1327952Sdim//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2284677Sdim//
3353358Sdim// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4353358Sdim// See https://llvm.org/LICENSE.txt for license information.
5353358Sdim// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6284677Sdim//
7284677Sdim//===----------------------------------------------------------------------===//
8284677Sdim//
9284677Sdim// \file
10284677Sdim// This file implements a TargetTransformInfo analysis pass specific to the
11284677Sdim// AMDGPU target machine. It uses the target's detailed information to provide
12284677Sdim// more precise answers to certain TTI queries, while letting the target
13284677Sdim// independent and default TTI implementations handle the rest.
14284677Sdim//
15284677Sdim//===----------------------------------------------------------------------===//
16284677Sdim
17284677Sdim#include "AMDGPUTargetTransformInfo.h"
18327952Sdim#include "AMDGPUSubtarget.h"
19341825Sdim#include "Utils/AMDGPUBaseInfo.h"
20327952Sdim#include "llvm/ADT/STLExtras.h"
21284677Sdim#include "llvm/Analysis/LoopInfo.h"
22284677Sdim#include "llvm/Analysis/TargetTransformInfo.h"
23284677Sdim#include "llvm/Analysis/ValueTracking.h"
24327952Sdim#include "llvm/CodeGen/ISDOpcodes.h"
25327952Sdim#include "llvm/CodeGen/ValueTypes.h"
26327952Sdim#include "llvm/IR/Argument.h"
27327952Sdim#include "llvm/IR/Attributes.h"
28327952Sdim#include "llvm/IR/BasicBlock.h"
29327952Sdim#include "llvm/IR/CallingConv.h"
30327952Sdim#include "llvm/IR/DataLayout.h"
31327952Sdim#include "llvm/IR/DerivedTypes.h"
32327952Sdim#include "llvm/IR/Function.h"
33327952Sdim#include "llvm/IR/Instruction.h"
34327952Sdim#include "llvm/IR/Instructions.h"
35327952Sdim#include "llvm/IR/IntrinsicInst.h"
36284677Sdim#include "llvm/IR/Module.h"
37327952Sdim#include "llvm/IR/PatternMatch.h"
38327952Sdim#include "llvm/IR/Type.h"
39327952Sdim#include "llvm/IR/Value.h"
40327952Sdim#include "llvm/MC/SubtargetFeature.h"
41327952Sdim#include "llvm/Support/Casting.h"
42327952Sdim#include "llvm/Support/CommandLine.h"
43284677Sdim#include "llvm/Support/Debug.h"
44327952Sdim#include "llvm/Support/ErrorHandling.h"
45341825Sdim#include "llvm/Support/MachineValueType.h"
46327952Sdim#include "llvm/Support/raw_ostream.h"
47327952Sdim#include "llvm/Target/TargetMachine.h"
48327952Sdim#include <algorithm>
49327952Sdim#include <cassert>
50327952Sdim#include <limits>
51327952Sdim#include <utility>
52327952Sdim
53284677Sdimusing namespace llvm;
54284677Sdim
55284677Sdim#define DEBUG_TYPE "AMDGPUtti"
56284677Sdim
57321369Sdimstatic cl::opt<unsigned> UnrollThresholdPrivate(
58321369Sdim  "amdgpu-unroll-threshold-private",
59321369Sdim  cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
60360784Sdim  cl::init(2700), cl::Hidden);
61309124Sdim
62321369Sdimstatic cl::opt<unsigned> UnrollThresholdLocal(
63321369Sdim  "amdgpu-unroll-threshold-local",
64321369Sdim  cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
65321369Sdim  cl::init(1000), cl::Hidden);
66321369Sdim
67321369Sdimstatic cl::opt<unsigned> UnrollThresholdIf(
68321369Sdim  "amdgpu-unroll-threshold-if",
69321369Sdim  cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
70321369Sdim  cl::init(150), cl::Hidden);
71321369Sdim
72321369Sdimstatic bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
73321369Sdim                              unsigned Depth = 0) {
74321369Sdim  const Instruction *I = dyn_cast<Instruction>(Cond);
75321369Sdim  if (!I)
76321369Sdim    return false;
77321369Sdim
78321369Sdim  for (const Value *V : I->operand_values()) {
79321369Sdim    if (!L->contains(I))
80321369Sdim      continue;
81321369Sdim    if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
82327952Sdim      if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
83321369Sdim                  return SubLoop->contains(PHI); }))
84321369Sdim        return true;
85321369Sdim    } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
86321369Sdim      return true;
87321369Sdim  }
88321369Sdim  return false;
89321369Sdim}
90321369Sdim
91321369Sdimvoid AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
92284677Sdim                                            TTI::UnrollingPreferences &UP) {
93360784Sdim  const Function &F = *L->getHeader()->getParent();
94360784Sdim  UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
95327952Sdim  UP.MaxCount = std::numeric_limits<unsigned>::max();
96284677Sdim  UP.Partial = true;
97284677Sdim
98284677Sdim  // TODO: Do we want runtime unrolling?
99284677Sdim
100321369Sdim  // Maximum alloca size than can fit registers. Reserve 16 registers.
101321369Sdim  const unsigned MaxAlloca = (256 - 16) * 4;
102321369Sdim  unsigned ThresholdPrivate = UnrollThresholdPrivate;
103321369Sdim  unsigned ThresholdLocal = UnrollThresholdLocal;
104321369Sdim  unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
105284677Sdim  for (const BasicBlock *BB : L->getBlocks()) {
106284677Sdim    const DataLayout &DL = BB->getModule()->getDataLayout();
107321369Sdim    unsigned LocalGEPsSeen = 0;
108321369Sdim
109327952Sdim    if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
110321369Sdim               return SubLoop->contains(BB); }))
111321369Sdim        continue; // Block belongs to an inner loop.
