R600ISelLowering.cpp revision 341825
1//===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// Custom DAG lowering for R600
12//
13//===----------------------------------------------------------------------===//
14
15#include "R600ISelLowering.h"
16#include "AMDGPUFrameLowering.h"
17#include "AMDGPUSubtarget.h"
18#include "R600Defines.h"
19#include "R600FrameLowering.h"
20#include "R600InstrInfo.h"
21#include "R600MachineFunctionInfo.h"
22#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
23#include "Utils/AMDGPUBaseInfo.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/DAGCombine.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineBasicBlock.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstr.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/SelectionDAG.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/Compiler.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/MachineValueType.h"
45#include <cassert>
46#include <cstdint>
47#include <iterator>
48#include <utility>
49#include <vector>
50
51using namespace llvm;
52
53#include "R600GenCallingConv.inc"
54
55R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
56                                       const R600Subtarget &STI)
57    : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
58  addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
59  addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
60  addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
61  addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
62  addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
63  addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
64
65  computeRegisterProperties(Subtarget->getRegisterInfo());
66
67  // Legalize loads and stores to the private address space.
68  setOperationAction(ISD::LOAD, MVT::i32, Custom);
69  setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
70  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
71
72  // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
73  // spaces, so it is custom lowered to handle those where it isn't.
74  for (MVT VT : MVT::integer_valuetypes()) {
75    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
76    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
77    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
78
79    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
80    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
81    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
82
83    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
84    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
85    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
86  }
87
88  // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
89  setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
90  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
91  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
92
93  setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
94  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
95  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
96
97  setOperationAction(ISD::STORE, MVT::i8, Custom);
98  setOperationAction(ISD::STORE, MVT::i32, Custom);
99  setOperationAction(ISD::STORE, MVT::v2i32, Custom);
100  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
101
102  setTruncStoreAction(MVT::i32, MVT::i8, Custom);
103  setTruncStoreAction(MVT::i32, MVT::i16, Custom);
104  // We need to include these since trunc STORES to PRIVATE need
105  // special handling to accommodate RMW
106  setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
107  setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
108  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
109  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
110  setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
111  setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
112  setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
113  setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
114  setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
115  setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
116
117  // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
118  setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
119  setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
120
121  // Set condition code actions
122  setCondCodeAction(ISD::SETO,   MVT::f32, Expand);
123  setCondCodeAction(ISD::SETUO,  MVT::f32, Expand);
124  setCondCodeAction(ISD::SETLT,  MVT::f32, Expand);
125  setCondCodeAction(ISD::SETLE,  MVT::f32, Expand);
126  setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
127  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
128  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
129  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
131  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
132  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
134
135  setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
136  setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
137  setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
138  setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
139
140  setOperationAction(ISD::FCOS, MVT::f32, Custom);
141  setOperationAction(ISD::FSIN, MVT::f32, Custom);
142
143  setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
144  setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
145
146  setOperationAction(ISD::BR_CC, MVT::i32, Expand);
147  setOperationAction(ISD::BR_CC, MVT::f32, Expand);
148  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
149
150  setOperationAction(ISD::FSUB, MVT::f32, Expand);
151
152  setOperationAction(ISD::FCEIL, MVT::f64, Custom);
153  setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
154  setOperationAction(ISD::FRINT, MVT::f64, Custom);
155  setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
156
157  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
158  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
159
160  setOperationAction(ISD::SETCC, MVT::i32, Expand);
161  setOperationAction(ISD::SETCC, MVT::f32, Expand);
162  setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
163  setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
164  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
165  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
166
167  setOperationAction(ISD::SELECT, MVT::i32, Expand);
168  setOperationAction(ISD::SELECT, MVT::f32, Expand);
169  setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
170  setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
171
172  // ADD, SUB overflow.
173  // TODO: turn these into Legal?
174  if (Subtarget->hasCARRY())
175    setOperationAction(ISD::UADDO, MVT::i32, Custom);
176
177  if (Subtarget->hasBORROW())
178    setOperationAction(ISD::USUBO, MVT::i32, Custom);
179
180  // Expand sign extension of vectors
181  if (!Subtarget->hasBFE())
182    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
183
184  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
185  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
186
187  if (!Subtarget->hasBFE())
188    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
189  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
190  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
191
192  if (!Subtarget->hasBFE())
193    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
194  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
195  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
196
197  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
198  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
199  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
200
201  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
202
203  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
204
205  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
206  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
207  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
208  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
209
210  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
211  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
212  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
213  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
214
215  // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
216  //  to be Legal/Custom in order to avoid library calls.
217  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
218  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
219  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
220
221  if (!Subtarget->hasFMA()) {
222    setOperationAction(ISD::FMA, MVT::f32, Expand);
223    setOperationAction(ISD::FMA, MVT::f64, Expand);
224  }
225
226  // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
227  // need it for R600.
228  if (!Subtarget->hasFP32Denormals())
229    setOperationAction(ISD::FMAD, MVT::f32, Legal);
230
231  if (!Subtarget->hasBFI()) {
232    // fcopysign can be done in a single instruction with BFI.
233    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
234    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
235  }
236
237  if (!Subtarget->hasBCNT(32))
238    setOperationAction(ISD::CTPOP, MVT::i32, Expand);
239
240  if (!Subtarget->hasBCNT(64))
241    setOperationAction(ISD::CTPOP, MVT::i64, Expand);
242
243  if (Subtarget->hasFFBH())
244    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
245
246  if (Subtarget->hasFFBL())
247    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
248
249  // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
250  // need it for R600.
251  if (Subtarget->hasBFE())
252    setHasExtractBitsInsn(true);
253
254  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
255
256  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
257  for (MVT VT : ScalarIntVTs) {
258    setOperationAction(ISD::ADDC, VT, Expand);
259    setOperationAction(ISD::SUBC, VT, Expand);
260    setOperationAction(ISD::ADDE, VT, Expand);
261    setOperationAction(ISD::SUBE, VT, Expand);
262  }
263
264  // LLVM will expand these to atomic_cmp_swap(0)
265  // and atomic_swap, respectively.
266  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
267  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
268
269  // We need to custom lower some of the intrinsics
270  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
271  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
272
273  setSchedulingPreference(Sched::Source);
274
275  setTargetDAGCombine(ISD::FP_ROUND);
276  setTargetDAGCombine(ISD::FP_TO_SINT);
277  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
278  setTargetDAGCombine(ISD::SELECT_CC);
279  setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
280  setTargetDAGCombine(ISD::LOAD);
281}
282
283static inline bool isEOP(MachineBasicBlock::iterator I) {
284  if (std::next(I) == I->getParent()->end())
285    return false;
286  return std::next(I)->getOpcode() == R600::RETURN;
287}
288
289MachineBasicBlock *
290R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
291                                                MachineBasicBlock *BB) const {
292  MachineFunction *MF = BB->getParent();
293  MachineRegisterInfo &MRI = MF->getRegInfo();
294  MachineBasicBlock::iterator I = MI;
295  const R600InstrInfo *TII = Subtarget->getInstrInfo();
296
297  switch (MI.getOpcode()) {
298  default:
299    // Replace LDS_*_RET instruction that don't have any uses with the
300    // equivalent LDS_*_NORET instruction.
301    if (TII->isLDSRetInstr(MI.getOpcode())) {
302      int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
303      assert(DstIdx != -1);
304      MachineInstrBuilder NewMI;
305      // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
306      //        LDS_1A2D support and remove this special case.
