AMDGPULibCalls.cpp revision 327952
1//===- AMDGPULibCalls.cpp -------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief This file does AMD library function optimizations.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "amdgpu-simplifylib"
16
17#include "AMDGPU.h"
18#include "AMDGPULibFunc.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/Loads.h"
21#include "llvm/ADT/StringSet.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/IRBuilder.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/ValueSymbolTable.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetOptions.h"
34#include <vector>
35#include <cmath>
36
37using namespace llvm;
38
39static cl::opt<bool> EnablePreLink("amdgpu-prelink",
40  cl::desc("Enable pre-link mode optimizations"),
41  cl::init(false),
42  cl::Hidden);
43
44static cl::list<std::string> UseNative("amdgpu-use-native",
45  cl::desc("Comma separated list of functions to replace with native, or all"),
46  cl::CommaSeparated, cl::ValueOptional,
47  cl::Hidden);
48
49#define MATH_PI     3.14159265358979323846264338327950288419716939937511
50#define MATH_E      2.71828182845904523536028747135266249775724709369996
51#define MATH_SQRT2  1.41421356237309504880168872420969807856967187537695
52
53#define MATH_LOG2E     1.4426950408889634073599246810018921374266459541529859
54#define MATH_LOG10E    0.4342944819032518276511289189166050822943970058036665
55// Value of log2(10)
56#define MATH_LOG2_10   3.3219280948873623478703194294893901758648313930245806
57// Value of 1 / log2(10)
58#define MATH_RLOG2_10  0.3010299956639811952137388947244930267681898814621085
59// Value of 1 / M_LOG2E_F = 1 / log2(e)
60#define MATH_RLOG2_E   0.6931471805599453094172321214581765680755001343602552
61
62namespace llvm {
63
64class AMDGPULibCalls {
65private:
66
67  typedef llvm::AMDGPULibFunc FuncInfo;
68
69  // -fuse-native.
70  bool AllNative = false;
71
72  bool useNativeFunc(const StringRef F) const;
73
74  // Return a pointer (pointer expr) to the function if function defintion with
75  // "FuncName" exists. It may create a new function prototype in pre-link mode.
76  Constant *getFunction(Module *M, const FuncInfo& fInfo);
77
78  // Replace a normal function with its native version.
79  bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
80
81  bool parseFunctionName(const StringRef& FMangledName,
82                         FuncInfo *FInfo=nullptr /*out*/);
83
84  bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
85
86  /* Specialized optimizations */
87
88  // recip (half or native)
89  bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
90
91  // divide (half or native)
92  bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
93
94  // pow/powr/pown
95  bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
96
97  // rootn
98  bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
99
100  // fma/mad
101  bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
102
103  // -fuse-native for sincos
104  bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
105
106  // evaluate calls if calls' arguments are constants.
107  bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
108    double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
109  bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
110
111  // exp
112  bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
113
114  // exp2
115  bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
116
117  // exp10
118  bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
119
120  // log
121  bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
122
123  // log2
124  bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
125
126  // log10
127  bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
128
129  // sqrt
130  bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
131
132  // sin/cos
133  bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
134
135  // __read_pipe/__write_pipe
136  bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
137
138  // Get insertion point at entry.
139  BasicBlock::iterator getEntryIns(CallInst * UI);
140  // Insert an Alloc instruction.
141  AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
142  // Get a scalar native builtin signle argument FP function
143  Constant* getNativeFunction(Module* M, const FuncInfo &FInfo);
144
145protected:
146  CallInst *CI;
147
148  bool isUnsafeMath(const CallInst *CI) const;
149
150  void replaceCall(Value *With) {
151    CI->replaceAllUsesWith(With);
152    CI->eraseFromParent();
153  }
154
155public:
156  bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
157
158  void initNativeFuncs();
159
160  // Replace a normal math function call with that native version
161  bool useNative(CallInst *CI);
162};
163
164} // end llvm namespace
165
166namespace {
167
168  class AMDGPUSimplifyLibCalls : public FunctionPass {
169
170  AMDGPULibCalls Simplifier;
171
172  const TargetOptions Options;
173
174  public:
175    static char ID; // Pass identification
176
177    AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions())
178      : FunctionPass(ID), Options(Opt) {
179      initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
180    }
181
182    void getAnalysisUsage(AnalysisUsage &AU) const override {
183      AU.addRequired<AAResultsWrapperPass>();
184    }
185
186    bool runOnFunction(Function &M) override;
187  };
188
189  class AMDGPUUseNativeCalls : public FunctionPass {
190
191  AMDGPULibCalls Simplifier;
192
193  public:
194    static char ID; // Pass identification
195
196    AMDGPUUseNativeCalls() : FunctionPass(ID) {
197      initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
198      Simplifier.initNativeFuncs();
199    }
200
201    bool runOnFunction(Function &F) override;
202  };
203
204} // end anonymous namespace.
