special arguments are ints for now.
2492    EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2493    SDValue InputReg;
2494
2495    if (IncomingArg) {
2496      InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2497    } else {
2498      // The implicit arg ptr is special because it doesn't have a corresponding
2499      // input for kernels, and is computed from the kernarg segment pointer.
2500      assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2501      InputReg = getImplicitArgPtr(DAG, DL);
2502    }
2503
2504    if (OutgoingArg->isRegister()) {
2505      RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2506    } else {
2507      unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
2508      SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2509                                              SpecialArgOffset);
2510      MemOpChains.push_back(ArgStore);
2511    }
2512  }
2513
2514  // Pack workitem IDs into a single register or pass it as is if already
2515  // packed.
2516  const ArgDescriptor *OutgoingArg;
2517  const TargetRegisterClass *ArgRC;
2518
2519  std::tie(OutgoingArg, ArgRC) =
2520    CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2521  if (!OutgoingArg)
2522    std::tie(OutgoingArg, ArgRC) =
2523      CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2524  if (!OutgoingArg)
2525    std::tie(OutgoingArg, ArgRC) =
2526      CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2527  if (!OutgoingArg)
2528    return;
2529
2530  const ArgDescriptor *IncomingArgX
2531    = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first;
2532  const ArgDescriptor *IncomingArgY
2533    = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first;
2534  const ArgDescriptor *IncomingArgZ
2535    = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first;
2536
2537  SDValue InputReg;
2538  SDLoc SL;
2539
2540  // If incoming ids are not packed we need to pack them.
2541  if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX)
2542    InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2543
2544  if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) {
2545    SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2546    Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2547                    DAG.getShiftAmountConstant(10, MVT::i32, SL));
2548    InputReg = InputReg.getNode() ?
2549                 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2550  }
2551
2552  if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) {
2553    SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2554    Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2555                    DAG.getShiftAmountConstant(20, MVT::i32, SL));
2556    InputReg = InputReg.getNode() ?
2557                 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2558  }
2559
2560  if (!InputReg.getNode()) {
2561    // Workitem ids are already packed, any of present incoming arguments
2562    // will carry all required fields.
2563    ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2564      IncomingArgX ? *IncomingArgX :
2565      IncomingArgY ? *IncomingArgY :
2566                     *IncomingArgZ, ~0u);
2567    InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2568  }
2569
2570  if (OutgoingArg->isRegister()) {
2571    RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2572  } else {
2573    unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4);
2574    SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2575                                            SpecialArgOffset);
2576    MemOpChains.push_back(ArgStore);
2577  }
2578}
2579
2580static bool canGuaranteeTCO(CallingConv::ID CC) {
2581  return CC == CallingConv::Fast;
2582}
2583
2584/// Return true if we might ever do TCO for calls with this calling convention.
2585static bool mayTailCallThisCC(CallingConv::ID CC) {
2586  switch (CC) {
2587  case CallingConv::C:
2588    return true;
2589  default:
2590    return canGuaranteeTCO(CC);
2591  }
2592}
2593
2594bool SITargetLowering::isEligibleForTailCallOptimization(
2595    SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2596    const SmallVectorImpl<ISD::OutputArg> &Outs,
2597    const SmallVectorImpl<SDValue> &OutVals,
2598    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2599  if (!mayTailCallThisCC(CalleeCC))
2600    return false;
2601
2602  MachineFunction &MF = DAG.getMachineFunction();
2603  const Function &CallerF = MF.getFunction();
2604  CallingConv::ID CallerCC = CallerF.getCallingConv();
2605  const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2606  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2607
2608  // Kernels aren't callable, and don't have a live in return address so it
2609  // doesn't make sense to do a tail call with entry functions.
2610  if (!CallerPreserved)
2611    return false;
2612
2613  bool CCMatch = CallerCC == CalleeCC;
2614
2615  if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2616    if (canGuaranteeTCO(CalleeCC) && CCMatch)
2617      return true;
2618    return false;
2619  }
2620
2621  // TODO: Can we handle var args?
2622  if (IsVarArg)
2623    return false;
2624
2625  for (const Argument &Arg : CallerF.args()) {
2626    if (Arg.hasByValAttr())
2627      return false;
2628  }
2629
2630  LLVMContext &Ctx = *DAG.getContext();
2631
2632  // Check that the call results are passed in the same way.
2633  if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2634                                  CCAssignFnForCall(CalleeCC, IsVarArg),
2635                                  CCAssignFnForCall(CallerCC, IsVarArg)))
2636    return false;
2637
2638  // The callee has to preserve all registers the caller needs to preserve.
2639  if (!CCMatch) {
2640    const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2641    if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2642      return false;
2643  }
2644
2645  // Nothing more to check if the callee is taking no arguments.
2646  if (Outs.empty())
2647    return true;
2648
2649  SmallVector<CCValAssign, 16> ArgLocs;
2650  CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2651
2652  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2653
2654  const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2655  // If the stack arguments for this call do not fit into our own save area then
2656  // the call cannot be made tail.
2657  // TODO: Is this really necessary?
2658  if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2659    return false;
2660
2661  const MachineRegisterInfo &MRI = MF.getRegInfo();
2662  return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2663}
2664
2665bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2666  if (!CI->isTailCall())
2667    return false;
2668
2669  const Function *ParentFn = CI->getParent()->getParent();
2670  if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2671    return false;
2672  return true;
2673}
2674
2675// The wave scratch offset register is used as the global base pointer.
2676SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2677                                    SmallVectorImpl<SDValue> &InVals) const {
2678  SelectionDAG &DAG = CLI.DAG;
2679  const SDLoc &DL = CLI.DL;
2680  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2681  SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2682  SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2683  SDValue Chain = CLI.Chain;
2684  SDValue Callee = CLI.Callee;
2685  bool &IsTailCall = CLI.IsTailCall;
2686  CallingConv::ID CallConv = CLI.CallConv;
2687  bool IsVarArg = CLI.IsVarArg;
2688  bool IsSibCall = false;
2689  bool IsThisReturn = false;
2690  MachineFunction &MF = DAG.getMachineFunction();
2691
2692  if (Callee.isUndef() || isNullConstant(Callee)) {
2693    if (!CLI.IsTailCall) {
2694      for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2695        InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2696    }
2697
2698    return Chain;
2699  }
2700
2701  if (IsVarArg) {
2702    return lowerUnhandledCall(CLI, InVals,
2703                              "unsupported call to variadic function ");
2704  }
2705
2706  if (!CLI.CS.getInstruction())
2707    report_fatal_error("unsupported libcall legalization");
2708
2709  if (!CLI.CS.getCalledFunction()) {
2710    return lowerUnhandledCall(CLI, InVals,
2711                              "unsupported indirect call to function ");
2712  }
2713
2714  if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2715    return lowerUnhandledCall(CLI, InVals,
2716                              "unsupported required tail call to function ");
2717  }
2718
2719  if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2720    // Note the issue is with the CC of the calling function, not of the call
2721    // itself.
2722    return lowerUnhandledCall(CLI, InVals,
2723                          "unsupported call from graphics shader of function ");
2724  }
2725
2726  if (IsTailCall) {
2727    IsTailCall = isEligibleForTailCallOptimization(
2728      Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2729    if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2730      report_fatal_error("failed to perform tail call elimination on a call "
2731                         "site marked musttail");
2732    }
2733
2734    bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2735
2736    // A sibling call is one where we're under the usual C ABI and not planning
2737    // to change that but can still do a tail call:
2738    if (!TailCallOpt && IsTailCall)
2739      IsSibCall = true;
2740
2741    if (IsTailCall)
2742      ++NumTailCalls;
2743  }
2744
2745  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2746
2747  // Analyze operands of the call, assigning locations to each operand.
2748  SmallVector<CCValAssign, 16> ArgLocs;
2749  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2750  CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2751
2752  CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2753
2754  // Get a count of how many bytes are to be pushed on the stack.
2755  unsigned NumBytes = CCInfo.getNextStackOffset();
2756
2757  if (IsSibCall) {
2758    // Since we're not changing the ABI to make this a tail call, the memory
2759    // operands are already available in the caller's incoming argument space.
2760    NumBytes = 0;
2761  }
2762
2763  // FPDiff is the byte offset of the call's argument area from the callee's.
2764  // Stores to callee stack arguments will be placed in FixedStackSlots offset
2765  // by this amount for a tail call. In a sibling call it must be 0 because the
2766  // caller will deallocate the entire stack and the callee still expects its
2767  // arguments to begin at SP+0. Completely unused for non-tail calls.
2768  int32_t FPDiff = 0;
2769  MachineFrameInfo &MFI = MF.getFrameInfo();
2770  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2771
2772  // Adjust the stack pointer for the new arguments...
2773  // These operations are automatically eliminated by the prolog/epilog pass
2774  if (!IsSibCall) {
2775    Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2776
2777    SmallVector<SDValue, 4> CopyFromChains;
2778
2779    // In the HSA case, this should be an identity copy.
2780    SDValue ScratchRSrcReg
2781      = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2782    RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2783    CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
2784    Chain = DAG.getTokenFactor(DL, CopyFromChains);
2785  }
2786
2787  SmallVector<SDValue, 8> MemOpChains;
2788  MVT PtrVT = MVT::i32;
2789
2790  // Walk the register/memloc assignments, inserting copies/loads.
2791  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2792    CCValAssign &VA = ArgLocs[i];
2793    SDValue Arg = OutVals[i];
2794
2795    // Promote the value if needed.
2796    switch (VA.getLocInfo()) {
2797    case CCValAssign::Full:
2798      break;
2799    case CCValAssign::BCvt:
2800      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2801      break;
2802    case CCValAssign::ZExt:
2803      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2804      break;
2805    case CCValAssign::SExt:
2806      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2807      break;
2808    case CCValAssign::AExt:
2809      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2810      break;
2811    case CCValAssign::FPExt:
2812      Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2813      break;
2814    default:
2815      llvm_unreachable("Unknown loc info!");
2816    }
2817
2818    if (VA.isRegLoc()) {
2819      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2820    } else {
2821      assert(VA.isMemLoc());
2822
2823      SDValue DstAddr;
2824      MachinePointerInfo DstInfo;
2825
2826      unsigned LocMemOffset = VA.getLocMemOffset();
2827      int32_t Offset = LocMemOffset;
2828
2829      SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
2830      MaybeAlign Alignment;
2831
2832      if (IsTailCall) {
2833        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2834        unsigned OpSize = Flags.isByVal() ?
2835          Flags.getByValSize() : VA.getValVT().getStoreSize();
2836
2837        // FIXME: We can have better than the minimum byval required alignment.
2838        Alignment =
2839            Flags.isByVal()
2840                ? MaybeAlign(Flags.getByValAlign())
2841                : commonAlignment(Subtarget->getStackAlignment(), Offset);
2842
2843        Offset = Offset + FPDiff;
2844        int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2845
2846        DstAddr = DAG.getFrameIndex(FI, PtrVT);
2847        DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2848
2849        // Make sure any stack arguments overlapping with where we're storing
2850        // are loaded before this eventual operation. Otherwise they'll be
2851        // clobbered.
2852
2853        // FIXME: Why is this really necessary? This seems to just result in a
2854        // lot of code to copy the stack and write them back to the same
2855        // locations, which are supposed to be immutable?
2856        Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2857      } else {
2858        DstAddr = PtrOff;
2859        DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2860        Alignment =
2861            commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
2862      }
2863
2864      if (Outs[i].Flags.isByVal()) {
2865        SDValue SizeNode =
2866            DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2867        SDValue Cpy = DAG.getMemcpy(
2868            Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2869            /*isVol = */ false, /*AlwaysInline = */ true,
2870            /*isTailCall = */ false, DstInfo,
2871            MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
2872
2873        MemOpChains.push_back(Cpy);
2874      } else {
2875        SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo,
2876                                     Alignment ? Alignment->value() : 0);
2877        MemOpChains.push_back(Store);
2878      }
2879    }
2880  }
2881
2882  // Copy special input registers after user input arguments.
2883  passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2884
2885  if (!MemOpChains.empty())
2886    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2887
2888  // Build a sequence of copy-to-reg nodes chained together with token chain
2889  // and flag operands which copy the outgoing args into the appropriate regs.
2890  SDValue InFlag;
2891  for (auto &RegToPass : RegsToPass) {
2892    Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2893                             RegToPass.second, InFlag);
2894    InFlag = Chain.getValue(1);
2895  }
2896
2897
2898  SDValue PhysReturnAddrReg;
2899  if (IsTailCall) {
2900    // Since the return is being combined with the call, we need to pass on the
2901    // return address.
2902
2903    const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2904    SDValue ReturnAddrReg = CreateLiveInRegister(
2905      DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2906
2907    PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2908                                        MVT::i64);
2909    Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2910    InFlag = Chain.getValue(1);
2911  }
2912
2913  // We don't usually want to end the call-sequence here because we would tidy
2914  // the frame up *after* the call, however in the ABI-changing tail-call case
2915  // we've carefully laid out the parameters so that when sp is reset they'll be
2916  // in the correct location.
2917  if (IsTailCall && !IsSibCall) {
2918    Chain = DAG.getCALLSEQ_END(Chain,
2919                               DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2920                               DAG.getTargetConstant(0, DL, MVT::i32),
2921                               InFlag, DL);
2922    InFlag = Chain.getValue(1);
2923  }
2924
2925  std::vector<SDValue> Ops;
2926  Ops.push_back(Chain);
2927  Ops.push_back(Callee);
2928  // Add a redundant copy of the callee global which will not be legalized, as
2929  // we need direct access to the callee later.
2930  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee);
2931  const GlobalValue *GV = GSD->getGlobal();
2932  Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
2933
2934  if (IsTailCall) {
2935    // Each tail call may have to adjust the stack by a different amount, so
2936    // this information must travel along with the operation for eventual
2937    // consumption by emitEpilogue.
2938    Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2939
2940    Ops.push_back(PhysReturnAddrReg);
2941  }
2942
2943  // Add argument registers to the end of the list so that they are known live
2944  // into the call.
2945  for (auto &RegToPass : RegsToPass) {
2946    Ops.push_back(DAG.getRegister(RegToPass.first,
2947                                  RegToPass.second.getValueType()));
2948  }
2949
2950  // Add a register mask operand representing the call-preserved registers.
2951
2952  auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
2953  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2954  assert(Mask && "Missing call preserved mask for calling convention");
2955  Ops.push_back(DAG.getRegisterMask(Mask));
2956
2957  if (InFlag.getNode())
2958    Ops.push_back(InFlag);
2959
2960  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2961
2962  // If we're doing a tall call, use a TC_RETURN here rather than an
2963  // actual call instruction.
2964  if (IsTailCall) {
2965    MFI.setHasTailCall();
2966    return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2967  }
2968
2969  // Returns a chain and a flag for retval copy to use.
2970  SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2971  Chain = Call.getValue(0);
2972  InFlag = Call.getValue(1);
2973
2974  uint64_t CalleePopBytes = NumBytes;
2975  Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2976                             DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2977                             InFlag, DL);
2978  if (!Ins.empty())
2979    InFlag = Chain.getValue(1);
2980
2981  // Handle result values, copying them out of physregs into vregs that we
2982  // return.
2983  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2984                         InVals, IsThisReturn,
2985                         IsThisReturn ? OutVals[0] : SDValue());
2986}
2987
2988Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
2989                                             const MachineFunction &MF) const {
2990  Register Reg = StringSwitch<Register>(RegName)
2991    .Case("m0", AMDGPU::M0)
2992    .Case("exec", AMDGPU::EXEC)
2993    .Case("exec_lo", AMDGPU::EXEC_LO)
2994    .Case("exec_hi", AMDGPU::EXEC_HI)
2995    .Case("flat_scratch", AMDGPU::FLAT_SCR)
2996    .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2997    .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2998    .Default(Register());
2999
3000  if (Reg == AMDGPU::NoRegister) {
3001    report_fatal_error(Twine("invalid register name \""
3002                             + StringRef(RegName)  + "\"."));
3003
3004  }
3005
3006  if (!Subtarget->hasFlatScrRegister() &&
3007       Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3008    report_fatal_error(Twine("invalid register \""
3009                             + StringRef(RegName)  + "\" for subtarget."));
3010  }
3011
3012  switch (Reg) {
3013  case AMDGPU::M0:
3014  case AMDGPU::EXEC_LO:
3015  case AMDGPU::EXEC_HI:
3016  case AMDGPU::FLAT_SCR_LO:
3017  case AMDGPU::FLAT_SCR_HI:
3018    if (VT.getSizeInBits() == 32)
3019      return Reg;
3020    break;
3021  case AMDGPU::EXEC:
3022  case AMDGPU::FLAT_SCR:
3023    if (VT.getSizeInBits() == 64)
3024      return Reg;
3025    break;
3026  default:
3027    llvm_unreachable("missing register type checking");
3028  }
3029
3030  report_fatal_error(Twine("invalid type for register \""
3031                           + StringRef(RegName) + "\"."));
3032}
3033
3034// If kill is not the last instruction, split the block so kill is always a
3035// proper terminator.
3036MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
3037                                                    MachineBasicBlock *BB) const {
3038  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3039
3040  MachineBasicBlock::iterator SplitPoint(&MI);
3041  ++SplitPoint;
3042
3043  if (SplitPoint == BB->end()) {
3044    // Don't bother with a new block.
3045    MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3046    return BB;
3047  }
3048
3049  MachineFunction *MF = BB->getParent();
3050  MachineBasicBlock *SplitBB
3051    = MF->CreateMachineBasicBlock(BB->getBasicBlock());
3052
3053  MF->insert(++MachineFunction::iterator(BB), SplitBB);
3054  SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
3055
3056  SplitBB->transferSuccessorsAndUpdatePHIs(BB);
3057  BB->addSuccessor(SplitBB);
3058
3059  MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3060  return SplitBB;
3061}
3062
3063// Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3064// \p MI will be the only instruction in the loop body block. Otherwise, it will
3065// be the first instruction in the remainder block.
3066//
3067/// \returns { LoopBody, Remainder }
3068static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3069splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3070  MachineFunction *MF = MBB.getParent();
3071  MachineBasicBlock::iterator I(&MI);
3072
3073  // To insert the loop we need to split the block. Move everything after this
3074  // point to a new block, and insert a new empty block between the two.
3075  MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3076  MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3077  MachineFunction::iterator MBBI(MBB);
3078  ++MBBI;
3079
3080  MF->insert(MBBI, LoopBB);
3081  MF->insert(MBBI, RemainderBB);
3082
3083  LoopBB->addSuccessor(LoopBB);
3084  LoopBB->addSuccessor(RemainderBB);
3085
3086  // Move the rest of the block into a new block.
3087  RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3088
3089  if (InstInLoop) {
3090    auto Next = std::next(I);
3091
3092    // Move instruction to loop body.
3093    LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3094
3095    // Move the rest of the block.
3096    RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3097  } else {
3098    RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3099  }
3100
3101  MBB.addSuccessor(LoopBB);
3102
3103  return std::make_pair(LoopBB, RemainderBB);
3104}
3105
3106/// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3107void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3108  MachineBasicBlock *MBB = MI.getParent();
3109  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3110  auto I = MI.getIterator();
3111  auto E = std::next(I);
3112
3113  BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3114    .addImm(0);
3115
3116  MIBundleBuilder Bundler(*MBB, I, E);
3117  finalizeBundle(*MBB, Bundler.begin());
3118}
3119
3120MachineBasicBlock *
3121SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3122                                         MachineBasicBlock *BB) const {
3123  const DebugLoc &DL = MI.getDebugLoc();
3124
3125  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3126
3127  MachineBasicBlock *LoopBB;
3128  MachineBasicBlock *RemainderBB;
3129  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3130
3131  // Apparently kill flags are only valid if the def is in the same block?
3132  if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3133    Src->setIsKill(false);
3134
3135  std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3136
3137  MachineBasicBlock::iterator I = LoopBB->end();
3138
3139  const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3140    AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3141
3142  // Clear TRAP_STS.MEM_VIOL
3143  BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3144    .addImm(0)
3145    .addImm(EncodedReg);
3146
3147  bundleInstWithWaitcnt(MI);
3148
3149  Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3150
3151  // Load and check TRAP_STS.MEM_VIOL
3152  BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3153    .addImm(EncodedReg);
3154
3155  // FIXME: Do we need to use an isel pseudo that may clobber scc?
3156  BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3157    .addReg(Reg, RegState::Kill)
3158    .addImm(0);
3159  BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3160    .addMBB(LoopBB);
3161
3162  return RemainderBB;
3163}
3164
3165// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3166// wavefront. If the value is uniform and just happens to be in a VGPR, this
3167// will only do one iteration. In the worst case, this will loop 64 times.
3168//
3169// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3170static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
3171  const SIInstrInfo *TII,
3172  MachineRegisterInfo &MRI,
3173  MachineBasicBlock &OrigBB,
3174  MachineBasicBlock &LoopBB,
3175  const DebugLoc &DL,
3176  const MachineOperand &IdxReg,
3177  unsigned InitReg,
3178  unsigned ResultReg,
3179  unsigned PhiReg,
3180  unsigned InitSaveExecReg,
3181  int Offset,
3182  bool UseGPRIdxMode,
3183  bool IsIndirectSrc) {
3184  MachineFunction *MF = OrigBB.getParent();
3185  const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3186  const SIRegisterInfo *TRI = ST.getRegisterInfo();
3187  MachineBasicBlock::iterator I = LoopBB.begin();
3188
3189  const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3190  Register PhiExec = MRI.createVirtualRegister(BoolRC);
3191  Register NewExec = MRI.createVirtualRegister(BoolRC);
3192  Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3193  Register CondReg = MRI.createVirtualRegister(BoolRC);
3194
3195  BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3196    .addReg(InitReg)
3197    .addMBB(&OrigBB)
3198    .addReg(ResultReg)
3199    .addMBB(&LoopBB);
3200
3201  BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3202    .addReg(InitSaveExecReg)
3203    .addMBB(&OrigBB)
3204    .addReg(NewExec)
3205    .addMBB(&LoopBB);
3206
3207  // Read the next variant <- also loop target.
3208  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3209    .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
3210
3211  // Compare the just read M0 value to all possible Idx values.
3212  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3213    .addReg(CurrentIdxReg)
3214    .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
3215
3216  // Update EXEC, save the original EXEC value to VCC.
3217  BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3218                                                : AMDGPU::S_AND_SAVEEXEC_B64),
3219          NewExec)
3220    .addReg(CondReg, RegState::Kill);
3221
3222  MRI.setSimpleHint(NewExec, CondReg);
3223
3224  if (UseGPRIdxMode) {
3225    unsigned IdxReg;
3226    if (Offset == 0) {
3227      IdxReg = CurrentIdxReg;
3228    } else {
3229      IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3230      BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
3231        .addReg(CurrentIdxReg, RegState::Kill)
3232        .addImm(Offset);
3233    }
3234    unsigned IdxMode = IsIndirectSrc ?
3235      AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3236    MachineInstr *SetOn =
3237      BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3238      .addReg(IdxReg, RegState::Kill)
3239      .addImm(IdxMode);
3240    SetOn->getOperand(3).setIsUndef();
3241  } else {
3242    // Move index from VCC into M0
3243    if (Offset == 0) {
3244      BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3245        .addReg(CurrentIdxReg, RegState::Kill);
3246    } else {
3247      BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3248        .addReg(CurrentIdxReg, RegState::Kill)
3249        .addImm(Offset);
3250    }
3251  }
3252
3253  // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3254  unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3255  MachineInstr *InsertPt =
3256    BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3257                                                  : AMDGPU::S_XOR_B64_term), Exec)
3258      .addReg(Exec)
3259      .addReg(NewExec);
3260
3261  // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3262  // s_cbranch_scc0?
3263
3264  // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3265  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3266    .addMBB(&LoopBB);
3267
3268  return InsertPt->getIterator();
3269}
3270
3271// This has slightly sub-optimal regalloc when the source vector is killed by
3272// the read. The register allocator does not understand that the kill is
3273// per-workitem, so is kept alive for the whole loop so we end up not re-using a
3274// subregister from it, using 1 more VGPR than necessary. This was saved when
3275// this was expanded after register allocation.
3276static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
3277                                                  MachineBasicBlock &MBB,
3278                                                  MachineInstr &MI,
3279                                                  unsigned InitResultReg,
3280                                                  unsigned PhiReg,
3281                                                  int Offset,
3282                                                  bool UseGPRIdxMode,
3283                                                  bool IsIndirectSrc) {
3284  MachineFunction *MF = MBB.getParent();
3285  const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3286  const SIRegisterInfo *TRI = ST.getRegisterInfo();
3287  MachineRegisterInfo &MRI = MF->getRegInfo();
3288  const DebugLoc &DL = MI.getDebugLoc();
3289  MachineBasicBlock::iterator I(&MI);
3290
3291  const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3292  Register DstReg = MI.getOperand(0).getReg();
3293  Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3294  Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3295  unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3296  unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3297
3298  BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3299
3300  // Save the EXEC mask
3301  BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3302    .addReg(Exec);
3303
3304  MachineBasicBlock *LoopBB;
3305  MachineBasicBlock *RemainderBB;
3306  std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3307
3308  const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3309
3310  auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3311                                      InitResultReg, DstReg, PhiReg, TmpExec,
3312                                      Offset, UseGPRIdxMode, IsIndirectSrc);
3313
3314  MachineBasicBlock::iterator First = RemainderBB->begin();
3315  BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec)
3316    .addReg(SaveExec);
3317
3318  return InsPt;
3319}
3320
3321// Returns subreg index, offset
3322static std::pair<unsigned, int>
3323computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3324                            const TargetRegisterClass *SuperRC,
3325                            unsigned VecReg,
3326                            int Offset) {
3327  int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3328
3329  // Skip out of bounds offsets, or else we would end up using an undefined
3330  // register.
3331  if (Offset >= NumElts || Offset < 0)
3332    return std::make_pair(AMDGPU::sub0, Offset);
3333
3334  return std::make_pair(AMDGPU::sub0 + Offset, 0);
3335}
3336
3337// Return true if the index is an SGPR and was set.
3338static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3339                                 MachineRegisterInfo &MRI,
3340                                 MachineInstr &MI,
3341                                 int Offset,
3342                                 bool UseGPRIdxMode,
3343                                 bool IsIndirectSrc) {
3344  MachineBasicBlock *MBB = MI.getParent();
3345  const DebugLoc &DL = MI.getDebugLoc();
3346  MachineBasicBlock::iterator I(&MI);
3347
3348  const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3349  const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3350
3351  assert(Idx->getReg() != AMDGPU::NoRegister);
3352
3353  if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
3354    return false;
3355
3356  if (UseGPRIdxMode) {
3357    unsigned IdxMode = IsIndirectSrc ?
3358      AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3359    if (Offset == 0) {
3360      MachineInstr *SetOn =
3361          BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3362              .add(*Idx)
3363              .addImm(IdxMode);
3364
3365      SetOn->getOperand(3).setIsUndef();
3366    } else {
3367      Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3368      BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3369          .add(*Idx)
3370          .addImm(Offset);
3371      MachineInstr *SetOn =
3372        BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3373        .addReg(Tmp, RegState::Kill)
3374        .addImm(IdxMode);
3375
3376      SetOn->getOperand(3).setIsUndef();
3377    }
3378
3379    return true;
3380  }
3381
3382  if (Offset == 0) {
3383    BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3384      .add(*Idx);
3385  } else {
3386    BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3387      .add(*Idx)
3388      .addImm(Offset);
3389  }
3390
3391  return true;
3392}
3393
3394// Control flow needs to be inserted if indexing with a VGPR.
3395static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3396                                          MachineBasicBlock &MBB,
3397                                          const GCNSubtarget &ST) {
3398  const SIInstrInfo *TII = ST.getInstrInfo();
3399  const SIRegisterInfo &TRI = TII->getRegisterInfo();
3400  MachineFunction *MF = MBB.getParent();
3401  MachineRegisterInfo &MRI = MF->getRegInfo();
3402
3403  Register Dst = MI.getOperand(0).getReg();
3404  Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3405  int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3406
3407  const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3408
3409  unsigned SubReg;
3410  std::tie(SubReg, Offset)
3411    = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3412
3413  const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3414
3415  if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3416    MachineBasicBlock::iterator I(&MI);
3417    const DebugLoc &DL = MI.getDebugLoc();
3418
3419    if (UseGPRIdxMode) {
3420      // TODO: Look at the uses to avoid the copy. This may require rescheduling
3421      // to avoid interfering with other uses, so probably requires a new
3422      // optimization pass.
3423      BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3424        .addReg(SrcReg, RegState::Undef, SubReg)
3425        .addReg(SrcReg, RegState::Implicit)
3426        .addReg(AMDGPU::M0, RegState::Implicit);
3427      BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3428    } else {
3429      BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3430        .addReg(SrcReg, RegState::Undef, SubReg)
3431        .addReg(SrcReg, RegState::Implicit);
3432    }
3433
3434    MI.eraseFromParent();
3435
3436    return &MBB;
3437  }
3438
3439  const DebugLoc &DL = MI.getDebugLoc();
3440  MachineBasicBlock::iterator I(&MI);
3441
3442  Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3443  Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3444
3445  BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3446
3447  auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3448                              Offset, UseGPRIdxMode, true);
3449  MachineBasicBlock *LoopBB = InsPt->getParent();
3450
3451  if (UseGPRIdxMode) {
3452    BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3453      .addReg(SrcReg, RegState::Undef, SubReg)
3454      .addReg(SrcReg, RegState::Implicit)
3455      .addReg(AMDGPU::M0, RegState::Implicit);
3456    BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3457  } else {
3458    BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3459      .addReg(SrcReg, RegState::Undef, SubReg)
3460      .addReg(SrcReg, RegState::Implicit);
3461  }
3462
3463  MI.eraseFromParent();
3464
3465  return LoopBB;
3466}
3467
3468static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
3469                                 const TargetRegisterClass *VecRC) {
3470  switch (TRI.getRegSizeInBits(*VecRC)) {
3471  case 32: // 4 bytes
3472    return AMDGPU::V_MOVRELD_B32_V1;
3473  case 64: // 8 bytes
3474    return AMDGPU::V_MOVRELD_B32_V2;
3475  case 128: // 16 bytes
3476    return AMDGPU::V_MOVRELD_B32_V4;
3477  case 256: // 32 bytes
3478    return AMDGPU::V_MOVRELD_B32_V8;
3479  case 512: // 64 bytes
3480    return AMDGPU::V_MOVRELD_B32_V16;
3481  default:
3482    llvm_unreachable("unsupported size for MOVRELD pseudos");
3483  }
3484}
3485
3486static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3487                                          MachineBasicBlock &MBB,
3488                                          const GCNSubtarget &ST) {
3489  const SIInstrInfo *TII = ST.getInstrInfo();
3490  const SIRegisterInfo &TRI = TII->getRegisterInfo();
3491  MachineFunction *MF = MBB.getParent();
3492  MachineRegisterInfo &MRI = MF->getRegInfo();
3493
3494  Register Dst = MI.getOperand(0).getReg();
3495  const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3496  const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3497  const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3498  int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3499  const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3500
3501  // This can be an immediate, but will be folded later.
3502  assert(Val->getReg());
3503
3504  unsigned SubReg;
3505  std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3506                                                         SrcVec->getReg(),
3507                                                         Offset);
3508  const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3509
3510  if (Idx->getReg() == AMDGPU::NoRegister) {
3511    MachineBasicBlock::iterator I(&MI);
3512    const DebugLoc &DL = MI.getDebugLoc();
3513
3514    assert(Offset == 0);
3515
3516    BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3517        .add(*SrcVec)
3518        .add(*Val)
3519        .addImm(SubReg);
3520
3521    MI.eraseFromParent();
3522    return &MBB;
3523  }
3524
3525  if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3526    MachineBasicBlock::iterator I(&MI);
3527    const DebugLoc &DL = MI.getDebugLoc();
3528
3529    if (UseGPRIdxMode) {
3530      BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3531          .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
3532          .add(*Val)
3533          .addReg(Dst, RegState::ImplicitDefine)
3534          .addReg(SrcVec->getReg(), RegState::Implicit)
3535          .addReg(AMDGPU::M0, RegState::Implicit);
3536
3537      BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3538    } else {
3539      const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3540
3541      BuildMI(MBB, I, DL, MovRelDesc)
3542          .addReg(Dst, RegState::Define)
3543          .addReg(SrcVec->getReg())
3544          .add(*Val)
3545          .addImm(SubReg - AMDGPU::sub0);
3546    }
3547
3548    MI.eraseFromParent();
3549    return &MBB;
3550  }
3551
3552  if (Val->isReg())
3553    MRI.clearKillFlags(Val->getReg());
3554
3555  const DebugLoc &DL = MI.getDebugLoc();
3556
3557  Register PhiReg = MRI.createVirtualRegister(VecRC);
3558
3559  auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3560                              Offset, UseGPRIdxMode, false);
3561  MachineBasicBlock *LoopBB = InsPt->getParent();
3562
3563  if (UseGPRIdxMode) {
3564    BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3565        .addReg(PhiReg, RegState::Undef, SubReg) // vdst
3566        .add(*Val)                               // src0
3567        .addReg(Dst, RegState::ImplicitDefine)
3568        .addReg(PhiReg, RegState::Implicit)
3569        .addReg(AMDGPU::M0, RegState::Implicit);
3570    BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3571  } else {
3572    const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3573
3574    BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
3575        .addReg(Dst, RegState::Define)
3576        .addReg(PhiReg)
3577        .add(*Val)
3578        .addImm(SubReg - AMDGPU::sub0);
3579  }
3580
3581  MI.eraseFromParent();
3582
3583  return LoopBB;
3584}
3585
3586MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3587  MachineInstr &MI, MachineBasicBlock *BB) const {
3588
3589  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3590  MachineFunction *MF = BB->getParent();
3591  SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3592
3593  if (TII->isMIMG(MI)) {
3594    if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
3595      report_fatal_error("missing mem operand from MIMG instruction");
3596    }
3597    // Add a memoperand for mimg instructions so that they aren't assumed to
3598    // be ordered memory instuctions.