307      if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
308          MI.getOpcode() == R600::LDS_CMPST_RET)
309        return BB;
310
311      NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
312                      TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
313      for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
314        NewMI.add(MI.getOperand(i));
315      }
316    } else {
317      return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
318    }
319    break;
320
321  case R600::FABS_R600: {
322    MachineInstr *NewMI = TII->buildDefaultInstruction(
323        *BB, I, R600::MOV, MI.getOperand(0).getReg(),
324        MI.getOperand(1).getReg());
325    TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
326    break;
327  }
328
329  case R600::FNEG_R600: {
330    MachineInstr *NewMI = TII->buildDefaultInstruction(
331        *BB, I, R600::MOV, MI.getOperand(0).getReg(),
332        MI.getOperand(1).getReg());
333    TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
334    break;
335  }
336
337  case R600::MASK_WRITE: {
338    unsigned maskedRegister = MI.getOperand(0).getReg();
339    assert(TargetRegisterInfo::isVirtualRegister(maskedRegister));
340    MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
341    TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
342    break;
343  }
344
345  case R600::MOV_IMM_F32:
346    TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
347                                                            .getFPImm()
348                                                            ->getValueAPF()
349                                                            .bitcastToAPInt()
350                                                            .getZExtValue());
351    break;
352
353  case R600::MOV_IMM_I32:
354    TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
355                     MI.getOperand(1).getImm());
356    break;
357
358  case R600::MOV_IMM_GLOBAL_ADDR: {
359    //TODO: Perhaps combine this instruction with the next if possible
360    auto MIB = TII->buildDefaultInstruction(
361        *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
362    int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
363    //TODO: Ugh this is rather ugly
364    MIB->getOperand(Idx) = MI.getOperand(1);
365    break;
366  }
367
368  case R600::CONST_COPY: {
369    MachineInstr *NewMI = TII->buildDefaultInstruction(
370        *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
371    TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
372                       MI.getOperand(1).getImm());
373    break;
374  }
375
376  case R600::RAT_WRITE_CACHELESS_32_eg:
377  case R600::RAT_WRITE_CACHELESS_64_eg:
378  case R600::RAT_WRITE_CACHELESS_128_eg:
379    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
380        .add(MI.getOperand(0))
381        .add(MI.getOperand(1))
382        .addImm(isEOP(I)); // Set End of program bit
383    break;
384
385  case R600::RAT_STORE_TYPED_eg:
386    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
387        .add(MI.getOperand(0))
388        .add(MI.getOperand(1))
389        .add(MI.getOperand(2))
390        .addImm(isEOP(I)); // Set End of program bit
391    break;
392
393  case R600::BRANCH:
394    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
395        .add(MI.getOperand(0));
396    break;
397
398  case R600::BRANCH_COND_f32: {
399    MachineInstr *NewMI =
400        BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
401                R600::PREDICATE_BIT)
402            .add(MI.getOperand(1))
403            .addImm(R600::PRED_SETNE)
404            .addImm(0); // Flags
405    TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
406    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
407        .add(MI.getOperand(0))
408        .addReg(R600::PREDICATE_BIT, RegState::Kill);
409    break;
410  }
411
412  case R600::BRANCH_COND_i32: {
413    MachineInstr *NewMI =
414        BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
415                R600::PREDICATE_BIT)
416            .add(MI.getOperand(1))
417            .addImm(R600::PRED_SETNE_INT)
418            .addImm(0); // Flags
419    TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
420    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
421        .add(MI.getOperand(0))
422        .addReg(R600::PREDICATE_BIT, RegState::Kill);
423    break;
424  }
425
426  case R600::EG_ExportSwz:
427  case R600::R600_ExportSwz: {
428    // Instruction is left unmodified if its not the last one of its type
429    bool isLastInstructionOfItsType = true;
430    unsigned InstExportType = MI.getOperand(1).getImm();
431    for (MachineBasicBlock::iterator NextExportInst = std::next(I),
432         EndBlock = BB->end(); NextExportInst != EndBlock;
433         NextExportInst = std::next(NextExportInst)) {
434      if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
435          NextExportInst->getOpcode() == R600::R600_ExportSwz) {
436        unsigned CurrentInstExportType = NextExportInst->getOperand(1)
437            .getImm();
438        if (CurrentInstExportType == InstExportType) {
439          isLastInstructionOfItsType = false;
440          break;
441        }
442      }
443    }
444    bool EOP = isEOP(I);
445    if (!EOP && !isLastInstructionOfItsType)
446      return BB;
447    unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
448    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
449        .add(MI.getOperand(0))
450        .add(MI.getOperand(1))
451        .add(MI.getOperand(2))
452        .add(MI.getOperand(3))
453        .add(MI.getOperand(4))
454        .add(MI.getOperand(5))
455        .add(MI.getOperand(6))
456        .addImm(CfInst)
457        .addImm(EOP);
458    break;
459  }
460  case R600::RETURN: {
461    return BB;
462  }
463  }
464
465  MI.eraseFromParent();
466  return BB;
467}
468
469//===----------------------------------------------------------------------===//
470// Custom DAG Lowering Operations
471//===----------------------------------------------------------------------===//
472
473SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
474  MachineFunction &MF = DAG.getMachineFunction();
475  R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
476  switch (Op.getOpcode()) {
477  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
478  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
479  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
480  case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
481  case ISD::SRA_PARTS:
482  case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
483  case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
484  case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
485  case ISD::FCOS:
486  case ISD::FSIN: return LowerTrig(Op, DAG);
487  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
488  case ISD::STORE: return LowerSTORE(Op, DAG);
489  case ISD::LOAD: {
490    SDValue Result = LowerLOAD(Op, DAG);
491    assert((!Result.getNode() ||
492            Result.getNode()->getNumValues() == 2) &&
493           "Load should return a value and a chain");
494    return Result;
495  }
496
497  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
498  case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
499  case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
500  case ISD::INTRINSIC_VOID: {
501    SDValue Chain = Op.getOperand(0);
502    unsigned IntrinsicID =
503                         cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
504    switch (IntrinsicID) {
505    case Intrinsic::r600_store_swizzle: {
506      SDLoc DL(Op);
507      const SDValue Args[8] = {
508        Chain,
509        Op.getOperand(2), // Export Value
510        Op.getOperand(3), // ArrayBase
511        Op.getOperand(4), // Type
512        DAG.getConstant(0, DL, MVT::i32), // SWZ_X
513        DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
514        DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
515        DAG.getConstant(3, DL, MVT::i32) // SWZ_W
516      };
517      return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
518    }
519
520    // default for switch(IntrinsicID)
521    default: break;
522    }
523    // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
524    break;
525  }
526  case ISD::INTRINSIC_WO_CHAIN: {
527    unsigned IntrinsicID =
528                         cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
529    EVT VT = Op.getValueType();
530    SDLoc DL(Op);
531    switch (IntrinsicID) {
532    case Intrinsic::r600_tex:
533    case Intrinsic::r600_texc: {
534      unsigned TextureOp;
535      switch (IntrinsicID) {
536      case Intrinsic::r600_tex:
537        TextureOp = 0;
538        break;
539      case Intrinsic::r600_texc:
540        TextureOp = 1;
541        break;
542      default:
543        llvm_unreachable("unhandled texture operation");
544      }
545
546      SDValue TexArgs[19] = {
547        DAG.getConstant(TextureOp, DL, MVT::i32),
548        Op.getOperand(1),
549        DAG.getConstant(0, DL, MVT::i32),
550        DAG.getConstant(1, DL, MVT::i32),
551        DAG.getConstant(2, DL, MVT::i32),
552        DAG.getConstant(3, DL, MVT::i32),
553        Op.getOperand(2),
554        Op.getOperand(3),
555        Op.getOperand(4),
556        DAG.getConstant(0, DL, MVT::i32),
557        DAG.getConstant(1, DL, MVT::i32),
558        DAG.getConstant(2, DL, MVT::i32),
559        DAG.getConstant(3, DL, MVT::i32),
560        Op.getOperand(5),
561        Op.getOperand(6),
562        Op.getOperand(7),
563        Op.getOperand(8),
564        Op.getOperand(9),
565        Op.getOperand(10)
566      };
567      return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
568    }
569    case Intrinsic::r600_dot4: {
570      SDValue Args[8] = {
571      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
572          DAG.getConstant(0, DL, MVT::i32)),
573      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
574          DAG.getConstant(0, DL, MVT::i32)),
575      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
576          DAG.getConstant(1, DL, MVT::i32)),
577      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
578          DAG.getConstant(1, DL, MVT::i32)),
579      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
580          DAG.getConstant(2, DL, MVT::i32)),
581      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
582          DAG.getConstant(2, DL, MVT::i32)),
583      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
584          DAG.getConstant(3, DL, MVT::i32)),
585      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
586          DAG.getConstant(3, DL, MVT::i32))
587      };
588      return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
589    }
590
591    case Intrinsic::r600_implicitarg_ptr: {
592      MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUASI.PARAM_I_ADDRESS);
593      uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
594      return DAG.getConstant(ByteOffset, DL, PtrVT);
595    }
596    case Intrinsic::r600_read_ngroups_x:
597      return LowerImplicitParameter(DAG, VT, DL, 0);
598    case Intrinsic::r600_read_ngroups_y:
599      return LowerImplicitParameter(DAG, VT, DL, 1);
600    case Intrinsic::r600_read_ngroups_z:
601      return LowerImplicitParameter(DAG, VT, DL, 2);
602    case Intrinsic::r600_read_global_size_x:
603      return LowerImplicitParameter(DAG, VT, DL, 3);
604    case Intrinsic::r600_read_global_size_y:
605      return LowerImplicitParameter(DAG, VT, DL, 4);
606    case Intrinsic::r600_read_global_size_z:
607      return LowerImplicitParameter(DAG, VT, DL, 5);
608    case Intrinsic::r600_read_local_size_x:
609      return LowerImplicitParameter(DAG, VT, DL, 6);
610    case Intrinsic::r600_read_local_size_y:
611      return LowerImplicitParameter(DAG, VT, DL, 7);
612    case Intrinsic::r600_read_local_size_z:
613      return LowerImplicitParameter(DAG, VT, DL, 8);
614
615    case Intrinsic::r600_read_tgid_x:
616      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
617                                     R600::T1_X, VT);
618    case Intrinsic::r600_read_tgid_y:
619      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
620                                     R600::T1_Y, VT);
621    case Intrinsic::r600_read_tgid_z:
622      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
623                                     R600::T1_Z, VT);
624    case Intrinsic::r600_read_tidig_x:
625      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
626                                     R600::T0_X, VT);
627    case Intrinsic::r600_read_tidig_y:
628      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
629                                     R600::T0_Y, VT);
630    case Intrinsic::r600_read_tidig_z:
631      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
632                                     R600::T0_Z, VT);
633
634    case Intrinsic::r600_recipsqrt_ieee:
635      return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
636
637    case Intrinsic::r600_recipsqrt_clamped:
638      return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
639    default:
640      return Op;
641    }
642
643    // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
644    break;
645  }
646  } // end switch(Op.getOpcode())
647  return SDValue();
648}
649
650void R600TargetLowering::ReplaceNodeResults(SDNode *N,
651                                            SmallVectorImpl<SDValue> &Results,
652                                            SelectionDAG &DAG) const {
653  switch (N->getOpcode()) {
654  default:
655    AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
656    return;
657  case ISD::FP_TO_UINT:
658    if (N->getValueType(0) == MVT::i1) {
659      Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
660      return;
661    }
662    // Since we don't care about out of bounds values we can use FP_TO_SINT for
663    // uints too. The DAGLegalizer code for uint considers some extra cases
664    // which are not necessary here.