112321369Sdim
113284677Sdim    for (const Instruction &I : *BB) {
114321369Sdim      // Unroll a loop which contains an "if" statement whose condition
115321369Sdim      // defined by a PHI belonging to the loop. This may help to eliminate
116321369Sdim      // if region and potentially even PHI itself, saving on both divergence
117321369Sdim      // and registers used for the PHI.
118321369Sdim      // Add a small bonus for each of such "if" statements.
119321369Sdim      if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
120321369Sdim        if (UP.Threshold < MaxBoost && Br->isConditional()) {
121353358Sdim          BasicBlock *Succ0 = Br->getSuccessor(0);
122353358Sdim          BasicBlock *Succ1 = Br->getSuccessor(1);
123353358Sdim          if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
124353358Sdim              (L->contains(Succ1) && L->isLoopExiting(Succ1)))
125321369Sdim            continue;
126321369Sdim          if (dependsOnLocalPhi(L, Br->getCondition())) {
127321369Sdim            UP.Threshold += UnrollThresholdIf;
128341825Sdim            LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
129341825Sdim                              << " for loop:\n"
130341825Sdim                              << *L << " due to " << *Br << '\n');
131321369Sdim            if (UP.Threshold >= MaxBoost)
132321369Sdim              return;
133321369Sdim          }
134321369Sdim        }
135321369Sdim        continue;
136321369Sdim      }
137321369Sdim
138284677Sdim      const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
139321369Sdim      if (!GEP)
140284677Sdim        continue;
141284677Sdim
142321369Sdim      unsigned AS = GEP->getAddressSpace();
143321369Sdim      unsigned Threshold = 0;
144344779Sdim      if (AS == AMDGPUAS::PRIVATE_ADDRESS)
145321369Sdim        Threshold = ThresholdPrivate;
146353358Sdim      else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
147321369Sdim        Threshold = ThresholdLocal;
148321369Sdim      else
149321369Sdim        continue;
150321369Sdim
151321369Sdim      if (UP.Threshold >= Threshold)
152321369Sdim        continue;
153321369Sdim
154344779Sdim      if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
155321369Sdim        const Value *Ptr = GEP->getPointerOperand();
156321369Sdim        const AllocaInst *Alloca =
157321369Sdim            dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
158321369Sdim        if (!Alloca || !Alloca->isStaticAlloca())
159321369Sdim          continue;
160321369Sdim        Type *Ty = Alloca->getAllocatedType();
161321369Sdim        unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
162321369Sdim        if (AllocaSize > MaxAlloca)
163321369Sdim          continue;
164353358Sdim      } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
165353358Sdim                 AS == AMDGPUAS::REGION_ADDRESS) {
166321369Sdim        LocalGEPsSeen++;
167321369Sdim        // Inhibit unroll for local memory if we have seen addressing not to
168321369Sdim        // a variable, most likely we will be unable to combine it.
169321369Sdim        // Do not unroll too deep inner loops for local memory to give a chance
170321369Sdim        // to unroll an outer loop for a more important reason.
171321369Sdim        if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
172321369Sdim            (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
173321369Sdim             !isa<Argument>(GEP->getPointerOperand())))
174321369Sdim          continue;
175284677Sdim      }
176321369Sdim
177321369Sdim      // Check if GEP depends on a value defined by this loop itself.
178321369Sdim      bool HasLoopDef = false;
179321369Sdim      for (const Value *Op : GEP->operands()) {
180321369Sdim        const Instruction *Inst = dyn_cast<Instruction>(Op);
181321369Sdim        if (!Inst || L->isLoopInvariant(Op))
182321369Sdim          continue;
183321369Sdim
184327952Sdim        if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
185321369Sdim             return SubLoop->contains(Inst); }))
186321369Sdim          continue;
187321369Sdim        HasLoopDef = true;
188321369Sdim        break;
189321369Sdim      }
190321369Sdim      if (!HasLoopDef)
191321369Sdim        continue;
192321369Sdim
193321369Sdim      // We want to do whatever we can to limit the number of alloca
194321369Sdim      // instructions that make it through to the code generator.  allocas
195321369Sdim      // require us to use indirect addressing, which is slow and prone to
196321369Sdim      // compiler bugs.  If this loop does an address calculation on an
197321369Sdim      // alloca ptr, then we want to use a higher than normal loop unroll
198321369Sdim      // threshold. This will give SROA a better chance to eliminate these
199321369Sdim      // allocas.
200321369Sdim      //
201321369Sdim      // We also want to have more unrolling for local memory to let ds
202321369Sdim      // instructions with different offsets combine.
203321369Sdim      //
204321369Sdim      // Don't use the maximum allowed value here as it will make some
205321369Sdim      // programs way too big.
206321369Sdim      UP.Threshold = Threshold;
207341825Sdim      LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
208341825Sdim                        << " for loop:\n"
209341825Sdim                        << *L << " due to " << *GEP << '\n');
210321369Sdim      if (UP.Threshold >= MaxBoost)
211321369Sdim        return;
212284677Sdim    }
213284677Sdim  }
214284677Sdim}
215284677Sdim
216341825Sdimunsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
217321369Sdim  // The concept of vector registers doesn't really exist. Some packed vector
218321369Sdim  // operations operate on the normal 32-bit registers.
219341825Sdim  return 256;
220284677Sdim}
221284677Sdim
222341825Sdimunsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
223321369Sdim  // This is really the number of registers to fill when vectorizing /
224321369Sdim  // interleaving loops, so we lie to avoid trying to use all registers.