3599
3600    return BB;
3601  }
3602
3603  switch (MI.getOpcode()) {
3604  case AMDGPU::S_ADD_U64_PSEUDO:
3605  case AMDGPU::S_SUB_U64_PSEUDO: {
3606    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3607    const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3608    const SIRegisterInfo *TRI = ST.getRegisterInfo();
3609    const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3610    const DebugLoc &DL = MI.getDebugLoc();
3611
3612    MachineOperand &Dest = MI.getOperand(0);
3613    MachineOperand &Src0 = MI.getOperand(1);
3614    MachineOperand &Src1 = MI.getOperand(2);
3615
3616    Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3617    Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3618
3619    MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3620     Src0, BoolRC, AMDGPU::sub0,
3621     &AMDGPU::SReg_32RegClass);
3622    MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3623      Src0, BoolRC, AMDGPU::sub1,
3624      &AMDGPU::SReg_32RegClass);
3625
3626    MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3627      Src1, BoolRC, AMDGPU::sub0,
3628      &AMDGPU::SReg_32RegClass);
3629    MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3630      Src1, BoolRC, AMDGPU::sub1,
3631      &AMDGPU::SReg_32RegClass);
3632
3633    bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3634
3635    unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3636    unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3637    BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3638      .add(Src0Sub0)
3639      .add(Src1Sub0);
3640    BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3641      .add(Src0Sub1)
3642      .add(Src1Sub1);
3643    BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3644      .addReg(DestSub0)
3645      .addImm(AMDGPU::sub0)
3646      .addReg(DestSub1)
3647      .addImm(AMDGPU::sub1);
3648    MI.eraseFromParent();
3649    return BB;
3650  }
3651  case AMDGPU::SI_INIT_M0: {
3652    BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3653            TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3654        .add(MI.getOperand(0));
3655    MI.eraseFromParent();
3656    return BB;
3657  }
3658  case AMDGPU::SI_INIT_EXEC:
3659    // This should be before all vector instructions.
3660    BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3661            AMDGPU::EXEC)
3662        .addImm(MI.getOperand(0).getImm());
3663    MI.eraseFromParent();
3664    return BB;
3665
3666  case AMDGPU::SI_INIT_EXEC_LO:
3667    // This should be before all vector instructions.
3668    BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
3669            AMDGPU::EXEC_LO)
3670        .addImm(MI.getOperand(0).getImm());
3671    MI.eraseFromParent();
3672    return BB;
3673
3674  case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3675    // Extract the thread count from an SGPR input and set EXEC accordingly.
3676    // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3677    //
3678    // S_BFE_U32 count, input, {shift, 7}
3679    // S_BFM_B64 exec, count, 0
3680    // S_CMP_EQ_U32 count, 64
3681    // S_CMOV_B64 exec, -1
3682    MachineInstr *FirstMI = &*BB->begin();
3683    MachineRegisterInfo &MRI = MF->getRegInfo();
3684    Register InputReg = MI.getOperand(0).getReg();
3685    Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3686    bool Found = false;
3687
3688    // Move the COPY of the input reg to the beginning, so that we can use it.
3689    for (auto I = BB->begin(); I != &MI; I++) {
3690      if (I->getOpcode() != TargetOpcode::COPY ||
3691          I->getOperand(0).getReg() != InputReg)
3692        continue;
3693
3694      if (I == FirstMI) {
3695        FirstMI = &*++BB->begin();
3696      } else {
3697        I->removeFromParent();
3698        BB->insert(FirstMI, &*I);
3699      }
3700      Found = true;
3701      break;
3702    }
3703    assert(Found);
3704    (void)Found;
3705
3706    // This should be before all vector instructions.
3707    unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
3708    bool isWave32 = getSubtarget()->isWave32();
3709    unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3710    BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3711        .addReg(InputReg)
3712        .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
3713    BuildMI(*BB, FirstMI, DebugLoc(),
3714            TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
3715            Exec)
3716        .addReg(CountReg)
3717        .addImm(0);
3718    BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3719        .addReg(CountReg, RegState::Kill)
3720        .addImm(getSubtarget()->getWavefrontSize());
3721    BuildMI(*BB, FirstMI, DebugLoc(),
3722            TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
3723            Exec)
3724        .addImm(-1);
3725    MI.eraseFromParent();
3726    return BB;
3727  }
3728
3729  case AMDGPU::GET_GROUPSTATICSIZE: {
3730    assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
3731           getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
3732    DebugLoc DL = MI.getDebugLoc();
3733    BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3734        .add(MI.getOperand(0))
3735        .addImm(MFI->getLDSSize());
3736    MI.eraseFromParent();
3737    return BB;
3738  }
3739  case AMDGPU::SI_INDIRECT_SRC_V1:
3740  case AMDGPU::SI_INDIRECT_SRC_V2:
3741  case AMDGPU::SI_INDIRECT_SRC_V4:
3742  case AMDGPU::SI_INDIRECT_SRC_V8:
3743  case AMDGPU::SI_INDIRECT_SRC_V16:
3744    return emitIndirectSrc(MI, *BB, *getSubtarget());
3745  case AMDGPU::SI_INDIRECT_DST_V1:
3746  case AMDGPU::SI_INDIRECT_DST_V2:
3747  case AMDGPU::SI_INDIRECT_DST_V4:
3748  case AMDGPU::SI_INDIRECT_DST_V8:
3749  case AMDGPU::SI_INDIRECT_DST_V16:
3750    return emitIndirectDst(MI, *BB, *getSubtarget());
3751  case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3752  case AMDGPU::SI_KILL_I1_PSEUDO:
3753    return splitKillBlock(MI, BB);
3754  case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3755    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3756    const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3757    const SIRegisterInfo *TRI = ST.getRegisterInfo();
3758
3759    Register Dst = MI.getOperand(0).getReg();
3760    Register Src0 = MI.getOperand(1).getReg();
3761    Register Src1 = MI.getOperand(2).getReg();
3762    const DebugLoc &DL = MI.getDebugLoc();
3763    Register SrcCond = MI.getOperand(3).getReg();
3764
3765    Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3766    Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3767    const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3768    Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
3769
3770    BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3771      .addReg(SrcCond);
3772    BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3773      .addImm(0)
3774      .addReg(Src0, 0, AMDGPU::sub0)
3775      .addImm(0)
3776      .addReg(Src1, 0, AMDGPU::sub0)
3777      .addReg(SrcCondCopy);
3778    BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3779      .addImm(0)
3780      .addReg(Src0, 0, AMDGPU::sub1)
3781      .addImm(0)
3782      .addReg(Src1, 0, AMDGPU::sub1)
3783      .addReg(SrcCondCopy);
3784
3785    BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3786      .addReg(DstLo)
3787      .addImm(AMDGPU::sub0)
3788      .addReg(DstHi)
3789      .addImm(AMDGPU::sub1);
3790    MI.eraseFromParent();
3791    return BB;
3792  }
3793  case AMDGPU::SI_BR_UNDEF: {
3794    const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3795    const DebugLoc &DL = MI.getDebugLoc();
3796    MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3797                           .add(MI.getOperand(0));
3798    Br->getOperand(1).setIsUndef(true); // read undef SCC
3799    MI.eraseFromParent();
3800    return BB;
3801  }
3802  case AMDGPU::ADJCALLSTACKUP:
3803  case AMDGPU::ADJCALLSTACKDOWN: {
3804    const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3805    MachineInstrBuilder MIB(*MF, &MI);
3806
3807    // Add an implicit use of the frame offset reg to prevent the restore copy
3808    // inserted after the call from being reorderd after stack operations in the
3809    // the caller's frame.
3810    MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3811        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3812        .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3813    return BB;
3814  }
3815  case AMDGPU::SI_CALL_ISEL: {
3816    const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3817    const DebugLoc &DL = MI.getDebugLoc();
3818
3819    unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3820
3821    MachineInstrBuilder MIB;
3822    MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
3823
3824    for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3825      MIB.add(MI.getOperand(I));
3826
3827    MIB.cloneMemRefs(MI);
3828    MI.eraseFromParent();
3829    return BB;
3830  }
3831  case AMDGPU::V_ADD_I32_e32:
3832  case AMDGPU::V_SUB_I32_e32:
3833  case AMDGPU::V_SUBREV_I32_e32: {
3834    // TODO: Define distinct V_*_I32_Pseudo instructions instead.
3835    const DebugLoc &DL = MI.getDebugLoc();
3836    unsigned Opc = MI.getOpcode();
3837
3838    bool NeedClampOperand = false;
3839    if (TII->pseudoToMCOpcode(Opc) == -1) {
3840      Opc = AMDGPU::getVOPe64(Opc);
3841      NeedClampOperand = true;
3842    }
3843
3844    auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
3845    if (TII->isVOP3(*I)) {
3846      const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3847      const SIRegisterInfo *TRI = ST.getRegisterInfo();
3848      I.addReg(TRI->getVCC(), RegState::Define);
3849    }
3850    I.add(MI.getOperand(1))
3851     .add(MI.getOperand(2));
3852    if (NeedClampOperand)
3853      I.addImm(0); // clamp bit for e64 encoding
3854
3855    TII->legalizeOperands(*I);
3856
3857    MI.eraseFromParent();
3858    return BB;
3859  }
3860  case AMDGPU::DS_GWS_INIT:
3861  case AMDGPU::DS_GWS_SEMA_V:
3862  case AMDGPU::DS_GWS_SEMA_BR:
3863  case AMDGPU::DS_GWS_SEMA_P:
3864  case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
3865  case AMDGPU::DS_GWS_BARRIER:
3866    // A s_waitcnt 0 is required to be the instruction immediately following.
3867    if (getSubtarget()->hasGWSAutoReplay()) {
3868      bundleInstWithWaitcnt(MI);
3869      return BB;
3870    }
3871
3872    return emitGWSMemViolTestLoop(MI, BB);
3873  default:
3874    return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3875  }
3876}
3877
3878bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3879  return isTypeLegal(VT.getScalarType());
3880}
3881
3882bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3883  // This currently forces unfolding various combinations of fsub into fma with
3884  // free fneg'd operands. As long as we have fast FMA (controlled by
3885  // isFMAFasterThanFMulAndFAdd), we should perform these.
3886
3887  // When fma is quarter rate, for f64 where add / sub are at best half rate,
3888  // most of these combines appear to be cycle neutral but save on instruction
3889  // count / code size.
3890  return true;
3891}
3892
3893EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3894                                         EVT VT) const {
3895  if (!VT.isVector()) {
3896    return MVT::i1;
3897  }
3898  return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3899}
3900
3901MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3902  // TODO: Should i16 be used always if legal? For now it would force VALU
3903  // shifts.
3904  return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3905}
3906
3907// Answering this is somewhat tricky and depends on the specific device which
3908// have different rates for fma or all f64 operations.
3909//
3910// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3911// regardless of which device (although the number of cycles differs between
3912// devices), so it is always profitable for f64.
3913//
3914// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3915// only on full rate devices. Normally, we should prefer selecting v_mad_f32
3916// which we can always do even without fused FP ops since it returns the same
3917// result as the separate operations and since it is always full
3918// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3919// however does not support denormals, so we do report fma as faster if we have
3920// a fast fma device and require denormals.
3921//
3922bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
3923                                                  EVT VT) const {
3924  VT = VT.getScalarType();
3925
3926  switch (VT.getSimpleVT().SimpleTy) {
3927  case MVT::f32: {
3928    // This is as fast on some subtargets. However, we always have full rate f32
3929    // mad available which returns the same result as the separate operations
3930    // which we should prefer over fma. We can't use this if we want to support
3931    // denormals, so only report this in these cases.
3932    if (hasFP32Denormals(MF))
3933      return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
3934
3935    // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
3936    return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
3937  }
3938  case MVT::f64:
3939    return true;
3940  case MVT::f16:
3941    return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
3942  default:
3943    break;
3944  }
3945
3946  return false;
3947}
3948
3949bool SITargetLowering::isFMADLegalForFAddFSub(const SelectionDAG &DAG,
3950                                              const SDNode *N) const {
3951  // TODO: Check future ftz flag
3952  // v_mad_f32/v_mac_f32 do not support denormals.
3953  EVT VT = N->getValueType(0);
3954  if (VT == MVT::f32)
3955    return !hasFP32Denormals(DAG.getMachineFunction());
3956  if (VT == MVT::f16) {
3957    return Subtarget->hasMadF16() &&
3958           !hasFP64FP16Denormals(DAG.getMachineFunction());
3959  }
3960
3961  return false;
3962}
3963
3964//===----------------------------------------------------------------------===//
3965// Custom DAG Lowering Operations
3966//===----------------------------------------------------------------------===//
3967
3968// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3969// wider vector type is legal.
3970SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
3971                                             SelectionDAG &DAG) const {
3972  unsigned Opc = Op.getOpcode();
3973  EVT VT = Op.getValueType();
3974  assert(VT == MVT::v4f16);
3975
3976  SDValue Lo, Hi;
3977  std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3978
3979  SDLoc SL(Op);
3980  SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
3981                             Op->getFlags());
3982  SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
3983                             Op->getFlags());
3984
3985  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3986}
3987
3988// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3989// wider vector type is legal.
3990SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
3991                                              SelectionDAG &DAG) const {
3992  unsigned Opc = Op.getOpcode();
3993  EVT VT = Op.getValueType();
3994  assert(VT == MVT::v4i16 || VT == MVT::v4f16);
3995
3996  SDValue Lo0, Hi0;
3997  std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3998  SDValue Lo1, Hi1;
3999  std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4000
4001  SDLoc SL(Op);
4002
4003  SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4004                             Op->getFlags());
4005  SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4006                             Op->getFlags());
4007
4008  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4009}
4010
4011SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4012                                              SelectionDAG &DAG) const {
4013  unsigned Opc = Op.getOpcode();
4014  EVT VT = Op.getValueType();
4015  assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4016
4017  SDValue Lo0, Hi0;
4018  std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4019  SDValue Lo1, Hi1;
4020  std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4021  SDValue Lo2, Hi2;
4022  std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4023
4024  SDLoc SL(Op);
4025
4026  SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4027                             Op->getFlags());
4028  SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4029                             Op->getFlags());
4030
4031  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4032}
4033
4034
4035SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4036  switch (Op.getOpcode()) {
4037  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4038  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4039  case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4040  case ISD::LOAD: {
4041    SDValue Result = LowerLOAD(Op, DAG);
4042    assert((!Result.getNode() ||
4043            Result.getNode()->getNumValues() == 2) &&
4044           "Load should return a value and a chain");
4045    return Result;
4046  }
4047
4048  case ISD::FSIN:
4049  case ISD::FCOS:
4050    return LowerTrig(Op, DAG);
4051  case ISD::SELECT: return LowerSELECT(Op, DAG);
4052  case ISD::FDIV: return LowerFDIV(Op, DAG);
4053  case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4054  case ISD::STORE: return LowerSTORE(Op, DAG);
4055  case ISD::GlobalAddress: {
4056    MachineFunction &MF = DAG.getMachineFunction();
4057    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4058    return LowerGlobalAddress(MFI, Op, DAG);
4059  }
4060  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4061  case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4062  case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4063  case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4064  case ISD::INSERT_SUBVECTOR:
4065    return lowerINSERT_SUBVECTOR(Op, DAG);
4066  case ISD::INSERT_VECTOR_ELT:
4067    return lowerINSERT_VECTOR_ELT(Op, DAG);
4068  case ISD::EXTRACT_VECTOR_ELT:
4069    return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4070  case ISD::VECTOR_SHUFFLE:
4071    return lowerVECTOR_SHUFFLE(Op, DAG);
4072  case ISD::BUILD_VECTOR:
4073    return lowerBUILD_VECTOR(Op, DAG);
4074  case ISD::FP_ROUND:
4075    return lowerFP_ROUND(Op, DAG);
4076  case ISD::TRAP:
4077    return lowerTRAP(Op, DAG);
4078  case ISD::DEBUGTRAP:
4079    return lowerDEBUGTRAP(Op, DAG);
4080  case ISD::FABS:
4081  case ISD::FNEG:
4082  case ISD::FCANONICALIZE:
4083    return splitUnaryVectorOp(Op, DAG);
4084  case ISD::FMINNUM:
4085  case ISD::FMAXNUM:
4086    return lowerFMINNUM_FMAXNUM(Op, DAG);
4087  case ISD::FMA:
4088    return splitTernaryVectorOp(Op, DAG);
4089  case ISD::SHL:
4090  case ISD::SRA:
4091  case ISD::SRL:
4092  case ISD::ADD:
4093  case ISD::SUB:
4094  case ISD::MUL:
4095  case ISD::SMIN:
4096  case ISD::SMAX:
4097  case ISD::UMIN:
4098  case ISD::UMAX:
4099  case ISD::FADD:
4100  case ISD::FMUL:
4101  case ISD::FMINNUM_IEEE:
4102  case ISD::FMAXNUM_IEEE:
4103    return splitBinaryVectorOp(Op, DAG);
4104  }
4105  return SDValue();
4106}
4107
4108static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4109                                       const SDLoc &DL,
4110                                       SelectionDAG &DAG, bool Unpacked) {
4111  if (!LoadVT.isVector())
4112    return Result;
4113
4114  if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4115    // Truncate to v2i16/v4i16.
4116    EVT IntLoadVT = LoadVT.changeTypeToInteger();
4117
4118    // Workaround legalizer not scalarizing truncate after vector op
4119    // legalization byt not creating intermediate vector trunc.
4120    SmallVector<SDValue, 4> Elts;
4121    DAG.ExtractVectorElements(Result, Elts);
4122    for (SDValue &Elt : Elts)
4123      Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4124
4125    Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4126
4127    // Bitcast to original type (v2f16/v4f16).
4128    return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4129  }
4130
4131  // Cast back to the original packed type.
4132  return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4133}
4134
4135SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4136                                              MemSDNode *M,
4137                                              SelectionDAG &DAG,
4138                                              ArrayRef<SDValue> Ops,
4139                                              bool IsIntrinsic) const {
4140  SDLoc DL(M);
4141
4142  bool Unpacked = Subtarget->hasUnpackedD16VMem();
4143  EVT LoadVT = M->getValueType(0);
4144
4145  EVT EquivLoadVT = LoadVT;
4146  if (Unpacked && LoadVT.isVector()) {
4147    EquivLoadVT = LoadVT.isVector() ?
4148      EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4149                       LoadVT.getVectorNumElements()) : LoadVT;
4150  }
4151
4152  // Change from v4f16/v2f16 to EquivLoadVT.
4153  SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4154
4155  SDValue Load
4156    = DAG.getMemIntrinsicNode(
4157      IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4158      VTList, Ops, M->getMemoryVT(),
4159      M->getMemOperand());
4160  if (!Unpacked) // Just adjusted the opcode.
4161    return Load;
4162
4163  SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4164
4165  return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4166}
4167
4168SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4169                                             SelectionDAG &DAG,
4170                                             ArrayRef<SDValue> Ops) const {
4171  SDLoc DL(M);
4172  EVT LoadVT = M->getValueType(0);
4173  EVT EltType = LoadVT.getScalarType();
4174  EVT IntVT = LoadVT.changeTypeToInteger();
4175
4176  bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4177
4178  unsigned Opc =
4179      IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4180
4181  if (IsD16) {
4182    return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4183  }
4184
4185  // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4186  if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4187    return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4188
4189  if (isTypeLegal(LoadVT)) {
4190    return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4191                               M->getMemOperand(), DAG);
4192  }
4193
4194  EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4195  SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4196  SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4197                                        M->getMemOperand(), DAG);
4198  return DAG.getMergeValues(
4199      {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4200      DL);
4201}
4202
4203static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4204                                  SDNode *N, SelectionDAG &DAG) {
4205  EVT VT = N->getValueType(0);
4206  const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4207  int CondCode = CD->getSExtValue();
4208  if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4209      CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4210    return DAG.getUNDEF(VT);
4211
4212  ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4213
4214  SDValue LHS = N->getOperand(1);
4215  SDValue RHS = N->getOperand(2);
4216
4217  SDLoc DL(N);
4218
4219  EVT CmpVT = LHS.getValueType();
4220  if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4221    unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4222      ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4223    LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4224    RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4225  }
4226
4227  ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4228
4229  unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4230  EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4231
4232  SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4233                              DAG.getCondCode(CCOpcode));
4234  if (VT.bitsEq(CCVT))
4235    return SetCC;
4236  return DAG.getZExtOrTrunc(SetCC, DL, VT);
4237}
4238
4239static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4240                                  SDNode *N, SelectionDAG &DAG) {
4241  EVT VT = N->getValueType(0);
4242  const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4243
4244  int CondCode = CD->getSExtValue();
4245  if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4246      CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
4247    return DAG.getUNDEF(VT);
4248  }
4249
4250  SDValue Src0 = N->getOperand(1);
4251  SDValue Src1 = N->getOperand(2);
4252  EVT CmpVT = Src0.getValueType();
4253  SDLoc SL(N);
4254
4255  if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4256    Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4257    Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4258  }
4259
4260  FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4261  ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4262  unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4263  EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4264  SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4265                              Src1, DAG.getCondCode(CCOpcode));
4266  if (VT.bitsEq(CCVT))
4267    return SetCC;
4268  return DAG.getZExtOrTrunc(SetCC, SL, VT);
4269}
4270
4271void SITargetLowering::ReplaceNodeResults(SDNode *N,
4272                                          SmallVectorImpl<SDValue> &Results,
4273                                          SelectionDAG &DAG) const {
4274  switch (N->getOpcode()) {
4275  case ISD::INSERT_VECTOR_ELT: {
4276    if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4277      Results.push_back(Res);
4278    return;
4279  }
4280  case ISD::EXTRACT_VECTOR_ELT: {
4281    if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4282      Results.push_back(Res);
4283    return;
4284  }
4285  case ISD::INTRINSIC_WO_CHAIN: {
4286    unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4287    switch (IID) {
4288    case Intrinsic::amdgcn_cvt_pkrtz: {
4289      SDValue Src0 = N->getOperand(1);
4290      SDValue Src1 = N->getOperand(2);
4291      SDLoc SL(N);
4292      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4293                                Src0, Src1);
4294      Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4295      return;
4296    }
4297    case Intrinsic::amdgcn_cvt_pknorm_i16:
4298    case Intrinsic::amdgcn_cvt_pknorm_u16:
4299    case Intrinsic::amdgcn_cvt_pk_i16:
4300    case Intrinsic::amdgcn_cvt_pk_u16: {
4301      SDValue Src0 = N->getOperand(1);
4302      SDValue Src1 = N->getOperand(2);
4303      SDLoc SL(N);
4304      unsigned Opcode;
4305
4306      if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4307        Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4308      else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4309        Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4310      else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4311        Opcode = AMDGPUISD::CVT_PK_I16_I32;
4312      else
4313        Opcode = AMDGPUISD::CVT_PK_U16_U32;
4314
4315      EVT VT = N->getValueType(0);
4316      if (isTypeLegal(VT))
4317        Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4318      else {
4319        SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4320        Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4321      }
4322      return;
4323    }
4324    }
4325    break;
4326  }
4327  case ISD::INTRINSIC_W_CHAIN: {
4328    if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4329      if (Res.getOpcode() == ISD::MERGE_VALUES) {
4330        // FIXME: Hacky
4331        Results.push_back(Res.getOperand(0));
4332        Results.push_back(Res.getOperand(1));
4333      } else {
4334        Results.push_back(Res);
4335        Results.push_back(Res.getValue(1));
4336      }
4337      return;
4338    }
4339
4340    break;
4341  }
4342  case ISD::SELECT: {
4343    SDLoc SL(N);
4344    EVT VT = N->getValueType(0);
4345    EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4346    SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4347    SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4348
4349    EVT SelectVT = NewVT;
4350    if (NewVT.bitsLT(MVT::i32)) {
4351      LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4352      RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4353      SelectVT = MVT::i32;
4354    }
4355
4356    SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4357                                    N->getOperand(0), LHS, RHS);
4358
4359    if (NewVT != SelectVT)
4360      NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4361    Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4362    return;
4363  }
4364  case ISD::FNEG: {
4365    if (N->getValueType(0) != MVT::v2f16)
4366      break;
4367
4368    SDLoc SL(N);
4369    SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4370
4371    SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4372                             BC,
4373                             DAG.getConstant(0x80008000, SL, MVT::i32));
4374    Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4375    return;
4376  }
4377  case ISD::FABS: {
4378    if (N->getValueType(0) != MVT::v2f16)
4379      break;
4380
4381    SDLoc SL(N);
4382    SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4383
4384    SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4385                             BC,
4386                             DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4387    Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4388    return;
4389  }
4390  default:
4391    break;
4392  }
4393}
4394
4395/// Helper function for LowerBRCOND
4396static SDNode *findUser(SDValue Value, unsigned Opcode) {
4397
4398  SDNode *Parent = Value.getNode();
4399  for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4400       I != E; ++I) {
4401
4402    if (I.getUse().get() != Value)
4403      continue;
4404
4405    if (I->getOpcode() == Opcode)
4406      return *I;
4407  }
4408  return nullptr;
4409}
4410
4411unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4412  if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4413    switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4414    case Intrinsic::amdgcn_if:
4415      return AMDGPUISD::IF;
4416    case Intrinsic::amdgcn_else:
4417      return AMDGPUISD::ELSE;
4418    case Intrinsic::amdgcn_loop:
4419      return AMDGPUISD::LOOP;
4420    case Intrinsic::amdgcn_end_cf:
4421      llvm_unreachable("should not occur");
4422    default:
4423      return 0;
4424    }
4425  }
4426
4427  // break, if_break, else_break are all only used as inputs to loop, not
4428  // directly as branch conditions.
4429  return 0;
4430}
4431
4432bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4433  const Triple &TT = getTargetMachine().getTargetTriple();
4434  return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4435          GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4436         AMDGPU::shouldEmitConstantsToTextSection(TT);
4437}
4438
4439bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4440  // FIXME: Either avoid relying on address space here or change the default
4441  // address space for functions to avoid the explicit check.
4442  return (GV->getValueType()->isFunctionTy() ||
4443          GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
4444          GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4445          GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4446         !shouldEmitFixup(GV) &&
4447         !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4448}
4449
4450bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4451  return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4452}
4453
4454/// This transforms the control flow intrinsics to get the branch destination as
4455/// last parameter, also switches branch target with BR if the need arise
4456SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4457                                      SelectionDAG &DAG) const {
4458  SDLoc DL(BRCOND);
4459
4460  SDNode *Intr = BRCOND.getOperand(1).getNode();
4461  SDValue Target = BRCOND.getOperand(2);
4462  SDNode *BR = nullptr;
4463  SDNode *SetCC = nullptr;
4464
4465  if (Intr->getOpcode() == ISD::SETCC) {
4466    // As long as we negate the condition everything is fine
4467    SetCC = Intr;
4468    Intr = SetCC->getOperand(0).getNode();
4469
4470  } else {
4471    // Get the target from BR if we don't negate the condition
4472    BR = findUser(BRCOND, ISD::BR);
4473    Target = BR->getOperand(1);
4474  }
4475
4476  // FIXME: This changes the types of the intrinsics instead of introducing new
4477  // nodes with the correct types.
4478  // e.g. llvm.amdgcn.loop
4479
4480  // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
4481  // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
4482
4483  unsigned CFNode = isCFIntrinsic(Intr);
4484  if (CFNode == 0) {
4485    // This is a uniform branch so we don't need to legalize.
4486    return BRCOND;
4487  }
4488
4489  bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4490                   Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4491
4492  assert(!SetCC ||
4493        (SetCC->getConstantOperandVal(1) == 1 &&
4494         cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
4495                                                             ISD::SETNE));
4496
4497  // operands of the new intrinsic call
4498  SmallVector<SDValue, 4> Ops;
4499  if (HaveChain)
4500    Ops.push_back(BRCOND.getOperand(0));
4501
4502  Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
4503  Ops.push_back(Target);
4504
4505  ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4506
4507  // build the new intrinsic call
4508  SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4509
4510  if (!HaveChain) {
4511    SDValue Ops[] =  {
4512      SDValue(Result, 0),
4513      BRCOND.getOperand(0)
4514    };
4515
4516    Result = DAG.getMergeValues(Ops, DL).getNode();
4517  }
4518
4519  if (BR) {
4520    // Give the branch instruction our target
4521    SDValue Ops[] = {
4522      BR->getOperand(0),
4523      BRCOND.getOperand(2)
4524    };
4525    SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4526    DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4527    BR = NewBR.getNode();
4528  }
4529
4530  SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4531
4532  // Copy the intrinsic results to registers
4533  for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4534    SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4535    if (!CopyToReg)
4536      continue;
4537
4538    Chain = DAG.getCopyToReg(
4539      Chain, DL,
4540      CopyToReg->getOperand(1),
4541      SDValue(Result, i - 1),
4542      SDValue());
4543
4544    DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4545  }
4546
4547  // Remove the old intrinsic from the chain
4548  DAG.ReplaceAllUsesOfValueWith(
4549    SDValue(Intr, Intr->getNumValues() - 1),
4550    Intr->getOperand(0));
4551
4552  return Chain;
4553}
4554
4555SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
4556                                          SelectionDAG &DAG) const {
4557  MVT VT = Op.getSimpleValueType();
4558  SDLoc DL(Op);
4559  // Checking the depth
4560  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
4561    return DAG.getConstant(0, DL, VT);
4562
4563  MachineFunction &MF = DAG.getMachineFunction();
4564  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4565  // Check for kernel and shader functions
4566  if (Info->isEntryFunction())
4567    return DAG.getConstant(0, DL, VT);
4568
4569  MachineFrameInfo &MFI = MF.getFrameInfo();
4570  // There is a call to @llvm.returnaddress in this function
4571  MFI.setReturnAddressIsTaken(true);
4572
4573  const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
4574  // Get the return address reg and mark it as an implicit live-in
4575  unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
4576
4577  return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4578}
4579
4580SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
4581                                            SDValue Op,
4582                                            const SDLoc &DL,
4583                                            EVT VT) const {
4584  return Op.getValueType().bitsLE(VT) ?
4585      DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
4586      DAG.getNode(ISD::FTRUNC, DL, VT, Op);
4587}
4588
4589SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
4590  assert(Op.getValueType() == MVT::f16 &&
4591         "Do not know how to custom lower FP_ROUND for non-f16 type");
4592
4593  SDValue Src = Op.getOperand(0);
4594  EVT SrcVT = Src.getValueType();
4595  if (SrcVT != MVT::f64)
4596    return Op;
4597
4598  SDLoc DL(Op);
4599
4600  SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
4601  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
4602  return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
4603}
4604
4605SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
4606                                               SelectionDAG &DAG) const {
4607  EVT VT = Op.getValueType();
4608  const MachineFunction &MF = DAG.getMachineFunction();
4609  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4610  bool IsIEEEMode = Info->getMode().IEEE;
4611
4612  // FIXME: Assert during eslection that this is only selected for
4613  // ieee_mode. Currently a combine can produce the ieee version for non-ieee
4614  // mode functions, but this happens to be OK since it's only done in cases
4615  // where there is known no sNaN.
4616  if (IsIEEEMode)
4617    return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
4618
4619  if (VT == MVT::v4f16)
4620    return splitBinaryVectorOp(Op, DAG);
4621  return Op;
4622}
4623
4624SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
4625  SDLoc SL(Op);
4626  SDValue Chain = Op.getOperand(0);
4627
4628  if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4629      !Subtarget->isTrapHandlerEnabled())
4630    return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4631
4632  MachineFunction &MF = DAG.getMachineFunction();
4633  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4634  unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4635  assert(UserSGPR != AMDGPU::NoRegister);
4636  SDValue QueuePtr = CreateLiveInRegister(
4637    DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4638  SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4639  SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4640                                   QueuePtr, SDValue());
4641  SDValue Ops[] = {
4642    ToReg,
4643    DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
4644    SGPR01,
4645    ToReg.getValue(1)
4646  };
4647  return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4648}
4649
4650SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
4651  SDLoc SL(Op);
4652  SDValue Chain = Op.getOperand(0);
4653  MachineFunction &MF = DAG.getMachineFunction();
4654
4655  if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4656      !Subtarget->isTrapHandlerEnabled()) {
4657    DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4658                                     "debugtrap handler not supported",
4659                                     Op.getDebugLoc(),
4660                                     DS_Warning);
4661    LLVMContext &Ctx = MF.getFunction().getContext();
4662    Ctx.diagnose(NoTrap);
4663    return Chain;
4664  }
4665
4666  SDValue Ops[] = {
4667    Chain,
4668    DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
4669  };
4670  return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4671}
4672
4673SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4674                                             SelectionDAG &DAG) const {
4675  // FIXME: Use inline constants (src_{shared, private}_base) instead.
4676  if (Subtarget->hasApertureRegs()) {
4677    unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
4678        AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4679        AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4680    unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
4681        AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4682        AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4683    unsigned Encoding =
4684        AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4685        Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4686        WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4687
4688    SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4689    SDValue ApertureReg = SDValue(
4690        DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4691    SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4692    return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4693  }
4694
4695  MachineFunction &MF = DAG.getMachineFunction();
4696  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4697  unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4698  assert(UserSGPR != AMDGPU::NoRegister);
4699
4700  SDValue QueuePtr = CreateLiveInRegister(
4701    DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4702
4703  // Offset into amd_queue_t for group_segment_aperture_base_hi /
4704  // private_segment_aperture_base_hi.
4705  uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
4706
4707  SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4708
4709  // TODO: Use custom target PseudoSourceValue.