665    LLVM_FALLTHROUGH;
666  case ISD::FP_TO_SINT: {
667    if (N->getValueType(0) == MVT::i1) {
668      Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
669      return;
670    }
671
672    SDValue Result;
673    if (expandFP_TO_SINT(N, Result, DAG))
674      Results.push_back(Result);
675    return;
676  }
677  case ISD::SDIVREM: {
678    SDValue Op = SDValue(N, 1);
679    SDValue RES = LowerSDIVREM(Op, DAG);
680    Results.push_back(RES);
681    Results.push_back(RES.getValue(1));
682    break;
683  }
684  case ISD::UDIVREM: {
685    SDValue Op = SDValue(N, 0);
686    LowerUDIVREM64(Op, DAG, Results);
687    break;
688  }
689  }
690}
691
692SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
693                                                   SDValue Vector) const {
694  SDLoc DL(Vector);
695  EVT VecVT = Vector.getValueType();
696  EVT EltVT = VecVT.getVectorElementType();
697  SmallVector<SDValue, 8> Args;
698
699  for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
700    Args.push_back(DAG.getNode(
701        ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
702        DAG.getConstant(i, DL, getVectorIdxTy(DAG.getDataLayout()))));
703  }
704
705  return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
706}
707
708SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
709                                                    SelectionDAG &DAG) const {
710  SDLoc DL(Op);
711  SDValue Vector = Op.getOperand(0);
712  SDValue Index = Op.getOperand(1);
713
714  if (isa<ConstantSDNode>(Index) ||
715      Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
716    return Op;
717
718  Vector = vectorToVerticalVector(DAG, Vector);
719  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
720                     Vector, Index);
721}
722
723SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
724                                                   SelectionDAG &DAG) const {
725  SDLoc DL(Op);
726  SDValue Vector = Op.getOperand(0);
727  SDValue Value = Op.getOperand(1);
728  SDValue Index = Op.getOperand(2);
729
730  if (isa<ConstantSDNode>(Index) ||
731      Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
732    return Op;
733
734  Vector = vectorToVerticalVector(DAG, Vector);
735  SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
736                               Vector, Value, Index);
737  return vectorToVerticalVector(DAG, Insert);
738}
739
740SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
741                                               SDValue Op,
742                                               SelectionDAG &DAG) const {
743  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
744  if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS)
745    return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
746
747  const DataLayout &DL = DAG.getDataLayout();
748  const GlobalValue *GV = GSD->getGlobal();
749  MVT ConstPtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
750
751  SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
752  return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
753}
754
755SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
756  // On hw >= R700, COS/SIN input must be between -1. and 1.
757  // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
758  EVT VT = Op.getValueType();
759  SDValue Arg = Op.getOperand(0);
760  SDLoc DL(Op);
761
762  // TODO: Should this propagate fast-math-flags?
763  SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
764      DAG.getNode(ISD::FADD, DL, VT,
765        DAG.getNode(ISD::FMUL, DL, VT, Arg,
766          DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
767        DAG.getConstantFP(0.5, DL, MVT::f32)));
768  unsigned TrigNode;
769  switch (Op.getOpcode()) {
770  case ISD::FCOS:
771    TrigNode = AMDGPUISD::COS_HW;
772    break;
773  case ISD::FSIN:
774    TrigNode = AMDGPUISD::SIN_HW;
775    break;
776  default:
777    llvm_unreachable("Wrong trig opcode");
778  }
779  SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
780      DAG.getNode(ISD::FADD, DL, VT, FractPart,
781        DAG.getConstantFP(-0.5, DL, MVT::f32)));
782  if (Gen >= AMDGPUSubtarget::R700)
783    return TrigVal;
784  // On R600 hw, COS/SIN input must be between -Pi and Pi.
785  return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
786      DAG.getConstantFP(3.14159265359, DL, MVT::f32));
787}
788
789SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
790  SDLoc DL(Op);
791  EVT VT = Op.getValueType();
792
793  SDValue Lo = Op.getOperand(0);
794  SDValue Hi = Op.getOperand(1);
795  SDValue Shift = Op.getOperand(2);
796  SDValue Zero = DAG.getConstant(0, DL, VT);
797  SDValue One  = DAG.getConstant(1, DL, VT);
798
799  SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
800  SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
801  SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
802  SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
803
804  // The dance around Width1 is necessary for 0 special case.
805  // Without it the CompShift might be 32, producing incorrect results in
806  // Overflow. So we do the shift in two steps, the alternative is to
807  // add a conditional to filter the special case.
808
809  SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
810  Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
811
812  SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
813  HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
814  SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
815
816  SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
817  SDValue LoBig = Zero;
818
819  Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
820  Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
821
822  return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
823}
824
825SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
826  SDLoc DL(Op);
827  EVT VT = Op.getValueType();
828
829  SDValue Lo = Op.getOperand(0);
830  SDValue Hi = Op.getOperand(1);
831  SDValue Shift = Op.getOperand(2);
832  SDValue Zero = DAG.getConstant(0, DL, VT);
833  SDValue One  = DAG.getConstant(1, DL, VT);
834
835  const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
836
837  SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
838  SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
839  SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
840  SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
841
842  // The dance around Width1 is necessary for 0 special case.
843  // Without it the CompShift might be 32, producing incorrect results in
844  // Overflow. So we do the shift in two steps, the alternative is to
845  // add a conditional to filter the special case.
846
847  SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
848  Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
849
850  SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
851  SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
852  LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
853
854  SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
855  SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
856
857  Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
858  Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
859
860  return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
861}
862
863SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
864                                          unsigned mainop, unsigned ovf) const {
865  SDLoc DL(Op);
866  EVT VT = Op.getValueType();
867
868  SDValue Lo = Op.getOperand(0);
869  SDValue Hi = Op.getOperand(1);
870
871  SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
872  // Extend sign.
873  OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
874                    DAG.getValueType(MVT::i1));
875
876  SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
877
878  return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
879}
880
881SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
882  SDLoc DL(Op);
883  return DAG.getNode(
884      ISD::SETCC,
885      DL,
886      MVT::i1,
887      Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
888      DAG.getCondCode(ISD::SETEQ));
889}
890
891SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
892  SDLoc DL(Op);
893  return DAG.getNode(
894      ISD::SETCC,
895      DL,
896      MVT::i1,
897      Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
898      DAG.getCondCode(ISD::SETEQ));
899}
900
901SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
902                                                   const SDLoc &DL,
903                                                   unsigned DwordOffset) const {
904  unsigned ByteOffset = DwordOffset * 4;
905  PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
906                                      AMDGPUASI.PARAM_I_ADDRESS);
907
908  // We shouldn't be using an offset wider than 16-bits for implicit parameters.