225321369Sdim  return getHardwareNumberOfRegisters(Vec) >> 3;
226296417Sdim}
227284677Sdim
228341825Sdimunsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
229321369Sdim  return 32;
230321369Sdim}
231321369Sdim
232341825Sdimunsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
233321369Sdim  return 32;
234321369Sdim}
235321369Sdim
236341825Sdimunsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
237341825Sdim                                            unsigned ChainSizeInBytes,
238341825Sdim                                            VectorType *VecTy) const {
239341825Sdim  unsigned VecRegBitWidth = VF * LoadSize;
240341825Sdim  if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
241341825Sdim    // TODO: Support element-size less than 32bit?
242341825Sdim    return 128 / LoadSize;
243341825Sdim
244341825Sdim  return VF;
245341825Sdim}
246341825Sdim
247341825Sdimunsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
248341825Sdim                                             unsigned ChainSizeInBytes,
249341825Sdim                                             VectorType *VecTy) const {
250341825Sdim  unsigned VecRegBitWidth = VF * StoreSize;
251341825Sdim  if (VecRegBitWidth > 128)
252341825Sdim    return 128 / StoreSize;
253341825Sdim
254341825Sdim  return VF;
255341825Sdim}
256341825Sdim
257341825Sdimunsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
258344779Sdim  if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
259344779Sdim      AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
260353358Sdim      AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
261353358Sdim      AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
262341825Sdim    return 512;
263341825Sdim  }
264341825Sdim
265344779Sdim  if (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
266344779Sdim      AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
267344779Sdim      AddrSpace == AMDGPUAS::REGION_ADDRESS)
268309124Sdim    return 128;
269341825Sdim
270344779Sdim  if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
271309124Sdim    return 8 * ST->getMaxPrivateElementSize();
272321369Sdim
273321369Sdim  llvm_unreachable("unhandled address space");
274321369Sdim}
275321369Sdim
276341825Sdimbool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
277321369Sdim                                               unsigned Alignment,
278321369Sdim                                               unsigned AddrSpace) const {
279321369Sdim  // We allow vectorization of flat stores, even though we may need to decompose
280321369Sdim  // them later if they may access private memory. We don't have enough context
281321369Sdim  // here, and legalization can handle it.
282344779Sdim  if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
283321369Sdim    return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
284321369Sdim      ChainSizeInBytes <= ST->getMaxPrivateElementSize();
285309124Sdim  }
286321369Sdim  return true;
287309124Sdim}
288309124Sdim
289341825Sdimbool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
290321369Sdim                                                unsigned Alignment,
291321369Sdim                                                unsigned AddrSpace) const {
292321369Sdim  return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
293321369Sdim}
294321369Sdim
295341825Sdimbool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
296321369Sdim                                                 unsigned Alignment,
297321369Sdim                                                 unsigned AddrSpace) const {
298321369Sdim  return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
299321369Sdim}
300321369Sdim
301341825Sdimunsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
302321369Sdim  // Disable unrolling if the loop is not vectorized.
303321369Sdim  // TODO: Enable this again.
304321369Sdim  if (VF == 1)
305321369Sdim    return 1;
306321369Sdim
307321369Sdim  return 8;
308284677Sdim}
309296417Sdim
310341825Sdimbool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
311327952Sdim                                       MemIntrinsicInfo &Info) const {
312327952Sdim  switch (Inst->getIntrinsicID()) {
313327952Sdim  case Intrinsic::amdgcn_atomic_inc:
314341825Sdim  case Intrinsic::amdgcn_atomic_dec:
315344779Sdim  case Intrinsic::amdgcn_ds_ordered_add:
316344779Sdim  case Intrinsic::amdgcn_ds_ordered_swap:
317341825Sdim  case Intrinsic::amdgcn_ds_fadd:
318341825Sdim  case Intrinsic::amdgcn_ds_fmin:
319341825Sdim  case Intrinsic::amdgcn_ds_fmax: {
320327952Sdim    auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
321327952Sdim    auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
322327952Sdim    if (!Ordering || !Volatile)
323327952Sdim      return false; // Invalid.
324327952Sdim
325327952Sdim    unsigned OrderingVal = Ordering->getZExtValue();
326327952Sdim    if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
327327952Sdim      return false;
328327952Sdim
329327952Sdim    Info.PtrVal = Inst->getArgOperand(0);
330327952Sdim    Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
331327952Sdim    Info.ReadMem = true;
332327952Sdim    Info.WriteMem = true;
333327952Sdim    Info.IsVolatile = !Volatile->isNullValue();
334327952Sdim    return true;
335327952Sdim  }
336327952Sdim  default:
337327952Sdim    return false;
338327952Sdim  }
339327952Sdim}
340327952Sdim
341360784Sdimint GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
342360784Sdim                                       TTI::OperandValueKind Opd1Info,
343360784Sdim                                       TTI::OperandValueKind Opd2Info,
344360784Sdim                                       TTI::OperandValueProperties Opd1PropInfo,
345360784Sdim                                       TTI::OperandValueProperties Opd2PropInfo,
346360784Sdim                                       ArrayRef<const Value *> Args,
347360784Sdim                                       const Instruction *CxtI) {
348309124Sdim  EVT OrigTy = TLI->getValueType(DL, Ty);
349309124Sdim  if (!OrigTy.isSimple()) {
350309124Sdim    return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
351309124Sdim                                         Opd1PropInfo, Opd2PropInfo);
352309124Sdim  }
353309124Sdim
354309124Sdim  // Legalize the type.