4710  // TODO: We should use the value from the IR intrinsic call, but it might not
4711  // be available and how do we get it?
4712  MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
4713  return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4714                     MinAlign(64, StructOffset),
4715                     MachineMemOperand::MODereferenceable |
4716                         MachineMemOperand::MOInvariant);
4717}
4718
4719SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4720                                             SelectionDAG &DAG) const {
4721  SDLoc SL(Op);
4722  const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4723
4724  SDValue Src = ASC->getOperand(0);
4725  SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4726
4727  const AMDGPUTargetMachine &TM =
4728    static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4729
4730  // flat -> local/private
4731  if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4732    unsigned DestAS = ASC->getDestAddressSpace();
4733
4734    if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
4735        DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
4736      unsigned NullVal = TM.getNullPointerValue(DestAS);
4737      SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4738      SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4739      SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4740
4741      return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4742                         NonNull, Ptr, SegmentNullPtr);
4743    }
4744  }
4745
4746  // local/private -> flat
4747  if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4748    unsigned SrcAS = ASC->getSrcAddressSpace();
4749
4750    if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
4751        SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
4752      unsigned NullVal = TM.getNullPointerValue(SrcAS);
4753      SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4754
4755      SDValue NonNull
4756        = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4757
4758      SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4759      SDValue CvtPtr
4760        = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4761
4762      return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4763                         DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4764                         FlatNullPtr);
4765    }
4766  }
4767
4768  // global <-> flat are no-ops and never emitted.
4769
4770  const MachineFunction &MF = DAG.getMachineFunction();
4771  DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4772    MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4773  DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4774
4775  return DAG.getUNDEF(ASC->getValueType(0));
4776}
4777
4778// This lowers an INSERT_SUBVECTOR by extracting the individual elements from
4779// the small vector and inserting them into the big vector. That is better than
4780// the default expansion of doing it via a stack slot. Even though the use of
4781// the stack slot would be optimized away afterwards, the stack slot itself
4782// remains.
4783SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4784                                                SelectionDAG &DAG) const {
4785  SDValue Vec = Op.getOperand(0);
4786  SDValue Ins = Op.getOperand(1);
4787  SDValue Idx = Op.getOperand(2);
4788  EVT VecVT = Vec.getValueType();
4789  EVT InsVT = Ins.getValueType();
4790  EVT EltVT = VecVT.getVectorElementType();
4791  unsigned InsNumElts = InsVT.getVectorNumElements();
4792  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
4793  SDLoc SL(Op);
4794
4795  for (unsigned I = 0; I != InsNumElts; ++I) {
4796    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
4797                              DAG.getConstant(I, SL, MVT::i32));
4798    Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
4799                      DAG.getConstant(IdxVal + I, SL, MVT::i32));
4800  }
4801  return Vec;
4802}
4803
4804SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4805                                                 SelectionDAG &DAG) const {
4806  SDValue Vec = Op.getOperand(0);
4807  SDValue InsVal = Op.getOperand(1);
4808  SDValue Idx = Op.getOperand(2);
4809  EVT VecVT = Vec.getValueType();
4810  EVT EltVT = VecVT.getVectorElementType();
4811  unsigned VecSize = VecVT.getSizeInBits();
4812  unsigned EltSize = EltVT.getSizeInBits();
4813
4814
4815  assert(VecSize <= 64);
4816
4817  unsigned NumElts = VecVT.getVectorNumElements();
4818  SDLoc SL(Op);
4819  auto KIdx = dyn_cast<ConstantSDNode>(Idx);
4820
4821  if (NumElts == 4 && EltSize == 16 && KIdx) {
4822    SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
4823
4824    SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4825                                 DAG.getConstant(0, SL, MVT::i32));
4826    SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4827                                 DAG.getConstant(1, SL, MVT::i32));
4828
4829    SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
4830    SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
4831
4832    unsigned Idx = KIdx->getZExtValue();
4833    bool InsertLo = Idx < 2;
4834    SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
4835      InsertLo ? LoVec : HiVec,
4836      DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
4837      DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
4838
4839    InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
4840
4841    SDValue Concat = InsertLo ?
4842      DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
4843      DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
4844
4845    return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
4846  }
4847
4848  if (isa<ConstantSDNode>(Idx))
4849    return SDValue();
4850
4851  MVT IntVT = MVT::getIntegerVT(VecSize);
4852
4853  // Avoid stack access for dynamic indexing.
4854  // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4855
4856  // Create a congruent vector with the target value in each element so that
4857  // the required element can be masked and ORed into the target vector.
4858  SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
4859                               DAG.getSplatBuildVector(VecVT, SL, InsVal));
4860
4861  assert(isPowerOf2_32(EltSize));
4862  SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4863
4864  // Convert vector index to bit-index.
4865  SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4866
4867  SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4868  SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
4869                            DAG.getConstant(0xffff, SL, IntVT),
4870                            ScaledIdx);
4871
4872  SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
4873  SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
4874                            DAG.getNOT(SL, BFM, IntVT), BCVec);
4875
4876  SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
4877  return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
4878}
4879
4880SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4881                                                  SelectionDAG &DAG) const {
4882  SDLoc SL(Op);
4883
4884  EVT ResultVT = Op.getValueType();
4885  SDValue Vec = Op.getOperand(0);
4886  SDValue Idx = Op.getOperand(1);
4887  EVT VecVT = Vec.getValueType();
4888  unsigned VecSize = VecVT.getSizeInBits();
4889  EVT EltVT = VecVT.getVectorElementType();
4890  assert(VecSize <= 64);
4891
4892  DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4893
4894  // Make sure we do any optimizations that will make it easier to fold
4895  // source modifiers before obscuring it with bit operations.
4896
4897  // XXX - Why doesn't this get called when vector_shuffle is expanded?
4898  if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4899    return Combined;
4900
4901  unsigned EltSize = EltVT.getSizeInBits();
4902  assert(isPowerOf2_32(EltSize));
4903
4904  MVT IntVT = MVT::getIntegerVT(VecSize);
4905  SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4906
4907  // Convert vector index to bit-index (* EltSize)
4908  SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4909
4910  SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4911  SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
4912
4913  if (ResultVT == MVT::f16) {
4914    SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
4915    return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4916  }
4917
4918  return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
4919}
4920
4921static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
4922  assert(Elt % 2 == 0);
4923  return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
4924}
4925
4926SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4927                                              SelectionDAG &DAG) const {
4928  SDLoc SL(Op);
4929  EVT ResultVT = Op.getValueType();
4930  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4931
4932  EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
4933  EVT EltVT = PackVT.getVectorElementType();
4934  int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
4935
4936  // vector_shuffle <0,1,6,7> lhs, rhs
4937  // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
4938  //
4939  // vector_shuffle <6,7,2,3> lhs, rhs
4940  // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
4941  //
4942  // vector_shuffle <6,7,0,1> lhs, rhs
4943  // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
4944
4945  // Avoid scalarizing when both halves are reading from consecutive elements.
4946  SmallVector<SDValue, 4> Pieces;
4947  for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
4948    if (elementPairIsContiguous(SVN->getMask(), I)) {
4949      const int Idx = SVN->getMaskElt(I);
4950      int VecIdx = Idx < SrcNumElts ? 0 : 1;
4951      int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
4952      SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
4953                                    PackVT, SVN->getOperand(VecIdx),
4954                                    DAG.getConstant(EltIdx, SL, MVT::i32));
4955      Pieces.push_back(SubVec);
4956    } else {
4957      const int Idx0 = SVN->getMaskElt(I);
4958      const int Idx1 = SVN->getMaskElt(I + 1);
4959      int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
4960      int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
4961      int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
4962      int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
4963
4964      SDValue Vec0 = SVN->getOperand(VecIdx0);
4965      SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4966                                 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
4967
4968      SDValue Vec1 = SVN->getOperand(VecIdx1);
4969      SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4970                                 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
4971      Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
4972    }
4973  }
4974
4975  return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
4976}
4977
4978SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
4979                                            SelectionDAG &DAG) const {
4980  SDLoc SL(Op);
4981  EVT VT = Op.getValueType();
4982
4983  if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4984    EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
4985
4986    // Turn into pair of packed build_vectors.
4987    // TODO: Special case for constants that can be materialized with s_mov_b64.
4988    SDValue Lo = DAG.getBuildVector(HalfVT, SL,
4989                                    { Op.getOperand(0), Op.getOperand(1) });
4990    SDValue Hi = DAG.getBuildVector(HalfVT, SL,
4991                                    { Op.getOperand(2), Op.getOperand(3) });
4992
4993    SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
4994    SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
4995
4996    SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
4997    return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
4998  }
4999
5000  assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5001  assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5002
5003  SDValue Lo = Op.getOperand(0);
5004  SDValue Hi = Op.getOperand(1);
5005
5006  // Avoid adding defined bits with the zero_extend.
5007  if (Hi.isUndef()) {
5008    Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5009    SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5010    return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5011  }
5012
5013  Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5014  Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5015
5016  SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5017                              DAG.getConstant(16, SL, MVT::i32));
5018  if (Lo.isUndef())
5019    return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5020
5021  Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5022  Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5023
5024  SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5025  return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5026}
5027
5028bool
5029SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5030  // We can fold offsets for anything that doesn't require a GOT relocation.
5031  return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5032          GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5033          GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5034         !shouldEmitGOTReloc(GA->getGlobal());
5035}
5036
5037static SDValue
5038buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5039                        const SDLoc &DL, unsigned Offset, EVT PtrVT,
5040                        unsigned GAFlags = SIInstrInfo::MO_NONE) {
5041  // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5042  // lowered to the following code sequence:
5043  //
5044  // For constant address space:
5045  //   s_getpc_b64 s[0:1]
5046  //   s_add_u32 s0, s0, $symbol
5047  //   s_addc_u32 s1, s1, 0
5048  //
5049  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5050  //   a fixup or relocation is emitted to replace $symbol with a literal
5051  //   constant, which is a pc-relative offset from the encoding of the $symbol
5052  //   operand to the global variable.
5053  //
5054  // For global address space:
5055  //   s_getpc_b64 s[0:1]
5056  //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5057  //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5058  //
5059  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5060  //   fixups or relocations are emitted to replace $symbol@*@lo and
5061  //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5062  //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5063  //   operand to the global variable.
5064  //
5065  // What we want here is an offset from the value returned by s_getpc
5066  // (which is the address of the s_add_u32 instruction) to the global
5067  // variable, but since the encoding of $symbol starts 4 bytes after the start
5068  // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5069  // small. This requires us to add 4 to the global variable offset in order to
5070  // compute the correct address.
5071  SDValue PtrLo =
5072      DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5073  SDValue PtrHi;
5074  if (GAFlags == SIInstrInfo::MO_NONE) {
5075    PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5076  } else {
5077    PtrHi =
5078        DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1);
5079  }
5080  return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5081}
5082
5083SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5084                                             SDValue Op,
5085                                             SelectionDAG &DAG) const {
5086  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5087  const GlobalValue *GV = GSD->getGlobal();
5088  if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5089       (!GV->hasExternalLinkage() ||
5090        getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
5091        getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) ||
5092      GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5093      GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
5094    return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5095
5096  SDLoc DL(GSD);
5097  EVT PtrVT = Op.getValueType();
5098
5099  if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5100    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5101                                            SIInstrInfo::MO_ABS32_LO);
5102    return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5103  }
5104
5105  if (shouldEmitFixup(GV))
5106    return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5107  else if (shouldEmitPCReloc(GV))
5108    return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5109                                   SIInstrInfo::MO_REL32);
5110
5111  SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5112                                            SIInstrInfo::MO_GOTPCREL32);
5113
5114  Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5115  PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5116  const DataLayout &DataLayout = DAG.getDataLayout();
5117  unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
5118  MachinePointerInfo PtrInfo
5119    = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5120
5121  return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
5122                     MachineMemOperand::MODereferenceable |
5123                         MachineMemOperand::MOInvariant);
5124}
5125
5126SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5127                                   const SDLoc &DL, SDValue V) const {
5128  // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5129  // the destination register.
5130  //
5131  // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5132  // so we will end up with redundant moves to m0.
5133  //
5134  // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5135
5136  // A Null SDValue creates a glue result.
5137  SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5138                                  V, Chain);
5139  return SDValue(M0, 0);
5140}
5141
5142SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5143                                                 SDValue Op,
5144                                                 MVT VT,
5145                                                 unsigned Offset) const {
5146  SDLoc SL(Op);
5147  SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
5148                                           DAG.getEntryNode(), Offset, 4, false);
5149  // The local size values will have the hi 16-bits as zero.
5150  return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5151                     DAG.getValueType(VT));
5152}
5153
5154static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5155                                        EVT VT) {
5156  DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5157                                      "non-hsa intrinsic with hsa target",
5158                                      DL.getDebugLoc());
5159  DAG.getContext()->diagnose(BadIntrin);
5160  return DAG.getUNDEF(VT);
5161}
5162
5163static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5164                                         EVT VT) {
5165  DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5166                                      "intrinsic not supported on subtarget",
5167                                      DL.getDebugLoc());
5168  DAG.getContext()->diagnose(BadIntrin);
5169  return DAG.getUNDEF(VT);
5170}
5171
5172static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5173                                    ArrayRef<SDValue> Elts) {
5174  assert(!Elts.empty());
5175  MVT Type;
5176  unsigned NumElts;
5177
5178  if (Elts.size() == 1) {
5179    Type = MVT::f32;
5180    NumElts = 1;
5181  } else if (Elts.size() == 2) {
5182    Type = MVT::v2f32;
5183    NumElts = 2;
5184  } else if (Elts.size() <= 4) {
5185    Type = MVT::v4f32;
5186    NumElts = 4;
5187  } else if (Elts.size() <= 8) {
5188    Type = MVT::v8f32;
5189    NumElts = 8;
5190  } else {
5191    assert(Elts.size() <= 16);
5192    Type = MVT::v16f32;
5193    NumElts = 16;
5194  }
5195
5196  SmallVector<SDValue, 16> VecElts(NumElts);
5197  for (unsigned i = 0; i < Elts.size(); ++i) {
5198    SDValue Elt = Elts[i];
5199    if (Elt.getValueType() != MVT::f32)
5200      Elt = DAG.getBitcast(MVT::f32, Elt);
5201    VecElts[i] = Elt;
5202  }
5203  for (unsigned i = Elts.size(); i < NumElts; ++i)
5204    VecElts[i] = DAG.getUNDEF(MVT::f32);
5205
5206  if (NumElts == 1)
5207    return VecElts[0];
5208  return DAG.getBuildVector(Type, DL, VecElts);
5209}
5210
5211static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5212                             SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5213  auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5214
5215  uint64_t Value = CachePolicyConst->getZExtValue();
5216  SDLoc DL(CachePolicy);
5217  if (GLC) {
5218    *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5219    Value &= ~(uint64_t)0x1;
5220  }
5221  if (SLC) {
5222    *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5223    Value &= ~(uint64_t)0x2;
5224  }
5225  if (DLC) {
5226    *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5227    Value &= ~(uint64_t)0x4;
5228  }
5229
5230  return Value == 0;
5231}
5232
5233// Re-construct the required return value for a image load intrinsic.
5234// This is more complicated due to the optional use TexFailCtrl which means the required
5235// return type is an aggregate
5236static SDValue constructRetValue(SelectionDAG &DAG,
5237                                 MachineSDNode *Result,
5238                                 ArrayRef<EVT> ResultTypes,
5239                                 bool IsTexFail, bool Unpacked, bool IsD16,
5240                                 int DMaskPop, int NumVDataDwords,
5241                                 const SDLoc &DL, LLVMContext &Context) {
5242  // Determine the required return type. This is the same regardless of IsTexFail flag
5243  EVT ReqRetVT = ResultTypes[0];
5244  EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT;
5245  int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5246  EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT;
5247  EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts)
5248                                           : AdjEltVT
5249                       : ReqRetVT;
5250
5251  // Extract data part of the result
5252  // Bitcast the result to the same type as the required return type
5253  int NumElts;
5254  if (IsD16 && !Unpacked)
5255    NumElts = NumVDataDwords << 1;
5256  else
5257    NumElts = NumVDataDwords;
5258
5259  EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts)
5260                           : AdjEltVT;
5261
5262  // Special case for v6f16. Rather than add support for this, use v3i32 to
5263  // extract the data elements
5264  bool V6F16Special = false;
5265  if (NumElts == 6) {
5266    CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2);
5267    DMaskPop >>= 1;
5268    ReqRetNumElts >>= 1;
5269    V6F16Special = true;
5270    AdjVT = MVT::v2i32;
5271  }
5272
5273  SDValue N = SDValue(Result, 0);
5274  SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N);
5275
5276  // Iterate over the result
5277  SmallVector<SDValue, 4> BVElts;
5278
5279  if (CastVT.isVector()) {
5280    DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop);
5281  } else {
5282    BVElts.push_back(CastRes);
5283  }
5284  int ExtraElts = ReqRetNumElts - DMaskPop;
5285  while(ExtraElts--)
5286    BVElts.push_back(DAG.getUNDEF(AdjEltVT));
5287
5288  SDValue PreTFCRes;
5289  if (ReqRetNumElts > 1) {
5290    SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts);
5291    if (IsD16 && Unpacked)
5292      PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked);
5293    else
5294      PreTFCRes = NewVec;
5295  } else {
5296    PreTFCRes = BVElts[0];
5297  }
5298
5299  if (V6F16Special)
5300    PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes);
5301
5302  if (!IsTexFail) {
5303    if (Result->getNumValues() > 1)
5304      return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL);
5305    else
5306      return PreTFCRes;
5307  }
5308
5309  // Extract the TexFail result and insert into aggregate return
5310  SmallVector<SDValue, 1> TFCElt;
5311  DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1);
5312  SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]);
5313  return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL);
5314}
5315
5316static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5317                         SDValue *LWE, bool &IsTexFail) {
5318  auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5319
5320  uint64_t Value = TexFailCtrlConst->getZExtValue();
5321  if (Value) {
5322    IsTexFail = true;
5323  }
5324
5325  SDLoc DL(TexFailCtrlConst);
5326  *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5327  Value &= ~(uint64_t)0x1;
5328  *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5329  Value &= ~(uint64_t)0x2;
5330
5331  return Value == 0;
5332}
5333
5334SDValue SITargetLowering::lowerImage(SDValue Op,
5335                                     const AMDGPU::ImageDimIntrinsicInfo *Intr,
5336                                     SelectionDAG &DAG) const {
5337  SDLoc DL(Op);
5338  MachineFunction &MF = DAG.getMachineFunction();
5339  const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5340  const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5341      AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5342  const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5343  const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5344      AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5345  const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5346      AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5347  unsigned IntrOpcode = Intr->BaseOpcode;
5348  bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5349
5350  SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5351  SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5352  bool IsD16 = false;
5353  bool IsA16 = false;
5354  SDValue VData;
5355  int NumVDataDwords;
5356  bool AdjustRetType = false;
5357
5358  unsigned AddrIdx; // Index of first address argument
5359  unsigned DMask;
5360  unsigned DMaskLanes = 0;
5361
5362  if (BaseOpcode->Atomic) {
5363    VData = Op.getOperand(2);
5364
5365    bool Is64Bit = VData.getValueType() == MVT::i64;
5366    if (BaseOpcode->AtomicX2) {
5367      SDValue VData2 = Op.getOperand(3);
5368      VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5369                                 {VData, VData2});
5370      if (Is64Bit)
5371        VData = DAG.getBitcast(MVT::v4i32, VData);
5372
5373      ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
5374      DMask = Is64Bit ? 0xf : 0x3;
5375      NumVDataDwords = Is64Bit ? 4 : 2;
5376      AddrIdx = 4;
5377    } else {
5378      DMask = Is64Bit ? 0x3 : 0x1;
5379      NumVDataDwords = Is64Bit ? 2 : 1;
5380      AddrIdx = 3;
5381    }
5382  } else {
5383    unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
5384    auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
5385    DMask = DMaskConst->getZExtValue();
5386    DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
5387
5388    if (BaseOpcode->Store) {
5389      VData = Op.getOperand(2);
5390
5391      MVT StoreVT = VData.getSimpleValueType();
5392      if (StoreVT.getScalarType() == MVT::f16) {
5393        if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5394          return Op; // D16 is unsupported for this instruction
5395
5396        IsD16 = true;
5397        VData = handleD16VData(VData, DAG);
5398      }
5399
5400      NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
5401    } else {
5402      // Work out the num dwords based on the dmask popcount and underlying type
5403      // and whether packing is supported.
5404      MVT LoadVT = ResultTypes[0].getSimpleVT();
5405      if (LoadVT.getScalarType() == MVT::f16) {
5406        if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5407          return Op; // D16 is unsupported for this instruction
5408
5409        IsD16 = true;
5410      }
5411
5412      // Confirm that the return type is large enough for the dmask specified
5413      if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
5414          (!LoadVT.isVector() && DMaskLanes > 1))
5415          return Op;
5416
5417      if (IsD16 && !Subtarget->hasUnpackedD16VMem())
5418        NumVDataDwords = (DMaskLanes + 1) / 2;
5419      else
5420        NumVDataDwords = DMaskLanes;
5421
5422      AdjustRetType = true;
5423    }
5424
5425    AddrIdx = DMaskIdx + 1;
5426  }
5427
5428  unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
5429  unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
5430  unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
5431  unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
5432                       NumCoords + NumLCM;
5433  unsigned NumMIVAddrs = NumVAddrs;
5434
5435  SmallVector<SDValue, 4> VAddrs;
5436
5437  // Optimize _L to _LZ when _L is zero
5438  if (LZMappingInfo) {
5439    if (auto ConstantLod =
5440         dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5441      if (ConstantLod->isZero() || ConstantLod->isNegative()) {
5442        IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
5443        NumMIVAddrs--;               // remove 'lod'
5444      }
5445    }
5446  }
5447
5448  // Optimize _mip away, when 'lod' is zero
5449  if (MIPMappingInfo) {
5450    if (auto ConstantLod =
5451         dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5452      if (ConstantLod->isNullValue()) {
5453        IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
5454        NumMIVAddrs--;               // remove 'lod'
5455      }
5456    }
5457  }
5458
5459  // Check for 16 bit addresses and pack if true.
5460  unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
5461  MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
5462  const MVT VAddrScalarVT = VAddrVT.getScalarType();
5463  if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
5464      ST->hasFeature(AMDGPU::FeatureR128A16)) {
5465    IsA16 = true;
5466    const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
5467    for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
5468      SDValue AddrLo, AddrHi;
5469      // Push back extra arguments.
5470      if (i < DimIdx) {
5471        AddrLo = Op.getOperand(i);
5472      } else {
5473        AddrLo = Op.getOperand(i);
5474        // Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
5475        // in 1D, derivatives dx/dh and dx/dv are packed with undef.
5476        if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
5477            ((NumGradients / 2) % 2 == 1 &&
5478            (i == DimIdx + (NumGradients / 2) - 1 ||
5479             i == DimIdx + NumGradients - 1))) {
5480          AddrHi = DAG.getUNDEF(MVT::f16);
5481        } else {
5482          AddrHi = Op.getOperand(i + 1);
5483          i++;
5484        }
5485        AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
5486                             {AddrLo, AddrHi});
5487        AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
5488      }
5489      VAddrs.push_back(AddrLo);
5490    }
5491  } else {
5492    for (unsigned i = 0; i < NumMIVAddrs; ++i)
5493      VAddrs.push_back(Op.getOperand(AddrIdx + i));
5494  }
5495
5496  // If the register allocator cannot place the address registers contiguously
5497  // without introducing moves, then using the non-sequential address encoding
5498  // is always preferable, since it saves VALU instructions and is usually a
5499  // wash in terms of code size or even better.
5500  //
5501  // However, we currently have no way of hinting to the register allocator that
5502  // MIMG addresses should be placed contiguously when it is possible to do so,
5503  // so force non-NSA for the common 2-address case as a heuristic.
5504  //
5505  // SIShrinkInstructions will convert NSA encodings to non-NSA after register
5506  // allocation when possible.
5507  bool UseNSA =
5508      ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
5509  SDValue VAddr;
5510  if (!UseNSA)
5511    VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
5512
5513  SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
5514  SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
5515  unsigned CtrlIdx; // Index of texfailctrl argument
5516  SDValue Unorm;
5517  if (!BaseOpcode->Sampler) {
5518    Unorm = True;
5519    CtrlIdx = AddrIdx + NumVAddrs + 1;
5520  } else {
5521    auto UnormConst =
5522        cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
5523
5524    Unorm = UnormConst->getZExtValue() ? True : False;
5525    CtrlIdx = AddrIdx + NumVAddrs + 3;
5526  }
5527
5528  SDValue TFE;
5529  SDValue LWE;
5530  SDValue TexFail = Op.getOperand(CtrlIdx);
5531  bool IsTexFail = false;
5532  if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
5533    return Op;
5534
5535  if (IsTexFail) {
5536    if (!DMaskLanes) {
5537      // Expecting to get an error flag since TFC is on - and dmask is 0
5538      // Force dmask to be at least 1 otherwise the instruction will fail
5539      DMask = 0x1;
5540      DMaskLanes = 1;
5541      NumVDataDwords = 1;
5542    }
5543    NumVDataDwords += 1;
5544    AdjustRetType = true;
5545  }
5546
5547  // Has something earlier tagged that the return type needs adjusting
5548  // This happens if the instruction is a load or has set TexFailCtrl flags
5549  if (AdjustRetType) {
5550    // NumVDataDwords reflects the true number of dwords required in the return type
5551    if (DMaskLanes == 0 && !BaseOpcode->Store) {
5552      // This is a no-op load. This can be eliminated
5553      SDValue Undef = DAG.getUNDEF(Op.getValueType());
5554      if (isa<MemSDNode>(Op))
5555        return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
5556      return Undef;
5557    }
5558
5559    EVT NewVT = NumVDataDwords > 1 ?
5560                  EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords)
5561                : MVT::f32;
5562
5563    ResultTypes[0] = NewVT;
5564    if (ResultTypes.size() == 3) {
5565      // Original result was aggregate type used for TexFailCtrl results
5566      // The actual instruction returns as a vector type which has now been
5567      // created. Remove the aggregate result.
5568      ResultTypes.erase(&ResultTypes[1]);
5569    }
5570  }
5571
5572  SDValue GLC;
5573  SDValue SLC;
5574  SDValue DLC;
5575  if (BaseOpcode->Atomic) {
5576    GLC = True; // TODO no-return optimization
5577    if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
5578                          IsGFX10 ? &DLC : nullptr))
5579      return Op;
5580  } else {
5581    if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
5582                          IsGFX10 ? &DLC : nullptr))
5583      return Op;
5584  }
5585
5586  SmallVector<SDValue, 26> Ops;
5587  if (BaseOpcode->Store || BaseOpcode->Atomic)
5588    Ops.push_back(VData); // vdata
5589  if (UseNSA) {
5590    for (const SDValue &Addr : VAddrs)
5591      Ops.push_back(Addr);
5592  } else {
5593    Ops.push_back(VAddr);
5594  }
5595  Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
5596  if (BaseOpcode->Sampler)
5597    Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
5598  Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
5599  if (IsGFX10)
5600    Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
5601  Ops.push_back(Unorm);
5602  if (IsGFX10)
5603    Ops.push_back(DLC);
5604  Ops.push_back(GLC);
5605  Ops.push_back(SLC);
5606  Ops.push_back(IsA16 &&  // a16 or r128
5607                ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
5608  Ops.push_back(TFE); // tfe
5609  Ops.push_back(LWE); // lwe
5610  if (!IsGFX10)
5611    Ops.push_back(DimInfo->DA ? True : False);
5612  if (BaseOpcode->HasD16)
5613    Ops.push_back(IsD16 ? True : False);
5614  if (isa<MemSDNode>(Op))
5615    Ops.push_back(Op.getOperand(0)); // chain
5616
5617  int NumVAddrDwords =
5618      UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
5619  int Opcode = -1;
5620
5621  if (IsGFX10) {
5622    Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
5623                                   UseNSA ? AMDGPU::MIMGEncGfx10NSA
5624                                          : AMDGPU::MIMGEncGfx10Default,
5625                                   NumVDataDwords, NumVAddrDwords);
5626  } else {
5627    if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5628      Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
5629                                     NumVDataDwords, NumVAddrDwords);
5630    if (Opcode == -1)
5631      Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
5632                                     NumVDataDwords, NumVAddrDwords);
5633  }
5634  assert(Opcode != -1);
5635
5636  MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
5637  if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
5638    MachineMemOperand *MemRef = MemOp->getMemOperand();
5639    DAG.setNodeMemRefs(NewNode, {MemRef});
5640  }
5641
5642  if (BaseOpcode->AtomicX2) {
5643    SmallVector<SDValue, 1> Elt;
5644    DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
5645    return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
5646  } else if (!BaseOpcode->Store) {
5647    return constructRetValue(DAG, NewNode,
5648                             OrigResultTypes, IsTexFail,
5649                             Subtarget->hasUnpackedD16VMem(), IsD16,
5650                             DMaskLanes, NumVDataDwords, DL,
5651                             *DAG.getContext());
5652  }
5653
5654  return SDValue(NewNode, 0);
5655}
5656
5657SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
5658                                       SDValue Offset, SDValue GLC, SDValue DLC,
5659                                       SelectionDAG &DAG) const {
5660  MachineFunction &MF = DAG.getMachineFunction();
5661
5662  const DataLayout &DataLayout = DAG.getDataLayout();
5663  unsigned Align =
5664      DataLayout.getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5665
5666  MachineMemOperand *MMO = MF.getMachineMemOperand(
5667      MachinePointerInfo(),
5668      MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
5669          MachineMemOperand::MOInvariant,
5670      VT.getStoreSize(), Align);
5671
5672  if (!Offset->isDivergent()) {
5673    SDValue Ops[] = {
5674        Rsrc,
5675        Offset, // Offset
5676        GLC,
5677        DLC,
5678    };
5679
5680    // Widen vec3 load to vec4.
5681    if (VT.isVector() && VT.getVectorNumElements() == 3) {
5682      EVT WidenedVT =
5683          EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
5684      auto WidenedOp = DAG.getMemIntrinsicNode(
5685          AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
5686          MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
5687      auto Subvector = DAG.getNode(
5688          ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
5689          DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
5690      return Subvector;
5691    }
5692
5693    return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
5694                                   DAG.getVTList(VT), Ops, VT, MMO);
5695  }
5696
5697  // We have a divergent offset. Emit a MUBUF buffer load instead. We can
5698  // assume that the buffer is unswizzled.
5699  SmallVector<SDValue, 4> Loads;
5700  unsigned NumLoads = 1;
5701  MVT LoadVT = VT.getSimpleVT();
5702  unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
5703  assert((LoadVT.getScalarType() == MVT::i32 ||
5704          LoadVT.getScalarType() == MVT::f32));
5705
5706  if (NumElts == 8 || NumElts == 16) {
5707    NumLoads = NumElts / 4;
5708    LoadVT = MVT::v4i32;
5709  }
5710
5711  SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
5712  unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
5713  SDValue Ops[] = {
5714      DAG.getEntryNode(),                               // Chain
5715      Rsrc,                                             // rsrc
5716      DAG.getConstant(0, DL, MVT::i32),                 // vindex
5717      {},                                               // voffset
5718      {},                                               // soffset
5719      {},                                               // offset
5720      DAG.getTargetConstant(CachePolicy, DL, MVT::i32), // cachepolicy
5721      DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
5722  };
5723
5724  // Use the alignment to ensure that the required offsets will fit into the
5725  // immediate offsets.
5726  setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
5727
5728  uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
5729  for (unsigned i = 0; i < NumLoads; ++i) {
5730    Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
5731    Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
5732                                        LoadVT, MMO, DAG));
5733  }
5734
5735  if (VT == MVT::v8i32 || VT == MVT::v16i32)
5736    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
5737
5738  return Loads[0];
5739}
5740
5741SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5742                                                  SelectionDAG &DAG) const {
5743  MachineFunction &MF = DAG.getMachineFunction();
5744  auto MFI = MF.getInfo<SIMachineFunctionInfo>();
5745
5746  EVT VT = Op.getValueType();
5747  SDLoc DL(Op);
5748  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5749
5750  // TODO: Should this propagate fast-math-flags?