205
206char AMDGPUSimplifyLibCalls::ID = 0;
207char AMDGPUUseNativeCalls::ID = 0;
208
209INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
210                      "Simplify well-known AMD library calls", false, false)
211INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
212INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
213                    "Simplify well-known AMD library calls", false, false)
214
215INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
216                "Replace builtin math calls with that native versions.",
217                false, false)
218
219template <typename IRB>
220static CallInst *CreateCallEx(IRB &B, Value *Callee, Value *Arg,
221                              const Twine &Name = "") {
222  CallInst *R = B.CreateCall(Callee, Arg, Name);
223  if (Function* F = dyn_cast<Function>(Callee))
224    R->setCallingConv(F->getCallingConv());
225  return R;
226}
227
228template <typename IRB>
229static CallInst *CreateCallEx2(IRB &B, Value *Callee, Value *Arg1, Value *Arg2,
230                               const Twine &Name = "") {
231  CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
232  if (Function* F = dyn_cast<Function>(Callee))
233    R->setCallingConv(F->getCallingConv());
234  return R;
235}
236
237//  Data structures for table-driven optimizations.
238//  FuncTbl works for both f32 and f64 functions with 1 input argument
239
240struct TableEntry {
241  double   result;
242  double   input;
243};
244
245/* a list of {result, input} */
246static const TableEntry tbl_acos[] = {
247  {MATH_PI/2.0, 0.0},
248  {MATH_PI/2.0, -0.0},
249  {0.0, 1.0},
250  {MATH_PI, -1.0}
251};
252static const TableEntry tbl_acosh[] = {
253  {0.0, 1.0}
254};
255static const TableEntry tbl_acospi[] = {
256  {0.5, 0.0},
257  {0.5, -0.0},
258  {0.0, 1.0},
259  {1.0, -1.0}
260};
261static const TableEntry tbl_asin[] = {
262  {0.0, 0.0},
263  {-0.0, -0.0},
264  {MATH_PI/2.0, 1.0},
265  {-MATH_PI/2.0, -1.0}
266};
267static const TableEntry tbl_asinh[] = {
268  {0.0, 0.0},
269  {-0.0, -0.0}
270};
271static const TableEntry tbl_asinpi[] = {
272  {0.0, 0.0},
273  {-0.0, -0.0},
274  {0.5, 1.0},
275  {-0.5, -1.0}
276};
277static const TableEntry tbl_atan[] = {
278  {0.0, 0.0},
279  {-0.0, -0.0},
280  {MATH_PI/4.0, 1.0},
281  {-MATH_PI/4.0, -1.0}
282};
283static const TableEntry tbl_atanh[] = {
284  {0.0, 0.0},
285  {-0.0, -0.0}
286};
287static const TableEntry tbl_atanpi[] = {
288  {0.0, 0.0},
289  {-0.0, -0.0},
290  {0.25, 1.0},
291  {-0.25, -1.0}
292};
293static const TableEntry tbl_cbrt[] = {
294  {0.0, 0.0},
295  {-0.0, -0.0},
296  {1.0, 1.0},
297  {-1.0, -1.0},
298};
299static const TableEntry tbl_cos[] = {
300  {1.0, 0.0},
301  {1.0, -0.0}
302};
303static const TableEntry tbl_cosh[] = {
304  {1.0, 0.0},
305  {1.0, -0.0}
306};
307static const TableEntry tbl_cospi[] = {
308  {1.0, 0.0},
309  {1.0, -0.0}
310};
311static const TableEntry tbl_erfc[] = {
312  {1.0, 0.0},
313  {1.0, -0.0}
314};
315static const TableEntry tbl_erf[] = {
316  {0.0, 0.0},
317  {-0.0, -0.0}
318};
319static const TableEntry tbl_exp[] = {
320  {1.0, 0.0},
321  {1.0, -0.0},
322  {MATH_E, 1.0}
323};
324static const TableEntry tbl_exp2[] = {
325  {1.0, 0.0},
326  {1.0, -0.0},
327  {2.0, 1.0}
328};
329static const TableEntry tbl_exp10[] = {
330  {1.0, 0.0},
331  {1.0, -0.0},
332  {10.0, 1.0}
333};
334static const TableEntry tbl_expm1[] = {
335  {0.0, 0.0},
336  {-0.0, -0.0}
337};
338static const TableEntry tbl_log[] = {
339  {0.0, 1.0},
340  {1.0, MATH_E}
341};
342static const TableEntry tbl_log2[] = {
343  {0.0, 1.0},
344  {1.0, 2.0}
345};
346static const TableEntry tbl_log10[] = {
347  {0.0, 1.0},
348  {1.0, 10.0}
349};
350static const TableEntry tbl_rsqrt[] = {
351  {1.0, 1.0},
352  {1.0/MATH_SQRT2, 2.0}
353};
354static const TableEntry tbl_sin[] = {
355  {0.0, 0.0},
356  {-0.0, -0.0}
357};
358static const TableEntry tbl_sinh[] = {
359  {0.0, 0.0},
360  {-0.0, -0.0}
361};
362static const TableEntry tbl_sinpi[] = {
363  {0.0, 0.0},
364  {-0.0, -0.0}
365};
366static const TableEntry tbl_sqrt[] = {
367  {0.0, 0.0},