355309124Sdim  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
356309124Sdim  int ISD = TLI->InstructionOpcodeToISD(Opcode);
357309124Sdim
358309124Sdim  // Because we don't have any legal vector operations, but the legal types, we
359309124Sdim  // need to account for split vectors.
360309124Sdim  unsigned NElts = LT.second.isVector() ?
361309124Sdim    LT.second.getVectorNumElements() : 1;
362309124Sdim
363309124Sdim  MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
364309124Sdim
365309124Sdim  switch (ISD) {
366309124Sdim  case ISD::SHL:
367309124Sdim  case ISD::SRL:
368327952Sdim  case ISD::SRA:
369309124Sdim    if (SLT == MVT::i64)
370309124Sdim      return get64BitInstrCost() * LT.first * NElts;
371309124Sdim
372360784Sdim    if (ST->has16BitInsts() && SLT == MVT::i16)
373360784Sdim      NElts = (NElts + 1) / 2;
374360784Sdim
375309124Sdim    // i32
376309124Sdim    return getFullRateInstrCost() * LT.first * NElts;
377309124Sdim  case ISD::ADD:
378309124Sdim  case ISD::SUB:
379309124Sdim  case ISD::AND:
380309124Sdim  case ISD::OR:
381327952Sdim  case ISD::XOR:
382360784Sdim    if (SLT == MVT::i64) {
383309124Sdim      // and, or and xor are typically split into 2 VALU instructions.
384309124Sdim      return 2 * getFullRateInstrCost() * LT.first * NElts;
385309124Sdim    }
386309124Sdim
387360784Sdim    if (ST->has16BitInsts() && SLT == MVT::i16)
388360784Sdim      NElts = (NElts + 1) / 2;
389360784Sdim
390309124Sdim    return LT.first * NElts * getFullRateInstrCost();
391309124Sdim  case ISD::MUL: {
392309124Sdim    const int QuarterRateCost = getQuarterRateInstrCost();
393309124Sdim    if (SLT == MVT::i64) {
394309124Sdim      const int FullRateCost = getFullRateInstrCost();
395309124Sdim      return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
396309124Sdim    }
397309124Sdim
398360784Sdim    if (ST->has16BitInsts() && SLT == MVT::i16)
399360784Sdim      NElts = (NElts + 1) / 2;
400360784Sdim
401309124Sdim    // i32
402309124Sdim    return QuarterRateCost * NElts * LT.first;
403309124Sdim  }
404309124Sdim  case ISD::FADD:
405309124Sdim  case ISD::FSUB:
406309124Sdim  case ISD::FMUL:
407309124Sdim    if (SLT == MVT::f64)
408309124Sdim      return LT.first * NElts * get64BitInstrCost();
409309124Sdim
410360784Sdim    if (ST->has16BitInsts() && SLT == MVT::f16)
411360784Sdim      NElts = (NElts + 1) / 2;
412360784Sdim
413309124Sdim    if (SLT == MVT::f32 || SLT == MVT::f16)
414309124Sdim      return LT.first * NElts * getFullRateInstrCost();
415309124Sdim    break;
416309124Sdim  case ISD::FDIV:
417309124Sdim  case ISD::FREM:
418309124Sdim    // FIXME: frem should be handled separately. The fdiv in it is most of it,
419309124Sdim    // but the current lowering is also not entirely correct.
420309124Sdim    if (SLT == MVT::f64) {
421309124Sdim      int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
422309124Sdim      // Add cost of workaround.
423353358Sdim      if (!ST->hasUsableDivScaleConditionOutput())
424309124Sdim        Cost += 3 * getFullRateInstrCost();
425309124Sdim
426309124Sdim      return LT.first * Cost * NElts;
427309124Sdim    }
428309124Sdim
429327952Sdim    if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
430327952Sdim      // TODO: This is more complicated, unsafe flags etc.
431360784Sdim      if ((SLT == MVT::f32 && !HasFP32Denormals) ||
432327952Sdim          (SLT == MVT::f16 && ST->has16BitInsts())) {
433327952Sdim        return LT.first * getQuarterRateInstrCost() * NElts;
434327952Sdim      }
435327952Sdim    }
436327952Sdim
437327952Sdim    if (SLT == MVT::f16 && ST->has16BitInsts()) {
438327952Sdim      // 2 x v_cvt_f32_f16
439327952Sdim      // f32 rcp
440327952Sdim      // f32 fmul
441327952Sdim      // v_cvt_f16_f32
442327952Sdim      // f16 div_fixup
443327952Sdim      int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
444327952Sdim      return LT.first * Cost * NElts;
445327952Sdim    }
446327952Sdim
447309124Sdim    if (SLT == MVT::f32 || SLT == MVT::f16) {
448309124Sdim      int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
449327952Sdim
450360784Sdim      if (!HasFP32Denormals) {
451327952Sdim        // FP mode switches.
452327952Sdim        Cost += 2 * getFullRateInstrCost();
453327952Sdim      }
454327952Sdim
455309124Sdim      return LT.first * NElts * Cost;
456309124Sdim    }
457309124Sdim    break;
458309124Sdim  default:
459309124Sdim    break;
460309124Sdim  }
461309124Sdim
462309124Sdim  return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
463309124Sdim                                       Opd1PropInfo, Opd2PropInfo);
464309124Sdim}
465309124Sdim
466360784Sdimtemplate <typename T>
467360784Sdimint GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
468360784Sdim                                      ArrayRef<T *> Args,
469360784Sdim                                      FastMathFlags FMF, unsigned VF) {
470360784Sdim  if (ID != Intrinsic::fma)
471360784Sdim    return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
472360784Sdim
473360784Sdim  EVT OrigTy = TLI->getValueType(DL, RetTy);
474360784Sdim  if (!OrigTy.isSimple()) {
475360784Sdim    return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
476360784Sdim  }
477360784Sdim
478360784Sdim  // Legalize the type.