5751
5752  switch (IntrinsicID) {
5753  case Intrinsic::amdgcn_implicit_buffer_ptr: {
5754    if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
5755      return emitNonHSAIntrinsicError(DAG, DL, VT);
5756    return getPreloadedValue(DAG, *MFI, VT,
5757                             AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5758  }
5759  case Intrinsic::amdgcn_dispatch_ptr:
5760  case Intrinsic::amdgcn_queue_ptr: {
5761    if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
5762      DiagnosticInfoUnsupported BadIntrin(
5763          MF.getFunction(), "unsupported hsa intrinsic without hsa target",
5764          DL.getDebugLoc());
5765      DAG.getContext()->diagnose(BadIntrin);
5766      return DAG.getUNDEF(VT);
5767    }
5768
5769    auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
5770      AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
5771    return getPreloadedValue(DAG, *MFI, VT, RegID);
5772  }
5773  case Intrinsic::amdgcn_implicitarg_ptr: {
5774    if (MFI->isEntryFunction())
5775      return getImplicitArgPtr(DAG, DL);
5776    return getPreloadedValue(DAG, *MFI, VT,
5777                             AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
5778  }
5779  case Intrinsic::amdgcn_kernarg_segment_ptr: {
5780    return getPreloadedValue(DAG, *MFI, VT,
5781                             AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5782  }
5783  case Intrinsic::amdgcn_dispatch_id: {
5784    return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
5785  }
5786  case Intrinsic::amdgcn_rcp:
5787    return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
5788  case Intrinsic::amdgcn_rsq:
5789    return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5790  case Intrinsic::amdgcn_rsq_legacy:
5791    if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5792      return emitRemovedIntrinsicError(DAG, DL, VT);
5793
5794    return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
5795  case Intrinsic::amdgcn_rcp_legacy:
5796    if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5797      return emitRemovedIntrinsicError(DAG, DL, VT);
5798    return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
5799  case Intrinsic::amdgcn_rsq_clamp: {
5800    if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5801      return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
5802
5803    Type *Type = VT.getTypeForEVT(*DAG.getContext());
5804    APFloat Max = APFloat::getLargest(Type->getFltSemantics());
5805    APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
5806
5807    SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5808    SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
5809                              DAG.getConstantFP(Max, DL, VT));
5810    return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
5811                       DAG.getConstantFP(Min, DL, VT));
5812  }
5813  case Intrinsic::r600_read_ngroups_x:
5814    if (Subtarget->isAmdHsaOS())
5815      return emitNonHSAIntrinsicError(DAG, DL, VT);
5816
5817    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5818                                    SI::KernelInputOffsets::NGROUPS_X, 4, false);
5819  case Intrinsic::r600_read_ngroups_y:
5820    if (Subtarget->isAmdHsaOS())
5821      return emitNonHSAIntrinsicError(DAG, DL, VT);
5822
5823    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5824                                    SI::KernelInputOffsets::NGROUPS_Y, 4, false);
5825  case Intrinsic::r600_read_ngroups_z:
5826    if (Subtarget->isAmdHsaOS())
5827      return emitNonHSAIntrinsicError(DAG, DL, VT);
5828
5829    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5830                                    SI::KernelInputOffsets::NGROUPS_Z, 4, false);
5831  case Intrinsic::r600_read_global_size_x:
5832    if (Subtarget->isAmdHsaOS())
5833      return emitNonHSAIntrinsicError(DAG, DL, VT);
5834
5835    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5836                                    SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
5837  case Intrinsic::r600_read_global_size_y:
5838    if (Subtarget->isAmdHsaOS())
5839      return emitNonHSAIntrinsicError(DAG, DL, VT);
5840
5841    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5842                                    SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
5843  case Intrinsic::r600_read_global_size_z:
5844    if (Subtarget->isAmdHsaOS())
5845      return emitNonHSAIntrinsicError(DAG, DL, VT);
5846
5847    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5848                                    SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
5849  case Intrinsic::r600_read_local_size_x:
5850    if (Subtarget->isAmdHsaOS())
5851      return emitNonHSAIntrinsicError(DAG, DL, VT);
5852
5853    return lowerImplicitZextParam(DAG, Op, MVT::i16,
5854                                  SI::KernelInputOffsets::LOCAL_SIZE_X);
5855  case Intrinsic::r600_read_local_size_y:
5856    if (Subtarget->isAmdHsaOS())
5857      return emitNonHSAIntrinsicError(DAG, DL, VT);
5858
5859    return lowerImplicitZextParam(DAG, Op, MVT::i16,
5860                                  SI::KernelInputOffsets::LOCAL_SIZE_Y);
5861  case Intrinsic::r600_read_local_size_z:
5862    if (Subtarget->isAmdHsaOS())
5863      return emitNonHSAIntrinsicError(DAG, DL, VT);
5864
5865    return lowerImplicitZextParam(DAG, Op, MVT::i16,
5866                                  SI::KernelInputOffsets::LOCAL_SIZE_Z);
5867  case Intrinsic::amdgcn_workgroup_id_x:
5868  case Intrinsic::r600_read_tgid_x:
5869    return getPreloadedValue(DAG, *MFI, VT,
5870                             AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5871  case Intrinsic::amdgcn_workgroup_id_y:
5872  case Intrinsic::r600_read_tgid_y:
5873    return getPreloadedValue(DAG, *MFI, VT,
5874                             AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5875  case Intrinsic::amdgcn_workgroup_id_z:
5876  case Intrinsic::r600_read_tgid_z:
5877    return getPreloadedValue(DAG, *MFI, VT,
5878                             AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5879  case Intrinsic::amdgcn_workitem_id_x:
5880  case Intrinsic::r600_read_tidig_x:
5881    return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5882                          SDLoc(DAG.getEntryNode()),
5883                          MFI->getArgInfo().WorkItemIDX);
5884  case Intrinsic::amdgcn_workitem_id_y:
5885  case Intrinsic::r600_read_tidig_y:
5886    return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5887                          SDLoc(DAG.getEntryNode()),
5888                          MFI->getArgInfo().WorkItemIDY);
5889  case Intrinsic::amdgcn_workitem_id_z:
5890  case Intrinsic::r600_read_tidig_z:
5891    return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5892                          SDLoc(DAG.getEntryNode()),
5893                          MFI->getArgInfo().WorkItemIDZ);
5894  case Intrinsic::amdgcn_wavefrontsize:
5895    return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
5896                           SDLoc(Op), MVT::i32);
5897  case Intrinsic::amdgcn_s_buffer_load: {
5898    bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5899    SDValue GLC;
5900    SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
5901    if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
5902                          IsGFX10 ? &DLC : nullptr))
5903      return Op;
5904    return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC,
5905                        DAG);
5906  }
5907  case Intrinsic::amdgcn_fdiv_fast:
5908    return lowerFDIV_FAST(Op, DAG);
5909  case Intrinsic::amdgcn_interp_p1_f16: {
5910    SDValue ToM0 = DAG.getCopyToReg(DAG.getEntryNode(), DL, AMDGPU::M0,
5911                                    Op.getOperand(5), SDValue());
5912    if (getSubtarget()->getLDSBankCount() == 16) {
5913      // 16 bank LDS
5914
5915      // FIXME: This implicitly will insert a second CopyToReg to M0.
5916      SDValue S = DAG.getNode(
5917        ISD::INTRINSIC_WO_CHAIN, DL, MVT::f32,
5918        DAG.getTargetConstant(Intrinsic::amdgcn_interp_mov, DL, MVT::i32),
5919        DAG.getConstant(2, DL, MVT::i32), // P0
5920        Op.getOperand(2),  // Attrchan
5921        Op.getOperand(3),  // Attr
5922        Op.getOperand(5)); // m0
5923
5924      SDValue Ops[] = {
5925        Op.getOperand(1), // Src0
5926        Op.getOperand(2), // Attrchan
5927        Op.getOperand(3), // Attr
5928        DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5929        S, // Src2 - holds two f16 values selected by high
5930        DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5931        Op.getOperand(4), // high
5932        DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5933        DAG.getTargetConstant(0, DL, MVT::i32) // $omod
5934      };
5935      return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops);
5936    } else {
5937      // 32 bank LDS
5938      SDValue Ops[] = {
5939        Op.getOperand(1), // Src0
5940        Op.getOperand(2), // Attrchan
5941        Op.getOperand(3), // Attr
5942        DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5943        Op.getOperand(4), // high
5944        DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5945        DAG.getTargetConstant(0, DL, MVT::i32), // $omod
5946        ToM0.getValue(1)
5947      };
5948      return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops);
5949    }
5950  }
5951  case Intrinsic::amdgcn_sin:
5952    return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
5953
5954  case Intrinsic::amdgcn_cos:
5955    return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
5956
5957  case Intrinsic::amdgcn_mul_u24:
5958    return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5959  case Intrinsic::amdgcn_mul_i24:
5960    return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5961
5962  case Intrinsic::amdgcn_log_clamp: {
5963    if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5964      return SDValue();
5965
5966    DiagnosticInfoUnsupported BadIntrin(
5967      MF.getFunction(), "intrinsic not supported on subtarget",
5968      DL.getDebugLoc());
5969      DAG.getContext()->diagnose(BadIntrin);
5970      return DAG.getUNDEF(VT);
5971  }
5972  case Intrinsic::amdgcn_ldexp:
5973    return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
5974                       Op.getOperand(1), Op.getOperand(2));
5975
5976  case Intrinsic::amdgcn_fract:
5977    return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
5978
5979  case Intrinsic::amdgcn_class:
5980    return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
5981                       Op.getOperand(1), Op.getOperand(2));
5982  case Intrinsic::amdgcn_div_fmas:
5983    return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
5984                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5985                       Op.getOperand(4));
5986
5987  case Intrinsic::amdgcn_div_fixup:
5988    return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
5989                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5990
5991  case Intrinsic::amdgcn_trig_preop:
5992    return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
5993                       Op.getOperand(1), Op.getOperand(2));
5994  case Intrinsic::amdgcn_div_scale: {
5995    const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
5996
5997    // Translate to the operands expected by the machine instruction. The
5998    // first parameter must be the same as the first instruction.
5999    SDValue Numerator = Op.getOperand(1);
6000    SDValue Denominator = Op.getOperand(2);
6001
6002    // Note this order is opposite of the machine instruction's operations,
6003    // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6004    // intrinsic has the numerator as the first operand to match a normal
6005    // division operation.
6006
6007    SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6008
6009    return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6010                       Denominator, Numerator);
6011  }
6012  case Intrinsic::amdgcn_icmp: {
6013    // There is a Pat that handles this variant, so return it as-is.
6014    if (Op.getOperand(1).getValueType() == MVT::i1 &&
6015        Op.getConstantOperandVal(2) == 0 &&
6016        Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6017      return Op;
6018    return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6019  }
6020  case Intrinsic::amdgcn_fcmp: {
6021    return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6022  }
6023  case Intrinsic::amdgcn_fmed3:
6024    return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6025                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6026  case Intrinsic::amdgcn_fdot2:
6027    return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6028                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6029                       Op.getOperand(4));
6030  case Intrinsic::amdgcn_fmul_legacy:
6031    return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6032                       Op.getOperand(1), Op.getOperand(2));
6033  case Intrinsic::amdgcn_sffbh:
6034    return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6035  case Intrinsic::amdgcn_sbfe:
6036    return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6037                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6038  case Intrinsic::amdgcn_ubfe:
6039    return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6040                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6041  case Intrinsic::amdgcn_cvt_pkrtz:
6042  case Intrinsic::amdgcn_cvt_pknorm_i16:
6043  case Intrinsic::amdgcn_cvt_pknorm_u16:
6044  case Intrinsic::amdgcn_cvt_pk_i16:
6045  case Intrinsic::amdgcn_cvt_pk_u16: {
6046    // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6047    EVT VT = Op.getValueType();
6048    unsigned Opcode;
6049
6050    if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6051      Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6052    else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6053      Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6054    else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6055      Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6056    else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6057      Opcode = AMDGPUISD::CVT_PK_I16_I32;
6058    else
6059      Opcode = AMDGPUISD::CVT_PK_U16_U32;
6060
6061    if (isTypeLegal(VT))
6062      return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6063
6064    SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6065                               Op.getOperand(1), Op.getOperand(2));
6066    return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6067  }
6068  case Intrinsic::amdgcn_fmad_ftz:
6069    return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6070                       Op.getOperand(2), Op.getOperand(3));
6071
6072  case Intrinsic::amdgcn_if_break:
6073    return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6074                                      Op->getOperand(1), Op->getOperand(2)), 0);
6075
6076  case Intrinsic::amdgcn_groupstaticsize: {
6077    Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6078    if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6079      return Op;
6080
6081    const Module *M = MF.getFunction().getParent();
6082    const GlobalValue *GV =
6083        M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6084    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6085                                            SIInstrInfo::MO_ABS32_LO);
6086    return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6087  }
6088  case Intrinsic::amdgcn_is_shared:
6089  case Intrinsic::amdgcn_is_private: {
6090    SDLoc SL(Op);
6091    unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6092      AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6093    SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6094    SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6095                                 Op.getOperand(1));
6096
6097    SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6098                                DAG.getConstant(1, SL, MVT::i32));
6099    return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6100  }
6101  default:
6102    if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6103            AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6104      return lowerImage(Op, ImageDimIntr, DAG);
6105
6106    return Op;
6107  }
6108}
6109
6110// This function computes an appropriate offset to pass to
6111// MachineMemOperand::setOffset() based on the offset inputs to
6112// an intrinsic.  If any of the offsets are non-contstant or
6113// if VIndex is non-zero then this function returns 0.  Otherwise,
6114// it returns the sum of VOffset, SOffset, and Offset.
6115static unsigned getBufferOffsetForMMO(SDValue VOffset,
6116                                      SDValue SOffset,
6117                                      SDValue Offset,
6118                                      SDValue VIndex = SDValue()) {
6119
6120  if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6121      !isa<ConstantSDNode>(Offset))
6122    return 0;
6123
6124  if (VIndex) {
6125    if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6126      return 0;
6127  }
6128
6129  return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6130         cast<ConstantSDNode>(SOffset)->getSExtValue() +
6131         cast<ConstantSDNode>(Offset)->getSExtValue();
6132}
6133
6134SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6135                                                 SelectionDAG &DAG) const {
6136  unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6137  SDLoc DL(Op);
6138
6139  switch (IntrID) {
6140  case Intrinsic::amdgcn_ds_ordered_add:
6141  case Intrinsic::amdgcn_ds_ordered_swap: {
6142    MemSDNode *M = cast<MemSDNode>(Op);
6143    SDValue Chain = M->getOperand(0);
6144    SDValue M0 = M->getOperand(2);
6145    SDValue Value = M->getOperand(3);
6146    unsigned IndexOperand = M->getConstantOperandVal(7);
6147    unsigned WaveRelease = M->getConstantOperandVal(8);
6148    unsigned WaveDone = M->getConstantOperandVal(9);
6149    unsigned ShaderType;
6150    unsigned Instruction;
6151
6152    unsigned OrderedCountIndex = IndexOperand & 0x3f;
6153    IndexOperand &= ~0x3f;
6154    unsigned CountDw = 0;
6155
6156    if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6157      CountDw = (IndexOperand >> 24) & 0xf;
6158      IndexOperand &= ~(0xf << 24);
6159
6160      if (CountDw < 1 || CountDw > 4) {
6161        report_fatal_error(
6162            "ds_ordered_count: dword count must be between 1 and 4");
6163      }
6164    }
6165
6166    if (IndexOperand)
6167      report_fatal_error("ds_ordered_count: bad index operand");
6168
6169    switch (IntrID) {
6170    case Intrinsic::amdgcn_ds_ordered_add:
6171      Instruction = 0;
6172      break;
6173    case Intrinsic::amdgcn_ds_ordered_swap:
6174      Instruction = 1;
6175      break;
6176    }
6177
6178    if (WaveDone && !WaveRelease)
6179      report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6180
6181    switch (DAG.getMachineFunction().getFunction().getCallingConv()) {
6182    case CallingConv::AMDGPU_CS:
6183    case CallingConv::AMDGPU_KERNEL:
6184      ShaderType = 0;
6185      break;
6186    case CallingConv::AMDGPU_PS:
6187      ShaderType = 1;
6188      break;
6189    case CallingConv::AMDGPU_VS:
6190      ShaderType = 2;
6191      break;
6192    case CallingConv::AMDGPU_GS:
6193      ShaderType = 3;
6194      break;
6195    default:
6196      report_fatal_error("ds_ordered_count unsupported for this calling conv");
6197    }
6198
6199    unsigned Offset0 = OrderedCountIndex << 2;
6200    unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6201                       (Instruction << 4);
6202
6203    if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6204      Offset1 |= (CountDw - 1) << 6;
6205
6206    unsigned Offset = Offset0 | (Offset1 << 8);
6207
6208    SDValue Ops[] = {
6209      Chain,
6210      Value,
6211      DAG.getTargetConstant(Offset, DL, MVT::i16),
6212      copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6213    };
6214    return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6215                                   M->getVTList(), Ops, M->getMemoryVT(),
6216                                   M->getMemOperand());
6217  }
6218  case Intrinsic::amdgcn_ds_fadd: {
6219    MemSDNode *M = cast<MemSDNode>(Op);
6220    unsigned Opc;
6221    switch (IntrID) {
6222    case Intrinsic::amdgcn_ds_fadd:
6223      Opc = ISD::ATOMIC_LOAD_FADD;
6224      break;
6225    }
6226
6227    return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6228                         M->getOperand(0), M->getOperand(2), M->getOperand(3),
6229                         M->getMemOperand());
6230  }
6231  case Intrinsic::amdgcn_atomic_inc:
6232  case Intrinsic::amdgcn_atomic_dec:
6233  case Intrinsic::amdgcn_ds_fmin:
6234  case Intrinsic::amdgcn_ds_fmax: {
6235    MemSDNode *M = cast<MemSDNode>(Op);
6236    unsigned Opc;
6237    switch (IntrID) {
6238    case Intrinsic::amdgcn_atomic_inc:
6239      Opc = AMDGPUISD::ATOMIC_INC;
6240      break;
6241    case Intrinsic::amdgcn_atomic_dec:
6242      Opc = AMDGPUISD::ATOMIC_DEC;
6243      break;
6244    case Intrinsic::amdgcn_ds_fmin:
6245      Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6246      break;
6247    case Intrinsic::amdgcn_ds_fmax:
6248      Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6249      break;
6250    default:
6251      llvm_unreachable("Unknown intrinsic!");
6252    }
6253    SDValue Ops[] = {
6254      M->getOperand(0), // Chain
6255      M->getOperand(2), // Ptr
6256      M->getOperand(3)  // Value
6257    };
6258
6259    return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6260                                   M->getMemoryVT(), M->getMemOperand());
6261  }
6262  case Intrinsic::amdgcn_buffer_load:
6263  case Intrinsic::amdgcn_buffer_load_format: {
6264    unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6265    unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6266    unsigned IdxEn = 1;
6267    if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6268      IdxEn = Idx->getZExtValue() != 0;
6269    SDValue Ops[] = {
6270      Op.getOperand(0), // Chain
6271      Op.getOperand(2), // rsrc
6272      Op.getOperand(3), // vindex
6273      SDValue(),        // voffset -- will be set by setBufferOffsets
6274      SDValue(),        // soffset -- will be set by setBufferOffsets
6275      SDValue(),        // offset -- will be set by setBufferOffsets
6276      DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6277      DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6278    };
6279
6280    unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6281    // We don't know the offset if vindex is non-zero, so clear it.
6282    if (IdxEn)
6283      Offset = 0;
6284
6285    unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6286        AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6287
6288    EVT VT = Op.getValueType();
6289    EVT IntVT = VT.changeTypeToInteger();
6290    auto *M = cast<MemSDNode>(Op);
6291    M->getMemOperand()->setOffset(Offset);
6292    EVT LoadVT = Op.getValueType();
6293
6294    if (LoadVT.getScalarType() == MVT::f16)
6295      return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6296                                 M, DAG, Ops);
6297
6298    // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6299    if (LoadVT.getScalarType() == MVT::i8 ||
6300        LoadVT.getScalarType() == MVT::i16)
6301      return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6302
6303    return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6304                               M->getMemOperand(), DAG);
6305  }
6306  case Intrinsic::amdgcn_raw_buffer_load:
6307  case Intrinsic::amdgcn_raw_buffer_load_format: {
6308    const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6309
6310    auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6311    SDValue Ops[] = {
6312      Op.getOperand(0), // Chain
6313      Op.getOperand(2), // rsrc
6314      DAG.getConstant(0, DL, MVT::i32), // vindex
6315      Offsets.first,    // voffset
6316      Op.getOperand(4), // soffset
6317      Offsets.second,   // offset
6318      Op.getOperand(5), // cachepolicy, swizzled buffer
6319      DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6320    };
6321
6322    auto *M = cast<MemSDNode>(Op);
6323    M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6324    return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6325  }
6326  case Intrinsic::amdgcn_struct_buffer_load:
6327  case Intrinsic::amdgcn_struct_buffer_load_format: {
6328    const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6329
6330    auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6331    SDValue Ops[] = {
6332      Op.getOperand(0), // Chain
6333      Op.getOperand(2), // rsrc
6334      Op.getOperand(3), // vindex
6335      Offsets.first,    // voffset
6336      Op.getOperand(5), // soffset
6337      Offsets.second,   // offset
6338      Op.getOperand(6), // cachepolicy, swizzled buffer
6339      DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6340    };
6341
6342    auto *M = cast<MemSDNode>(Op);
6343    M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
6344                                                        Ops[2]));
6345    return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6346  }
6347  case Intrinsic::amdgcn_tbuffer_load: {
6348    MemSDNode *M = cast<MemSDNode>(Op);
6349    EVT LoadVT = Op.getValueType();
6350
6351    unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6352    unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6353    unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6354    unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6355    unsigned IdxEn = 1;
6356    if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6357      IdxEn = Idx->getZExtValue() != 0;
6358    SDValue Ops[] = {
6359      Op.getOperand(0),  // Chain
6360      Op.getOperand(2),  // rsrc
6361      Op.getOperand(3),  // vindex
6362      Op.getOperand(4),  // voffset
6363      Op.getOperand(5),  // soffset
6364      Op.getOperand(6),  // offset
6365      DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6366      DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6367      DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
6368    };
6369
6370    if (LoadVT.getScalarType() == MVT::f16)
6371      return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6372                                 M, DAG, Ops);
6373    return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6374                               Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6375                               DAG);
6376  }
6377  case Intrinsic::amdgcn_raw_tbuffer_load: {
6378    MemSDNode *M = cast<MemSDNode>(Op);
6379    EVT LoadVT = Op.getValueType();
6380    auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6381
6382    SDValue Ops[] = {
6383      Op.getOperand(0),  // Chain
6384      Op.getOperand(2),  // rsrc
6385      DAG.getConstant(0, DL, MVT::i32), // vindex
6386      Offsets.first,     // voffset
6387      Op.getOperand(4),  // soffset
6388      Offsets.second,    // offset
6389      Op.getOperand(5),  // format
6390      Op.getOperand(6),  // cachepolicy, swizzled buffer
6391      DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6392    };
6393
6394    if (LoadVT.getScalarType() == MVT::f16)
6395      return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6396                                 M, DAG, Ops);
6397    return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6398                               Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6399                               DAG);
6400  }
6401  case Intrinsic::amdgcn_struct_tbuffer_load: {
6402    MemSDNode *M = cast<MemSDNode>(Op);
6403    EVT LoadVT = Op.getValueType();
6404    auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6405
6406    SDValue Ops[] = {
6407      Op.getOperand(0),  // Chain
6408      Op.getOperand(2),  // rsrc
6409      Op.getOperand(3),  // vindex
6410      Offsets.first,     // voffset
6411      Op.getOperand(5),  // soffset
6412      Offsets.second,    // offset
6413      Op.getOperand(6),  // format
6414      Op.getOperand(7),  // cachepolicy, swizzled buffer
6415      DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6416    };
6417
6418    if (LoadVT.getScalarType() == MVT::f16)
6419      return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6420                                 M, DAG, Ops);
6421    return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6422                               Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6423                               DAG);
6424  }
6425  case Intrinsic::amdgcn_buffer_atomic_swap:
6426  case Intrinsic::amdgcn_buffer_atomic_add:
6427  case Intrinsic::amdgcn_buffer_atomic_sub:
6428  case Intrinsic::amdgcn_buffer_atomic_smin:
6429  case Intrinsic::amdgcn_buffer_atomic_umin:
6430  case Intrinsic::amdgcn_buffer_atomic_smax:
6431  case Intrinsic::amdgcn_buffer_atomic_umax:
6432  case Intrinsic::amdgcn_buffer_atomic_and:
6433  case Intrinsic::amdgcn_buffer_atomic_or:
6434  case Intrinsic::amdgcn_buffer_atomic_xor: {
6435    unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6436    unsigned IdxEn = 1;
6437    if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6438      IdxEn = Idx->getZExtValue() != 0;
6439    SDValue Ops[] = {
6440      Op.getOperand(0), // Chain
6441      Op.getOperand(2), // vdata
6442      Op.getOperand(3), // rsrc
6443      Op.getOperand(4), // vindex
6444      SDValue(),        // voffset -- will be set by setBufferOffsets
6445      SDValue(),        // soffset -- will be set by setBufferOffsets
6446      SDValue(),        // offset -- will be set by setBufferOffsets
6447      DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6448      DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6449    };
6450    unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6451    // We don't know the offset if vindex is non-zero, so clear it.
6452    if (IdxEn)
6453      Offset = 0;
6454    EVT VT = Op.getValueType();
6455
6456    auto *M = cast<MemSDNode>(Op);
6457    M->getMemOperand()->setOffset(Offset);
6458    unsigned Opcode = 0;
6459
6460    switch (IntrID) {
6461    case Intrinsic::amdgcn_buffer_atomic_swap:
6462      Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6463      break;
6464    case Intrinsic::amdgcn_buffer_atomic_add:
6465      Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6466      break;
6467    case Intrinsic::amdgcn_buffer_atomic_sub:
6468      Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6469      break;
6470    case Intrinsic::amdgcn_buffer_atomic_smin:
6471      Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6472      break;
6473    case Intrinsic::amdgcn_buffer_atomic_umin:
6474      Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6475      break;
6476    case Intrinsic::amdgcn_buffer_atomic_smax:
6477      Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6478      break;
6479    case Intrinsic::amdgcn_buffer_atomic_umax:
6480      Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6481      break;
6482    case Intrinsic::amdgcn_buffer_atomic_and:
6483      Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6484      break;
6485    case Intrinsic::amdgcn_buffer_atomic_or:
6486      Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6487      break;
6488    case Intrinsic::amdgcn_buffer_atomic_xor:
6489      Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6490      break;
6491    default:
6492      llvm_unreachable("unhandled atomic opcode");
6493    }
6494
6495    return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6496                                   M->getMemOperand());
6497  }
6498  case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6499  case Intrinsic::amdgcn_raw_buffer_atomic_add:
6500  case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6501  case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6502  case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6503  case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6504  case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6505  case Intrinsic::amdgcn_raw_buffer_atomic_and:
6506  case Intrinsic::amdgcn_raw_buffer_atomic_or:
6507  case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6508  case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6509  case Intrinsic::amdgcn_raw_buffer_atomic_dec: {
6510    auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6511    SDValue Ops[] = {
6512      Op.getOperand(0), // Chain
6513      Op.getOperand(2), // vdata
6514      Op.getOperand(3), // rsrc
6515      DAG.getConstant(0, DL, MVT::i32), // vindex
6516      Offsets.first,    // voffset
6517      Op.getOperand(5), // soffset
6518      Offsets.second,   // offset
6519      Op.getOperand(6), // cachepolicy
6520      DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6521    };
6522    EVT VT = Op.getValueType();
6523
6524    auto *M = cast<MemSDNode>(Op);
6525    M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6526    unsigned Opcode = 0;
6527
6528    switch (IntrID) {
6529    case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6530      Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6531      break;
6532    case Intrinsic::amdgcn_raw_buffer_atomic_add:
6533      Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6534      break;
6535    case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6536      Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6537      break;
6538    case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6539      Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6540      break;
6541    case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6542      Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6543      break;
6544    case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6545      Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6546      break;
6547    case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6548      Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6549      break;
6550    case Intrinsic::amdgcn_raw_buffer_atomic_and:
6551      Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6552      break;
6553    case Intrinsic::amdgcn_raw_buffer_atomic_or:
6554      Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6555      break;
6556    case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6557      Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6558      break;
6559    case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6560      Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6561      break;
6562    case Intrinsic::amdgcn_raw_buffer_atomic_dec:
6563      Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6564      break;
6565    default:
6566      llvm_unreachable("unhandled atomic opcode");
6567    }
6568
6569    return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6570                                   M->getMemOperand());
6571  }
6572  case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6573  case Intrinsic::amdgcn_struct_buffer_atomic_add:
6574  case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6575  case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6576  case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6577  case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6578  case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6579  case Intrinsic::amdgcn_struct_buffer_atomic_and:
6580  case Intrinsic::amdgcn_struct_buffer_atomic_or:
6581  case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6582  case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6583  case Intrinsic::amdgcn_struct_buffer_atomic_dec: {
6584    auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6585    SDValue Ops[] = {
6586      Op.getOperand(0), // Chain
6587      Op.getOperand(2), // vdata
6588      Op.getOperand(3), // rsrc
6589      Op.getOperand(4), // vindex
6590      Offsets.first,    // voffset
6591      Op.getOperand(6), // soffset
6592      Offsets.second,   // offset
6593      Op.getOperand(7), // cachepolicy
6594      DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6595    };
6596    EVT VT = Op.getValueType();
6597
6598    auto *M = cast<MemSDNode>(Op);
6599    M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6600                                                        Ops[3]));
6601    unsigned Opcode = 0;
6602
6603    switch (IntrID) {
6604    case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6605      Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6606      break;
6607    case Intrinsic::amdgcn_struct_buffer_atomic_add:
6608      Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6609      break;
6610    case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6611      Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6612      break;
6613    case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6614      Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6615      break;
6616    case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6617      Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6618      break;
6619    case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6620      Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6621      break;
6622    case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6623      Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6624      break;
6625    case Intrinsic::amdgcn_struct_buffer_atomic_and:
6626      Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6627      break;
6628    case Intrinsic::amdgcn_struct_buffer_atomic_or:
6629      Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6630      break;
6631    case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6632      Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6633      break;
6634    case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6635      Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6636      break;
6637    case Intrinsic::amdgcn_struct_buffer_atomic_dec:
6638      Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6639      break;
6640    default:
6641      llvm_unreachable("unhandled atomic opcode");
6642    }
6643
6644    return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6645                                   M->getMemOperand());
6646  }
6647  case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
6648    unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6649    unsigned IdxEn = 1;
6650    if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
6651      IdxEn = Idx->getZExtValue() != 0;
6652    SDValue Ops[] = {
6653      Op.getOperand(0), // Chain
6654      Op.getOperand(2), // src
6655      Op.getOperand(3), // cmp
6656      Op.getOperand(4), // rsrc
6657      Op.getOperand(5), // vindex
6658      SDValue(),        // voffset -- will be set by setBufferOffsets
6659      SDValue(),        // soffset -- will be set by setBufferOffsets
6660      SDValue(),        // offset -- will be set by setBufferOffsets
6661      DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6662      DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6663    };
6664    unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
6665    // We don't know the offset if vindex is non-zero, so clear it.
6666    if (IdxEn)
6667      Offset = 0;
6668    EVT VT = Op.getValueType();
6669    auto *M = cast<MemSDNode>(Op);
6670    M->getMemOperand()->setOffset(Offset);
6671
6672    return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6673                                   Op->getVTList(), Ops, VT, M->getMemOperand());
6674  }
6675  case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
6676    auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6677    SDValue Ops[] = {
6678      Op.getOperand(0), // Chain
6679      Op.getOperand(2), // src
6680      Op.getOperand(3), // cmp
6681      Op.getOperand(4), // rsrc
6682      DAG.getConstant(0, DL, MVT::i32), // vindex
6683      Offsets.first,    // voffset
6684      Op.getOperand(6), // soffset
6685      Offsets.second,   // offset
6686      Op.getOperand(7), // cachepolicy
6687      DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6688    };
6689    EVT VT = Op.getValueType();
6690    auto *M = cast<MemSDNode>(Op);
6691    M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
6692
6693    return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6694                                   Op->getVTList(), Ops, VT, M->getMemOperand());
6695  }
6696  case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
6697    auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
6698    SDValue Ops[] = {
6699      Op.getOperand(0), // Chain
6700      Op.getOperand(2), // src
6701      Op.getOperand(3), // cmp
6702      Op.getOperand(4), // rsrc
6703      Op.getOperand(5), // vindex
6704      Offsets.first,    // voffset
6705      Op.getOperand(7), // soffset
6706      Offsets.second,   // offset
6707      Op.getOperand(8), // cachepolicy
6708      DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6709    };
6710    EVT VT = Op.getValueType();
6711    auto *M = cast<MemSDNode>(Op);
6712    M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
6713                                                        Ops[4]));
6714
6715    return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6716                                   Op->getVTList(), Ops, VT, M->getMemOperand());
6717  }
6718
6719  default:
6720    if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6721            AMDGPU::getImageDimIntrinsicInfo(IntrID))
6722      return lowerImage(Op, ImageDimIntr, DAG);
6723
6724    return SDValue();
6725  }
6726}
6727
6728// Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
6729// dwordx4 if on SI.
6730SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
6731                                              SDVTList VTList,
6732                                              ArrayRef<SDValue> Ops, EVT MemVT,
6733                                              MachineMemOperand *MMO,
6734                                              SelectionDAG &DAG) const {
6735  EVT VT = VTList.VTs[0];
6736  EVT WidenedVT = VT;
6737  EVT WidenedMemVT = MemVT;
6738  if (!Subtarget->hasDwordx3LoadStores() &&
6739      (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
6740    WidenedVT = EVT::getVectorVT(*DAG.getContext(),
6741                                 WidenedVT.getVectorElementType(), 4);
6742    WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
6743                                    WidenedMemVT.getVectorElementType(), 4);
6744    MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
6745  }
6746
6747  assert(VTList.NumVTs == 2);
6748  SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
6749
6750  auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
6751                                       WidenedMemVT, MMO);
6752  if (WidenedVT != VT) {
6753    auto Extract = DAG.getNode(
6754        ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
6755        DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
6756    NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
6757  }
6758  return NewOp;
6759}
6760
6761SDValue SITargetLowering::handleD16VData(SDValue VData,
6762                                         SelectionDAG &DAG) const {
6763  EVT StoreVT = VData.getValueType();
6764
6765  // No change for f16 and legal vector D16 types.
6766  if (!StoreVT.isVector())
6767    return VData;
6768
6769  SDLoc DL(VData);
6770  assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
6771
6772  if (Subtarget->hasUnpackedD16VMem()) {
6773    // We need to unpack the packed data to store.