368  {1.0, 1.0},
369  {MATH_SQRT2, 2.0}
370};
371static const TableEntry tbl_tan[] = {
372  {0.0, 0.0},
373  {-0.0, -0.0}
374};
375static const TableEntry tbl_tanh[] = {
376  {0.0, 0.0},
377  {-0.0, -0.0}
378};
379static const TableEntry tbl_tanpi[] = {
380  {0.0, 0.0},
381  {-0.0, -0.0}
382};
383static const TableEntry tbl_tgamma[] = {
384  {1.0, 1.0},
385  {1.0, 2.0},
386  {2.0, 3.0},
387  {6.0, 4.0}
388};
389
390static bool HasNative(AMDGPULibFunc::EFuncId id) {
391  switch(id) {
392  case AMDGPULibFunc::EI_DIVIDE:
393  case AMDGPULibFunc::EI_COS:
394  case AMDGPULibFunc::EI_EXP:
395  case AMDGPULibFunc::EI_EXP2:
396  case AMDGPULibFunc::EI_EXP10:
397  case AMDGPULibFunc::EI_LOG:
398  case AMDGPULibFunc::EI_LOG2:
399  case AMDGPULibFunc::EI_LOG10:
400  case AMDGPULibFunc::EI_POWR:
401  case AMDGPULibFunc::EI_RECIP:
402  case AMDGPULibFunc::EI_RSQRT:
403  case AMDGPULibFunc::EI_SIN:
404  case AMDGPULibFunc::EI_SINCOS:
405  case AMDGPULibFunc::EI_SQRT:
406  case AMDGPULibFunc::EI_TAN:
407    return true;
408  default:;
409  }
410  return false;
411}
412
413struct TableRef {
414  size_t size;
415  const TableEntry *table; // variable size: from 0 to (size - 1)
416
417  TableRef() : size(0), table(nullptr) {}
418
419  template <size_t N>
420  TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
421};
422
423static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
424  switch(id) {
425  case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
426  case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
427  case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
428  case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
429  case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
430  case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
431  case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
432  case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
433  case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
434  case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
435  case AMDGPULibFunc::EI_NCOS:
436  case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
437  case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
438  case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
439  case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
440  case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
441  case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
442  case AMDGPULibFunc::EI_NEXP2:
443  case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
444  case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
445  case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
446  case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
447  case AMDGPULibFunc::EI_NLOG2:
448  case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
449  case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
450  case AMDGPULibFunc::EI_NRSQRT:
451  case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
452  case AMDGPULibFunc::EI_NSIN:
453  case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
454  case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
455  case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
456  case AMDGPULibFunc::EI_NSQRT:
457  case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
458  case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
459  case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
460  case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
461  case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
462  default:;
463  }
464  return TableRef();
465}
466
467static inline int getVecSize(const AMDGPULibFunc& FInfo) {
468  return FInfo.getLeads()[0].VectorSize;
469}
470
471static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
472  return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
473}
474
475Constant *AMDGPULibCalls::getFunction(Module *M, const FuncInfo& fInfo) {
476  // If we are doing PreLinkOpt, the function is external. So it is safe to
477  // use getOrInsertFunction() at this stage.