909  assert(isInt<16>(ByteOffset));
910
911  return DAG.getLoad(VT, DL, DAG.getEntryNode(),
912                     DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
913                     MachinePointerInfo(ConstantPointerNull::get(PtrType)));
914}
915
916bool R600TargetLowering::isZero(SDValue Op) const {
917  if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
918    return Cst->isNullValue();
919  } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
920    return CstFP->isZero();
921  } else {
922    return false;
923  }
924}
925
926bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
927  if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
928    return CFP->isExactlyValue(1.0);
929  }
930  return isAllOnesConstant(Op);
931}
932
933bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
934  if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
935    return CFP->getValueAPF().isZero();
936  }
937  return isNullConstant(Op);
938}
939
940SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
941  SDLoc DL(Op);
942  EVT VT = Op.getValueType();
943
944  SDValue LHS = Op.getOperand(0);
945  SDValue RHS = Op.getOperand(1);
946  SDValue True = Op.getOperand(2);
947  SDValue False = Op.getOperand(3);
948  SDValue CC = Op.getOperand(4);
949  SDValue Temp;
950
951  if (VT == MVT::f32) {
952    DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
953    SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
954    if (MinMax)
955      return MinMax;
956  }
957
958  // LHS and RHS are guaranteed to be the same value type
959  EVT CompareVT = LHS.getValueType();
960
961  // Check if we can lower this to a native operation.
962
963  // Try to lower to a SET* instruction:
964  //
965  // SET* can match the following patterns:
966  //
967  // select_cc f32, f32, -1,  0, cc_supported
968  // select_cc f32, f32, 1.0f, 0.0f, cc_supported
969  // select_cc i32, i32, -1,  0, cc_supported
970  //
971
972  // Move hardware True/False values to the correct operand.
973  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
974  ISD::CondCode InverseCC =
975     ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
976  if (isHWTrueValue(False) && isHWFalseValue(True)) {
977    if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
978      std::swap(False, True);
979      CC = DAG.getCondCode(InverseCC);
980    } else {
981      ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
982      if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
983        std::swap(False, True);
984        std::swap(LHS, RHS);
985        CC = DAG.getCondCode(SwapInvCC);
986      }
987    }
988  }
989
990  if (isHWTrueValue(True) && isHWFalseValue(False) &&
991      (CompareVT == VT || VT == MVT::i32)) {
992    // This can be matched by a SET* instruction.
993    return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
994  }
995
996  // Try to lower to a CND* instruction:
997  //
998  // CND* can match the following patterns:
999  //
1000  // select_cc f32, 0.0, f32, f32, cc_supported
1001  // select_cc f32, 0.0, i32, i32, cc_supported
1002  // select_cc i32, 0,   f32, f32, cc_supported
1003  // select_cc i32, 0,   i32, i32, cc_supported
1004  //
1005
1006  // Try to move the zero value to the RHS
1007  if (isZero(LHS)) {
1008    ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1009    // Try swapping the operands
1010    ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
1011    if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1012      std::swap(LHS, RHS);
1013      CC = DAG.getCondCode(CCSwapped);
1014    } else {
1015      // Try inverting the conditon and then swapping the operands
1016      ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger());
1017      CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
1018      if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1019        std::swap(True, False);
1020        std::swap(LHS, RHS);
1021        CC = DAG.getCondCode(CCSwapped);
1022      }
1023    }
1024  }
1025  if (isZero(RHS)) {
1026    SDValue Cond = LHS;
1027    SDValue Zero = RHS;
1028    ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1029    if (CompareVT != VT) {
1030      // Bitcast True / False to the correct types.  This will end up being
1031      // a nop, but it allows us to define only a single pattern in the
1032      // .TD files for each CND* instruction rather than having to have
1033      // one pattern for integer True/False and one for fp True/False
1034      True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
1035      False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
1036    }
1037
1038    switch (CCOpcode) {
1039    case ISD::SETONE:
1040    case ISD::SETUNE:
1041    case ISD::SETNE:
1042      CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
1043      Temp = True;
1044      True = False;
1045      False = Temp;
1046      break;
1047    default:
1048      break;
1049    }
1050    SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
1051        Cond, Zero,
1052        True, False,
1053        DAG.getCondCode(CCOpcode));
1054    return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
1055  }
1056
1057  // If we make it this for it means we have no native instructions to handle
1058  // this SELECT_CC, so we must lower it.
1059  SDValue HWTrue, HWFalse;
1060
1061  if (CompareVT == MVT::f32) {
1062    HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
1063    HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
1064  } else if (CompareVT == MVT::i32) {
1065    HWTrue = DAG.getConstant(-1, DL, CompareVT);
1066    HWFalse = DAG.getConstant(0, DL, CompareVT);
1067  }
1068  else {
1069    llvm_unreachable("Unhandled value type in LowerSELECT_CC");
1070  }
1071
1072  // Lower this unsupported SELECT_CC into a combination of two supported
1073  // SELECT_CC operations.
1074  SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
1075
1076  return DAG.getNode(ISD::SELECT_CC, DL, VT,
1077      Cond, HWFalse,
1078      True, False,
1079      DAG.getCondCode(ISD::SETNE));
1080}
1081
1082/// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
1083/// convert these pointers to a register index.  Each register holds
1084/// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
1085/// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
1086/// for indirect addressing.
1087SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
1088                                               unsigned StackWidth,
1089                                               SelectionDAG &DAG) const {
1090  unsigned SRLPad;
1091  switch(StackWidth) {
1092  case 1:
1093    SRLPad = 2;
1094    break;
1095  case 2:
1096    SRLPad = 3;
1097    break;
1098  case 4:
1099    SRLPad = 4;
1100    break;
1101  default: llvm_unreachable("Invalid stack width");
1102  }
1103
1104  SDLoc DL(Ptr);
1105  return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1106                     DAG.getConstant(SRLPad, DL, MVT::i32));
1107}
1108
1109void R600TargetLowering::getStackAddress(unsigned StackWidth,
1110                                         unsigned ElemIdx,
1111                                         unsigned &Channel,
1112                                         unsigned &PtrIncr) const {
1113  switch (StackWidth) {
1114  default:
1115  case 1:
1116    Channel = 0;
1117    if (ElemIdx > 0) {
1118      PtrIncr = 1;
1119    } else {
1120      PtrIncr = 0;
1121    }
1122    break;
1123  case 2:
1124    Channel = ElemIdx % 2;
1125    if (ElemIdx == 2) {
1126      PtrIncr = 1;
1127    } else {
1128      PtrIncr = 0;
1129    }
1130    break;
1131  case 4:
1132    Channel = ElemIdx;
1133    PtrIncr = 0;
1134    break;
1135  }
1136}
1137
1138SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1139                                                   SelectionDAG &DAG) const {
1140  SDLoc DL(Store);
1141  //TODO: Who creates the i8 stores?
1142  assert(Store->isTruncatingStore()
1143         || Store->getValue().getValueType() == MVT::i8);
1144  assert(Store->getAddressSpace() == AMDGPUASI.PRIVATE_ADDRESS);
1145
1146  SDValue Mask;
1147  if (Store->getMemoryVT() == MVT::i8) {
1148    assert(Store->getAlignment() >= 1);
1149    Mask = DAG.getConstant(0xff, DL, MVT::i32);
1150  } else if (Store->getMemoryVT() == MVT::i16) {
1151    assert(Store->getAlignment() >= 2);
1152    Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1153  } else {
1154    llvm_unreachable("Unsupported private trunc store");
1155  }
1156
1157  SDValue OldChain = Store->getChain();
1158  bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1159  // Skip dummy
1160  SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1161  SDValue BasePtr = Store->getBasePtr();
1162  SDValue Offset = Store->getOffset();
1163  EVT MemVT = Store->getMemoryVT();
1164
1165  SDValue LoadPtr = BasePtr;
1166  if (!Offset.isUndef()) {
1167    LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1168  }
1169
1170  // Get dword location
1171  // TODO: this should be eliminated by the future SHR ptr, 2
1172  SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1173                            DAG.getConstant(0xfffffffc, DL, MVT::i32));
1174
1175  // Load dword
1176  // TODO: can we be smarter about machine pointer info?
1177  MachinePointerInfo PtrInfo(UndefValue::get(
1178      Type::getInt32PtrTy(*DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS)));
1179  SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1180
1181  Chain = Dst.getValue(1);
1182
1183  // Get offset in dword
1184  SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1185                                DAG.getConstant(0x3, DL, MVT::i32));
1186
1187  // Convert byte offset to bit shift
1188  SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1189                                 DAG.getConstant(3, DL, MVT::i32));
1190
1191  // TODO: Contrary to the name of the functiom,
1192  // it also handles sub i32 non-truncating stores (like i1)
1193  SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1194                                  Store->getValue());
1195
1196  // Mask the value to the right type
1197  SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1198
1199  // Shift the value in place
1200  SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1201                                     MaskedValue, ShiftAmt);
1202
1203  // Shift the mask in place
1204  SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1205
1206  // Invert the mask. NOTE: if we had native ROL instructions we could
1207  // use inverted mask
1208  DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1209
1210  // Cleanup the target bits
1211  Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1212
1213  // Add the new bits
1214  SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1215
1216  // Store dword
1217  // TODO: Can we be smarter about MachinePointerInfo?