6774    EVT IntStoreVT = StoreVT.changeTypeToInteger();
6775    SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
6776
6777    EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
6778                                        StoreVT.getVectorNumElements());
6779    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
6780    return DAG.UnrollVectorOp(ZExt.getNode());
6781  }
6782
6783  assert(isTypeLegal(StoreVT));
6784  return VData;
6785}
6786
6787SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
6788                                              SelectionDAG &DAG) const {
6789  SDLoc DL(Op);
6790  SDValue Chain = Op.getOperand(0);
6791  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6792  MachineFunction &MF = DAG.getMachineFunction();
6793
6794  switch (IntrinsicID) {
6795  case Intrinsic::amdgcn_exp: {
6796    const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6797    const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6798    const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
6799    const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
6800
6801    const SDValue Ops[] = {
6802      Chain,
6803      DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6804      DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
6805      Op.getOperand(4), // src0
6806      Op.getOperand(5), // src1
6807      Op.getOperand(6), // src2
6808      Op.getOperand(7), // src3
6809      DAG.getTargetConstant(0, DL, MVT::i1), // compr
6810      DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6811    };
6812
6813    unsigned Opc = Done->isNullValue() ?
6814      AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6815    return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6816  }
6817  case Intrinsic::amdgcn_exp_compr: {
6818    const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6819    const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6820    SDValue Src0 = Op.getOperand(4);
6821    SDValue Src1 = Op.getOperand(5);
6822    const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
6823    const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
6824
6825    SDValue Undef = DAG.getUNDEF(MVT::f32);
6826    const SDValue Ops[] = {
6827      Chain,
6828      DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6829      DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
6830      DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
6831      DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
6832      Undef, // src2
6833      Undef, // src3
6834      DAG.getTargetConstant(1, DL, MVT::i1), // compr
6835      DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6836    };
6837
6838    unsigned Opc = Done->isNullValue() ?
6839      AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6840    return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6841  }
6842  case Intrinsic::amdgcn_s_barrier: {
6843    if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
6844      const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6845      unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
6846      if (WGSize <= ST.getWavefrontSize())
6847        return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
6848                                          Op.getOperand(0)), 0);
6849    }
6850    return SDValue();
6851  };
6852  case Intrinsic::amdgcn_tbuffer_store: {
6853    SDValue VData = Op.getOperand(2);
6854    bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6855    if (IsD16)
6856      VData = handleD16VData(VData, DAG);
6857    unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6858    unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6859    unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6860    unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
6861    unsigned IdxEn = 1;
6862    if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6863      IdxEn = Idx->getZExtValue() != 0;
6864    SDValue Ops[] = {
6865      Chain,
6866      VData,             // vdata
6867      Op.getOperand(3),  // rsrc
6868      Op.getOperand(4),  // vindex
6869      Op.getOperand(5),  // voffset
6870      Op.getOperand(6),  // soffset
6871      Op.getOperand(7),  // offset
6872      DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6873      DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6874      DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
6875    };
6876    unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6877                           AMDGPUISD::TBUFFER_STORE_FORMAT;
6878    MemSDNode *M = cast<MemSDNode>(Op);
6879    return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6880                                   M->getMemoryVT(), M->getMemOperand());
6881  }
6882
6883  case Intrinsic::amdgcn_struct_tbuffer_store: {
6884    SDValue VData = Op.getOperand(2);
6885    bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6886    if (IsD16)
6887      VData = handleD16VData(VData, DAG);
6888    auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6889    SDValue Ops[] = {
6890      Chain,
6891      VData,             // vdata
6892      Op.getOperand(3),  // rsrc
6893      Op.getOperand(4),  // vindex
6894      Offsets.first,     // voffset
6895      Op.getOperand(6),  // soffset
6896      Offsets.second,    // offset
6897      Op.getOperand(7),  // format
6898      Op.getOperand(8),  // cachepolicy, swizzled buffer
6899      DAG.getTargetConstant(1, DL, MVT::i1), // idexen
6900    };
6901    unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6902                           AMDGPUISD::TBUFFER_STORE_FORMAT;
6903    MemSDNode *M = cast<MemSDNode>(Op);
6904    return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6905                                   M->getMemoryVT(), M->getMemOperand());
6906  }
6907
6908  case Intrinsic::amdgcn_raw_tbuffer_store: {
6909    SDValue VData = Op.getOperand(2);
6910    bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6911    if (IsD16)
6912      VData = handleD16VData(VData, DAG);
6913    auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6914    SDValue Ops[] = {
6915      Chain,
6916      VData,             // vdata
6917      Op.getOperand(3),  // rsrc
6918      DAG.getConstant(0, DL, MVT::i32), // vindex
6919      Offsets.first,     // voffset
6920      Op.getOperand(5),  // soffset
6921      Offsets.second,    // offset
6922      Op.getOperand(6),  // format
6923      Op.getOperand(7),  // cachepolicy, swizzled buffer
6924      DAG.getTargetConstant(0, DL, MVT::i1), // idexen
6925    };
6926    unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6927                           AMDGPUISD::TBUFFER_STORE_FORMAT;
6928    MemSDNode *M = cast<MemSDNode>(Op);
6929    return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6930                                   M->getMemoryVT(), M->getMemOperand());
6931  }
6932
6933  case Intrinsic::amdgcn_buffer_store:
6934  case Intrinsic::amdgcn_buffer_store_format: {
6935    SDValue VData = Op.getOperand(2);
6936    bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6937    if (IsD16)
6938      VData = handleD16VData(VData, DAG);
6939    unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6940    unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6941    unsigned IdxEn = 1;
6942    if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6943      IdxEn = Idx->getZExtValue() != 0;
6944    SDValue Ops[] = {
6945      Chain,
6946      VData,
6947      Op.getOperand(3), // rsrc
6948      Op.getOperand(4), // vindex
6949      SDValue(), // voffset -- will be set by setBufferOffsets
6950      SDValue(), // soffset -- will be set by setBufferOffsets
6951      SDValue(), // offset -- will be set by setBufferOffsets
6952      DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6953      DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6954    };
6955    unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6956    // We don't know the offset if vindex is non-zero, so clear it.
6957    if (IdxEn)
6958      Offset = 0;
6959    unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
6960                   AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
6961    Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6962    MemSDNode *M = cast<MemSDNode>(Op);
6963    M->getMemOperand()->setOffset(Offset);
6964
6965    // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6966    EVT VDataType = VData.getValueType().getScalarType();
6967    if (VDataType == MVT::i8 || VDataType == MVT::i16)
6968      return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
6969
6970    return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6971                                   M->getMemoryVT(), M->getMemOperand());
6972  }
6973
6974  case Intrinsic::amdgcn_raw_buffer_store:
6975  case Intrinsic::amdgcn_raw_buffer_store_format: {
6976    const bool IsFormat =
6977        IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
6978
6979    SDValue VData = Op.getOperand(2);
6980    EVT VDataVT = VData.getValueType();
6981    EVT EltType = VDataVT.getScalarType();
6982    bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
6983    if (IsD16)
6984      VData = handleD16VData(VData, DAG);
6985
6986    if (!isTypeLegal(VDataVT)) {
6987      VData =
6988          DAG.getNode(ISD::BITCAST, DL,
6989                      getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
6990    }
6991
6992    auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6993    SDValue Ops[] = {
6994      Chain,
6995      VData,
6996      Op.getOperand(3), // rsrc
6997      DAG.getConstant(0, DL, MVT::i32), // vindex
6998      Offsets.first,    // voffset
6999      Op.getOperand(5), // soffset
7000      Offsets.second,   // offset
7001      Op.getOperand(6), // cachepolicy, swizzled buffer
7002      DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7003    };
7004    unsigned Opc =
7005        IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7006    Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7007    MemSDNode *M = cast<MemSDNode>(Op);
7008    M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
7009
7010    // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7011    if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7012      return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7013
7014    return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7015                                   M->getMemoryVT(), M->getMemOperand());
7016  }
7017
7018  case Intrinsic::amdgcn_struct_buffer_store:
7019  case Intrinsic::amdgcn_struct_buffer_store_format: {
7020    const bool IsFormat =
7021        IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7022
7023    SDValue VData = Op.getOperand(2);
7024    EVT VDataVT = VData.getValueType();
7025    EVT EltType = VDataVT.getScalarType();
7026    bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7027
7028    if (IsD16)
7029      VData = handleD16VData(VData, DAG);
7030
7031    if (!isTypeLegal(VDataVT)) {
7032      VData =
7033          DAG.getNode(ISD::BITCAST, DL,
7034                      getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7035    }
7036
7037    auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7038    SDValue Ops[] = {
7039      Chain,
7040      VData,
7041      Op.getOperand(3), // rsrc
7042      Op.getOperand(4), // vindex
7043      Offsets.first,    // voffset
7044      Op.getOperand(6), // soffset
7045      Offsets.second,   // offset
7046      Op.getOperand(7), // cachepolicy, swizzled buffer
7047      DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7048    };
7049    unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7050                   AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7051    Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7052    MemSDNode *M = cast<MemSDNode>(Op);
7053    M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7054                                                        Ops[3]));
7055
7056    // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7057    EVT VDataType = VData.getValueType().getScalarType();
7058    if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7059      return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7060
7061    return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7062                                   M->getMemoryVT(), M->getMemOperand());
7063  }
7064
7065  case Intrinsic::amdgcn_buffer_atomic_fadd: {
7066    unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7067    unsigned IdxEn = 1;
7068    if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7069      IdxEn = Idx->getZExtValue() != 0;
7070    SDValue Ops[] = {
7071      Chain,
7072      Op.getOperand(2), // vdata
7073      Op.getOperand(3), // rsrc
7074      Op.getOperand(4), // vindex
7075      SDValue(),        // voffset -- will be set by setBufferOffsets
7076      SDValue(),        // soffset -- will be set by setBufferOffsets
7077      SDValue(),        // offset -- will be set by setBufferOffsets
7078      DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7079      DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7080    };
7081    unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7082    // We don't know the offset if vindex is non-zero, so clear it.
7083    if (IdxEn)
7084      Offset = 0;
7085    EVT VT = Op.getOperand(2).getValueType();
7086
7087    auto *M = cast<MemSDNode>(Op);
7088    M->getMemOperand()->setOffset(Offset);
7089    unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD
7090                                    : AMDGPUISD::BUFFER_ATOMIC_FADD;
7091
7092    return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7093                                   M->getMemOperand());
7094  }
7095
7096  case Intrinsic::amdgcn_global_atomic_fadd: {
7097    SDValue Ops[] = {
7098      Chain,
7099      Op.getOperand(2), // ptr
7100      Op.getOperand(3)  // vdata
7101    };
7102    EVT VT = Op.getOperand(3).getValueType();
7103
7104    auto *M = cast<MemSDNode>(Op);
7105    if (VT.isVector()) {
7106      return DAG.getMemIntrinsicNode(
7107        AMDGPUISD::ATOMIC_PK_FADD, DL, Op->getVTList(), Ops, VT,
7108        M->getMemOperand());
7109    }
7110
7111    return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7112                         DAG.getVTList(VT, MVT::Other), Ops,
7113                         M->getMemOperand()).getValue(1);
7114  }
7115  case Intrinsic::amdgcn_end_cf:
7116    return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7117                                      Op->getOperand(2), Chain), 0);
7118
7119  default: {
7120    if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7121            AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7122      return lowerImage(Op, ImageDimIntr, DAG);
7123
7124    return Op;
7125  }
7126  }
7127}
7128
7129// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7130// offset (the offset that is included in bounds checking and swizzling, to be
7131// split between the instruction's voffset and immoffset fields) and soffset
7132// (the offset that is excluded from bounds checking and swizzling, to go in
7133// the instruction's soffset field).  This function takes the first kind of
7134// offset and figures out how to split it between voffset and immoffset.
7135std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7136    SDValue Offset, SelectionDAG &DAG) const {
7137  SDLoc DL(Offset);
7138  const unsigned MaxImm = 4095;
7139  SDValue N0 = Offset;
7140  ConstantSDNode *C1 = nullptr;
7141
7142  if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7143    N0 = SDValue();
7144  else if (DAG.isBaseWithConstantOffset(N0)) {
7145    C1 = cast<ConstantSDNode>(N0.getOperand(1));
7146    N0 = N0.getOperand(0);
7147  }
7148
7149  if (C1) {
7150    unsigned ImmOffset = C1->getZExtValue();
7151    // If the immediate value is too big for the immoffset field, put the value
7152    // and -4096 into the immoffset field so that the value that is copied/added
7153    // for the voffset field is a multiple of 4096, and it stands more chance
7154    // of being CSEd with the copy/add for another similar load/store.
7155    // However, do not do that rounding down to a multiple of 4096 if that is a
7156    // negative number, as it appears to be illegal to have a negative offset
7157    // in the vgpr, even if adding the immediate offset makes it positive.
7158    unsigned Overflow = ImmOffset & ~MaxImm;
7159    ImmOffset -= Overflow;
7160    if ((int32_t)Overflow < 0) {
7161      Overflow += ImmOffset;
7162      ImmOffset = 0;
7163    }
7164    C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7165    if (Overflow) {
7166      auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7167      if (!N0)
7168        N0 = OverflowVal;
7169      else {
7170        SDValue Ops[] = { N0, OverflowVal };
7171        N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7172      }
7173    }
7174  }
7175  if (!N0)
7176    N0 = DAG.getConstant(0, DL, MVT::i32);
7177  if (!C1)
7178    C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7179  return {N0, SDValue(C1, 0)};
7180}
7181
7182// Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7183// three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7184// pointed to by Offsets.
7185unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7186                                        SelectionDAG &DAG, SDValue *Offsets,
7187                                        unsigned Align) const {
7188  SDLoc DL(CombinedOffset);
7189  if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7190    uint32_t Imm = C->getZExtValue();
7191    uint32_t SOffset, ImmOffset;
7192    if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) {
7193      Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7194      Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7195      Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7196      return SOffset + ImmOffset;
7197    }
7198  }
7199  if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7200    SDValue N0 = CombinedOffset.getOperand(0);
7201    SDValue N1 = CombinedOffset.getOperand(1);
7202    uint32_t SOffset, ImmOffset;
7203    int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7204    if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7205                                                Subtarget, Align)) {
7206      Offsets[0] = N0;
7207      Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7208      Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7209      return 0;
7210    }
7211  }
7212  Offsets[0] = CombinedOffset;
7213  Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7214  Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7215  return 0;
7216}
7217
7218// Handle 8 bit and 16 bit buffer loads
7219SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7220                                                     EVT LoadVT, SDLoc DL,
7221                                                     ArrayRef<SDValue> Ops,
7222                                                     MemSDNode *M) const {
7223  EVT IntVT = LoadVT.changeTypeToInteger();
7224  unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7225         AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7226
7227  SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7228  SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7229                                               Ops, IntVT,
7230                                               M->getMemOperand());
7231  SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7232  LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7233
7234  return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7235}
7236
7237// Handle 8 bit and 16 bit buffer stores
7238SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7239                                                      EVT VDataType, SDLoc DL,
7240                                                      SDValue Ops[],
7241                                                      MemSDNode *M) const {
7242  if (VDataType == MVT::f16)
7243    Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7244
7245  SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7246  Ops[1] = BufferStoreExt;
7247  unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7248                                 AMDGPUISD::BUFFER_STORE_SHORT;
7249  ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7250  return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7251                                     M->getMemOperand());
7252}
7253
7254static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7255                                 ISD::LoadExtType ExtType, SDValue Op,
7256                                 const SDLoc &SL, EVT VT) {
7257  if (VT.bitsLT(Op.getValueType()))
7258    return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7259
7260  switch (ExtType) {
7261  case ISD::SEXTLOAD:
7262    return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7263  case ISD::ZEXTLOAD:
7264    return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7265  case ISD::EXTLOAD:
7266    return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7267  case ISD::NON_EXTLOAD:
7268    return Op;
7269  }
7270
7271  llvm_unreachable("invalid ext type");
7272}
7273
7274SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7275  SelectionDAG &DAG = DCI.DAG;
7276  if (Ld->getAlignment() < 4 || Ld->isDivergent())
7277    return SDValue();
7278
7279  // FIXME: Constant loads should all be marked invariant.
7280  unsigned AS = Ld->getAddressSpace();
7281  if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7282      AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7283      (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7284    return SDValue();
7285
7286  // Don't do this early, since it may interfere with adjacent load merging for
7287  // illegal types. We can avoid losing alignment information for exotic types
7288  // pre-legalize.
7289  EVT MemVT = Ld->getMemoryVT();
7290  if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7291      MemVT.getSizeInBits() >= 32)
7292    return SDValue();
7293
7294  SDLoc SL(Ld);
7295
7296  assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7297         "unexpected vector extload");
7298
7299  // TODO: Drop only high part of range.
7300  SDValue Ptr = Ld->getBasePtr();
7301  SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7302                                MVT::i32, SL, Ld->getChain(), Ptr,
7303                                Ld->getOffset(),
7304                                Ld->getPointerInfo(), MVT::i32,
7305                                Ld->getAlignment(),
7306                                Ld->getMemOperand()->getFlags(),
7307                                Ld->getAAInfo(),
7308                                nullptr); // Drop ranges
7309
7310  EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7311  if (MemVT.isFloatingPoint()) {
7312    assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7313           "unexpected fp extload");
7314    TruncVT = MemVT.changeTypeToInteger();
7315  }
7316
7317  SDValue Cvt = NewLoad;
7318  if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7319    Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7320                      DAG.getValueType(TruncVT));
7321  } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7322             Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7323    Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7324  } else {
7325    assert(Ld->getExtensionType() == ISD::EXTLOAD);
7326  }
7327
7328  EVT VT = Ld->getValueType(0);
7329  EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7330
7331  DCI.AddToWorklist(Cvt.getNode());
7332
7333  // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7334  // the appropriate extension from the 32-bit load.
7335  Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7336  DCI.AddToWorklist(Cvt.getNode());
7337
7338  // Handle conversion back to floating point if necessary.
7339  Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
7340
7341  return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
7342}
7343
7344SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7345  SDLoc DL(Op);
7346  LoadSDNode *Load = cast<LoadSDNode>(Op);
7347  ISD::LoadExtType ExtType = Load->getExtensionType();
7348  EVT MemVT = Load->getMemoryVT();
7349
7350  if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
7351    if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
7352      return SDValue();
7353
7354    // FIXME: Copied from PPC
7355    // First, load into 32 bits, then truncate to 1 bit.
7356
7357    SDValue Chain = Load->getChain();
7358    SDValue BasePtr = Load->getBasePtr();
7359    MachineMemOperand *MMO = Load->getMemOperand();
7360
7361    EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
7362
7363    SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
7364                                   BasePtr, RealMemVT, MMO);
7365
7366    if (!MemVT.isVector()) {
7367      SDValue Ops[] = {
7368        DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
7369        NewLD.getValue(1)
7370      };
7371
7372      return DAG.getMergeValues(Ops, DL);
7373    }
7374
7375    SmallVector<SDValue, 3> Elts;
7376    for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
7377      SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
7378                                DAG.getConstant(I, DL, MVT::i32));
7379
7380      Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
7381    }
7382
7383    SDValue Ops[] = {
7384      DAG.getBuildVector(MemVT, DL, Elts),
7385      NewLD.getValue(1)
7386    };
7387
7388    return DAG.getMergeValues(Ops, DL);
7389  }
7390
7391  if (!MemVT.isVector())
7392    return SDValue();
7393
7394  assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
7395         "Custom lowering for non-i32 vectors hasn't been implemented.");
7396
7397  if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7398                                      MemVT, *Load->getMemOperand())) {
7399    SDValue Ops[2];
7400    std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
7401    return DAG.getMergeValues(Ops, DL);
7402  }
7403
7404  unsigned Alignment = Load->getAlignment();
7405  unsigned AS = Load->getAddressSpace();
7406  if (Subtarget->hasLDSMisalignedBug() &&
7407      AS == AMDGPUAS::FLAT_ADDRESS &&
7408      Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
7409    return SplitVectorLoad(Op, DAG);
7410  }
7411
7412  MachineFunction &MF = DAG.getMachineFunction();
7413  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7414  // If there is a possibilty that flat instruction access scratch memory
7415  // then we need to use the same legalization rules we use for private.
7416  if (AS == AMDGPUAS::FLAT_ADDRESS)
7417    AS = MFI->hasFlatScratchInit() ?
7418         AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7419
7420  unsigned NumElements = MemVT.getVectorNumElements();
7421
7422  if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7423      AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
7424    if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
7425      if (MemVT.isPow2VectorType())
7426        return SDValue();
7427      if (NumElements == 3)
7428        return WidenVectorLoad(Op, DAG);
7429      return SplitVectorLoad(Op, DAG);
7430    }
7431    // Non-uniform loads will be selected to MUBUF instructions, so they
7432    // have the same legalization requirements as global and private
7433    // loads.
7434    //
7435  }
7436
7437  if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7438      AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7439      AS == AMDGPUAS::GLOBAL_ADDRESS) {
7440    if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
7441        !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
7442        Alignment >= 4 && NumElements < 32) {
7443      if (MemVT.isPow2VectorType())
7444        return SDValue();
7445      if (NumElements == 3)
7446        return WidenVectorLoad(Op, DAG);
7447      return SplitVectorLoad(Op, DAG);
7448    }
7449    // Non-uniform loads will be selected to MUBUF instructions, so they
7450    // have the same legalization requirements as global and private
7451    // loads.
7452    //
7453  }
7454  if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7455      AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7456      AS == AMDGPUAS::GLOBAL_ADDRESS ||
7457      AS == AMDGPUAS::FLAT_ADDRESS) {
7458    if (NumElements > 4)
7459      return SplitVectorLoad(Op, DAG);
7460    // v3 loads not supported on SI.
7461    if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7462      return WidenVectorLoad(Op, DAG);
7463    // v3 and v4 loads are supported for private and global memory.
7464    return SDValue();
7465  }
7466  if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7467    // Depending on the setting of the private_element_size field in the
7468    // resource descriptor, we can only make private accesses up to a certain
7469    // size.
7470    switch (Subtarget->getMaxPrivateElementSize()) {
7471    case 4: {
7472      SDValue Ops[2];
7473      std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
7474      return DAG.getMergeValues(Ops, DL);
7475    }
7476    case 8:
7477      if (NumElements > 2)
7478        return SplitVectorLoad(Op, DAG);
7479      return SDValue();
7480    case 16:
7481      // Same as global/flat
7482      if (NumElements > 4)
7483        return SplitVectorLoad(Op, DAG);
7484      // v3 loads not supported on SI.
7485      if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7486        return WidenVectorLoad(Op, DAG);
7487      return SDValue();
7488    default:
7489      llvm_unreachable("unsupported private_element_size");
7490    }
7491  } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7492    // Use ds_read_b128 if possible.
7493    if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
7494        MemVT.getStoreSize() == 16)
7495      return SDValue();
7496
7497    if (NumElements > 2)
7498      return SplitVectorLoad(Op, DAG);
7499
7500    // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7501    // address is negative, then the instruction is incorrectly treated as
7502    // out-of-bounds even if base + offsets is in bounds. Split vectorized
7503    // loads here to avoid emitting ds_read2_b32. We may re-combine the
7504    // load later in the SILoadStoreOptimizer.
7505    if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
7506        NumElements == 2 && MemVT.getStoreSize() == 8 &&
7507        Load->getAlignment() < 8) {
7508      return SplitVectorLoad(Op, DAG);
7509    }
7510  }
7511  return SDValue();
7512}
7513
7514SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7515  EVT VT = Op.getValueType();
7516  assert(VT.getSizeInBits() == 64);
7517
7518  SDLoc DL(Op);
7519  SDValue Cond = Op.getOperand(0);
7520
7521  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
7522  SDValue One = DAG.getConstant(1, DL, MVT::i32);
7523
7524  SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
7525  SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
7526
7527  SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
7528  SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
7529
7530  SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
7531
7532  SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
7533  SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
7534
7535  SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
7536
7537  SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
7538  return DAG.getNode(ISD::BITCAST, DL, VT, Res);
7539}
7540
7541// Catch division cases where we can use shortcuts with rcp and rsq
7542// instructions.
7543SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
7544                                              SelectionDAG &DAG) const {
7545  SDLoc SL(Op);
7546  SDValue LHS = Op.getOperand(0);
7547  SDValue RHS = Op.getOperand(1);
7548  EVT VT = Op.getValueType();
7549  const SDNodeFlags Flags = Op->getFlags();
7550  bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
7551
7552  if (!Unsafe && VT == MVT::f32 && hasFP32Denormals(DAG.getMachineFunction()))
7553    return SDValue();
7554
7555  if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
7556    if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
7557      if (CLHS->isExactlyValue(1.0)) {
7558        // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
7559        // the CI documentation has a worst case error of 1 ulp.
7560        // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
7561        // use it as long as we aren't trying to use denormals.
7562        //
7563        // v_rcp_f16 and v_rsq_f16 DO support denormals.
7564
7565        // 1.0 / sqrt(x) -> rsq(x)
7566
7567        // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
7568        // error seems really high at 2^29 ULP.
7569        if (RHS.getOpcode() == ISD::FSQRT)
7570          return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
7571
7572        // 1.0 / x -> rcp(x)
7573        return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7574      }
7575
7576      // Same as for 1.0, but expand the sign out of the constant.
7577      if (CLHS->isExactlyValue(-1.0)) {
7578        // -1.0 / x -> rcp (fneg x)
7579        SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
7580        return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
7581      }
7582    }
7583  }
7584
7585  if (Unsafe) {
7586    // Turn into multiply by the reciprocal.
7587    // x / y -> x * (1.0 / y)
7588    SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7589    return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
7590  }
7591
7592  return SDValue();
7593}
7594
7595static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7596                          EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
7597  if (GlueChain->getNumValues() <= 1) {
7598    return DAG.getNode(Opcode, SL, VT, A, B);
7599  }
7600
7601  assert(GlueChain->getNumValues() == 3);
7602
7603  SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7604  switch (Opcode) {
7605  default: llvm_unreachable("no chain equivalent for opcode");
7606  case ISD::FMUL:
7607    Opcode = AMDGPUISD::FMUL_W_CHAIN;
7608    break;
7609  }
7610
7611  return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
7612                     GlueChain.getValue(2));
7613}
7614
7615static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7616                           EVT VT, SDValue A, SDValue B, SDValue C,
7617                           SDValue GlueChain) {
7618  if (GlueChain->getNumValues() <= 1) {
7619    return DAG.getNode(Opcode, SL, VT, A, B, C);
7620  }
7621
7622  assert(GlueChain->getNumValues() == 3);
7623
7624  SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7625  switch (Opcode) {
7626  default: llvm_unreachable("no chain equivalent for opcode");
7627  case ISD::FMA:
7628    Opcode = AMDGPUISD::FMA_W_CHAIN;
7629    break;
7630  }
7631
7632  return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
7633                     GlueChain.getValue(2));
7634}
7635
7636SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
7637  if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7638    return FastLowered;
7639
7640  SDLoc SL(Op);
7641  SDValue Src0 = Op.getOperand(0);
7642  SDValue Src1 = Op.getOperand(1);
7643
7644  SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
7645  SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
7646
7647  SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
7648  SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
7649
7650  SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
7651  SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
7652
7653  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
7654}
7655
7656// Faster 2.5 ULP division that does not support denormals.
7657SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
7658  SDLoc SL(Op);
7659  SDValue LHS = Op.getOperand(1);
7660  SDValue RHS = Op.getOperand(2);
7661
7662  SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
7663
7664  const APFloat K0Val(BitsToFloat(0x6f800000));
7665  const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
7666
7667  const APFloat K1Val(BitsToFloat(0x2f800000));
7668  const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
7669
7670  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7671
7672  EVT SetCCVT =
7673    getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
7674
7675  SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
7676
7677  SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
7678
7679  // TODO: Should this propagate fast-math-flags?
7680  r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
7681
7682  // rcp does not support denormals.
7683  SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
7684
7685  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
7686
7687  return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
7688}
7689
7690// Returns immediate value for setting the F32 denorm mode when using the
7691// S_DENORM_MODE instruction.
7692static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
7693                                          const SDLoc &SL, const GCNSubtarget *ST) {
7694  assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
7695  int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
7696                                ? FP_DENORM_FLUSH_NONE
7697                                : FP_DENORM_FLUSH_IN_FLUSH_OUT;
7698
7699  int Mode = SPDenormMode | (DPDenormModeDefault << 2);
7700  return DAG.getTargetConstant(Mode, SL, MVT::i32);
7701}
7702
7703SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
7704  if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7705    return FastLowered;
7706
7707  SDLoc SL(Op);
7708  SDValue LHS = Op.getOperand(0);
7709  SDValue RHS = Op.getOperand(1);
7710
7711  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7712
7713  SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
7714
7715  SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7716                                          RHS, RHS, LHS);
7717  SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7718                                        LHS, RHS, LHS);
7719
7720  // Denominator is scaled to not be denormal, so using rcp is ok.
7721  SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
7722                                  DenominatorScaled);
7723  SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
7724                                     DenominatorScaled);
7725
7726  const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
7727                               (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
7728                               (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
7729  const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
7730
7731  const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
7732
7733  if (!HasFP32Denormals) {
7734    SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
7735
7736    SDValue EnableDenorm;
7737    if (Subtarget->hasDenormModeInst()) {
7738      const SDValue EnableDenormValue =
7739          getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
7740
7741      EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
7742                                 DAG.getEntryNode(), EnableDenormValue);
7743    } else {
7744      const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
7745                                                        SL, MVT::i32);
7746      EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
7747                                 DAG.getEntryNode(), EnableDenormValue,
7748                                 BitField);
7749    }
7750
7751    SDValue Ops[3] = {
7752      NegDivScale0,
7753      EnableDenorm.getValue(0),
7754      EnableDenorm.getValue(1)
7755    };
7756
7757    NegDivScale0 = DAG.getMergeValues(Ops, SL);
7758  }
7759
7760  SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
7761                             ApproxRcp, One, NegDivScale0);
7762
7763  SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
7764                             ApproxRcp, Fma0);
7765
7766  SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
7767                           Fma1, Fma1);
7768
7769  SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
7770                             NumeratorScaled, Mul);
7771
7772  SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
7773
7774  SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
7775                             NumeratorScaled, Fma3);
7776
7777  if (!HasFP32Denormals) {
7778    SDValue DisableDenorm;
7779    if (Subtarget->hasDenormModeInst()) {
7780      const SDValue DisableDenormValue =
7781          getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
7782
7783      DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
7784                                  Fma4.getValue(1), DisableDenormValue,
7785                                  Fma4.getValue(2));
7786    } else {
7787      const SDValue DisableDenormValue =
7788          DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
7789
7790      DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
7791                                  Fma4.getValue(1), DisableDenormValue,
7792                                  BitField, Fma4.getValue(2));
7793    }
7794
7795    SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
7796                                      DisableDenorm, DAG.getRoot());
7797    DAG.setRoot(OutputChain);
7798  }
7799
7800  SDValue Scale = NumeratorScaled.getValue(1);
7801  SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
7802                             Fma4, Fma1, Fma3, Scale);
7803
7804  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
7805}
7806
7807SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
7808  if (DAG.getTarget().Options.UnsafeFPMath)
7809    return lowerFastUnsafeFDIV(Op, DAG);
7810
7811  SDLoc SL(Op);
7812  SDValue X = Op.getOperand(0);
7813  SDValue Y = Op.getOperand(1);
7814
7815  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
7816
7817  SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
7818
7819  SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
7820
7821  SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
7822
7823  SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
7824
7825  SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
7826
7827  SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
7828
7829  SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
7830
7831  SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
7832
7833  SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
7834  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
7835
7836  SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
7837                             NegDivScale0, Mul, DivScale1);
7838
7839  SDValue Scale;
7840
7841  if (!Subtarget->hasUsableDivScaleConditionOutput()) {
7842    // Workaround a hardware bug on SI where the condition output from div_scale
7843    // is not usable.
7844
7845    const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
7846
7847    // Figure out if the scale to use for div_fmas.
7848    SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
7849    SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
7850    SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
7851    SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
7852
7853    SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
7854    SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
7855
7856    SDValue Scale0Hi
7857      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
7858    SDValue Scale1Hi
7859      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
7860
7861    SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
7862    SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
7863    Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
7864  } else {
7865    Scale = DivScale1.getValue(1);
7866  }
7867
7868  SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
7869                             Fma4, Fma3, Mul, Scale);
7870
7871  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
7872}
7873
7874SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
7875  EVT VT = Op.getValueType();
7876
7877  if (VT == MVT::f32)
7878    return LowerFDIV32(Op, DAG);
7879
7880  if (VT == MVT::f64)
7881    return LowerFDIV64(Op, DAG);
7882
7883  if (VT == MVT::f16)
7884    return LowerFDIV16(Op, DAG);
7885
7886  llvm_unreachable("Unexpected type for fdiv");
7887}
7888
7889SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7890  SDLoc DL(Op);
7891  StoreSDNode *Store = cast<StoreSDNode>(Op);
7892  EVT VT = Store->getMemoryVT();
7893
7894  if (VT == MVT::i1) {
7895    return DAG.getTruncStore(Store->getChain(), DL,
7896       DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
7897       Store->getBasePtr(), MVT::i1, Store->getMemOperand());
7898  }
7899
7900  assert(VT.isVector() &&
7901         Store->getValue().getValueType().getScalarType() == MVT::i32);
7902
7903  if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7904                                      VT, *Store->getMemOperand())) {
7905    return expandUnalignedStore(Store, DAG);
7906  }
7907
7908  unsigned AS = Store->getAddressSpace();
7909  if (Subtarget->hasLDSMisalignedBug() &&
7910      AS == AMDGPUAS::FLAT_ADDRESS &&
7911      Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
7912    return SplitVectorStore(Op, DAG);
7913  }
7914
7915  MachineFunction &MF = DAG.getMachineFunction();
7916  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7917  // If there is a possibilty that flat instruction access scratch memory
7918  // then we need to use the same legalization rules we use for private.