478
479  return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
480                       : AMDGPULibFunc::getFunction(M, fInfo);
481}
482
483bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
484                                    FuncInfo *FInfo) {
485  return AMDGPULibFunc::parse(FMangledName, *FInfo);
486}
487
488bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
489  if (auto Op = dyn_cast<FPMathOperator>(CI))
490    if (Op->isFast())
491      return true;
492  const Function *F = CI->getParent()->getParent();
493  Attribute Attr = F->getFnAttribute("unsafe-fp-math");
494  return Attr.getValueAsString() == "true";
495}
496
497bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
498  return AllNative ||
499         std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
500}
501
502void AMDGPULibCalls::initNativeFuncs() {
503  AllNative = useNativeFunc("all") ||
504              (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
505               UseNative.begin()->empty());
506}
507
508bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
509  bool native_sin = useNativeFunc("sin");
510  bool native_cos = useNativeFunc("cos");
511
512  if (native_sin && native_cos) {
513    Module *M = aCI->getModule();
514    Value *opr0 = aCI->getArgOperand(0);
515
516    AMDGPULibFunc nf;
517    nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
518    nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
519
520    nf.setPrefix(AMDGPULibFunc::NATIVE);
521    nf.setId(AMDGPULibFunc::EI_SIN);
522    Constant *sinExpr = getFunction(M, nf);
523
524    nf.setPrefix(AMDGPULibFunc::NATIVE);
525    nf.setId(AMDGPULibFunc::EI_COS);
526    Constant *cosExpr = getFunction(M, nf);
527    if (sinExpr && cosExpr) {
528      Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
529      Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
530      new StoreInst(cosval, aCI->getArgOperand(1), aCI);
531
532      DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
533                                          << " with native version of sin/cos");
534
535      replaceCall(sinval);
536      return true;
537    }
538  }
539  return false;
540}
541
542bool AMDGPULibCalls::useNative(CallInst *aCI) {
543  CI = aCI;
544  Function *Callee = aCI->getCalledFunction();
545
546  FuncInfo FInfo;
547  if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
548      FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
549      getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
550      !(AllNative || useNativeFunc(FInfo.getName()))) {
551    return false;
552  }
553
554  if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
555    return sincosUseNative(aCI, FInfo);
556
557  FInfo.setPrefix(AMDGPULibFunc::NATIVE);
558  Constant *F = getFunction(aCI->getModule(), FInfo);
559  if (!F)
560    return false;
561
562  aCI->setCalledFunction(F);
563  DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
564                                      << " with native version");
565  return true;
566}
567
568// Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
569// builtin, with appended type size and alignment arguments, where 2 or 4
570// indicates the original number of arguments. The library has optimized version
571// of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
572// power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
573// for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
574// 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
575bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
576                                          FuncInfo &FInfo) {
577  auto *Callee = CI->getCalledFunction();
578  if (!Callee->isDeclaration())
579    return false;
580
581  assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
582  auto *M = Callee->getParent();
583  auto &Ctx = M->getContext();
584  std::string Name = Callee->getName();
585  auto NumArg = CI->getNumArgOperands();
586  if (NumArg != 4 && NumArg != 6)
587    return false;
588  auto *PacketSize = CI->getArgOperand(NumArg - 2);
589  auto *PacketAlign = CI->getArgOperand(NumArg - 1);
590  if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
591    return false;
592  unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
593  unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue();
594  if (Size != Align || !isPowerOf2_32(Size))
595    return false;
596
597  Type *PtrElemTy;
598  if (Size <= 8)
599    PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
600  else
601    PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8);
602  unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
603  auto PtrArg = CI->getArgOperand(PtrArgLoc);
604  unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
605  auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
606
607  SmallVector<llvm::Type *, 6> ArgTys;
608  for (unsigned I = 0; I != PtrArgLoc; ++I)
609    ArgTys.push_back(CI->getArgOperand(I)->getType());
610  ArgTys.push_back(PtrTy);
611
612  Name = Name + "_" + std::to_string(Size);
613  auto *FTy = FunctionType::get(Callee->getReturnType(),
614                                ArrayRef<Type *>(ArgTys), false);
615  AMDGPULibFunc NewLibFunc(Name, FTy);
616  auto *F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
617  if (!F)
618    return false;
619
620  auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
621  SmallVector<Value *, 6> Args;
622  for (unsigned I = 0; I != PtrArgLoc; ++I)
623    Args.push_back(CI->getArgOperand(I));
624  Args.push_back(BCast);
625
626  auto *NCI = B.CreateCall(F, Args);
627  NCI->setAttributes(CI->getAttributes());
628  CI->replaceAllUsesWith(NCI);
629  CI->dropAllReferences();
630  CI->eraseFromParent();
631
632  return true;
633}
634
635// This function returns false if no change; return true otherwise.
636bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
637  this->CI = CI;
638  Function *Callee = CI->getCalledFunction();
639
640  // Ignore indirect calls.
641  if (Callee == 0) return false;
642
643  FuncInfo FInfo;
644  if (!parseFunctionName(Callee->getName(), &FInfo))
645    return false;
646
647  // Further check the number of arguments to see if they match.
648  if (CI->getNumArgOperands() != FInfo.getNumArgs())
649    return false;
650
651  BasicBlock *BB = CI->getParent();
652  LLVMContext &Context = CI->getParent()->getContext();
653  IRBuilder<> B(Context);
654
655  // Set the builder to the instruction after the call.
656  B.SetInsertPoint(BB, CI->getIterator());
657
658  // Copy fast flags from the original call.
659  if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
660    B.setFastMathFlags(FPOp->getFastMathFlags());
661
662  if (TDOFold(CI, FInfo))
663    return true;
664
665  // Under unsafe-math, evaluate calls if possible.
666  // According to Brian Sumner, we can do this for all f32 function calls
667  // using host's double function calls.
668  if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
669    return true;
670
671  // Specilized optimizations for each function call
672  switch (FInfo.getId()) {
673  case AMDGPULibFunc::EI_RECIP:
674    // skip vector function
675    assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
676             FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
677            "recip must be an either native or half function");
678    return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
679
680  case AMDGPULibFunc::EI_DIVIDE:
681    // skip vector function
682    assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
683             FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
684            "divide must be an either native or half function");
685    return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
686
687  case AMDGPULibFunc::EI_POW:
688  case AMDGPULibFunc::EI_POWR:
689  case AMDGPULibFunc::EI_POWN:
690    return fold_pow(CI, B, FInfo);
691
692  case AMDGPULibFunc::EI_ROOTN:
693    // skip vector function
694    return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
695
696  case AMDGPULibFunc::EI_FMA:
697  case AMDGPULibFunc::EI_MAD:
698  case AMDGPULibFunc::EI_NFMA:
699    // skip vector function
700    return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
701
702  case AMDGPULibFunc::EI_SQRT:
703    return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
704  case AMDGPULibFunc::EI_COS:
705  case AMDGPULibFunc::EI_SIN:
706    if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
707         getArgType(FInfo) == AMDGPULibFunc::F64)
708        && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
709      return fold_sincos(CI, B, AA);
710
711    break;
712  case AMDGPULibFunc::EI_READ_PIPE_2:
713  case AMDGPULibFunc::EI_READ_PIPE_4:
714  case AMDGPULibFunc::EI_WRITE_PIPE_2:
715  case AMDGPULibFunc::EI_WRITE_PIPE_4:
716    return fold_read_write_pipe(CI, B, FInfo);
717
718  default:
719    break;
720  }
721
722  return false;
723}
724
725bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
726  // Table-Driven optimization
727  const TableRef tr = getOptTable(FInfo.getId());
728  if (tr.size==0)
729    return false;
730
731  int const sz = (int)tr.size;
732  const TableEntry * const ftbl = tr.table;
733  Value *opr0 = CI->getArgOperand(0);
734
735  if (getVecSize(FInfo) > 1) {
736    if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
737      SmallVector<double, 0> DVal;
738      for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
739        ConstantFP *eltval = dyn_cast<ConstantFP>(
740                               CV->getElementAsConstant((unsigned)eltNo));
741        assert(eltval && "Non-FP arguments in math function!");
742        bool found = false;
743        for (int i=0; i < sz; ++i) {
744          if (eltval->isExactlyValue(ftbl[i].input)) {
745            DVal.push_back(ftbl[i].result);
746            found = true;
747            break;
748          }
749        }
750        if (!found) {
751          // This vector constants not handled yet.