1218  SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1219
1220  // If we are part of expanded vector, make our neighbors depend on this store
1221  if (VectorTrunc) {
1222    // Make all other vector elements depend on this store
1223    Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1224    DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1225  }
1226  return NewStore;
1227}
1228
1229SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1230  StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1231  unsigned AS = StoreNode->getAddressSpace();
1232
1233  SDValue Chain = StoreNode->getChain();
1234  SDValue Ptr = StoreNode->getBasePtr();
1235  SDValue Value = StoreNode->getValue();
1236
1237  EVT VT = Value.getValueType();
1238  EVT MemVT = StoreNode->getMemoryVT();
1239  EVT PtrVT = Ptr.getValueType();
1240
1241  SDLoc DL(Op);
1242
1243  // Neither LOCAL nor PRIVATE can do vectors at the moment
1244  if ((AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.PRIVATE_ADDRESS) &&
1245      VT.isVector()) {
1246    if ((AS == AMDGPUASI.PRIVATE_ADDRESS) &&
1247         StoreNode->isTruncatingStore()) {
1248      // Add an extra level of chain to isolate this vector
1249      SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1250      // TODO: can the chain be replaced without creating a new store?
1251      SDValue NewStore = DAG.getTruncStore(
1252          NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1253          MemVT, StoreNode->getAlignment(),
1254          StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1255      StoreNode = cast<StoreSDNode>(NewStore);
1256    }
1257
1258    return scalarizeVectorStore(StoreNode, DAG);
1259  }
1260
1261  unsigned Align = StoreNode->getAlignment();
1262  if (Align < MemVT.getStoreSize() &&
1263      !allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) {
1264    return expandUnalignedStore(StoreNode, DAG);
1265  }
1266
1267  SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1268                                  DAG.getConstant(2, DL, PtrVT));
1269
1270  if (AS == AMDGPUASI.GLOBAL_ADDRESS) {
1271    // It is beneficial to create MSKOR here instead of combiner to avoid
1272    // artificial dependencies introduced by RMW
1273    if (StoreNode->isTruncatingStore()) {
1274      assert(VT.bitsLE(MVT::i32));
1275      SDValue MaskConstant;
1276      if (MemVT == MVT::i8) {
1277        MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1278      } else {
1279        assert(MemVT == MVT::i16);
1280        assert(StoreNode->getAlignment() >= 2);
1281        MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1282      }
1283
1284      SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1285                                      DAG.getConstant(0x00000003, DL, PtrVT));
1286      SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1287                                     DAG.getConstant(3, DL, VT));
1288
1289      // Put the mask in correct place
1290      SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1291
1292      // Put the value bits in correct place
1293      SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1294      SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1295
1296      // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1297      // vector instead.
1298      SDValue Src[4] = {
1299        ShiftedValue,
1300        DAG.getConstant(0, DL, MVT::i32),
1301        DAG.getConstant(0, DL, MVT::i32),
1302        Mask
1303      };
1304      SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1305      SDValue Args[3] = { Chain, Input, DWordAddr };
1306      return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1307                                     Op->getVTList(), Args, MemVT,
1308                                     StoreNode->getMemOperand());
1309    } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1310      // Convert pointer from byte address to dword address.
1311      Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1312
1313      if (StoreNode->isTruncatingStore() || StoreNode->isIndexed()) {
1314        llvm_unreachable("Truncated and indexed stores not supported yet");
1315      } else {
1316        Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1317      }
1318      return Chain;
1319    }
1320  }
1321
1322  // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1323  if (AS != AMDGPUASI.PRIVATE_ADDRESS)
1324    return SDValue();
1325
1326  if (MemVT.bitsLT(MVT::i32))
1327    return lowerPrivateTruncStore(StoreNode, DAG);
1328
1329  // Standard i32+ store, tag it with DWORDADDR to note that the address
1330  // has been shifted
1331  if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1332    Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1333    return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1334  }
1335
1336  // Tagged i32+ stores will be matched by patterns
1337  return SDValue();
1338}
1339
1340// return (512 + (kc_bank << 12)
1341static int
1342ConstantAddressBlock(unsigned AddressSpace) {
1343  switch (AddressSpace) {
1344  case AMDGPUAS::CONSTANT_BUFFER_0:
1345    return 512;
1346  case AMDGPUAS::CONSTANT_BUFFER_1:
1347    return 512 + 4096;
1348  case AMDGPUAS::CONSTANT_BUFFER_2:
1349    return 512 + 4096 * 2;
1350  case AMDGPUAS::CONSTANT_BUFFER_3:
1351    return 512 + 4096 * 3;
1352  case AMDGPUAS::CONSTANT_BUFFER_4:
1353    return 512 + 4096 * 4;
1354  case AMDGPUAS::CONSTANT_BUFFER_5:
1355    return 512 + 4096 * 5;
1356  case AMDGPUAS::CONSTANT_BUFFER_6:
1357    return 512 + 4096 * 6;
1358  case AMDGPUAS::CONSTANT_BUFFER_7:
1359    return 512 + 4096 * 7;
1360  case AMDGPUAS::CONSTANT_BUFFER_8:
1361    return 512 + 4096 * 8;
1362  case AMDGPUAS::CONSTANT_BUFFER_9:
1363    return 512 + 4096 * 9;
1364  case AMDGPUAS::CONSTANT_BUFFER_10:
1365    return 512 + 4096 * 10;
1366  case AMDGPUAS::CONSTANT_BUFFER_11:
1367    return 512 + 4096 * 11;
1368  case AMDGPUAS::CONSTANT_BUFFER_12:
1369    return 512 + 4096 * 12;
1370  case AMDGPUAS::CONSTANT_BUFFER_13:
1371    return 512 + 4096 * 13;
1372  case AMDGPUAS::CONSTANT_BUFFER_14:
1373    return 512 + 4096 * 14;
1374  case AMDGPUAS::CONSTANT_BUFFER_15:
1375    return 512 + 4096 * 15;
1376  default:
1377    return -1;
1378  }
1379}
1380
1381SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1382                                                SelectionDAG &DAG) const {
1383  SDLoc DL(Op);
1384  LoadSDNode *Load = cast<LoadSDNode>(Op);
1385  ISD::LoadExtType ExtType = Load->getExtensionType();
1386  EVT MemVT = Load->getMemoryVT();
1387  assert(Load->getAlignment() >= MemVT.getStoreSize());
1388
1389  SDValue BasePtr = Load->getBasePtr();
1390  SDValue Chain = Load->getChain();
1391  SDValue Offset = Load->getOffset();
1392
1393  SDValue LoadPtr = BasePtr;
1394  if (!Offset.isUndef()) {
1395    LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1396  }
1397
1398  // Get dword location
1399  // NOTE: this should be eliminated by the future SHR ptr, 2
1400  SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1401                            DAG.getConstant(0xfffffffc, DL, MVT::i32));
1402
1403  // Load dword
1404  // TODO: can we be smarter about machine pointer info?
1405  MachinePointerInfo PtrInfo(UndefValue::get(
1406      Type::getInt32PtrTy(*DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS)));
1407  SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1408
1409  // Get offset within the register.
1410  SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1411                                LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1412
1413  // Bit offset of target byte (byteIdx * 8).
1414  SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1415                                 DAG.getConstant(3, DL, MVT::i32));
1416
1417  // Shift to the right.
1418  SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1419
1420  // Eliminate the upper bits by setting them to ...
1421  EVT MemEltVT = MemVT.getScalarType();
1422
1423  if (ExtType == ISD::SEXTLOAD) { // ... ones.
1424    SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1425    Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1426  } else { // ... or zeros.
1427    Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1428  }
1429
1430  SDValue Ops[] = {
1431    Ret,
1432    Read.getValue(1) // This should be our output chain
1433  };
1434
1435  return DAG.getMergeValues(Ops, DL);
1436}
1437
1438SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1439  LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1440  unsigned AS = LoadNode->getAddressSpace();
1441  EVT MemVT = LoadNode->getMemoryVT();
1442  ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1443
1444  if (AS == AMDGPUASI.PRIVATE_ADDRESS &&
1445      ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1446    return lowerPrivateExtLoad(Op, DAG);
1447  }
1448
1449  SDLoc DL(Op);
1450  EVT VT = Op.getValueType();
1451  SDValue Chain = LoadNode->getChain();
1452  SDValue Ptr = LoadNode->getBasePtr();
1453
1454  if ((LoadNode->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS ||
1455      LoadNode->getAddressSpace() == AMDGPUASI.PRIVATE_ADDRESS) &&
1456      VT.isVector()) {
1457      return scalarizeVectorLoad(LoadNode, DAG);
1458  }
1459
1460  // This is still used for explicit load from addrspace(8)
1461  int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1462  if (ConstantBlock > -1 &&
1463      ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1464       (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1465    SDValue Result;
1466    if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1467        isa<ConstantSDNode>(Ptr)) {
1468      return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1469    } else {
1470      //TODO: Does this even work?