7919  if (AS == AMDGPUAS::FLAT_ADDRESS)
7920    AS = MFI->hasFlatScratchInit() ?
7921         AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7922
7923  unsigned NumElements = VT.getVectorNumElements();
7924  if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
7925      AS == AMDGPUAS::FLAT_ADDRESS) {
7926    if (NumElements > 4)
7927      return SplitVectorStore(Op, DAG);
7928    // v3 stores not supported on SI.
7929    if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7930      return SplitVectorStore(Op, DAG);
7931    return SDValue();
7932  } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7933    switch (Subtarget->getMaxPrivateElementSize()) {
7934    case 4:
7935      return scalarizeVectorStore(Store, DAG);
7936    case 8:
7937      if (NumElements > 2)
7938        return SplitVectorStore(Op, DAG);
7939      return SDValue();
7940    case 16:
7941      if (NumElements > 4 || NumElements == 3)
7942        return SplitVectorStore(Op, DAG);
7943      return SDValue();
7944    default:
7945      llvm_unreachable("unsupported private_element_size");
7946    }
7947  } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7948    // Use ds_write_b128 if possible.
7949    if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
7950        VT.getStoreSize() == 16 && NumElements != 3)
7951      return SDValue();
7952
7953    if (NumElements > 2)
7954      return SplitVectorStore(Op, DAG);
7955
7956    // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7957    // address is negative, then the instruction is incorrectly treated as
7958    // out-of-bounds even if base + offsets is in bounds. Split vectorized
7959    // stores here to avoid emitting ds_write2_b32. We may re-combine the
7960    // store later in the SILoadStoreOptimizer.
7961    if (!Subtarget->hasUsableDSOffset() &&
7962        NumElements == 2 && VT.getStoreSize() == 8 &&
7963        Store->getAlignment() < 8) {
7964      return SplitVectorStore(Op, DAG);
7965    }
7966
7967    return SDValue();
7968  } else {
7969    llvm_unreachable("unhandled address space");
7970  }
7971}
7972
7973SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
7974  SDLoc DL(Op);
7975  EVT VT = Op.getValueType();
7976  SDValue Arg = Op.getOperand(0);
7977  SDValue TrigVal;
7978
7979  // TODO: Should this propagate fast-math-flags?
7980
7981  SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT);
7982
7983  if (Subtarget->hasTrigReducedRange()) {
7984    SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7985    TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal);
7986  } else {
7987    TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7988  }
7989
7990  switch (Op.getOpcode()) {
7991  case ISD::FCOS:
7992    return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal);
7993  case ISD::FSIN:
7994    return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal);
7995  default:
7996    llvm_unreachable("Wrong trig opcode");
7997  }
7998}
7999
8000SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8001  AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8002  assert(AtomicNode->isCompareAndSwap());
8003  unsigned AS = AtomicNode->getAddressSpace();
8004
8005  // No custom lowering required for local address space
8006  if (!isFlatGlobalAddrSpace(AS))
8007    return Op;
8008
8009  // Non-local address space requires custom lowering for atomic compare
8010  // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8011  SDLoc DL(Op);
8012  SDValue ChainIn = Op.getOperand(0);
8013  SDValue Addr = Op.getOperand(1);
8014  SDValue Old = Op.getOperand(2);
8015  SDValue New = Op.getOperand(3);
8016  EVT VT = Op.getValueType();
8017  MVT SimpleVT = VT.getSimpleVT();
8018  MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8019
8020  SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8021  SDValue Ops[] = { ChainIn, Addr, NewOld };
8022
8023  return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8024                                 Ops, VT, AtomicNode->getMemOperand());
8025}
8026
8027//===----------------------------------------------------------------------===//
8028// Custom DAG optimizations
8029//===----------------------------------------------------------------------===//
8030
8031SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8032                                                     DAGCombinerInfo &DCI) const {
8033  EVT VT = N->getValueType(0);
8034  EVT ScalarVT = VT.getScalarType();
8035  if (ScalarVT != MVT::f32)
8036    return SDValue();
8037
8038  SelectionDAG &DAG = DCI.DAG;
8039  SDLoc DL(N);
8040
8041  SDValue Src = N->getOperand(0);
8042  EVT SrcVT = Src.getValueType();
8043
8044  // TODO: We could try to match extracting the higher bytes, which would be
8045  // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8046  // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8047  // about in practice.
8048  if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8049    if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8050      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
8051      DCI.AddToWorklist(Cvt.getNode());
8052      return Cvt;
8053    }
8054  }
8055
8056  return SDValue();
8057}
8058
8059// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8060
8061// This is a variant of
8062// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8063//
8064// The normal DAG combiner will do this, but only if the add has one use since
8065// that would increase the number of instructions.
8066//
8067// This prevents us from seeing a constant offset that can be folded into a
8068// memory instruction's addressing mode. If we know the resulting add offset of
8069// a pointer can be folded into an addressing offset, we can replace the pointer
8070// operand with the add of new constant offset. This eliminates one of the uses,
8071// and may allow the remaining use to also be simplified.
8072//
8073SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8074                                               unsigned AddrSpace,
8075                                               EVT MemVT,
8076                                               DAGCombinerInfo &DCI) const {
8077  SDValue N0 = N->getOperand(0);
8078  SDValue N1 = N->getOperand(1);
8079
8080  // We only do this to handle cases where it's profitable when there are
8081  // multiple uses of the add, so defer to the standard combine.
8082  if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8083      N0->hasOneUse())
8084    return SDValue();
8085
8086  const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8087  if (!CN1)
8088    return SDValue();
8089
8090  const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8091  if (!CAdd)
8092    return SDValue();
8093
8094  // If the resulting offset is too large, we can't fold it into the addressing
8095  // mode offset.
8096  APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8097  Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8098
8099  AddrMode AM;
8100  AM.HasBaseReg = true;
8101  AM.BaseOffs = Offset.getSExtValue();
8102  if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8103    return SDValue();
8104
8105  SelectionDAG &DAG = DCI.DAG;
8106  SDLoc SL(N);
8107  EVT VT = N->getValueType(0);
8108
8109  SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8110  SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
8111
8112  SDNodeFlags Flags;
8113  Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8114                          (N0.getOpcode() == ISD::OR ||
8115                           N0->getFlags().hasNoUnsignedWrap()));
8116
8117  return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8118}
8119
8120SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8121                                                  DAGCombinerInfo &DCI) const {
8122  SDValue Ptr = N->getBasePtr();
8123  SelectionDAG &DAG = DCI.DAG;
8124  SDLoc SL(N);
8125
8126  // TODO: We could also do this for multiplies.
8127  if (Ptr.getOpcode() == ISD::SHL) {
8128    SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
8129                                          N->getMemoryVT(), DCI);
8130    if (NewPtr) {
8131      SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8132
8133      NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
8134      return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8135    }
8136  }
8137
8138  return SDValue();
8139}
8140
8141static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8142  return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8143         (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8144         (Opc == ISD::XOR && Val == 0);
8145}
8146
8147// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8148// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8149// integer combine opportunities since most 64-bit operations are decomposed
8150// this way.  TODO: We won't want this for SALU especially if it is an inline
8151// immediate.
8152SDValue SITargetLowering::splitBinaryBitConstantOp(
8153  DAGCombinerInfo &DCI,
8154  const SDLoc &SL,
8155  unsigned Opc, SDValue LHS,
8156  const ConstantSDNode *CRHS) const {
8157  uint64_t Val = CRHS->getZExtValue();
8158  uint32_t ValLo = Lo_32(Val);
8159  uint32_t ValHi = Hi_32(Val);
8160  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8161
8162    if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8163         bitOpWithConstantIsReducible(Opc, ValHi)) ||
8164        (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8165    // If we need to materialize a 64-bit immediate, it will be split up later
8166    // anyway. Avoid creating the harder to understand 64-bit immediate
8167    // materialization.
8168    return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8169  }
8170
8171  return SDValue();
8172}
8173
8174// Returns true if argument is a boolean value which is not serialized into
8175// memory or argument and does not require v_cmdmask_b32 to be deserialized.
8176static bool isBoolSGPR(SDValue V) {
8177  if (V.getValueType() != MVT::i1)
8178    return false;
8179  switch (V.getOpcode()) {
8180  default: break;
8181  case ISD::SETCC:
8182  case ISD::AND:
8183  case ISD::OR:
8184  case ISD::XOR:
8185  case AMDGPUISD::FP_CLASS:
8186    return true;
8187  }
8188  return false;
8189}
8190
8191// If a constant has all zeroes or all ones within each byte return it.
8192// Otherwise return 0.
8193static uint32_t getConstantPermuteMask(uint32_t C) {
8194  // 0xff for any zero byte in the mask
8195  uint32_t ZeroByteMask = 0;
8196  if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8197  if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8198  if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8199  if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8200  uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8201  if ((NonZeroByteMask & C) != NonZeroByteMask)
8202    return 0; // Partial bytes selected.
8203  return C;
8204}
8205
8206// Check if a node selects whole bytes from its operand 0 starting at a byte
8207// boundary while masking the rest. Returns select mask as in the v_perm_b32
8208// or -1 if not succeeded.
8209// Note byte select encoding:
8210// value 0-3 selects corresponding source byte;
8211// value 0xc selects zero;
8212// value 0xff selects 0xff.
8213static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8214  assert(V.getValueSizeInBits() == 32);
8215
8216  if (V.getNumOperands() != 2)
8217    return ~0;
8218
8219  ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8220  if (!N1)
8221    return ~0;
8222
8223  uint32_t C = N1->getZExtValue();
8224
8225  switch (V.getOpcode()) {
8226  default:
8227    break;
8228  case ISD::AND:
8229    if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8230      return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8231    }
8232    break;
8233
8234  case ISD::OR:
8235    if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8236      return (0x03020100 & ~ConstMask) | ConstMask;
8237    }
8238    break;
8239
8240  case ISD::SHL:
8241    if (C % 8)
8242      return ~0;
8243
8244    return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8245
8246  case ISD::SRL:
8247    if (C % 8)
8248      return ~0;
8249
8250    return uint32_t(0x0c0c0c0c03020100ull >> C);
8251  }
8252
8253  return ~0;
8254}
8255
8256SDValue SITargetLowering::performAndCombine(SDNode *N,
8257                                            DAGCombinerInfo &DCI) const {
8258  if (DCI.isBeforeLegalize())
8259    return SDValue();
8260
8261  SelectionDAG &DAG = DCI.DAG;
8262  EVT VT = N->getValueType(0);
8263  SDValue LHS = N->getOperand(0);
8264  SDValue RHS = N->getOperand(1);
8265
8266
8267  const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8268  if (VT == MVT::i64 && CRHS) {
8269    if (SDValue Split
8270        = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8271      return Split;
8272  }
8273
8274  if (CRHS && VT == MVT::i32) {
8275    // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8276    // nb = number of trailing zeroes in mask
8277    // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8278    // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8279    uint64_t Mask = CRHS->getZExtValue();
8280    unsigned Bits = countPopulation(Mask);
8281    if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
8282        (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
8283      if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
8284        unsigned Shift = CShift->getZExtValue();
8285        unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
8286        unsigned Offset = NB + Shift;
8287        if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
8288          SDLoc SL(N);
8289          SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
8290                                    LHS->getOperand(0),
8291                                    DAG.getConstant(Offset, SL, MVT::i32),
8292                                    DAG.getConstant(Bits, SL, MVT::i32));
8293          EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8294          SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
8295                                    DAG.getValueType(NarrowVT));
8296          SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
8297                                    DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
8298          return Shl;
8299        }
8300      }
8301    }
8302
8303    // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8304    if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
8305        isa<ConstantSDNode>(LHS.getOperand(2))) {
8306      uint32_t Sel = getConstantPermuteMask(Mask);
8307      if (!Sel)
8308        return SDValue();
8309
8310      // Select 0xc for all zero bytes
8311      Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
8312      SDLoc DL(N);
8313      return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8314                         LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8315    }
8316  }
8317
8318  // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
8319  // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
8320  if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
8321    ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8322    ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
8323
8324    SDValue X = LHS.getOperand(0);
8325    SDValue Y = RHS.getOperand(0);
8326    if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
8327      return SDValue();
8328
8329    if (LCC == ISD::SETO) {
8330      if (X != LHS.getOperand(1))
8331        return SDValue();
8332
8333      if (RCC == ISD::SETUNE) {
8334        const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
8335        if (!C1 || !C1->isInfinity() || C1->isNegative())
8336          return SDValue();
8337
8338        const uint32_t Mask = SIInstrFlags::N_NORMAL |
8339                              SIInstrFlags::N_SUBNORMAL |
8340                              SIInstrFlags::N_ZERO |
8341                              SIInstrFlags::P_ZERO |
8342                              SIInstrFlags::P_SUBNORMAL |
8343                              SIInstrFlags::P_NORMAL;
8344
8345        static_assert(((~(SIInstrFlags::S_NAN |
8346                          SIInstrFlags::Q_NAN |
8347                          SIInstrFlags::N_INFINITY |
8348                          SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
8349                      "mask not equal");
8350
8351        SDLoc DL(N);
8352        return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8353                           X, DAG.getConstant(Mask, DL, MVT::i32));
8354      }
8355    }
8356  }
8357
8358  if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
8359    std::swap(LHS, RHS);
8360
8361  if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8362      RHS.hasOneUse()) {
8363    ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8364    // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
8365    // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
8366    const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8367    if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
8368        (RHS.getOperand(0) == LHS.getOperand(0) &&
8369         LHS.getOperand(0) == LHS.getOperand(1))) {
8370      const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
8371      unsigned NewMask = LCC == ISD::SETO ?
8372        Mask->getZExtValue() & ~OrdMask :
8373        Mask->getZExtValue() & OrdMask;
8374
8375      SDLoc DL(N);
8376      return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
8377                         DAG.getConstant(NewMask, DL, MVT::i32));
8378    }
8379  }
8380
8381  if (VT == MVT::i32 &&
8382      (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
8383    // and x, (sext cc from i1) => select cc, x, 0
8384    if (RHS.getOpcode() != ISD::SIGN_EXTEND)
8385      std::swap(LHS, RHS);
8386    if (isBoolSGPR(RHS.getOperand(0)))
8387      return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
8388                           LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
8389  }
8390
8391  // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8392  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8393  if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8394      N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8395    uint32_t LHSMask = getPermuteMask(DAG, LHS);
8396    uint32_t RHSMask = getPermuteMask(DAG, RHS);
8397    if (LHSMask != ~0u && RHSMask != ~0u) {
8398      // Canonicalize the expression in an attempt to have fewer unique masks
8399      // and therefore fewer registers used to hold the masks.
8400      if (LHSMask > RHSMask) {
8401        std::swap(LHSMask, RHSMask);
8402        std::swap(LHS, RHS);
8403      }
8404
8405      // Select 0xc for each lane used from source operand. Zero has 0xc mask
8406      // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8407      uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8408      uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8409
8410      // Check of we need to combine values from two sources within a byte.
8411      if (!(LHSUsedLanes & RHSUsedLanes) &&
8412          // If we select high and lower word keep it for SDWA.
8413          // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8414          !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8415        // Each byte in each mask is either selector mask 0-3, or has higher
8416        // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
8417        // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
8418        // mask which is not 0xff wins. By anding both masks we have a correct
8419        // result except that 0x0c shall be corrected to give 0x0c only.
8420        uint32_t Mask = LHSMask & RHSMask;
8421        for (unsigned I = 0; I < 32; I += 8) {
8422          uint32_t ByteSel = 0xff << I;
8423          if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
8424            Mask &= (0x0c << I) & 0xffffffff;
8425        }
8426
8427        // Add 4 to each active LHS lane. It will not affect any existing 0xff
8428        // or 0x0c.
8429        uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
8430        SDLoc DL(N);
8431
8432        return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8433                           LHS.getOperand(0), RHS.getOperand(0),
8434                           DAG.getConstant(Sel, DL, MVT::i32));
8435      }
8436    }
8437  }
8438
8439  return SDValue();
8440}
8441
8442SDValue SITargetLowering::performOrCombine(SDNode *N,
8443                                           DAGCombinerInfo &DCI) const {
8444  SelectionDAG &DAG = DCI.DAG;
8445  SDValue LHS = N->getOperand(0);
8446  SDValue RHS = N->getOperand(1);
8447
8448  EVT VT = N->getValueType(0);
8449  if (VT == MVT::i1) {
8450    // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
8451    if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8452        RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
8453      SDValue Src = LHS.getOperand(0);
8454      if (Src != RHS.getOperand(0))
8455        return SDValue();
8456
8457      const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
8458      const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8459      if (!CLHS || !CRHS)
8460        return SDValue();
8461
8462      // Only 10 bits are used.
8463      static const uint32_t MaxMask = 0x3ff;
8464
8465      uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
8466      SDLoc DL(N);
8467      return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8468                         Src, DAG.getConstant(NewMask, DL, MVT::i32));
8469    }
8470
8471    return SDValue();
8472  }
8473
8474  // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8475  if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
8476      LHS.getOpcode() == AMDGPUISD::PERM &&
8477      isa<ConstantSDNode>(LHS.getOperand(2))) {
8478    uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
8479    if (!Sel)
8480      return SDValue();
8481
8482    Sel |= LHS.getConstantOperandVal(2);
8483    SDLoc DL(N);
8484    return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8485                       LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8486  }
8487
8488  // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8489  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8490  if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8491      N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8492    uint32_t LHSMask = getPermuteMask(DAG, LHS);
8493    uint32_t RHSMask = getPermuteMask(DAG, RHS);
8494    if (LHSMask != ~0u && RHSMask != ~0u) {
8495      // Canonicalize the expression in an attempt to have fewer unique masks
8496      // and therefore fewer registers used to hold the masks.
8497      if (LHSMask > RHSMask) {
8498        std::swap(LHSMask, RHSMask);
8499        std::swap(LHS, RHS);
8500      }
8501
8502      // Select 0xc for each lane used from source operand. Zero has 0xc mask
8503      // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8504      uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8505      uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8506
8507      // Check of we need to combine values from two sources within a byte.
8508      if (!(LHSUsedLanes & RHSUsedLanes) &&
8509          // If we select high and lower word keep it for SDWA.
8510          // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8511          !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8512        // Kill zero bytes selected by other mask. Zero value is 0xc.
8513        LHSMask &= ~RHSUsedLanes;
8514        RHSMask &= ~LHSUsedLanes;
8515        // Add 4 to each active LHS lane
8516        LHSMask |= LHSUsedLanes & 0x04040404;
8517        // Combine masks
8518        uint32_t Sel = LHSMask | RHSMask;
8519        SDLoc DL(N);
8520
8521        return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8522                           LHS.getOperand(0), RHS.getOperand(0),
8523                           DAG.getConstant(Sel, DL, MVT::i32));
8524      }
8525    }
8526  }
8527
8528  if (VT != MVT::i64)
8529    return SDValue();
8530
8531  // TODO: This could be a generic combine with a predicate for extracting the
8532  // high half of an integer being free.
8533
8534  // (or i64:x, (zero_extend i32:y)) ->
8535  //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
8536  if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
8537      RHS.getOpcode() != ISD::ZERO_EXTEND)
8538    std::swap(LHS, RHS);
8539
8540  if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
8541    SDValue ExtSrc = RHS.getOperand(0);
8542    EVT SrcVT = ExtSrc.getValueType();
8543    if (SrcVT == MVT::i32) {
8544      SDLoc SL(N);
8545      SDValue LowLHS, HiBits;
8546      std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
8547      SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
8548
8549      DCI.AddToWorklist(LowOr.getNode());
8550      DCI.AddToWorklist(HiBits.getNode());
8551
8552      SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
8553                                LowOr, HiBits);
8554      return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
8555    }
8556  }
8557
8558  const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
8559  if (CRHS) {
8560    if (SDValue Split
8561          = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
8562      return Split;
8563  }
8564
8565  return SDValue();
8566}
8567
8568SDValue SITargetLowering::performXorCombine(SDNode *N,
8569                                            DAGCombinerInfo &DCI) const {
8570  EVT VT = N->getValueType(0);
8571  if (VT != MVT::i64)
8572    return SDValue();
8573
8574  SDValue LHS = N->getOperand(0);
8575  SDValue RHS = N->getOperand(1);
8576
8577  const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8578  if (CRHS) {
8579    if (SDValue Split
8580          = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
8581      return Split;
8582  }
8583
8584  return SDValue();
8585}
8586
8587// Instructions that will be lowered with a final instruction that zeros the
8588// high result bits.
8589// XXX - probably only need to list legal operations.
8590static bool fp16SrcZerosHighBits(unsigned Opc) {
8591  switch (Opc) {
8592  case ISD::FADD:
8593  case ISD::FSUB:
8594  case ISD::FMUL:
8595  case ISD::FDIV:
8596  case ISD::FREM:
8597  case ISD::FMA:
8598  case ISD::FMAD:
8599  case ISD::FCANONICALIZE:
8600  case ISD::FP_ROUND:
8601  case ISD::UINT_TO_FP:
8602  case ISD::SINT_TO_FP:
8603  case ISD::FABS:
8604    // Fabs is lowered to a bit operation, but it's an and which will clear the
8605    // high bits anyway.
8606  case ISD::FSQRT:
8607  case ISD::FSIN:
8608  case ISD::FCOS:
8609  case ISD::FPOWI:
8610  case ISD::FPOW:
8611  case ISD::FLOG:
8612  case ISD::FLOG2:
8613  case ISD::FLOG10:
8614  case ISD::FEXP:
8615  case ISD::FEXP2:
8616  case ISD::FCEIL:
8617  case ISD::FTRUNC:
8618  case ISD::FRINT:
8619  case ISD::FNEARBYINT:
8620  case ISD::FROUND:
8621  case ISD::FFLOOR:
8622  case ISD::FMINNUM:
8623  case ISD::FMAXNUM:
8624  case AMDGPUISD::FRACT:
8625  case AMDGPUISD::CLAMP:
8626  case AMDGPUISD::COS_HW:
8627  case AMDGPUISD::SIN_HW:
8628  case AMDGPUISD::FMIN3:
8629  case AMDGPUISD::FMAX3:
8630  case AMDGPUISD::FMED3:
8631  case AMDGPUISD::FMAD_FTZ:
8632  case AMDGPUISD::RCP:
8633  case AMDGPUISD::RSQ:
8634  case AMDGPUISD::RCP_IFLAG:
8635  case AMDGPUISD::LDEXP:
8636    return true;
8637  default:
8638    // fcopysign, select and others may be lowered to 32-bit bit operations
8639    // which don't zero the high bits.
8640    return false;
8641  }
8642}
8643
8644SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
8645                                                   DAGCombinerInfo &DCI) const {
8646  if (!Subtarget->has16BitInsts() ||
8647      DCI.getDAGCombineLevel() < AfterLegalizeDAG)
8648    return SDValue();
8649
8650  EVT VT = N->getValueType(0);
8651  if (VT != MVT::i32)
8652    return SDValue();
8653
8654  SDValue Src = N->getOperand(0);
8655  if (Src.getValueType() != MVT::i16)
8656    return SDValue();
8657
8658  // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
8659  // FIXME: It is not universally true that the high bits are zeroed on gfx9.
8660  if (Src.getOpcode() == ISD::BITCAST) {
8661    SDValue BCSrc = Src.getOperand(0);
8662    if (BCSrc.getValueType() == MVT::f16 &&
8663        fp16SrcZerosHighBits(BCSrc.getOpcode()))
8664      return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
8665  }
8666
8667  return SDValue();
8668}
8669
8670SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
8671                                                        DAGCombinerInfo &DCI)
8672                                                        const {
8673  SDValue Src = N->getOperand(0);
8674  auto *VTSign = cast<VTSDNode>(N->getOperand(1));
8675
8676  if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
8677      VTSign->getVT() == MVT::i8) ||
8678      (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
8679      VTSign->getVT() == MVT::i16)) &&
8680      Src.hasOneUse()) {
8681    auto *M = cast<MemSDNode>(Src);
8682    SDValue Ops[] = {
8683      Src.getOperand(0), // Chain
8684      Src.getOperand(1), // rsrc
8685      Src.getOperand(2), // vindex
8686      Src.getOperand(3), // voffset
8687      Src.getOperand(4), // soffset
8688      Src.getOperand(5), // offset
8689      Src.getOperand(6),
8690      Src.getOperand(7)
8691    };
8692    // replace with BUFFER_LOAD_BYTE/SHORT
8693    SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
8694                                         Src.getOperand(0).getValueType());
8695    unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
8696                   AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
8697    SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
8698                                                          ResList,
8699                                                          Ops, M->getMemoryVT(),
8700                                                          M->getMemOperand());
8701    return DCI.DAG.getMergeValues({BufferLoadSignExt,
8702                                  BufferLoadSignExt.getValue(1)}, SDLoc(N));
8703  }
8704  return SDValue();
8705}
8706
8707SDValue SITargetLowering::performClassCombine(SDNode *N,
8708                                              DAGCombinerInfo &DCI) const {
8709  SelectionDAG &DAG = DCI.DAG;
8710  SDValue Mask = N->getOperand(1);
8711
8712  // fp_class x, 0 -> false
8713  if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
8714    if (CMask->isNullValue())
8715      return DAG.getConstant(0, SDLoc(N), MVT::i1);
8716  }
8717
8718  if (N->getOperand(0).isUndef())
8719    return DAG.getUNDEF(MVT::i1);
8720
8721  return SDValue();
8722}
8723
8724SDValue SITargetLowering::performRcpCombine(SDNode *N,
8725                                            DAGCombinerInfo &DCI) const {
8726  EVT VT = N->getValueType(0);
8727  SDValue N0 = N->getOperand(0);
8728
8729  if (N0.isUndef())
8730    return N0;
8731
8732  if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
8733                         N0.getOpcode() == ISD::SINT_TO_FP)) {
8734    return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
8735                           N->getFlags());
8736  }
8737
8738  return AMDGPUTargetLowering::performRcpCombine(N, DCI);
8739}
8740
8741bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
8742                                       unsigned MaxDepth) const {
8743  unsigned Opcode = Op.getOpcode();
8744  if (Opcode == ISD::FCANONICALIZE)
8745    return true;
8746
8747  if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8748    auto F = CFP->getValueAPF();
8749    if (F.isNaN() && F.isSignaling())
8750      return false;
8751    return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
8752  }
8753
8754  // If source is a result of another standard FP operation it is already in
8755  // canonical form.
8756  if (MaxDepth == 0)
8757    return false;
8758
8759  switch (Opcode) {
8760  // These will flush denorms if required.
8761  case ISD::FADD:
8762  case ISD::FSUB:
8763  case ISD::FMUL:
8764  case ISD::FCEIL:
8765  case ISD::FFLOOR:
8766  case ISD::FMA:
8767  case ISD::FMAD:
8768  case ISD::FSQRT:
8769  case ISD::FDIV:
8770  case ISD::FREM:
8771  case ISD::FP_ROUND:
8772  case ISD::FP_EXTEND:
8773  case AMDGPUISD::FMUL_LEGACY:
8774  case AMDGPUISD::FMAD_FTZ:
8775  case AMDGPUISD::RCP:
8776  case AMDGPUISD::RSQ:
8777  case AMDGPUISD::RSQ_CLAMP:
8778  case AMDGPUISD::RCP_LEGACY:
8779  case AMDGPUISD::RSQ_LEGACY:
8780  case AMDGPUISD::RCP_IFLAG:
8781  case AMDGPUISD::TRIG_PREOP:
8782  case AMDGPUISD::DIV_SCALE:
8783  case AMDGPUISD::DIV_FMAS:
8784  case AMDGPUISD::DIV_FIXUP:
8785  case AMDGPUISD::FRACT:
8786  case AMDGPUISD::LDEXP:
8787  case AMDGPUISD::CVT_PKRTZ_F16_F32:
8788  case AMDGPUISD::CVT_F32_UBYTE0:
8789  case AMDGPUISD::CVT_F32_UBYTE1:
8790  case AMDGPUISD::CVT_F32_UBYTE2:
8791  case AMDGPUISD::CVT_F32_UBYTE3:
8792    return true;
8793
8794  // It can/will be lowered or combined as a bit operation.
8795  // Need to check their input recursively to handle.
8796  case ISD::FNEG:
8797  case ISD::FABS:
8798  case ISD::FCOPYSIGN:
8799    return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8800
8801  case ISD::FSIN:
8802  case ISD::FCOS:
8803  case ISD::FSINCOS:
8804    return Op.getValueType().getScalarType() != MVT::f16;
8805
8806  case ISD::FMINNUM:
8807  case ISD::FMAXNUM:
8808  case ISD::FMINNUM_IEEE:
8809  case ISD::FMAXNUM_IEEE:
8810  case AMDGPUISD::CLAMP:
8811  case AMDGPUISD::FMED3:
8812  case AMDGPUISD::FMAX3:
8813  case AMDGPUISD::FMIN3: {
8814    // FIXME: Shouldn't treat the generic operations different based these.
8815    // However, we aren't really required to flush the result from
8816    // minnum/maxnum..
8817
8818    // snans will be quieted, so we only need to worry about denormals.
8819    if (Subtarget->supportsMinMaxDenormModes() ||
8820        denormalsEnabledForType(DAG, Op.getValueType()))
8821      return true;
8822
8823    // Flushing may be required.
8824    // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
8825    // targets need to check their input recursively.
8826
8827    // FIXME: Does this apply with clamp? It's implemented with max.
8828    for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
8829      if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
8830        return false;
8831    }
8832
8833    return true;
8834  }
8835  case ISD::SELECT: {
8836    return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
8837           isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
8838  }
8839  case ISD::BUILD_VECTOR: {
8840    for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
8841      SDValue SrcOp = Op.getOperand(i);
8842      if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
8843        return false;
8844    }
8845
8846    return true;
8847  }
8848  case ISD::EXTRACT_VECTOR_ELT:
8849  case ISD::EXTRACT_SUBVECTOR: {
8850    return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8851  }
8852  case ISD::INSERT_VECTOR_ELT: {
8853    return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
8854           isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
8855  }
8856  case ISD::UNDEF:
8857    // Could be anything.
8858    return false;
8859
8860  case ISD::BITCAST: {
8861    // Hack round the mess we make when legalizing extract_vector_elt
8862    SDValue Src = Op.getOperand(0);
8863    if (Src.getValueType() == MVT::i16 &&
8864        Src.getOpcode() == ISD::TRUNCATE) {
8865      SDValue TruncSrc = Src.getOperand(0);
8866      if (TruncSrc.getValueType() == MVT::i32 &&
8867          TruncSrc.getOpcode() == ISD::BITCAST &&
8868          TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
8869        return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
8870      }
8871    }
8872
8873    return false;
8874  }
8875  case ISD::INTRINSIC_WO_CHAIN: {
8876    unsigned IntrinsicID
8877      = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8878    // TODO: Handle more intrinsics
8879    switch (IntrinsicID) {
8880    case Intrinsic::amdgcn_cvt_pkrtz:
8881    case Intrinsic::amdgcn_cubeid:
8882    case Intrinsic::amdgcn_frexp_mant:
8883    case Intrinsic::amdgcn_fdot2:
8884      return true;
8885    default:
8886      break;
8887    }
8888
8889    LLVM_FALLTHROUGH;
8890  }
8891  default:
8892    return denormalsEnabledForType(DAG, Op.getValueType()) &&
8893           DAG.isKnownNeverSNaN(Op);
8894  }
8895
8896  llvm_unreachable("invalid operation");
8897}
8898
8899// Constant fold canonicalize.
8900SDValue SITargetLowering::getCanonicalConstantFP(
8901  SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
8902  // Flush denormals to 0 if not enabled.
8903  if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
8904    return DAG.getConstantFP(0.0, SL, VT);
8905
8906  if (C.isNaN()) {
8907    APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
8908    if (C.isSignaling()) {
8909      // Quiet a signaling NaN.
8910      // FIXME: Is this supposed to preserve payload bits?
8911      return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8912    }
8913
8914    // Make sure it is the canonical NaN bitpattern.
8915    //
8916    // TODO: Can we use -1 as the canonical NaN value since it's an inline
8917    // immediate?
8918    if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
8919      return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8920  }
8921
8922  // Already canonical.
8923  return DAG.getConstantFP(C, SL, VT);
8924}
8925
8926static bool vectorEltWillFoldAway(SDValue Op) {
8927  return Op.isUndef() || isa<ConstantFPSDNode>(Op);
8928}
8929
8930SDValue SITargetLowering::performFCanonicalizeCombine(
8931  SDNode *N,
8932  DAGCombinerInfo &DCI) const {
8933  SelectionDAG &DAG = DCI.DAG;
8934  SDValue N0 = N->getOperand(0);
8935  EVT VT = N->getValueType(0);
8936
8937  // fcanonicalize undef -> qnan
8938  if (N0.isUndef()) {
8939    APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
8940    return DAG.getConstantFP(QNaN, SDLoc(N), VT);
8941  }
8942
8943  if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
8944    EVT VT = N->getValueType(0);
8945    return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
8946  }
8947
8948  // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
8949  //                                                   (fcanonicalize k)
8950  //
8951  // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
8952
8953  // TODO: This could be better with wider vectors that will be split to v2f16,
8954  // and to consider uses since there aren't that many packed operations.
8955  if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
8956      isTypeLegal(MVT::v2f16)) {
8957    SDLoc SL(N);
8958    SDValue NewElts[2];
8959    SDValue Lo = N0.getOperand(0);
8960    SDValue Hi = N0.getOperand(1);
8961    EVT EltVT = Lo.getValueType();
8962
8963    if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
8964      for (unsigned I = 0; I != 2; ++I) {
8965        SDValue Op = N0.getOperand(I);
8966        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8967          NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
8968                                              CFP->getValueAPF());
8969        } else if (Op.isUndef()) {
8970          // Handled below based on what the other operand is.