479360784Sdim  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
480360784Sdim
481360784Sdim  unsigned NElts = LT.second.isVector() ?
482360784Sdim    LT.second.getVectorNumElements() : 1;
483360784Sdim
484360784Sdim  MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
485360784Sdim
486360784Sdim  if (SLT == MVT::f64)
487360784Sdim    return LT.first * NElts * get64BitInstrCost();
488360784Sdim
489360784Sdim  if (ST->has16BitInsts() && SLT == MVT::f16)
490360784Sdim    NElts = (NElts + 1) / 2;
491360784Sdim
492360784Sdim  return LT.first * NElts * (ST->hasFastFMAF32() ? getHalfRateInstrCost()
493360784Sdim                                                 : getQuarterRateInstrCost());
494360784Sdim}
495360784Sdim
496360784Sdimint GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
497360784Sdim                                      ArrayRef<Value*> Args, FastMathFlags FMF,
498360784Sdim                                      unsigned VF) {
499360784Sdim  return getIntrinsicInstrCost<Value>(ID, RetTy, Args, FMF, VF);
500360784Sdim}
501360784Sdim
502360784Sdimint GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
503360784Sdim                                      ArrayRef<Type *> Tys, FastMathFlags FMF,
504360784Sdim                                      unsigned ScalarizationCostPassed) {
505360784Sdim  return getIntrinsicInstrCost<Type>(ID, RetTy, Tys, FMF,
506360784Sdim                                     ScalarizationCostPassed);
507360784Sdim}
508360784Sdim
509341825Sdimunsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
510296417Sdim  // XXX - For some reason this isn't called for switch.
511296417Sdim  switch (Opcode) {
512296417Sdim  case Instruction::Br:
513296417Sdim  case Instruction::Ret:
514296417Sdim    return 10;
515296417Sdim  default:
516296417Sdim    return BaseT::getCFInstrCost(Opcode);
517296417Sdim  }
518296417Sdim}
519296417Sdim
520341825Sdimint GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
521341825Sdim                                              bool IsPairwise) {
522341825Sdim  EVT OrigTy = TLI->getValueType(DL, Ty);
523341825Sdim
524341825Sdim  // Computes cost on targets that have packed math instructions(which support
525341825Sdim  // 16-bit types only).
526341825Sdim  if (IsPairwise ||
527341825Sdim      !ST->hasVOP3PInsts() ||
528341825Sdim      OrigTy.getScalarSizeInBits() != 16)
529341825Sdim    return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
530341825Sdim
531341825Sdim  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
532341825Sdim  return LT.first * getFullRateInstrCost();
533341825Sdim}
534341825Sdim
535341825Sdimint GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
536341825Sdim                                          bool IsPairwise,
537341825Sdim                                          bool IsUnsigned) {
538341825Sdim  EVT OrigTy = TLI->getValueType(DL, Ty);
539341825Sdim
540341825Sdim  // Computes cost on targets that have packed math instructions(which support
541341825Sdim  // 16-bit types only).
542341825Sdim  if (IsPairwise ||
543341825Sdim      !ST->hasVOP3PInsts() ||
544341825Sdim      OrigTy.getScalarSizeInBits() != 16)
545341825Sdim    return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
546341825Sdim
547341825Sdim  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
548341825Sdim  return LT.first * getHalfRateInstrCost();
549341825Sdim}
550341825Sdim
551341825Sdimint GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
552296417Sdim                                      unsigned Index) {
553296417Sdim  switch (Opcode) {
554296417Sdim  case Instruction::ExtractElement:
555321369Sdim  case Instruction::InsertElement: {
556321369Sdim    unsigned EltSize
557321369Sdim      = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
558321369Sdim    if (EltSize < 32) {
559321369Sdim      if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
560321369Sdim        return 0;
561321369Sdim      return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
562321369Sdim    }
563321369Sdim
564309124Sdim    // Extracts are just reads of a subregister, so are free. Inserts are
565309124Sdim    // considered free because we don't want to have any cost for scalarizing
566309124Sdim    // operations, and we don't have to copy into a different register class.
567309124Sdim
568296417Sdim    // Dynamic indexing isn't free and is best avoided.
569296417Sdim    return Index == ~0u ? 2 : 0;
570321369Sdim  }
571296417Sdim  default:
572296417Sdim    return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
573296417Sdim  }
574296417Sdim}
575296417Sdim
576296417Sdim
577341825Sdim
578296417Sdimstatic bool isArgPassedInSGPR(const Argument *A) {
579296417Sdim  const Function *F = A->getParent();
580296417Sdim
581296417Sdim  // Arguments to compute shaders are never a source of divergence.
582321369Sdim  CallingConv::ID CC = F->getCallingConv();
583321369Sdim  switch (CC) {
584321369Sdim  case CallingConv::AMDGPU_KERNEL:
585321369Sdim  case CallingConv::SPIR_KERNEL:
586296417Sdim    return true;
587321369Sdim  case CallingConv::AMDGPU_VS:
588327952Sdim  case CallingConv::AMDGPU_LS:
589321369Sdim  case CallingConv::AMDGPU_HS:
590327952Sdim  case CallingConv::AMDGPU_ES:
591321369Sdim  case CallingConv::AMDGPU_GS:
592321369Sdim  case CallingConv::AMDGPU_PS:
593321369Sdim  case CallingConv::AMDGPU_CS:
594321369Sdim    // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
595321369Sdim    // Everything else is in VGPRs.