1471      // non-constant ptr can't be folded, keeps it as a v4f32 load
1472      Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1473          DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1474                      DAG.getConstant(4, DL, MVT::i32)),
1475                      DAG.getConstant(LoadNode->getAddressSpace() -
1476                                      AMDGPUASI.CONSTANT_BUFFER_0, DL, MVT::i32)
1477          );
1478    }
1479
1480    if (!VT.isVector()) {
1481      Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1482                           DAG.getConstant(0, DL, MVT::i32));
1483    }
1484
1485    SDValue MergedValues[2] = {
1486      Result,
1487      Chain
1488    };
1489    return DAG.getMergeValues(MergedValues, DL);
1490  }
1491
1492  // For most operations returning SDValue() will result in the node being
1493  // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1494  // need to manually expand loads that may be legal in some address spaces and
1495  // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1496  // compute shaders, since the data is sign extended when it is uploaded to the
1497  // buffer. However SEXT loads from other address spaces are not supported, so
1498  // we need to expand them here.
1499  if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1500    EVT MemVT = LoadNode->getMemoryVT();
1501    assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1502    SDValue NewLoad = DAG.getExtLoad(
1503        ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1504        LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1505    SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1506                              DAG.getValueType(MemVT));
1507
1508    SDValue MergedValues[2] = { Res, Chain };
1509    return DAG.getMergeValues(MergedValues, DL);
1510  }
1511
1512  if (LoadNode->getAddressSpace() != AMDGPUASI.PRIVATE_ADDRESS) {
1513    return SDValue();
1514  }
1515
1516  // DWORDADDR ISD marks already shifted address
1517  if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1518    assert(VT == MVT::i32);
1519    Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1520    Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1521    return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1522  }
1523  return SDValue();
1524}
1525
1526SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1527  SDValue Chain = Op.getOperand(0);
1528  SDValue Cond  = Op.getOperand(1);
1529  SDValue Jump  = Op.getOperand(2);
1530
1531  return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1532                     Chain, Jump, Cond);
1533}
1534
1535SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1536                                            SelectionDAG &DAG) const {
1537  MachineFunction &MF = DAG.getMachineFunction();
1538  const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1539
1540  FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1541
1542  unsigned FrameIndex = FIN->getIndex();
1543  unsigned IgnoredFrameReg;
1544  unsigned Offset =
1545    TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1546  return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
1547                         Op.getValueType());
1548}
1549
1550CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1551                                                  bool IsVarArg) const {
1552  switch (CC) {
1553  case CallingConv::AMDGPU_KERNEL:
1554  case CallingConv::SPIR_KERNEL:
1555  case CallingConv::C:
1556  case CallingConv::Fast:
1557  case CallingConv::Cold:
1558    llvm_unreachable("kernels should not be handled here");
1559  case CallingConv::AMDGPU_VS:
1560  case CallingConv::AMDGPU_GS:
1561  case CallingConv::AMDGPU_PS:
1562  case CallingConv::AMDGPU_CS:
1563  case CallingConv::AMDGPU_HS:
1564  case CallingConv::AMDGPU_ES:
1565  case CallingConv::AMDGPU_LS:
1566    return CC_R600;
1567  default:
1568    report_fatal_error("Unsupported calling convention.");
1569  }
1570}
1571
1572/// XXX Only kernel functions are supported, so we can assume for now that
1573/// every function is a kernel function, but in the future we should use
1574/// separate calling conventions for kernel and non-kernel functions.
1575SDValue R600TargetLowering::LowerFormalArguments(
1576    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1577    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1578    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1579  SmallVector<CCValAssign, 16> ArgLocs;
1580  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1581                 *DAG.getContext());
1582  MachineFunction &MF = DAG.getMachineFunction();
1583  SmallVector<ISD::InputArg, 8> LocalIns;
1584
1585  if (AMDGPU::isShader(CallConv)) {
1586    CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1587  } else {
1588    analyzeFormalArgumentsCompute(CCInfo, Ins);
1589  }
1590
1591  for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1592    CCValAssign &VA = ArgLocs[i];
1593    const ISD::InputArg &In = Ins[i];
1594    EVT VT = In.VT;
1595    EVT MemVT = VA.getLocVT();
1596    if (!VT.isVector() && MemVT.isVector()) {
1597      // Get load source type if scalarized.
1598      MemVT = MemVT.getVectorElementType();
1599    }
1600
1601    if (AMDGPU::isShader(CallConv)) {
1602      unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1603      SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1604      InVals.push_back(Register);
1605      continue;
1606    }
1607
1608    PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
1609                                          AMDGPUASI.PARAM_I_ADDRESS);
1610
1611    // i64 isn't a legal type, so the register type used ends up as i32, which
1612    // isn't expected here. It attempts to create this sextload, but it ends up
1613    // being invalid. Somehow this seems to work with i64 arguments, but breaks
1614    // for <1 x i64>.
1615
1616    // The first 36 bytes of the input buffer contains information about
1617    // thread group and global sizes.
1618    ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1619    if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1620      // FIXME: This should really check the extload type, but the handling of
1621      // extload vector parameters seems to be broken.
1622
1623      // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1624      Ext = ISD::SEXTLOAD;
1625    }
1626
1627    // Compute the offset from the value.
1628    // XXX - I think PartOffset should give you this, but it seems to give the
1629    // size of the register which isn't useful.
1630
1631    unsigned ValBase = ArgLocs[In.getOrigArgIndex()].getLocMemOffset();
1632    unsigned PartOffset = VA.getLocMemOffset();
1633    unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1634
1635    MachinePointerInfo PtrInfo(UndefValue::get(PtrTy), PartOffset - ValBase);
1636    SDValue Arg = DAG.getLoad(
1637        ISD::UNINDEXED, Ext, VT, DL, Chain,
1638        DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1639        PtrInfo,
1640        MemVT, Alignment, MachineMemOperand::MONonTemporal |
1641                                        MachineMemOperand::MODereferenceable |
1642                                        MachineMemOperand::MOInvariant);
1643
1644    InVals.push_back(Arg);
1645  }
1646  return Chain;
1647}
1648
1649EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1650                                           EVT VT) const {
1651   if (!VT.isVector())
1652     return MVT::i32;
1653   return VT.changeVectorElementTypeToInteger();
1654}
1655
1656bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1657                                          const SelectionDAG &DAG) const {
1658  // Local and Private addresses do not handle vectors. Limit to i32
1659  if ((AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.PRIVATE_ADDRESS)) {
1660    return (MemVT.getSizeInBits() <= 32);
1661  }
1662  return true;
1663}
1664
1665bool R600TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
1666                                                        unsigned AddrSpace,
1667                                                        unsigned Align,
1668                                                        bool *IsFast) const {
1669  if (IsFast)
1670    *IsFast = false;
1671
1672  if (!VT.isSimple() || VT == MVT::Other)
1673    return false;
1674
1675  if (VT.bitsLT(MVT::i32))
1676    return false;
1677
1678  // TODO: This is a rough estimate.
1679  if (IsFast)
1680    *IsFast = true;
1681
1682  return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1683}
1684
1685static SDValue CompactSwizzlableVector(
1686  SelectionDAG &DAG, SDValue VectorEntry,
1687  DenseMap<unsigned, unsigned> &RemapSwizzle) {
1688  assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
1689  assert(RemapSwizzle.empty());
1690  SDValue NewBldVec[4] = {
1691    VectorEntry.getOperand(0),
1692    VectorEntry.getOperand(1),
1693    VectorEntry.getOperand(2),
1694    VectorEntry.getOperand(3)
1695  };
1696
1697  for (unsigned i = 0; i < 4; i++) {
1698    if (NewBldVec[i].isUndef())
1699      // We mask write here to teach later passes that the ith element of this
1700      // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1701      // break false dependencies and additionnaly make assembly easier to read.