8971          NewElts[I] = Op;
8972        } else {
8973          NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
8974        }
8975      }
8976
8977      // If one half is undef, and one is constant, perfer a splat vector rather
8978      // than the normal qNaN. If it's a register, prefer 0.0 since that's
8979      // cheaper to use and may be free with a packed operation.
8980      if (NewElts[0].isUndef()) {
8981        if (isa<ConstantFPSDNode>(NewElts[1]))
8982          NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
8983            NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
8984      }
8985
8986      if (NewElts[1].isUndef()) {
8987        NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
8988          NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
8989      }
8990
8991      return DAG.getBuildVector(VT, SL, NewElts);
8992    }
8993  }
8994
8995  unsigned SrcOpc = N0.getOpcode();
8996
8997  // If it's free to do so, push canonicalizes further up the source, which may
8998  // find a canonical source.
8999  //
9000  // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9001  // sNaNs.
9002  if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9003    auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9004    if (CRHS && N0.hasOneUse()) {
9005      SDLoc SL(N);
9006      SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9007                                   N0.getOperand(0));
9008      SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9009      DCI.AddToWorklist(Canon0.getNode());
9010
9011      return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9012    }
9013  }
9014
9015  return isCanonicalized(DAG, N0) ? N0 : SDValue();
9016}
9017
9018static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9019  switch (Opc) {
9020  case ISD::FMAXNUM:
9021  case ISD::FMAXNUM_IEEE:
9022    return AMDGPUISD::FMAX3;
9023  case ISD::SMAX:
9024    return AMDGPUISD::SMAX3;
9025  case ISD::UMAX:
9026    return AMDGPUISD::UMAX3;
9027  case ISD::FMINNUM:
9028  case ISD::FMINNUM_IEEE:
9029    return AMDGPUISD::FMIN3;
9030  case ISD::SMIN:
9031    return AMDGPUISD::SMIN3;
9032  case ISD::UMIN:
9033    return AMDGPUISD::UMIN3;
9034  default:
9035    llvm_unreachable("Not a min/max opcode");
9036  }
9037}
9038
9039SDValue SITargetLowering::performIntMed3ImmCombine(
9040  SelectionDAG &DAG, const SDLoc &SL,
9041  SDValue Op0, SDValue Op1, bool Signed) const {
9042  ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9043  if (!K1)
9044    return SDValue();
9045
9046  ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9047  if (!K0)
9048    return SDValue();
9049
9050  if (Signed) {
9051    if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9052      return SDValue();
9053  } else {
9054    if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9055      return SDValue();
9056  }
9057
9058  EVT VT = K0->getValueType(0);
9059  unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9060  if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9061    return DAG.getNode(Med3Opc, SL, VT,
9062                       Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9063  }
9064
9065  // If there isn't a 16-bit med3 operation, convert to 32-bit.
9066  MVT NVT = MVT::i32;
9067  unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9068
9069  SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9070  SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9071  SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9072
9073  SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9074  return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9075}
9076
9077static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9078  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9079    return C;
9080
9081  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9082    if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9083      return C;
9084  }
9085
9086  return nullptr;
9087}
9088
9089SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9090                                                  const SDLoc &SL,
9091                                                  SDValue Op0,
9092                                                  SDValue Op1) const {
9093  ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9094  if (!K1)
9095    return SDValue();
9096
9097  ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9098  if (!K0)
9099    return SDValue();
9100
9101  // Ordered >= (although NaN inputs should have folded away by now).
9102  APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
9103  if (Cmp == APFloat::cmpGreaterThan)
9104    return SDValue();
9105
9106  const MachineFunction &MF = DAG.getMachineFunction();
9107  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9108
9109  // TODO: Check IEEE bit enabled?
9110  EVT VT = Op0.getValueType();
9111  if (Info->getMode().DX10Clamp) {
9112    // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9113    // hardware fmed3 behavior converting to a min.
9114    // FIXME: Should this be allowing -0.0?
9115    if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9116      return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9117  }
9118
9119  // med3 for f16 is only available on gfx9+, and not available for v2f16.
9120  if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9121    // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9122    // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9123    // then give the other result, which is different from med3 with a NaN
9124    // input.
9125    SDValue Var = Op0.getOperand(0);
9126    if (!DAG.isKnownNeverSNaN(Var))
9127      return SDValue();
9128
9129    const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9130
9131    if ((!K0->hasOneUse() ||
9132         TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9133        (!K1->hasOneUse() ||
9134         TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9135      return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9136                         Var, SDValue(K0, 0), SDValue(K1, 0));
9137    }
9138  }
9139
9140  return SDValue();
9141}
9142
9143SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9144                                               DAGCombinerInfo &DCI) const {
9145  SelectionDAG &DAG = DCI.DAG;
9146
9147  EVT VT = N->getValueType(0);
9148  unsigned Opc = N->getOpcode();
9149  SDValue Op0 = N->getOperand(0);
9150  SDValue Op1 = N->getOperand(1);
9151
9152  // Only do this if the inner op has one use since this will just increases
9153  // register pressure for no benefit.
9154
9155  if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9156      !VT.isVector() &&
9157      (VT == MVT::i32 || VT == MVT::f32 ||
9158       ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9159    // max(max(a, b), c) -> max3(a, b, c)
9160    // min(min(a, b), c) -> min3(a, b, c)
9161    if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9162      SDLoc DL(N);
9163      return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9164                         DL,
9165                         N->getValueType(0),
9166                         Op0.getOperand(0),
9167                         Op0.getOperand(1),
9168                         Op1);
9169    }
9170
9171    // Try commuted.
9172    // max(a, max(b, c)) -> max3(a, b, c)
9173    // min(a, min(b, c)) -> min3(a, b, c)
9174    if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9175      SDLoc DL(N);
9176      return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9177                         DL,
9178                         N->getValueType(0),
9179                         Op0,
9180                         Op1.getOperand(0),
9181                         Op1.getOperand(1));
9182    }
9183  }
9184
9185  // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9186  if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9187    if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9188      return Med3;
9189  }
9190
9191  if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9192    if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9193      return Med3;
9194  }
9195
9196  // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9197  if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9198       (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9199       (Opc == AMDGPUISD::FMIN_LEGACY &&
9200        Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9201      (VT == MVT::f32 || VT == MVT::f64 ||
9202       (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9203       (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9204      Op0.hasOneUse()) {
9205    if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9206      return Res;
9207  }
9208
9209  return SDValue();
9210}
9211
9212static bool isClampZeroToOne(SDValue A, SDValue B) {
9213  if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9214    if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9215      // FIXME: Should this be allowing -0.0?
9216      return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9217             (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9218    }
9219  }
9220
9221  return false;
9222}
9223
9224// FIXME: Should only worry about snans for version with chain.
9225SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9226                                              DAGCombinerInfo &DCI) const {
9227  EVT VT = N->getValueType(0);
9228  // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9229  // NaNs. With a NaN input, the order of the operands may change the result.
9230
9231  SelectionDAG &DAG = DCI.DAG;
9232  SDLoc SL(N);
9233
9234  SDValue Src0 = N->getOperand(0);
9235  SDValue Src1 = N->getOperand(1);
9236  SDValue Src2 = N->getOperand(2);
9237
9238  if (isClampZeroToOne(Src0, Src1)) {
9239    // const_a, const_b, x -> clamp is safe in all cases including signaling
9240    // nans.
9241    // FIXME: Should this be allowing -0.0?
9242    return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9243  }
9244
9245  const MachineFunction &MF = DAG.getMachineFunction();
9246  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9247
9248  // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9249  // handling no dx10-clamp?
9250  if (Info->getMode().DX10Clamp) {
9251    // If NaNs is clamped to 0, we are free to reorder the inputs.
9252
9253    if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9254      std::swap(Src0, Src1);
9255
9256    if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9257      std::swap(Src1, Src2);
9258
9259    if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9260      std::swap(Src0, Src1);
9261
9262    if (isClampZeroToOne(Src1, Src2))
9263      return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9264  }
9265
9266  return SDValue();
9267}
9268
9269SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9270                                                 DAGCombinerInfo &DCI) const {
9271  SDValue Src0 = N->getOperand(0);
9272  SDValue Src1 = N->getOperand(1);
9273  if (Src0.isUndef() && Src1.isUndef())
9274    return DCI.DAG.getUNDEF(N->getValueType(0));
9275  return SDValue();
9276}
9277
9278SDValue SITargetLowering::performExtractVectorEltCombine(
9279  SDNode *N, DAGCombinerInfo &DCI) const {
9280  SDValue Vec = N->getOperand(0);
9281  SelectionDAG &DAG = DCI.DAG;
9282
9283  EVT VecVT = Vec.getValueType();
9284  EVT EltVT = VecVT.getVectorElementType();
9285
9286  if ((Vec.getOpcode() == ISD::FNEG ||
9287       Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
9288    SDLoc SL(N);
9289    EVT EltVT = N->getValueType(0);
9290    SDValue Idx = N->getOperand(1);
9291    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9292                              Vec.getOperand(0), Idx);
9293    return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
9294  }
9295
9296  // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
9297  //    =>
9298  // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
9299  // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
9300  // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
9301  if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
9302    SDLoc SL(N);
9303    EVT EltVT = N->getValueType(0);
9304    SDValue Idx = N->getOperand(1);
9305    unsigned Opc = Vec.getOpcode();
9306
9307    switch(Opc) {
9308    default:
9309      break;
9310      // TODO: Support other binary operations.
9311    case ISD::FADD:
9312    case ISD::FSUB:
9313    case ISD::FMUL:
9314    case ISD::ADD:
9315    case ISD::UMIN:
9316    case ISD::UMAX:
9317    case ISD::SMIN:
9318    case ISD::SMAX:
9319    case ISD::FMAXNUM:
9320    case ISD::FMINNUM:
9321    case ISD::FMAXNUM_IEEE:
9322    case ISD::FMINNUM_IEEE: {
9323      SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9324                                 Vec.getOperand(0), Idx);
9325      SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9326                                 Vec.getOperand(1), Idx);
9327
9328      DCI.AddToWorklist(Elt0.getNode());
9329      DCI.AddToWorklist(Elt1.getNode());
9330      return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
9331    }
9332    }
9333  }
9334
9335  unsigned VecSize = VecVT.getSizeInBits();
9336  unsigned EltSize = EltVT.getSizeInBits();
9337
9338  // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
9339  // This elminates non-constant index and subsequent movrel or scratch access.
9340  // Sub-dword vectors of size 2 dword or less have better implementation.
9341  // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9342  // instructions.
9343  if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) &&
9344      !isa<ConstantSDNode>(N->getOperand(1))) {
9345    SDLoc SL(N);
9346    SDValue Idx = N->getOperand(1);
9347    EVT IdxVT = Idx.getValueType();
9348    SDValue V;
9349    for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9350      SDValue IC = DAG.getConstant(I, SL, IdxVT);
9351      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9352      if (I == 0)
9353        V = Elt;
9354      else
9355        V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
9356    }
9357    return V;
9358  }
9359
9360  if (!DCI.isBeforeLegalize())
9361    return SDValue();
9362
9363  // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
9364  // elements. This exposes more load reduction opportunities by replacing
9365  // multiple small extract_vector_elements with a single 32-bit extract.
9366  auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9367  if (isa<MemSDNode>(Vec) &&
9368      EltSize <= 16 &&
9369      EltVT.isByteSized() &&
9370      VecSize > 32 &&
9371      VecSize % 32 == 0 &&
9372      Idx) {
9373    EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
9374
9375    unsigned BitIndex = Idx->getZExtValue() * EltSize;
9376    unsigned EltIdx = BitIndex / 32;
9377    unsigned LeftoverBitIdx = BitIndex % 32;
9378    SDLoc SL(N);
9379
9380    SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
9381    DCI.AddToWorklist(Cast.getNode());
9382
9383    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
9384                              DAG.getConstant(EltIdx, SL, MVT::i32));
9385    DCI.AddToWorklist(Elt.getNode());
9386    SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
9387                              DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
9388    DCI.AddToWorklist(Srl.getNode());
9389
9390    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
9391    DCI.AddToWorklist(Trunc.getNode());
9392    return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
9393  }
9394
9395  return SDValue();
9396}
9397
9398SDValue
9399SITargetLowering::performInsertVectorEltCombine(SDNode *N,
9400                                                DAGCombinerInfo &DCI) const {
9401  SDValue Vec = N->getOperand(0);
9402  SDValue Idx = N->getOperand(2);
9403  EVT VecVT = Vec.getValueType();
9404  EVT EltVT = VecVT.getVectorElementType();
9405  unsigned VecSize = VecVT.getSizeInBits();
9406  unsigned EltSize = EltVT.getSizeInBits();
9407
9408  // INSERT_VECTOR_ELT (<n x e>, var-idx)
9409  // => BUILD_VECTOR n x select (e, const-idx)
9410  // This elminates non-constant index and subsequent movrel or scratch access.
9411  // Sub-dword vectors of size 2 dword or less have better implementation.
9412  // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9413  // instructions.
9414  if (isa<ConstantSDNode>(Idx) ||
9415      VecSize > 256 || (VecSize <= 64 && EltSize < 32))
9416    return SDValue();
9417
9418  SelectionDAG &DAG = DCI.DAG;
9419  SDLoc SL(N);
9420  SDValue Ins = N->getOperand(1);
9421  EVT IdxVT = Idx.getValueType();
9422
9423  SmallVector<SDValue, 16> Ops;
9424  for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9425    SDValue IC = DAG.getConstant(I, SL, IdxVT);
9426    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9427    SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
9428    Ops.push_back(V);
9429  }
9430
9431  return DAG.getBuildVector(VecVT, SL, Ops);
9432}
9433
9434unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
9435                                          const SDNode *N0,
9436                                          const SDNode *N1) const {
9437  EVT VT = N0->getValueType(0);
9438
9439  // Only do this if we are not trying to support denormals. v_mad_f32 does not
9440  // support denormals ever.
9441  if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
9442       (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
9443        getSubtarget()->hasMadF16())) &&
9444       isOperationLegal(ISD::FMAD, VT))
9445    return ISD::FMAD;
9446
9447  const TargetOptions &Options = DAG.getTarget().Options;
9448  if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9449       (N0->getFlags().hasAllowContract() &&
9450        N1->getFlags().hasAllowContract())) &&
9451      isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
9452    return ISD::FMA;
9453  }
9454
9455  return 0;
9456}
9457
9458// For a reassociatable opcode perform:
9459// op x, (op y, z) -> op (op x, z), y, if x and z are uniform
9460SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
9461                                               SelectionDAG &DAG) const {
9462  EVT VT = N->getValueType(0);
9463  if (VT != MVT::i32 && VT != MVT::i64)
9464    return SDValue();
9465
9466  unsigned Opc = N->getOpcode();
9467  SDValue Op0 = N->getOperand(0);
9468  SDValue Op1 = N->getOperand(1);
9469
9470  if (!(Op0->isDivergent() ^ Op1->isDivergent()))
9471    return SDValue();
9472
9473  if (Op0->isDivergent())
9474    std::swap(Op0, Op1);
9475
9476  if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
9477    return SDValue();
9478
9479  SDValue Op2 = Op1.getOperand(1);
9480  Op1 = Op1.getOperand(0);
9481  if (!(Op1->isDivergent() ^ Op2->isDivergent()))
9482    return SDValue();
9483
9484  if (Op1->isDivergent())
9485    std::swap(Op1, Op2);
9486
9487  // If either operand is constant this will conflict with
9488  // DAGCombiner::ReassociateOps().
9489  if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
9490      DAG.isConstantIntBuildVectorOrConstantInt(Op1))
9491    return SDValue();
9492
9493  SDLoc SL(N);
9494  SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
9495  return DAG.getNode(Opc, SL, VT, Add1, Op2);
9496}
9497
9498static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
9499                           EVT VT,
9500                           SDValue N0, SDValue N1, SDValue N2,
9501                           bool Signed) {
9502  unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
9503  SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
9504  SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
9505  return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
9506}
9507
9508SDValue SITargetLowering::performAddCombine(SDNode *N,
9509                                            DAGCombinerInfo &DCI) const {
9510  SelectionDAG &DAG = DCI.DAG;
9511  EVT VT = N->getValueType(0);
9512  SDLoc SL(N);
9513  SDValue LHS = N->getOperand(0);
9514  SDValue RHS = N->getOperand(1);
9515
9516  if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
9517      && Subtarget->hasMad64_32() &&
9518      !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
9519      VT.getScalarSizeInBits() <= 64) {
9520    if (LHS.getOpcode() != ISD::MUL)
9521      std::swap(LHS, RHS);
9522
9523    SDValue MulLHS = LHS.getOperand(0);
9524    SDValue MulRHS = LHS.getOperand(1);
9525    SDValue AddRHS = RHS;
9526
9527    // TODO: Maybe restrict if SGPR inputs.
9528    if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
9529        numBitsUnsigned(MulRHS, DAG) <= 32) {
9530      MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
9531      MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
9532      AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
9533      return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
9534    }
9535
9536    if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
9537      MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
9538      MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
9539      AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
9540      return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
9541    }
9542
9543    return SDValue();
9544  }
9545
9546  if (SDValue V = reassociateScalarOps(N, DAG)) {
9547    return V;
9548  }
9549
9550  if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
9551    return SDValue();
9552
9553  // add x, zext (setcc) => addcarry x, 0, setcc
9554  // add x, sext (setcc) => subcarry x, 0, setcc
9555  unsigned Opc = LHS.getOpcode();
9556  if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
9557      Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
9558    std::swap(RHS, LHS);
9559
9560  Opc = RHS.getOpcode();
9561  switch (Opc) {
9562  default: break;
9563  case ISD::ZERO_EXTEND:
9564  case ISD::SIGN_EXTEND:
9565  case ISD::ANY_EXTEND: {
9566    auto Cond = RHS.getOperand(0);
9567    // If this won't be a real VOPC output, we would still need to insert an
9568    // extra instruction anyway.
9569    if (!isBoolSGPR(Cond))
9570      break;
9571    SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
9572    SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
9573    Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
9574    return DAG.getNode(Opc, SL, VTList, Args);
9575  }
9576  case ISD::ADDCARRY: {
9577    // add x, (addcarry y, 0, cc) => addcarry x, y, cc
9578    auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9579    if (!C || C->getZExtValue() != 0) break;
9580    SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
9581    return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
9582  }
9583  }
9584  return SDValue();
9585}
9586
9587SDValue SITargetLowering::performSubCombine(SDNode *N,
9588                                            DAGCombinerInfo &DCI) const {
9589  SelectionDAG &DAG = DCI.DAG;
9590  EVT VT = N->getValueType(0);
9591
9592  if (VT != MVT::i32)
9593    return SDValue();
9594
9595  SDLoc SL(N);
9596  SDValue LHS = N->getOperand(0);
9597  SDValue RHS = N->getOperand(1);
9598
9599  // sub x, zext (setcc) => subcarry x, 0, setcc
9600  // sub x, sext (setcc) => addcarry x, 0, setcc
9601  unsigned Opc = RHS.getOpcode();
9602  switch (Opc) {
9603  default: break;
9604  case ISD::ZERO_EXTEND:
9605  case ISD::SIGN_EXTEND:
9606  case ISD::ANY_EXTEND: {
9607    auto Cond = RHS.getOperand(0);
9608    // If this won't be a real VOPC output, we would still need to insert an
9609    // extra instruction anyway.
9610    if (!isBoolSGPR(Cond))
9611      break;
9612    SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
9613    SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
9614    Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
9615    return DAG.getNode(Opc, SL, VTList, Args);
9616  }
9617  }
9618
9619  if (LHS.getOpcode() == ISD::SUBCARRY) {
9620    // sub (subcarry x, 0, cc), y => subcarry x, y, cc
9621    auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9622    if (!C || !C->isNullValue())
9623      return SDValue();
9624    SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
9625    return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
9626  }
9627  return SDValue();
9628}
9629
9630SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
9631  DAGCombinerInfo &DCI) const {
9632
9633  if (N->getValueType(0) != MVT::i32)
9634    return SDValue();
9635
9636  auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9637  if (!C || C->getZExtValue() != 0)
9638    return SDValue();
9639
9640  SelectionDAG &DAG = DCI.DAG;
9641  SDValue LHS = N->getOperand(0);
9642
9643  // addcarry (add x, y), 0, cc => addcarry x, y, cc
9644  // subcarry (sub x, y), 0, cc => subcarry x, y, cc
9645  unsigned LHSOpc = LHS.getOpcode();
9646  unsigned Opc = N->getOpcode();
9647  if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
9648      (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
9649    SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
9650    return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
9651  }
9652  return SDValue();
9653}
9654
9655SDValue SITargetLowering::performFAddCombine(SDNode *N,
9656                                             DAGCombinerInfo &DCI) const {
9657  if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9658    return SDValue();
9659
9660  SelectionDAG &DAG = DCI.DAG;
9661  EVT VT = N->getValueType(0);
9662
9663  SDLoc SL(N);
9664  SDValue LHS = N->getOperand(0);
9665  SDValue RHS = N->getOperand(1);
9666
9667  // These should really be instruction patterns, but writing patterns with
9668  // source modiifiers is a pain.
9669
9670  // fadd (fadd (a, a), b) -> mad 2.0, a, b
9671  if (LHS.getOpcode() == ISD::FADD) {
9672    SDValue A = LHS.getOperand(0);
9673    if (A == LHS.getOperand(1)) {
9674      unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9675      if (FusedOp != 0) {
9676        const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9677        return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
9678      }
9679    }
9680  }
9681
9682  // fadd (b, fadd (a, a)) -> mad 2.0, a, b
9683  if (RHS.getOpcode() == ISD::FADD) {
9684    SDValue A = RHS.getOperand(0);
9685    if (A == RHS.getOperand(1)) {
9686      unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9687      if (FusedOp != 0) {
9688        const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9689        return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
9690      }
9691    }
9692  }
9693
9694  return SDValue();
9695}
9696
9697SDValue SITargetLowering::performFSubCombine(SDNode *N,
9698                                             DAGCombinerInfo &DCI) const {
9699  if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9700    return SDValue();
9701
9702  SelectionDAG &DAG = DCI.DAG;
9703  SDLoc SL(N);
9704  EVT VT = N->getValueType(0);
9705  assert(!VT.isVector());
9706
9707  // Try to get the fneg to fold into the source modifier. This undoes generic
9708  // DAG combines and folds them into the mad.
9709  //
9710  // Only do this if we are not trying to support denormals. v_mad_f32 does
9711  // not support denormals ever.
9712  SDValue LHS = N->getOperand(0);
9713  SDValue RHS = N->getOperand(1);
9714  if (LHS.getOpcode() == ISD::FADD) {
9715    // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
9716    SDValue A = LHS.getOperand(0);
9717    if (A == LHS.getOperand(1)) {
9718      unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9719      if (FusedOp != 0){
9720        const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9721        SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
9722
9723        return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
9724      }
9725    }
9726  }
9727
9728  if (RHS.getOpcode() == ISD::FADD) {
9729    // (fsub c, (fadd a, a)) -> mad -2.0, a, c
9730
9731    SDValue A = RHS.getOperand(0);
9732    if (A == RHS.getOperand(1)) {
9733      unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9734      if (FusedOp != 0){
9735        const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
9736        return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
9737      }
9738    }
9739  }
9740
9741  return SDValue();
9742}
9743
9744SDValue SITargetLowering::performFMACombine(SDNode *N,
9745                                            DAGCombinerInfo &DCI) const {
9746  SelectionDAG &DAG = DCI.DAG;
9747  EVT VT = N->getValueType(0);
9748  SDLoc SL(N);
9749
9750  if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
9751    return SDValue();
9752
9753  // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
9754  //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
9755  SDValue Op1 = N->getOperand(0);
9756  SDValue Op2 = N->getOperand(1);
9757  SDValue FMA = N->getOperand(2);
9758
9759  if (FMA.getOpcode() != ISD::FMA ||
9760      Op1.getOpcode() != ISD::FP_EXTEND ||
9761      Op2.getOpcode() != ISD::FP_EXTEND)
9762    return SDValue();
9763
9764  // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
9765  // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
9766  // is sufficient to allow generaing fdot2.
9767  const TargetOptions &Options = DAG.getTarget().Options;
9768  if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9769      (N->getFlags().hasAllowContract() &&
9770       FMA->getFlags().hasAllowContract())) {
9771    Op1 = Op1.getOperand(0);
9772    Op2 = Op2.getOperand(0);
9773    if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9774        Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9775      return SDValue();
9776
9777    SDValue Vec1 = Op1.getOperand(0);
9778    SDValue Idx1 = Op1.getOperand(1);
9779    SDValue Vec2 = Op2.getOperand(0);
9780
9781    SDValue FMAOp1 = FMA.getOperand(0);
9782    SDValue FMAOp2 = FMA.getOperand(1);
9783    SDValue FMAAcc = FMA.getOperand(2);
9784
9785    if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
9786        FMAOp2.getOpcode() != ISD::FP_EXTEND)
9787      return SDValue();
9788
9789    FMAOp1 = FMAOp1.getOperand(0);
9790    FMAOp2 = FMAOp2.getOperand(0);
9791    if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9792        FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9793      return SDValue();
9794
9795    SDValue Vec3 = FMAOp1.getOperand(0);
9796    SDValue Vec4 = FMAOp2.getOperand(0);
9797    SDValue Idx2 = FMAOp1.getOperand(1);
9798
9799    if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
9800        // Idx1 and Idx2 cannot be the same.
9801        Idx1 == Idx2)
9802      return SDValue();
9803
9804    if (Vec1 == Vec2 || Vec3 == Vec4)
9805      return SDValue();
9806
9807    if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
9808      return SDValue();
9809
9810    if ((Vec1 == Vec3 && Vec2 == Vec4) ||
9811        (Vec1 == Vec4 && Vec2 == Vec3)) {
9812      return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
9813                         DAG.getTargetConstant(0, SL, MVT::i1));
9814    }
9815  }
9816  return SDValue();
9817}
9818
9819SDValue SITargetLowering::performSetCCCombine(SDNode *N,
9820                                              DAGCombinerInfo &DCI) const {
9821  SelectionDAG &DAG = DCI.DAG;
9822  SDLoc SL(N);
9823
9824  SDValue LHS = N->getOperand(0);
9825  SDValue RHS = N->getOperand(1);
9826  EVT VT = LHS.getValueType();
9827  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
9828
9829  auto CRHS = dyn_cast<ConstantSDNode>(RHS);
9830  if (!CRHS) {
9831    CRHS = dyn_cast<ConstantSDNode>(LHS);
9832    if (CRHS) {
9833      std::swap(LHS, RHS);
9834      CC = getSetCCSwappedOperands(CC);
9835    }
9836  }
9837
9838  if (CRHS) {
9839    if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
9840        isBoolSGPR(LHS.getOperand(0))) {
9841      // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
9842      // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
9843      // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
9844      // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
9845      if ((CRHS->isAllOnesValue() &&
9846           (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
9847          (CRHS->isNullValue() &&
9848           (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
9849        return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9850                           DAG.getConstant(-1, SL, MVT::i1));
9851      if ((CRHS->isAllOnesValue() &&
9852           (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
9853          (CRHS->isNullValue() &&
9854           (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
9855        return LHS.getOperand(0);
9856    }
9857
9858    uint64_t CRHSVal = CRHS->getZExtValue();
9859    if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
9860        LHS.getOpcode() == ISD::SELECT &&
9861        isa<ConstantSDNode>(LHS.getOperand(1)) &&
9862        isa<ConstantSDNode>(LHS.getOperand(2)) &&
9863        LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
9864        isBoolSGPR(LHS.getOperand(0))) {
9865      // Given CT != FT:
9866      // setcc (select cc, CT, CF), CF, eq => xor cc, -1
9867      // setcc (select cc, CT, CF), CF, ne => cc
9868      // setcc (select cc, CT, CF), CT, ne => xor cc, -1
9869      // setcc (select cc, CT, CF), CT, eq => cc
9870      uint64_t CT = LHS.getConstantOperandVal(1);
9871      uint64_t CF = LHS.getConstantOperandVal(2);
9872
9873      if ((CF == CRHSVal && CC == ISD::SETEQ) ||
9874          (CT == CRHSVal && CC == ISD::SETNE))
9875        return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9876                           DAG.getConstant(-1, SL, MVT::i1));
9877      if ((CF == CRHSVal && CC == ISD::SETNE) ||
9878          (CT == CRHSVal && CC == ISD::SETEQ))
9879        return LHS.getOperand(0);
9880    }
9881  }
9882
9883  if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
9884                                           VT != MVT::f16))
9885    return SDValue();
9886
9887  // Match isinf/isfinite pattern
9888  // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
9889  // (fcmp one (fabs x), inf) -> (fp_class x,
9890  // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
9891  if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
9892    const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
9893    if (!CRHS)
9894      return SDValue();
9895
9896    const APFloat &APF = CRHS->getValueAPF();
9897    if (APF.isInfinity() && !APF.isNegative()) {
9898      const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
9899                                 SIInstrFlags::N_INFINITY;
9900      const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
9901                                    SIInstrFlags::P_ZERO |
9902                                    SIInstrFlags::N_NORMAL |
9903                                    SIInstrFlags::P_NORMAL |
9904                                    SIInstrFlags::N_SUBNORMAL |
9905                                    SIInstrFlags::P_SUBNORMAL;
9906      unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
9907      return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
9908                         DAG.getConstant(Mask, SL, MVT::i32));
9909    }
9910  }
9911
9912  return SDValue();
9913}
9914
9915SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
9916                                                     DAGCombinerInfo &DCI) const {
9917  SelectionDAG &DAG = DCI.DAG;
9918  SDLoc SL(N);
9919  unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
9920
9921  SDValue Src = N->getOperand(0);
9922  SDValue Srl = N->getOperand(0);
9923  if (Srl.getOpcode() == ISD::ZERO_EXTEND)
9924    Srl = Srl.getOperand(0);
9925
9926  // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
9927  if (Srl.getOpcode() == ISD::SRL) {
9928    // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
9929    // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
9930    // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
9931
9932    if (const ConstantSDNode *C =
9933        dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
9934      Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
9935                               EVT(MVT::i32));
9936
9937      unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
9938      if (SrcOffset < 32 && SrcOffset % 8 == 0) {
9939        return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
9940                           MVT::f32, Srl);
9941      }
9942    }
9943  }
9944
9945  APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
9946
9947  KnownBits Known;
9948  TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9949                                        !DCI.isBeforeLegalizeOps());
9950  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9951  if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
9952    DCI.CommitTargetLoweringOpt(TLO);
9953  }
9954
9955  return SDValue();
9956}
9957
9958SDValue SITargetLowering::performClampCombine(SDNode *N,
9959                                              DAGCombinerInfo &DCI) const {
9960  ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
9961  if (!CSrc)
9962    return SDValue();
9963
9964  const MachineFunction &MF = DCI.DAG.getMachineFunction();
9965  const APFloat &F = CSrc->getValueAPF();
9966  APFloat Zero = APFloat::getZero(F.getSemantics());
9967  APFloat::cmpResult Cmp0 = F.compare(Zero);
9968  if (Cmp0 == APFloat::cmpLessThan ||
9969      (Cmp0 == APFloat::cmpUnordered &&
9970       MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
9971    return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
9972  }
9973
9974  APFloat One(F.getSemantics(), "1.0");
9975  APFloat::cmpResult Cmp1 = F.compare(One);
9976  if (Cmp1 == APFloat::cmpGreaterThan)
9977    return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
9978
9979  return SDValue(CSrc, 0);
9980}
9981
9982
9983SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
9984                                            DAGCombinerInfo &DCI) const {
9985  if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
9986    return SDValue();
9987  switch (N->getOpcode()) {
9988  default:
9989    return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
9990  case ISD::ADD:
9991    return performAddCombine(N, DCI);
9992  case ISD::SUB:
9993    return performSubCombine(N, DCI);
9994  case ISD::ADDCARRY:
9995  case ISD::SUBCARRY:
9996    return performAddCarrySubCarryCombine(N, DCI);
9997  case ISD::FADD:
9998    return performFAddCombine(N, DCI);
9999  case ISD::FSUB:
10000    return performFSubCombine(N, DCI);
10001  case ISD::SETCC:
10002    return performSetCCCombine(N, DCI);
10003  case ISD::FMAXNUM:
10004  case ISD::FMINNUM:
10005  case ISD::FMAXNUM_IEEE:
10006  case ISD::FMINNUM_IEEE:
10007  case ISD::SMAX:
10008  case ISD::SMIN:
10009  case ISD::UMAX:
10010  case ISD::UMIN:
10011  case AMDGPUISD::FMIN_LEGACY:
10012  case AMDGPUISD::FMAX_LEGACY:
10013    return performMinMaxCombine(N, DCI);
10014  case ISD::FMA:
10015    return performFMACombine(N, DCI);
10016  case ISD::LOAD: {
10017    if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10018      return Widended;
10019    LLVM_FALLTHROUGH;
10020  }
10021  case ISD::STORE:
10022  case ISD::ATOMIC_LOAD:
10023  case ISD::ATOMIC_STORE:
10024  case ISD::ATOMIC_CMP_SWAP:
10025  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
10026  case ISD::ATOMIC_SWAP:
10027  case ISD::ATOMIC_LOAD_ADD:
10028  case ISD::ATOMIC_LOAD_SUB:
10029  case ISD::ATOMIC_LOAD_AND:
10030  case ISD::ATOMIC_LOAD_OR:
10031  case ISD::ATOMIC_LOAD_XOR:
10032  case ISD::ATOMIC_LOAD_NAND:
10033  case ISD::ATOMIC_LOAD_MIN:
10034  case ISD::ATOMIC_LOAD_MAX:
10035  case ISD::ATOMIC_LOAD_UMIN:
10036  case ISD::ATOMIC_LOAD_UMAX:
10037  case ISD::ATOMIC_LOAD_FADD:
10038  case AMDGPUISD::ATOMIC_INC:
10039  case AMDGPUISD::ATOMIC_DEC:
10040  case AMDGPUISD::ATOMIC_LOAD_FMIN:
10041  case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
10042    if (DCI.isBeforeLegalize())
10043      break;
10044    return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
10045  case ISD::AND:
10046    return performAndCombine(N, DCI);
10047  case ISD::OR:
10048    return performOrCombine(N, DCI);
10049  case ISD::XOR:
10050    return performXorCombine(N, DCI);
10051  case ISD::ZERO_EXTEND:
10052    return performZeroExtendCombine(N, DCI);
10053  case ISD::SIGN_EXTEND_INREG:
10054    return performSignExtendInRegCombine(N , DCI);
10055  case AMDGPUISD::FP_CLASS:
10056    return performClassCombine(N, DCI);
10057  case ISD::FCANONICALIZE:
10058    return performFCanonicalizeCombine(N, DCI);
10059  case AMDGPUISD::RCP:
10060    return performRcpCombine(N, DCI);
10061  case AMDGPUISD::FRACT:
10062  case AMDGPUISD::RSQ:
10063  case AMDGPUISD::RCP_LEGACY:
10064  case AMDGPUISD::RSQ_LEGACY:
10065  case AMDGPUISD::RCP_IFLAG:
10066  case AMDGPUISD::RSQ_CLAMP:
10067  case AMDGPUISD::LDEXP: {
10068    SDValue Src = N->getOperand(0);
10069    if (Src.isUndef())
10070      return Src;
10071    break;
10072  }
10073  case ISD::SINT_TO_FP:
10074  case ISD::UINT_TO_FP:
10075    return performUCharToFloatCombine(N, DCI);
10076  case AMDGPUISD::CVT_F32_UBYTE0:
10077  case AMDGPUISD::CVT_F32_UBYTE1:
10078  case AMDGPUISD::CVT_F32_UBYTE2:
10079  case AMDGPUISD::CVT_F32_UBYTE3:
10080    return performCvtF32UByteNCombine(N, DCI);
10081  case AMDGPUISD::FMED3:
10082    return performFMed3Combine(N, DCI);
10083  case AMDGPUISD::CVT_PKRTZ_F16_F32:
10084    return performCvtPkRTZCombine(N, DCI);
10085  case AMDGPUISD::CLAMP:
10086    return performClampCombine(N, DCI);
10087  case ISD::SCALAR_TO_VECTOR: {
10088    SelectionDAG &DAG = DCI.DAG;
10089    EVT VT = N->getValueType(0);
10090
10091    // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10092    if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10093      SDLoc SL(N);
10094      SDValue Src = N->getOperand(0);
10095      EVT EltVT = Src.getValueType();
10096      if (EltVT == MVT::f16)
10097        Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10098
10099      SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10100      return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10101    }
10102
10103    break;
10104  }
10105  case ISD::EXTRACT_VECTOR_ELT:
10106    return performExtractVectorEltCombine(N, DCI);
10107  case ISD::INSERT_VECTOR_ELT:
10108    return performInsertVectorEltCombine(N, DCI);
10109  }
10110  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10111}
10112
10113/// Helper function for adjustWritemask
10114static unsigned SubIdx2Lane(unsigned Idx) {
10115  switch (Idx) {
10116  default: return 0;
10117  case AMDGPU::sub0: return 0;
10118  case AMDGPU::sub1: return 1;
10119  case AMDGPU::sub2: return 2;
10120  case AMDGPU::sub3: return 3;
10121  case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10122  }
10123}
10124
10125/// Adjust the writemask of MIMG instructions
10126SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10127                                          SelectionDAG &DAG) const {
10128  unsigned Opcode = Node->getMachineOpcode();
10129
10130  // Subtract 1 because the vdata output is not a MachineSDNode operand.