596321369Sdim    return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
597321369Sdim           F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
598321369Sdim  default:
599321369Sdim    // TODO: Should calls support inreg for SGPR inputs?
600321369Sdim    return false;
601321369Sdim  }
602296417Sdim}
603296417Sdim
604296417Sdim/// \returns true if the result of the value could potentially be
605296417Sdim/// different across workitems in a wavefront.
606341825Sdimbool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
607296417Sdim  if (const Argument *A = dyn_cast<Argument>(V))
608296417Sdim    return !isArgPassedInSGPR(A);
609296417Sdim
610344779Sdim  // Loads from the private and flat address spaces are divergent, because
611344779Sdim  // threads can execute the load instruction with the same inputs and get
612344779Sdim  // different results.
613296417Sdim  //
614296417Sdim  // All other loads are not divergent, because if threads issue loads with the
615296417Sdim  // same arguments, they will always get the same result.
616296417Sdim  if (const LoadInst *Load = dyn_cast<LoadInst>(V))
617344779Sdim    return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
618344779Sdim           Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
619296417Sdim
620309124Sdim  // Atomics are divergent because they are executed sequentially: when an
621309124Sdim  // atomic operation refers to the same address in each thread, then each
622309124Sdim  // thread after the first sees the value written by the previous thread as
623309124Sdim  // original value.
624309124Sdim  if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
625309124Sdim    return true;
626309124Sdim
627321369Sdim  if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
628341825Sdim    return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
629296417Sdim
630296417Sdim  // Assume all function calls are a source of divergence.
631296417Sdim  if (isa<CallInst>(V) || isa<InvokeInst>(V))
632296417Sdim    return true;
633296417Sdim
634296417Sdim  return false;
635296417Sdim}
636321369Sdim
637341825Sdimbool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
638321369Sdim  if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
639321369Sdim    switch (Intrinsic->getIntrinsicID()) {
640321369Sdim    default:
641321369Sdim      return false;
642321369Sdim    case Intrinsic::amdgcn_readfirstlane:
643321369Sdim    case Intrinsic::amdgcn_readlane:
644353358Sdim    case Intrinsic::amdgcn_icmp:
645353358Sdim    case Intrinsic::amdgcn_fcmp:
646321369Sdim      return true;
647321369Sdim    }
648321369Sdim  }
649321369Sdim  return false;
650321369Sdim}
651321369Sdim
652360784Sdimbool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
653360784Sdim                                            Intrinsic::ID IID) const {
654360784Sdim  switch (IID) {
655360784Sdim  case Intrinsic::amdgcn_atomic_inc:
656360784Sdim  case Intrinsic::amdgcn_atomic_dec:
657360784Sdim  case Intrinsic::amdgcn_ds_fadd:
658360784Sdim  case Intrinsic::amdgcn_ds_fmin:
659360784Sdim  case Intrinsic::amdgcn_ds_fmax:
660360784Sdim  case Intrinsic::amdgcn_is_shared:
661360784Sdim  case Intrinsic::amdgcn_is_private:
662360784Sdim    OpIndexes.push_back(0);
663360784Sdim    return true;
664360784Sdim  default:
665360784Sdim    return false;
666360784Sdim  }
667360784Sdim}
668360784Sdim
669360784Sdimbool GCNTTIImpl::rewriteIntrinsicWithAddressSpace(
670360784Sdim  IntrinsicInst *II, Value *OldV, Value *NewV) const {
671360784Sdim  auto IntrID = II->getIntrinsicID();
672360784Sdim  switch (IntrID) {
673360784Sdim  case Intrinsic::amdgcn_atomic_inc:
674360784Sdim  case Intrinsic::amdgcn_atomic_dec:
675360784Sdim  case Intrinsic::amdgcn_ds_fadd:
676360784Sdim  case Intrinsic::amdgcn_ds_fmin:
677360784Sdim  case Intrinsic::amdgcn_ds_fmax: {
678360784Sdim    const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
679360784Sdim    if (!IsVolatile->isZero())
680360784Sdim      return false;
681360784Sdim    Module *M = II->getParent()->getParent()->getParent();
682360784Sdim    Type *DestTy = II->getType();
683360784Sdim    Type *SrcTy = NewV->getType();
684360784Sdim    Function *NewDecl =
685360784Sdim        Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
686360784Sdim    II->setArgOperand(0, NewV);
687360784Sdim    II->setCalledFunction(NewDecl);
688360784Sdim    return true;
689360784Sdim  }
690360784Sdim  case Intrinsic::amdgcn_is_shared:
691360784Sdim  case Intrinsic::amdgcn_is_private: {
692360784Sdim    unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
693360784Sdim      AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
694360784Sdim    unsigned NewAS = NewV->getType()->getPointerAddressSpace();
695360784Sdim    LLVMContext &Ctx = NewV->getType()->getContext();
696360784Sdim    ConstantInt *NewVal = (TrueAS == NewAS) ?
697360784Sdim      ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
698360784Sdim    II->replaceAllUsesWith(NewVal);
699360784Sdim    II->eraseFromParent();
700360784Sdim    return true;
701360784Sdim  }
702360784Sdim  default:
703360784Sdim    return false;
704360784Sdim  }
705360784Sdim}
706360784Sdim
707341825Sdimunsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
708321369Sdim                                       Type *SubTp) {
709321369Sdim  if (ST->hasVOP3PInsts()) {
710321369Sdim    VectorType *VT = cast<VectorType>(Tp);
711321369Sdim    if (VT->getNumElements() == 2 &&
712321369Sdim        DL.getTypeSizeInBits(VT->getElementType()) == 16) {
713321369Sdim      // With op_sel VOP3P instructions freely can access the low half or high
714321369Sdim      // half of a register, so any swizzle is free.