1702      RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1703    if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1704      if (C->isZero()) {
1705        RemapSwizzle[i] = 4; // SEL_0
1706        NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1707      } else if (C->isExactlyValue(1.0)) {
1708        RemapSwizzle[i] = 5; // SEL_1
1709        NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1710      }
1711    }
1712
1713    if (NewBldVec[i].isUndef())
1714      continue;
1715    for (unsigned j = 0; j < i; j++) {
1716      if (NewBldVec[i] == NewBldVec[j]) {
1717        NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1718        RemapSwizzle[i] = j;
1719        break;
1720      }
1721    }
1722  }
1723
1724  return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1725                            NewBldVec);
1726}
1727
1728static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1729                                DenseMap<unsigned, unsigned> &RemapSwizzle) {
1730  assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
1731  assert(RemapSwizzle.empty());
1732  SDValue NewBldVec[4] = {
1733      VectorEntry.getOperand(0),
1734      VectorEntry.getOperand(1),
1735      VectorEntry.getOperand(2),
1736      VectorEntry.getOperand(3)
1737  };
1738  bool isUnmovable[4] = { false, false, false, false };
1739  for (unsigned i = 0; i < 4; i++) {
1740    RemapSwizzle[i] = i;
1741    if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1742      unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1743          ->getZExtValue();
1744      if (i == Idx)
1745        isUnmovable[Idx] = true;
1746    }
1747  }
1748
1749  for (unsigned i = 0; i < 4; i++) {
1750    if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1751      unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1752          ->getZExtValue();
1753      if (isUnmovable[Idx])
1754        continue;
1755      // Swap i and Idx
1756      std::swap(NewBldVec[Idx], NewBldVec[i]);
1757      std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1758      break;
1759    }
1760  }
1761
1762  return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1763                            NewBldVec);
1764}
1765
1766SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1767                                            SelectionDAG &DAG,
1768                                            const SDLoc &DL) const {
1769  assert(BuildVector.getOpcode() == ISD::BUILD_VECTOR);
1770  // Old -> New swizzle values
1771  DenseMap<unsigned, unsigned> SwizzleRemap;
1772
1773  BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1774  for (unsigned i = 0; i < 4; i++) {
1775    unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1776    if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1777      Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1778  }
1779
1780  SwizzleRemap.clear();
1781  BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1782  for (unsigned i = 0; i < 4; i++) {
1783    unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1784    if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1785      Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1786  }
1787
1788  return BuildVector;
1789}
1790
1791SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1792                                            SelectionDAG &DAG) const {
1793  SDLoc DL(LoadNode);
1794  EVT VT = LoadNode->getValueType(0);
1795  SDValue Chain = LoadNode->getChain();
1796  SDValue Ptr = LoadNode->getBasePtr();
1797  assert (isa<ConstantSDNode>(Ptr));
1798
1799  //TODO: Support smaller loads
1800  if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1801    return SDValue();
1802
1803  if (LoadNode->getAlignment() < 4)
1804    return SDValue();
1805
1806  int ConstantBlock = ConstantAddressBlock(Block);
1807
1808  SDValue Slots[4];
1809  for (unsigned i = 0; i < 4; i++) {
1810    // We want Const position encoded with the following formula :
1811    // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1812    // const_index is Ptr computed by llvm using an alignment of 16.
1813    // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1814    // then div by 4 at the ISel step
1815    SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1816        DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1817    Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1818  }
1819  EVT NewVT = MVT::v4i32;
1820  unsigned NumElements = 4;
1821  if (VT.isVector()) {
1822    NewVT = VT;
1823    NumElements = VT.getVectorNumElements();
1824  }
1825  SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1826  if (!VT.isVector()) {
1827    Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1828                         DAG.getConstant(0, DL, MVT::i32));
1829  }
1830  SDValue MergedValues[2] = {
1831    Result,
1832    Chain
1833  };
1834  return DAG.getMergeValues(MergedValues, DL);
1835}
1836
1837//===----------------------------------------------------------------------===//
1838// Custom DAG Optimizations
1839//===----------------------------------------------------------------------===//
1840
1841SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1842                                              DAGCombinerInfo &DCI) const {
1843  SelectionDAG &DAG = DCI.DAG;
1844  SDLoc DL(N);
1845
1846  switch (N->getOpcode()) {
1847  // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1848  case ISD::FP_ROUND: {
1849      SDValue Arg = N->getOperand(0);
1850      if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1851        return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1852                           Arg.getOperand(0));
1853      }
1854      break;
1855    }
1856
1857  // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1858  // (i32 select_cc f32, f32, -1, 0 cc)
1859  //
1860  // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1861  // this to one of the SET*_DX10 instructions.
1862  case ISD::FP_TO_SINT: {
1863    SDValue FNeg = N->getOperand(0);
1864    if (FNeg.getOpcode() != ISD::FNEG) {
1865      return SDValue();
1866    }
1867    SDValue SelectCC = FNeg.getOperand(0);
1868    if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1869        SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1870        SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1871        !isHWTrueValue(SelectCC.getOperand(2)) ||
1872        !isHWFalseValue(SelectCC.getOperand(3))) {
1873      return SDValue();
1874    }
1875
1876    return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1877                           SelectCC.getOperand(0), // LHS
1878                           SelectCC.getOperand(1), // RHS
1879                           DAG.getConstant(-1, DL, MVT::i32), // True
1880                           DAG.getConstant(0, DL, MVT::i32),  // False
1881                           SelectCC.getOperand(4)); // CC
1882
1883    break;
1884  }
1885
1886  // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1887  // => build_vector elt0, ... , NewEltIdx, ... , eltN
1888  case ISD::INSERT_VECTOR_ELT: {
1889    SDValue InVec = N->getOperand(0);
1890    SDValue InVal = N->getOperand(1);
1891    SDValue EltNo = N->getOperand(2);
1892
1893    // If the inserted element is an UNDEF, just use the input vector.
1894    if (InVal.isUndef())
1895      return InVec;
1896
1897    EVT VT = InVec.getValueType();
1898
1899    // If we can't generate a legal BUILD_VECTOR, exit
1900    if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1901      return SDValue();
1902
1903    // Check that we know which element is being inserted
1904    if (!isa<ConstantSDNode>(EltNo))
1905      return SDValue();
1906    unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1907
1908    // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1909    // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
1910    // vector elements.
1911    SmallVector<SDValue, 8> Ops;
1912    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1913      Ops.append(InVec.getNode()->op_begin(),
1914                 InVec.getNode()->op_end());
1915    } else if (InVec.isUndef()) {
1916      unsigned NElts = VT.getVectorNumElements();
1917      Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1918    } else {
1919      return SDValue();
1920    }
1921
1922    // Insert the element
1923    if (Elt < Ops.size()) {
1924      // All the operands of BUILD_VECTOR must have the same type;
1925      // we enforce that here.
1926      EVT OpVT = Ops[0].getValueType();
1927      if (InVal.getValueType() != OpVT)