10131  int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10132  if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10133    return Node; // not implemented for D16
10134
10135  SDNode *Users[5] = { nullptr };
10136  unsigned Lane = 0;
10137  unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10138  unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10139  unsigned NewDmask = 0;
10140  unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10141  unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10142  bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10143                  Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10144  unsigned TFCLane = 0;
10145  bool HasChain = Node->getNumValues() > 1;
10146
10147  if (OldDmask == 0) {
10148    // These are folded out, but on the chance it happens don't assert.
10149    return Node;
10150  }
10151
10152  unsigned OldBitsSet = countPopulation(OldDmask);
10153  // Work out which is the TFE/LWE lane if that is enabled.
10154  if (UsesTFC) {
10155    TFCLane = OldBitsSet;
10156  }
10157
10158  // Try to figure out the used register components
10159  for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10160       I != E; ++I) {
10161
10162    // Don't look at users of the chain.
10163    if (I.getUse().getResNo() != 0)
10164      continue;
10165
10166    // Abort if we can't understand the usage
10167    if (!I->isMachineOpcode() ||
10168        I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10169      return Node;
10170
10171    // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10172    // Note that subregs are packed, i.e. Lane==0 is the first bit set
10173    // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10174    // set, etc.
10175    Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10176
10177    // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10178    if (UsesTFC && Lane == TFCLane) {
10179      Users[Lane] = *I;
10180    } else {
10181      // Set which texture component corresponds to the lane.
10182      unsigned Comp;
10183      for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10184        Comp = countTrailingZeros(Dmask);
10185        Dmask &= ~(1 << Comp);
10186      }
10187
10188      // Abort if we have more than one user per component.
10189      if (Users[Lane])
10190        return Node;
10191
10192      Users[Lane] = *I;
10193      NewDmask |= 1 << Comp;
10194    }
10195  }
10196
10197  // Don't allow 0 dmask, as hardware assumes one channel enabled.
10198  bool NoChannels = !NewDmask;
10199  if (NoChannels) {
10200    if (!UsesTFC) {
10201      // No uses of the result and not using TFC. Then do nothing.
10202      return Node;
10203    }
10204    // If the original dmask has one channel - then nothing to do
10205    if (OldBitsSet == 1)
10206      return Node;
10207    // Use an arbitrary dmask - required for the instruction to work
10208    NewDmask = 1;
10209  }
10210  // Abort if there's no change
10211  if (NewDmask == OldDmask)
10212    return Node;
10213
10214  unsigned BitsSet = countPopulation(NewDmask);
10215
10216  // Check for TFE or LWE - increase the number of channels by one to account
10217  // for the extra return value
10218  // This will need adjustment for D16 if this is also included in
10219  // adjustWriteMask (this function) but at present D16 are excluded.
10220  unsigned NewChannels = BitsSet + UsesTFC;
10221
10222  int NewOpcode =
10223      AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10224  assert(NewOpcode != -1 &&
10225         NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10226         "failed to find equivalent MIMG op");
10227
10228  // Adjust the writemask in the node
10229  SmallVector<SDValue, 12> Ops;
10230  Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10231  Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10232  Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10233
10234  MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10235
10236  MVT ResultVT = NewChannels == 1 ?
10237    SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10238                           NewChannels == 5 ? 8 : NewChannels);
10239  SDVTList NewVTList = HasChain ?
10240    DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10241
10242
10243  MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10244                                              NewVTList, Ops);
10245
10246  if (HasChain) {
10247    // Update chain.
10248    DAG.setNodeMemRefs(NewNode, Node->memoperands());
10249    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10250  }
10251
10252  if (NewChannels == 1) {
10253    assert(Node->hasNUsesOfValue(1, 0));
10254    SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
10255                                      SDLoc(Node), Users[Lane]->getValueType(0),
10256                                      SDValue(NewNode, 0));
10257    DAG.ReplaceAllUsesWith(Users[Lane], Copy);
10258    return nullptr;
10259  }
10260
10261  // Update the users of the node with the new indices
10262  for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
10263    SDNode *User = Users[i];
10264    if (!User) {
10265      // Handle the special case of NoChannels. We set NewDmask to 1 above, but
10266      // Users[0] is still nullptr because channel 0 doesn't really have a use.
10267      if (i || !NoChannels)
10268        continue;
10269    } else {
10270      SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
10271      DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
10272    }
10273
10274    switch (Idx) {
10275    default: break;
10276    case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
10277    case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
10278    case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
10279    case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
10280    }
10281  }
10282
10283  DAG.RemoveDeadNode(Node);
10284  return nullptr;
10285}
10286
10287static bool isFrameIndexOp(SDValue Op) {
10288  if (Op.getOpcode() == ISD::AssertZext)
10289    Op = Op.getOperand(0);
10290
10291  return isa<FrameIndexSDNode>(Op);
10292}
10293
10294/// Legalize target independent instructions (e.g. INSERT_SUBREG)
10295/// with frame index operands.
10296/// LLVM assumes that inputs are to these instructions are registers.
10297SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
10298                                                        SelectionDAG &DAG) const {
10299  if (Node->getOpcode() == ISD::CopyToReg) {
10300    RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
10301    SDValue SrcVal = Node->getOperand(2);
10302
10303    // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
10304    // to try understanding copies to physical registers.
10305    if (SrcVal.getValueType() == MVT::i1 &&
10306        Register::isPhysicalRegister(DestReg->getReg())) {
10307      SDLoc SL(Node);
10308      MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10309      SDValue VReg = DAG.getRegister(
10310        MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
10311
10312      SDNode *Glued = Node->getGluedNode();
10313      SDValue ToVReg
10314        = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
10315                         SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
10316      SDValue ToResultReg
10317        = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
10318                           VReg, ToVReg.getValue(1));
10319      DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
10320      DAG.RemoveDeadNode(Node);
10321      return ToResultReg.getNode();
10322    }
10323  }
10324
10325  SmallVector<SDValue, 8> Ops;
10326  for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
10327    if (!isFrameIndexOp(Node->getOperand(i))) {
10328      Ops.push_back(Node->getOperand(i));
10329      continue;
10330    }
10331
10332    SDLoc DL(Node);
10333    Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
10334                                     Node->getOperand(i).getValueType(),
10335                                     Node->getOperand(i)), 0));
10336  }
10337
10338  return DAG.UpdateNodeOperands(Node, Ops);
10339}
10340
10341/// Fold the instructions after selecting them.
10342/// Returns null if users were already updated.
10343SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
10344                                          SelectionDAG &DAG) const {
10345  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10346  unsigned Opcode = Node->getMachineOpcode();
10347
10348  if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
10349      !TII->isGather4(Opcode)) {
10350    return adjustWritemask(Node, DAG);
10351  }
10352
10353  if (Opcode == AMDGPU::INSERT_SUBREG ||
10354      Opcode == AMDGPU::REG_SEQUENCE) {
10355    legalizeTargetIndependentNode(Node, DAG);
10356    return Node;
10357  }
10358
10359  switch (Opcode) {
10360  case AMDGPU::V_DIV_SCALE_F32:
10361  case AMDGPU::V_DIV_SCALE_F64: {
10362    // Satisfy the operand register constraint when one of the inputs is
10363    // undefined. Ordinarily each undef value will have its own implicit_def of
10364    // a vreg, so force these to use a single register.
10365    SDValue Src0 = Node->getOperand(0);
10366    SDValue Src1 = Node->getOperand(1);
10367    SDValue Src2 = Node->getOperand(2);
10368
10369    if ((Src0.isMachineOpcode() &&
10370         Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
10371        (Src0 == Src1 || Src0 == Src2))
10372      break;
10373
10374    MVT VT = Src0.getValueType().getSimpleVT();
10375    const TargetRegisterClass *RC =
10376        getRegClassFor(VT, Src0.getNode()->isDivergent());
10377
10378    MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10379    SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
10380
10381    SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
10382                                      UndefReg, Src0, SDValue());
10383
10384    // src0 must be the same register as src1 or src2, even if the value is
10385    // undefined, so make sure we don't violate this constraint.
10386    if (Src0.isMachineOpcode() &&
10387        Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
10388      if (Src1.isMachineOpcode() &&
10389          Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10390        Src0 = Src1;
10391      else if (Src2.isMachineOpcode() &&
10392               Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10393        Src0 = Src2;
10394      else {
10395        assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
10396        Src0 = UndefReg;
10397        Src1 = UndefReg;
10398      }
10399    } else
10400      break;
10401
10402    SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
10403    for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
10404      Ops.push_back(Node->getOperand(I));
10405
10406    Ops.push_back(ImpDef.getValue(1));
10407    return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10408  }
10409  case AMDGPU::V_PERMLANE16_B32:
10410  case AMDGPU::V_PERMLANEX16_B32: {
10411    ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0));
10412    ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2));
10413    if (!FI->getZExtValue() && !BC->getZExtValue())
10414      break;
10415    SDValue VDstIn = Node->getOperand(6);
10416    if (VDstIn.isMachineOpcode()
10417        && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)
10418      break;
10419    MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
10420                                               SDLoc(Node), MVT::i32);
10421    SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1),
10422                                    SDValue(BC, 0), Node->getOperand(3),
10423                                    Node->getOperand(4), Node->getOperand(5),
10424                                    SDValue(ImpDef, 0), Node->getOperand(7) };
10425    return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10426  }
10427  default:
10428    break;
10429  }
10430
10431  return Node;
10432}
10433
10434/// Assign the register class depending on the number of
10435/// bits set in the writemask
10436void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10437                                                     SDNode *Node) const {
10438  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10439
10440  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
10441
10442  if (TII->isVOP3(MI.getOpcode())) {
10443    // Make sure constant bus requirements are respected.
10444    TII->legalizeOperandsVOP3(MRI, MI);
10445
10446    // Prefer VGPRs over AGPRs in mAI instructions where possible.
10447    // This saves a chain-copy of registers and better ballance register
10448    // use between vgpr and agpr as agpr tuples tend to be big.
10449    if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
10450      unsigned Opc = MI.getOpcode();
10451      const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10452      for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
10453                      AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
10454        if (I == -1)
10455          break;
10456        MachineOperand &Op = MI.getOperand(I);
10457        if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
10458             OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
10459            !Register::isVirtualRegister(Op.getReg()) ||
10460            !TRI->isAGPR(MRI, Op.getReg()))
10461          continue;
10462        auto *Src = MRI.getUniqueVRegDef(Op.getReg());
10463        if (!Src || !Src->isCopy() ||
10464            !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
10465          continue;
10466        auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
10467        auto *NewRC = TRI->getEquivalentVGPRClass(RC);
10468        // All uses of agpr64 and agpr32 can also accept vgpr except for
10469        // v_accvgpr_read, but we do not produce agpr reads during selection,
10470        // so no use checks are needed.
10471        MRI.setRegClass(Op.getReg(), NewRC);
10472      }
10473    }
10474
10475    return;
10476  }
10477
10478  // Replace unused atomics with the no return version.
10479  int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
10480  if (NoRetAtomicOp != -1) {
10481    if (!Node->hasAnyUseOfValue(0)) {
10482      MI.setDesc(TII->get(NoRetAtomicOp));
10483      MI.RemoveOperand(0);
10484      return;
10485    }
10486
10487    // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
10488    // instruction, because the return type of these instructions is a vec2 of
10489    // the memory type, so it can be tied to the input operand.
10490    // This means these instructions always have a use, so we need to add a
10491    // special case to check if the atomic has only one extract_subreg use,
10492    // which itself has no uses.
10493    if ((Node->hasNUsesOfValue(1, 0) &&
10494         Node->use_begin()->isMachineOpcode() &&
10495         Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
10496         !Node->use_begin()->hasAnyUseOfValue(0))) {
10497      Register Def = MI.getOperand(0).getReg();
10498
10499      // Change this into a noret atomic.
10500      MI.setDesc(TII->get(NoRetAtomicOp));
10501      MI.RemoveOperand(0);
10502
10503      // If we only remove the def operand from the atomic instruction, the
10504      // extract_subreg will be left with a use of a vreg without a def.
10505      // So we need to insert an implicit_def to avoid machine verifier
10506      // errors.
10507      BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
10508              TII->get(AMDGPU::IMPLICIT_DEF), Def);
10509    }
10510    return;
10511  }
10512}
10513
10514static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
10515                              uint64_t Val) {
10516  SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
10517  return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
10518}
10519
10520MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
10521                                                const SDLoc &DL,
10522                                                SDValue Ptr) const {
10523  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10524
10525  // Build the half of the subregister with the constants before building the
10526  // full 128-bit register. If we are building multiple resource descriptors,
10527  // this will allow CSEing of the 2-component register.
10528  const SDValue Ops0[] = {
10529    DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
10530    buildSMovImm32(DAG, DL, 0),
10531    DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10532    buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
10533    DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
10534  };
10535
10536  SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
10537                                                MVT::v2i32, Ops0), 0);
10538
10539  // Combine the constants and the pointer.
10540  const SDValue Ops1[] = {
10541    DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
10542    Ptr,
10543    DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
10544    SubRegHi,
10545    DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
10546  };
10547
10548  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
10549}
10550
10551/// Return a resource descriptor with the 'Add TID' bit enabled
10552///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
10553///        of the resource descriptor) to create an offset, which is added to
10554///        the resource pointer.
10555MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
10556                                           SDValue Ptr, uint32_t RsrcDword1,
10557                                           uint64_t RsrcDword2And3) const {
10558  SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
10559  SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
10560  if (RsrcDword1) {
10561    PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
10562                                     DAG.getConstant(RsrcDword1, DL, MVT::i32)),
10563                    0);
10564  }
10565
10566  SDValue DataLo = buildSMovImm32(DAG, DL,
10567                                  RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
10568  SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
10569
10570  const SDValue Ops[] = {
10571    DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
10572    PtrLo,
10573    DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10574    PtrHi,
10575    DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
10576    DataLo,
10577    DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
10578    DataHi,
10579    DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
10580  };
10581
10582  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
10583}
10584
10585//===----------------------------------------------------------------------===//
10586//                         SI Inline Assembly Support
10587//===----------------------------------------------------------------------===//
10588
10589std::pair<unsigned, const TargetRegisterClass *>
10590SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10591                                               StringRef Constraint,
10592                                               MVT VT) const {
10593  const TargetRegisterClass *RC = nullptr;
10594  if (Constraint.size() == 1) {
10595    switch (Constraint[0]) {
10596    default:
10597      return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10598    case 's':
10599    case 'r':
10600      switch (VT.getSizeInBits()) {
10601      default:
10602        return std::make_pair(0U, nullptr);
10603      case 32:
10604      case 16:
10605        RC = &AMDGPU::SReg_32RegClass;
10606        break;
10607      case 64:
10608        RC = &AMDGPU::SGPR_64RegClass;
10609        break;
10610      case 96:
10611        RC = &AMDGPU::SReg_96RegClass;
10612        break;
10613      case 128:
10614        RC = &AMDGPU::SGPR_128RegClass;
10615        break;
10616      case 160:
10617        RC = &AMDGPU::SReg_160RegClass;
10618        break;
10619      case 256:
10620        RC = &AMDGPU::SReg_256RegClass;
10621        break;
10622      case 512:
10623        RC = &AMDGPU::SReg_512RegClass;
10624        break;
10625      }
10626      break;
10627    case 'v':
10628      switch (VT.getSizeInBits()) {
10629      default:
10630        return std::make_pair(0U, nullptr);
10631      case 32:
10632      case 16:
10633        RC = &AMDGPU::VGPR_32RegClass;
10634        break;
10635      case 64:
10636        RC = &AMDGPU::VReg_64RegClass;
10637        break;
10638      case 96:
10639        RC = &AMDGPU::VReg_96RegClass;
10640        break;
10641      case 128:
10642        RC = &AMDGPU::VReg_128RegClass;
10643        break;
10644      case 160:
10645        RC = &AMDGPU::VReg_160RegClass;
10646        break;
10647      case 256:
10648        RC = &AMDGPU::VReg_256RegClass;
10649        break;
10650      case 512:
10651        RC = &AMDGPU::VReg_512RegClass;
10652        break;
10653      }
10654      break;
10655    case 'a':
10656      if (!Subtarget->hasMAIInsts())
10657        break;
10658      switch (VT.getSizeInBits()) {
10659      default:
10660        return std::make_pair(0U, nullptr);
10661      case 32:
10662      case 16:
10663        RC = &AMDGPU::AGPR_32RegClass;
10664        break;
10665      case 64:
10666        RC = &AMDGPU::AReg_64RegClass;
10667        break;
10668      case 128:
10669        RC = &AMDGPU::AReg_128RegClass;
10670        break;
10671      case 512:
10672        RC = &AMDGPU::AReg_512RegClass;
10673        break;
10674      case 1024:
10675        RC = &AMDGPU::AReg_1024RegClass;
10676        // v32 types are not legal but we support them here.
10677        return std::make_pair(0U, RC);
10678      }
10679      break;
10680    }
10681    // We actually support i128, i16 and f16 as inline parameters
10682    // even if they are not reported as legal
10683    if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
10684               VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
10685      return std::make_pair(0U, RC);
10686  }
10687
10688  if (Constraint.size() > 1) {
10689    if (Constraint[1] == 'v') {
10690      RC = &AMDGPU::VGPR_32RegClass;
10691    } else if (Constraint[1] == 's') {
10692      RC = &AMDGPU::SGPR_32RegClass;
10693    } else if (Constraint[1] == 'a') {
10694      RC = &AMDGPU::AGPR_32RegClass;
10695    }
10696
10697    if (RC) {
10698      uint32_t Idx;
10699      bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
10700      if (!Failed && Idx < RC->getNumRegs())
10701        return std::make_pair(RC->getRegister(Idx), RC);
10702    }
10703  }
10704  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10705}
10706
10707SITargetLowering::ConstraintType
10708SITargetLowering::getConstraintType(StringRef Constraint) const {
10709  if (Constraint.size() == 1) {
10710    switch (Constraint[0]) {
10711    default: break;
10712    case 's':
10713    case 'v':
10714    case 'a':
10715      return C_RegisterClass;
10716    }
10717  }
10718  return TargetLowering::getConstraintType(Constraint);
10719}
10720
10721// Figure out which registers should be reserved for stack access. Only after
10722// the function is legalized do we know all of the non-spill stack objects or if
10723// calls are present.
10724void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
10725  MachineRegisterInfo &MRI = MF.getRegInfo();
10726  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10727  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
10728  const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10729
10730  if (Info->isEntryFunction()) {
10731    // Callable functions have fixed registers used for stack access.
10732    reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
10733  }
10734
10735  assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
10736                             Info->getStackPtrOffsetReg()));
10737  if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
10738    MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
10739
10740  // We need to worry about replacing the default register with itself in case
10741  // of MIR testcases missing the MFI.
10742  if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
10743    MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
10744
10745  if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
10746    MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
10747
10748  if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) {
10749    MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
10750                       Info->getScratchWaveOffsetReg());
10751  }
10752
10753  Info->limitOccupancy(MF);
10754
10755  if (ST.isWave32() && !MF.empty()) {
10756    // Add VCC_HI def because many instructions marked as imp-use VCC where
10757    // we may only define VCC_LO. If nothing defines VCC_HI we may end up
10758    // having a use of undef.
10759
10760    const SIInstrInfo *TII = ST.getInstrInfo();
10761    DebugLoc DL;
10762
10763    MachineBasicBlock &MBB = MF.front();
10764    MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr();
10765    BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI);
10766
10767    for (auto &MBB : MF) {
10768      for (auto &MI : MBB) {
10769        TII->fixImplicitOperands(MI);
10770      }
10771    }
10772  }
10773
10774  TargetLoweringBase::finalizeLowering(MF);
10775}
10776
10777void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
10778                                                     KnownBits &Known,
10779                                                     const APInt &DemandedElts,
10780                                                     const SelectionDAG &DAG,
10781                                                     unsigned Depth) const {
10782  TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
10783                                                DAG, Depth);
10784
10785  // Set the high bits to zero based on the maximum allowed scratch size per
10786  // wave. We can't use vaddr in MUBUF instructions if we don't know the address
10787  // calculation won't overflow, so assume the sign bit is never set.
10788  Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
10789}
10790
10791Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10792  const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
10793  const Align CacheLineAlign = Align(64);
10794
10795  // Pre-GFX10 target did not benefit from loop alignment
10796  if (!ML || DisableLoopAlignment ||
10797      (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
10798      getSubtarget()->hasInstFwdPrefetchBug())
10799    return PrefAlign;
10800
10801  // On GFX10 I$ is 4 x 64 bytes cache lines.
10802  // By default prefetcher keeps one cache line behind and reads two ahead.
10803  // We can modify it with S_INST_PREFETCH for larger loops to have two lines
10804  // behind and one ahead.
10805  // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
10806  // If loop fits 64 bytes it always spans no more than two cache lines and
10807  // does not need an alignment.
10808  // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
10809  // Else if loop is less or equal 192 bytes we need two lines behind.
10810
10811  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10812  const MachineBasicBlock *Header = ML->getHeader();
10813  if (Header->getAlignment() != PrefAlign)
10814    return Header->getAlignment(); // Already processed.
10815
10816  unsigned LoopSize = 0;
10817  for (const MachineBasicBlock *MBB : ML->blocks()) {
10818    // If inner loop block is aligned assume in average half of the alignment
10819    // size to be added as nops.
10820    if (MBB != Header)
10821      LoopSize += MBB->getAlignment().value() / 2;
10822
10823    for (const MachineInstr &MI : *MBB) {
10824      LoopSize += TII->getInstSizeInBytes(MI);
10825      if (LoopSize > 192)
10826        return PrefAlign;
10827    }
10828  }
10829
10830  if (LoopSize <= 64)
10831    return PrefAlign;
10832
10833  if (LoopSize <= 128)
10834    return CacheLineAlign;
10835
10836  // If any of parent loops is surrounded by prefetch instructions do not
10837  // insert new for inner loop, which would reset parent's settings.
10838  for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
10839    if (MachineBasicBlock *Exit = P->getExitBlock()) {
10840      auto I = Exit->getFirstNonDebugInstr();
10841      if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
10842        return CacheLineAlign;
10843    }
10844  }
10845
10846  MachineBasicBlock *Pre = ML->getLoopPreheader();
10847  MachineBasicBlock *Exit = ML->getExitBlock();
10848
10849  if (Pre && Exit) {
10850    BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
10851            TII->get(AMDGPU::S_INST_PREFETCH))
10852      .addImm(1); // prefetch 2 lines behind PC
10853
10854    BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
10855            TII->get(AMDGPU::S_INST_PREFETCH))
10856      .addImm(2); // prefetch 1 line behind PC
10857  }
10858
10859  return CacheLineAlign;
10860}
10861
10862LLVM_ATTRIBUTE_UNUSED
10863static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
10864  assert(N->getOpcode() == ISD::CopyFromReg);
10865  do {
10866    // Follow the chain until we find an INLINEASM node.
10867    N = N->getOperand(0).getNode();
10868    if (N->getOpcode() == ISD::INLINEASM ||
10869        N->getOpcode() == ISD::INLINEASM_BR)
10870      return true;
10871  } while (N->getOpcode() == ISD::CopyFromReg);
10872  return false;
10873}
10874
10875bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
10876  FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
10877{
10878  switch (N->getOpcode()) {
10879    case ISD::CopyFromReg:
10880    {
10881      const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
10882      const MachineFunction * MF = FLI->MF;
10883      const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
10884      const MachineRegisterInfo &MRI = MF->getRegInfo();
10885      const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
10886      unsigned Reg = R->getReg();
10887      if (Register::isPhysicalRegister(Reg))
10888        return !TRI.isSGPRReg(MRI, Reg);
10889
10890      if (MRI.isLiveIn(Reg)) {
10891        // workitem.id.x workitem.id.y workitem.id.z
10892        // Any VGPR formal argument is also considered divergent
10893        if (!TRI.isSGPRReg(MRI, Reg))
10894          return true;
10895        // Formal arguments of non-entry functions
10896        // are conservatively considered divergent
10897        else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
10898          return true;
10899        return false;
10900      }
10901      const Value *V = FLI->getValueFromVirtualReg(Reg);
10902      if (V)
10903        return KDA->isDivergent(V);
10904      assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
10905      return !TRI.isSGPRReg(MRI, Reg);
10906    }
10907    break;
10908    case ISD::LOAD: {
10909      const LoadSDNode *L = cast<LoadSDNode>(N);
10910      unsigned AS = L->getAddressSpace();
10911      // A flat load may access private memory.
10912      return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
10913    } break;
10914    case ISD::CALLSEQ_END:
10915    return true;
10916    break;
10917    case ISD::INTRINSIC_WO_CHAIN:
10918    {
10919
10920    }
10921      return AMDGPU::isIntrinsicSourceOfDivergence(
10922      cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
10923    case ISD::INTRINSIC_W_CHAIN:
10924      return AMDGPU::isIntrinsicSourceOfDivergence(
10925      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
10926  }
10927  return false;
10928}
10929
10930bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
10931                                               EVT VT) const {
10932  switch (VT.getScalarType().getSimpleVT().SimpleTy) {
10933  case MVT::f32:
10934    return hasFP32Denormals(DAG.getMachineFunction());
10935  case MVT::f64:
10936  case MVT::f16:
10937    return hasFP64FP16Denormals(DAG.getMachineFunction());
10938  default:
10939    return false;
10940  }
10941}
10942
10943bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
10944                                                    const SelectionDAG &DAG,
10945                                                    bool SNaN,
10946                                                    unsigned Depth) const {
10947  if (Op.getOpcode() == AMDGPUISD::CLAMP) {
10948    const MachineFunction &MF = DAG.getMachineFunction();
10949    const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10950
10951    if (Info->getMode().DX10Clamp)
10952      return true; // Clamped to 0.
10953    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
10954  }
10955
10956  return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
10957                                                            SNaN, Depth);
10958}
10959
10960TargetLowering::AtomicExpansionKind
10961SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
10962  switch (RMW->getOperation()) {
10963  case AtomicRMWInst::FAdd: {
10964    Type *Ty = RMW->getType();
10965
10966    // We don't have a way to support 16-bit atomics now, so just leave them
10967    // as-is.
10968    if (Ty->isHalfTy())
10969      return AtomicExpansionKind::None;
10970
10971    if (!Ty->isFloatTy())
10972      return AtomicExpansionKind::CmpXChg;
10973
10974    // TODO: Do have these for flat. Older targets also had them for buffers.
10975    unsigned AS = RMW->getPointerAddressSpace();
10976
10977    if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) {
10978      return RMW->use_empty() ? AtomicExpansionKind::None :
10979                                AtomicExpansionKind::CmpXChg;
10980    }
10981
10982    return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
10983      AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
10984  }
10985  default:
10986    break;
10987  }
10988
10989  return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
10990}
10991
10992const TargetRegisterClass *
10993SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
10994  const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
10995  const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10996  if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
10997    return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
10998                                               : &AMDGPU::SReg_32RegClass;
10999  if (!TRI->isSGPRClass(RC) && !isDivergent)
11000    return TRI->getEquivalentSGPRClass(RC);
11001  else if (TRI->isSGPRClass(RC) && isDivergent)
11002    return TRI->getEquivalentVGPRClass(RC);
11003
11004  return RC;
11005}
11006
11007static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited) {
11008  if (!isa<Instruction>(V))
11009    return false;
11010  if (!Visited.insert(V).second)
11011    return false;
11012  bool Result = false;
11013  for (auto U : V->users()) {
11014    if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
11015      if (V == U->getOperand(1)) {
11016        switch (Intrinsic->getIntrinsicID()) {
11017        default:
11018          Result = false;
11019          break;
11020        case Intrinsic::amdgcn_if_break:
11021        case Intrinsic::amdgcn_if:
11022        case Intrinsic::amdgcn_else:
11023          Result = true;
11024          break;
11025        }
11026      }
11027      if (V == U->getOperand(0)) {
11028        switch (Intrinsic->getIntrinsicID()) {
11029        default:
11030          Result = false;
11031          break;
11032        case Intrinsic::amdgcn_end_cf:
11033        case Intrinsic::amdgcn_loop:
11034          Result = true;
11035          break;
11036        }
11037      }
11038    } else {
11039      Result = hasCFUser(U, Visited);
11040    }
11041    if (Result)
11042      break;
11043  }
11044  return Result;
11045}
11046
11047bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
11048                                               const Value *V) const {
11049  if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
11050    switch (Intrinsic->getIntrinsicID()) {
11051    default:
11052      return false;
11053    case Intrinsic::amdgcn_if_break:
11054      return true;
11055    }
11056  }
11057  if (const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V)) {
11058    if (const IntrinsicInst *Intrinsic =
11059            dyn_cast<IntrinsicInst>(ExtValue->getOperand(0))) {
11060      switch (Intrinsic->getIntrinsicID()) {
11061      default:
11062        return false;
11063      case Intrinsic::amdgcn_if:
11064      case Intrinsic::amdgcn_else: {
11065        ArrayRef<unsigned> Indices = ExtValue->getIndices();
11066        if (Indices.size() == 1 && Indices[0] == 1) {
11067          return true;
11068        }
11069      }
11070      }
11071    }
11072  }
11073  if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11074    if (isa<InlineAsm>(CI->getCalledValue())) {
11075      const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11076      ImmutableCallSite CS(CI);
11077      TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11078          MF.getDataLayout(), Subtarget->getRegisterInfo(), CS);
11079      for (auto &TC : TargetConstraints) {
11080        if (TC.Type == InlineAsm::isOutput) {
11081          ComputeConstraintToUse(TC, SDValue());
11082          unsigned AssignedReg;
11083          const TargetRegisterClass *RC;
11084          std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11085              SIRI, TC.ConstraintCode, TC.ConstraintVT);
11086          if (RC) {
11087            MachineRegisterInfo &MRI = MF.getRegInfo();
11088            if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11089              return true;
11090            else if (SIRI->isSGPRClass(RC))
11091              return true;
11092          }
11093        }
11094      }
11095    }
11096  }
11097  SmallPtrSet<const Value *, 16> Visited;
11098  return hasCFUser(V, Visited);
11099}
11100