715321369Sdim
716321369Sdim      switch (Kind) {
717321369Sdim      case TTI::SK_Broadcast:
718321369Sdim      case TTI::SK_Reverse:
719321369Sdim      case TTI::SK_PermuteSingleSrc:
720321369Sdim        return 0;
721321369Sdim      default:
722321369Sdim        break;
723321369Sdim      }
724321369Sdim    }
725321369Sdim  }
726321369Sdim
727321369Sdim  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
728321369Sdim}
729327952Sdim
730341825Sdimbool GCNTTIImpl::areInlineCompatible(const Function *Caller,
731353358Sdim                                     const Function *Callee) const {
732327952Sdim  const TargetMachine &TM = getTLI()->getTargetMachine();
733360784Sdim  const GCNSubtarget *CallerST
734360784Sdim    = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
735360784Sdim  const GCNSubtarget *CalleeST
736360784Sdim    = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
737327952Sdim
738360784Sdim  const FeatureBitset &CallerBits = CallerST->getFeatureBits();
739360784Sdim  const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
740360784Sdim
741327952Sdim  FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
742327952Sdim  FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
743353358Sdim  if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
744353358Sdim    return false;
745353358Sdim
746353358Sdim  // FIXME: dx10_clamp can just take the caller setting, but there seems to be
747353358Sdim  // no way to support merge for backend defined attributes.
748360784Sdim  AMDGPU::SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
749360784Sdim  AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
750353358Sdim  return CallerMode.isInlineCompatible(CalleeMode);
751327952Sdim}
752341825Sdim
753341825Sdimvoid GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
754341825Sdim                                         TTI::UnrollingPreferences &UP) {
755341825Sdim  CommonTTI.getUnrollingPreferences(L, SE, UP);
756341825Sdim}
757341825Sdim
758360784Sdimunsigned GCNTTIImpl::getUserCost(const User *U,
759360784Sdim                                 ArrayRef<const Value *> Operands) {
760360784Sdim  const Instruction *I = dyn_cast<Instruction>(U);
761360784Sdim  if (!I)
762360784Sdim    return BaseT::getUserCost(U, Operands);
763360784Sdim
764360784Sdim  // Estimate different operations to be optimized out
765360784Sdim  switch (I->getOpcode()) {
766360784Sdim  case Instruction::ExtractElement: {
767360784Sdim    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
768360784Sdim    unsigned Idx = -1;
769360784Sdim    if (CI)
770360784Sdim      Idx = CI->getZExtValue();
771360784Sdim    return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx);
772360784Sdim  }
773360784Sdim  case Instruction::InsertElement: {
774360784Sdim    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
775360784Sdim    unsigned Idx = -1;
776360784Sdim    if (CI)
777360784Sdim      Idx = CI->getZExtValue();
778360784Sdim    return getVectorInstrCost(I->getOpcode(), I->getType(), Idx);
779360784Sdim  }
780360784Sdim  case Instruction::Call: {
781360784Sdim    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
782360784Sdim      SmallVector<Value *, 4> Args(II->arg_operands());
783360784Sdim      FastMathFlags FMF;
784360784Sdim      if (auto *FPMO = dyn_cast<FPMathOperator>(II))
785360784Sdim        FMF = FPMO->getFastMathFlags();
786360784Sdim      return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args,
787360784Sdim                                   FMF);
788360784Sdim    } else {
789360784Sdim      return BaseT::getUserCost(U, Operands);
790360784Sdim    }
791360784Sdim  }
792360784Sdim  case Instruction::ShuffleVector: {
793360784Sdim    const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
794360784Sdim    Type *Ty = Shuffle->getType();
795360784Sdim    Type *SrcTy = Shuffle->getOperand(0)->getType();
796360784Sdim
797360784Sdim    // TODO: Identify and add costs for insert subvector, etc.