1928        InVal = OpVT.bitsGT(InVal.getValueType()) ?
1929          DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1930          DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1931      Ops[Elt] = InVal;
1932    }
1933
1934    // Return the new vector
1935    return DAG.getBuildVector(VT, DL, Ops);
1936  }
1937
1938  // Extract_vec (Build_vector) generated by custom lowering
1939  // also needs to be customly combined
1940  case ISD::EXTRACT_VECTOR_ELT: {
1941    SDValue Arg = N->getOperand(0);
1942    if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1943      if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1944        unsigned Element = Const->getZExtValue();
1945        return Arg->getOperand(Element);
1946      }
1947    }
1948    if (Arg.getOpcode() == ISD::BITCAST &&
1949        Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1950        (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1951         Arg.getValueType().getVectorNumElements())) {
1952      if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1953        unsigned Element = Const->getZExtValue();
1954        return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1955                           Arg->getOperand(0).getOperand(Element));
1956      }
1957    }
1958    break;
1959  }
1960
1961  case ISD::SELECT_CC: {
1962    // Try common optimizations
1963    if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1964      return Ret;
1965
1966    // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1967    //      selectcc x, y, a, b, inv(cc)
1968    //
1969    // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1970    //      selectcc x, y, a, b, cc
1971    SDValue LHS = N->getOperand(0);
1972    if (LHS.getOpcode() != ISD::SELECT_CC) {
1973      return SDValue();
1974    }
1975
1976    SDValue RHS = N->getOperand(1);
1977    SDValue True = N->getOperand(2);
1978    SDValue False = N->getOperand(3);
1979    ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1980
1981    if (LHS.getOperand(2).getNode() != True.getNode() ||
1982        LHS.getOperand(3).getNode() != False.getNode() ||
1983        RHS.getNode() != False.getNode()) {
1984      return SDValue();
1985    }
1986
1987    switch (NCC) {
1988    default: return SDValue();
1989    case ISD::SETNE: return LHS;
1990    case ISD::SETEQ: {
1991      ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1992      LHSCC = ISD::getSetCCInverse(LHSCC,
1993                                  LHS.getOperand(0).getValueType().isInteger());
1994      if (DCI.isBeforeLegalizeOps() ||
1995          isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1996        return DAG.getSelectCC(DL,
1997                               LHS.getOperand(0),
1998                               LHS.getOperand(1),
1999                               LHS.getOperand(2),
2000                               LHS.getOperand(3),
2001                               LHSCC);
2002      break;
2003    }
2004    }
2005    return SDValue();
2006  }
2007
2008  case AMDGPUISD::R600_EXPORT: {
2009    SDValue Arg = N->getOperand(1);
2010    if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2011      break;
2012
2013    SDValue NewArgs[8] = {
2014      N->getOperand(0), // Chain
2015      SDValue(),
2016      N->getOperand(2), // ArrayBase
2017      N->getOperand(3), // Type
2018      N->getOperand(4), // SWZ_X
2019      N->getOperand(5), // SWZ_Y
2020      N->getOperand(6), // SWZ_Z
2021      N->getOperand(7) // SWZ_W
2022    };
2023    NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
2024    return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
2025  }
2026  case AMDGPUISD::TEXTURE_FETCH: {
2027    SDValue Arg = N->getOperand(1);
2028    if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2029      break;
2030
2031    SDValue NewArgs[19] = {
2032      N->getOperand(0),
2033      N->getOperand(1),
2034      N->getOperand(2),
2035      N->getOperand(3),
2036      N->getOperand(4),
2037      N->getOperand(5),
2038      N->getOperand(6),
2039      N->getOperand(7),
2040      N->getOperand(8),
2041      N->getOperand(9),
2042      N->getOperand(10),
2043      N->getOperand(11),
2044      N->getOperand(12),
2045      N->getOperand(13),
2046      N->getOperand(14),
2047      N->getOperand(15),
2048      N->getOperand(16),
2049      N->getOperand(17),
2050      N->getOperand(18),
2051    };
2052    NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
2053    return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
2054  }
2055
2056  case ISD::LOAD: {
2057    LoadSDNode *LoadNode = cast<LoadSDNode>(N);
2058    SDValue Ptr = LoadNode->getBasePtr();
2059    if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
2060         isa<ConstantSDNode>(Ptr))
2061      return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
2062    break;
2063  }
2064
2065  default: break;
2066  }
2067
2068  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2069}
2070
2071bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
2072                                     SDValue &Src, SDValue &Neg, SDValue &Abs,
2073                                     SDValue &Sel, SDValue &Imm,
2074                                     SelectionDAG &DAG) const {
2075  const R600InstrInfo *TII = Subtarget->getInstrInfo();
2076  if (!Src.isMachineOpcode())
2077    return false;
2078
2079  switch (Src.getMachineOpcode()) {
2080  case R600::FNEG_R600:
2081    if (!Neg.getNode())
2082      return false;
2083    Src = Src.getOperand(0);
2084    Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2085    return true;
2086  case R600::FABS_R600:
2087    if (!Abs.getNode())
2088      return false;
2089    Src = Src.getOperand(0);
2090    Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2091    return true;
2092  case R600::CONST_COPY: {
2093    unsigned Opcode = ParentNode->getMachineOpcode();
2094    bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2095
2096    if (!Sel.getNode())
2097      return false;
2098
2099    SDValue CstOffset = Src.getOperand(0);
2100    if (ParentNode->getValueType(0).isVector())
2101      return false;
2102
2103    // Gather constants values
2104    int SrcIndices[] = {
2105      TII->getOperandIdx(Opcode, R600::OpName::src0),
2106      TII->getOperandIdx(Opcode, R600::OpName::src1),
2107      TII->getOperandIdx(Opcode, R600::OpName::src2),
2108      TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2109      TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2110      TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2111      TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2112      TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2113      TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2114      TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2115      TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2116    };
2117    std::vector<unsigned> Consts;
2118    for (int OtherSrcIdx : SrcIndices) {
2119      int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2120      if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2121        continue;
2122      if (HasDst) {
2123        OtherSrcIdx--;
2124        OtherSelIdx--;
2125      }
2126      if (RegisterSDNode *Reg =
2127          dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2128        if (Reg->getReg() == R600::ALU_CONST) {
2129          ConstantSDNode *Cst
2130            = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2131          Consts.push_back(Cst->getZExtValue());
2132        }
2133      }
2134    }
2135
2136    ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2137    Consts.push_back(Cst->getZExtValue());
2138    if (!TII->fitsConstReadLimitations(Consts)) {
2139      return false;
2140    }
2141
2142    Sel = CstOffset;
2143    Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2144    return true;
2145  }
2146  case R600::MOV_IMM_GLOBAL_ADDR:
2147    // Check if the Imm slot is used. Taken from below.
2148    if (cast<ConstantSDNode>(Imm)->getZExtValue())
2149      return false;
2150    Imm = Src.getOperand(0);
2151    Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2152    return true;
2153  case R600::MOV_IMM_I32:
2154  case R600::MOV_IMM_F32: {
2155    unsigned ImmReg = R600::ALU_LITERAL_X;
2156    uint64_t ImmValue = 0;
2157
2158    if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2159      ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
2160      float FloatValue = FPC->getValueAPF().convertToFloat();
2161      if (FloatValue == 0.0) {
2162        ImmReg = R600::ZERO;
2163      } else if (FloatValue == 0.5) {
2164        ImmReg = R600::HALF;
2165      } else if (FloatValue == 1.0) {
2166        ImmReg = R600::ONE;
2167      } else {
2168        ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2169      }
2170    } else {
2171      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
2172      uint64_t Value = C->getZExtValue();
2173      if (Value == 0) {
2174        ImmReg = R600::ZERO;
2175      } else if (Value == 1) {
2176        ImmReg = R600::ONE_INT;
2177      } else {
2178        ImmValue = Value;
2179      }
2180    }
2181
2182    // Check that we aren't already using an immediate.
2183    // XXX: It's possible for an instruction to have more than one
2184    // immediate operand, but this is not supported yet.
2185    if (ImmReg == R600::ALU_LITERAL_X) {
2186      if (!Imm.getNode())
2187        return false;
2188      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
2189      assert(C);
2190      if (C->getZExtValue())
2191        return false;
2192      Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2193    }
2194    Src = DAG.getRegister(ImmReg, MVT::i32);
2195    return true;
2196  }
2197  default:
2198    return false;
2199  }
2200}
2201
2202/// Fold the instructions after selecting them
2203SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2204                                            SelectionDAG &DAG) const {
2205  const R600InstrInfo *TII = Subtarget->getInstrInfo();
2206  if (!Node->isMachineOpcode())
2207    return Node;
2208
2209  unsigned Opcode = Node->getMachineOpcode();
2210  SDValue FakeOp;
2211
2212  std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2213
2214  if (Opcode == R600::DOT_4) {
2215    int OperandIdx[] = {
2216      TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2217      TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2218      TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2219      TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2220      TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2221      TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2222      TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2223      TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2224        };
2225    int NegIdx[] = {
2226      TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2227      TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2228      TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2229      TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2230      TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2231      TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2232      TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2233      TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2234    };
2235    int AbsIdx[] = {
2236      TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2237      TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2238      TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2239      TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2240      TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2241      TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2242      TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2243      TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2244    };
2245    for (unsigned i = 0; i < 8; i++) {
2246      if (OperandIdx[i] < 0)
2247        return Node;
2248      SDValue &Src = Ops[OperandIdx[i] - 1];
2249      SDValue &Neg = Ops[NegIdx[i] - 1];
2250      SDValue &Abs = Ops[AbsIdx[i] - 1];
2251      bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2252      int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2253      if (HasDst)
2254        SelIdx--;
2255      SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2256      if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2257        return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2258    }
2259  } else if (Opcode == R600::REG_SEQUENCE) {
2260    for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2261      SDValue &Src = Ops[i];
2262      if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2263        return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2264    }
2265  } else {
2266    if (!TII->hasInstrModifiers(Opcode))
2267      return Node;
2268    int OperandIdx[] = {
2269      TII->getOperandIdx(Opcode, R600::OpName::src0),
2270      TII->getOperandIdx(Opcode, R600::OpName::src1),
2271      TII->getOperandIdx(Opcode, R600::OpName::src2)
2272    };
2273    int NegIdx[] = {
2274      TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2275      TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2276      TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2277    };
2278    int AbsIdx[] = {
2279      TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2280      TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2281      -1
2282    };
2283    for (unsigned i = 0; i < 3; i++) {
2284      if (OperandIdx[i] < 0)
2285        return Node;
2286      SDValue &Src = Ops[OperandIdx[i] - 1];
2287      SDValue &Neg = Ops[NegIdx[i] - 1];
2288      SDValue FakeAbs;
2289      SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2290      bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2291      int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2292      int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2293      if (HasDst) {
2294        SelIdx--;
2295        ImmIdx--;
2296      }
2297      SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2298      SDValue &Imm = Ops[ImmIdx];
2299      if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2300        return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2301    }
2302  }
2303
2304  return Node;
2305}
2306