798360784Sdim    int SubIndex;
799360784Sdim    if (Shuffle->isExtractSubvectorMask(SubIndex))
800360784Sdim      return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty);
801360784Sdim
802360784Sdim    if (Shuffle->changesLength())
803360784Sdim      return BaseT::getUserCost(U, Operands);
804360784Sdim
805360784Sdim    if (Shuffle->isIdentity())
806360784Sdim      return 0;
807360784Sdim
808360784Sdim    if (Shuffle->isReverse())
809360784Sdim      return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr);
810360784Sdim
811360784Sdim    if (Shuffle->isSelect())
812360784Sdim      return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr);
813360784Sdim
814360784Sdim    if (Shuffle->isTranspose())
815360784Sdim      return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr);
816360784Sdim
817360784Sdim    if (Shuffle->isZeroEltSplat())
818360784Sdim      return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr);
819360784Sdim
820360784Sdim    if (Shuffle->isSingleSource())
821360784Sdim      return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr);
822360784Sdim
823360784Sdim    return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr);
824360784Sdim  }
825360784Sdim  case Instruction::ZExt:
826360784Sdim  case Instruction::SExt:
827360784Sdim  case Instruction::FPToUI:
828360784Sdim  case Instruction::FPToSI:
829360784Sdim  case Instruction::FPExt:
830360784Sdim  case Instruction::PtrToInt:
831360784Sdim  case Instruction::IntToPtr:
832360784Sdim  case Instruction::SIToFP:
833360784Sdim  case Instruction::UIToFP:
834360784Sdim  case Instruction::Trunc:
835360784Sdim  case Instruction::FPTrunc:
836360784Sdim  case Instruction::BitCast:
837360784Sdim  case Instruction::AddrSpaceCast: {
838360784Sdim    return getCastInstrCost(I->getOpcode(), I->getType(),
839360784Sdim                            I->getOperand(0)->getType(), I);
840360784Sdim  }
841360784Sdim  case Instruction::Add:
842360784Sdim  case Instruction::FAdd:
843360784Sdim  case Instruction::Sub:
844360784Sdim  case Instruction::FSub:
845360784Sdim  case Instruction::Mul:
846360784Sdim  case Instruction::FMul:
847360784Sdim  case Instruction::UDiv:
848360784Sdim  case Instruction::SDiv:
849360784Sdim  case Instruction::FDiv:
850360784Sdim  case Instruction::URem:
851360784Sdim  case Instruction::SRem:
852360784Sdim  case Instruction::FRem:
853360784Sdim  case Instruction::Shl:
854360784Sdim  case Instruction::LShr:
855360784Sdim  case Instruction::AShr:
856360784Sdim  case Instruction::And:
857360784Sdim  case Instruction::Or:
858360784Sdim  case Instruction::Xor:
859360784Sdim  case Instruction::FNeg: {
860360784Sdim    return getArithmeticInstrCost(I->getOpcode(), I->getType(),
861360784Sdim                                  TTI::OK_AnyValue, TTI::OK_AnyValue,
862360784Sdim                                  TTI::OP_None, TTI::OP_None, Operands, I);
863360784Sdim  }
864360784Sdim  default:
865360784Sdim    break;
866360784Sdim  }
867360784Sdim
868360784Sdim  return BaseT::getUserCost(U, Operands);
869360784Sdim}
870360784Sdim
871341825Sdimunsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
872341825Sdim  return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
873341825Sdim}
874341825Sdim
875341825Sdimunsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
876341825Sdim  return getHardwareNumberOfRegisters(Vec);
877341825Sdim}
878341825Sdim
879341825Sdimunsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
880341825Sdim  return 32;
881341825Sdim}
882341825Sdim
883341825Sdimunsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
884341825Sdim  return 32;
885341825Sdim}
886341825Sdim
887341825Sdimunsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
888344779Sdim  if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
889344779Sdim      AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
890341825Sdim    return 128;
891344779Sdim  if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
892344779Sdim      AddrSpace == AMDGPUAS::REGION_ADDRESS)
893341825Sdim    return 64;
894344779Sdim  if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
895341825Sdim    return 32;
896341825Sdim
897344779Sdim  if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
898344779Sdim      AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
899344779Sdim      (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
900344779Sdim      AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
901341825Sdim    return 128;
902341825Sdim  llvm_unreachable("unhandled address space");
903341825Sdim}
904341825Sdim
905341825Sdimbool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
906341825Sdim                                             unsigned Alignment,
907341825Sdim                                             unsigned AddrSpace) const {
908341825Sdim  // We allow vectorization of flat stores, even though we may need to decompose
909341825Sdim  // them later if they may access private memory. We don't have enough context
910341825Sdim  // here, and legalization can handle it.
911344779Sdim  return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
912341825Sdim}
913341825Sdim
914341825Sdimbool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
915341825Sdim                                              unsigned Alignment,
916341825Sdim                                              unsigned AddrSpace) const {
917341825Sdim  return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
918341825Sdim}
919341825Sdim
920341825Sdimbool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
921341825Sdim                                               unsigned Alignment,
922341825Sdim                                               unsigned AddrSpace) const {
923341825Sdim  return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
924341825Sdim}
925341825Sdim
926341825Sdimunsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
927341825Sdim  // Disable unrolling if the loop is not vectorized.
928341825Sdim  // TODO: Enable this again.
929341825Sdim  if (VF == 1)
930341825Sdim    return 1;
931341825Sdim
932341825Sdim  return 8;
933341825Sdim}
934341825Sdim
935341825Sdimunsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
936341825Sdim  // XXX - For some reason this isn't called for switch.
937341825Sdim  switch (Opcode) {
938341825Sdim  case Instruction::Br:
939341825Sdim  case Instruction::Ret:
940341825Sdim    return 10;
941341825Sdim  default:
942341825Sdim    return BaseT::getCFInstrCost(Opcode);
943341825Sdim  }
944341825Sdim}
945341825Sdim
946341825Sdimint R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
947341825Sdim                                    unsigned Index) {
948341825Sdim  switch (Opcode) {
949341825Sdim  case Instruction::ExtractElement:
950341825Sdim  case Instruction::InsertElement: {
951341825Sdim    unsigned EltSize
952341825Sdim      = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
953341825Sdim    if (EltSize < 32) {
954341825Sdim      return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
955341825Sdim    }
956341825Sdim
957341825Sdim    // Extracts are just reads of a subregister, so are free. Inserts are
958341825Sdim    // considered free because we don't want to have any cost for scalarizing
959341825Sdim    // operations, and we don't have to copy into a different register class.
960341825Sdim
961341825Sdim    // Dynamic indexing isn't free and is best avoided.
962341825Sdim    return Index == ~0u ? 2 : 0;
963341825Sdim  }
964341825Sdim  default:
965341825Sdim    return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
966341825Sdim  }
967341825Sdim}
968341825Sdim
969341825Sdimvoid R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
970341825Sdim                                          TTI::UnrollingPreferences &UP) {
971341825Sdim  CommonTTI.getUnrollingPreferences(L, SE, UP);
972341825Sdim}
973