752          return false;
753        }
754      }
755      LLVMContext &context = CI->getParent()->getParent()->getContext();
756      Constant *nval;
757      if (getArgType(FInfo) == AMDGPULibFunc::F32) {
758        SmallVector<float, 0> FVal;
759        for (unsigned i = 0; i < DVal.size(); ++i) {
760          FVal.push_back((float)DVal[i]);
761        }
762        ArrayRef<float> tmp(FVal);
763        nval = ConstantDataVector::get(context, tmp);
764      } else { // F64
765        ArrayRef<double> tmp(DVal);
766        nval = ConstantDataVector::get(context, tmp);
767      }
768      DEBUG(errs() << "AMDIC: " << *CI
769                   << " ---> " << *nval << "\n");
770      replaceCall(nval);
771      return true;
772    }
773  } else {
774    // Scalar version
775    if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
776      for (int i = 0; i < sz; ++i) {
777        if (CF->isExactlyValue(ftbl[i].input)) {
778          Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
779          DEBUG(errs() << "AMDIC: " << *CI
780                       << " ---> " << *nval << "\n");
781          replaceCall(nval);
782          return true;
783        }
784      }
785    }
786  }
787
788  return false;
789}
790
791bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
792  Module *M = CI->getModule();
793  if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
794      FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
795      !HasNative(FInfo.getId()))
796    return false;
797
798  AMDGPULibFunc nf = FInfo;
799  nf.setPrefix(AMDGPULibFunc::NATIVE);
800  if (Constant *FPExpr = getFunction(M, nf)) {
801    DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
802
803    CI->setCalledFunction(FPExpr);
804
805    DEBUG(dbgs() << *CI << '\n');
806
807    return true;
808  }
809  return false;
810}
811
812//  [native_]half_recip(c) ==> 1.0/c
813bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
814                                const FuncInfo &FInfo) {
815  Value *opr0 = CI->getArgOperand(0);
816  if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
817    // Just create a normal div. Later, InstCombine will be able
818    // to compute the divide into a constant (avoid check float infinity
819    // or subnormal at this point).
820    Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
821                               opr0,
822                               "recip2div");
823    DEBUG(errs() << "AMDIC: " << *CI
824                 << " ---> " << *nval << "\n");
825    replaceCall(nval);
826    return true;
827  }
828  return false;
829}
830
831//  [native_]half_divide(x, c) ==> x/c
832bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
833                                 const FuncInfo &FInfo) {
834  Value *opr0 = CI->getArgOperand(0);
835  Value *opr1 = CI->getArgOperand(1);
836  ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
837  ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
838
839  if ((CF0 && CF1) ||  // both are constants
840      (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
841      // CF1 is constant && f32 divide
842  {
843    Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
844                                opr1, "__div2recip");
845    Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
846    replaceCall(nval);
847    return true;
848  }
849  return false;
850}
851
852namespace llvm {
853static double log2(double V) {
854#if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
855  return ::log2(V);
856#else
857  return log(V) / 0.693147180559945309417;
858#endif
859}
860}
861
862bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
863                              const FuncInfo &FInfo) {
864  assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
865          FInfo.getId() == AMDGPULibFunc::EI_POWR ||
866          FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
867         "fold_pow: encounter a wrong function call");
868
869  Value *opr0, *opr1;
870  ConstantFP *CF;
871  ConstantInt *CINT;
872  ConstantAggregateZero *CZero;
873  Type *eltType;
874
875  opr0 = CI->getArgOperand(0);
876  opr1 = CI->getArgOperand(1);
877  CZero = dyn_cast<ConstantAggregateZero>(opr1);
878  if (getVecSize(FInfo) == 1) {
879    eltType = opr0->getType();
880    CF = dyn_cast<ConstantFP>(opr1);
881    CINT = dyn_cast<ConstantInt>(opr1);
882  } else {
883    VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
884    assert(VTy && "Oprand of vector function should be of vectortype");
885    eltType = VTy->getElementType();
886    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
887
888    // Now, only Handle vector const whose elements have the same value.
889    CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
890    CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
891  }
892
893  // No unsafe math , no constant argument, do nothing
894  if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
895    return false;
896
897  // 0x1111111 means that we don't do anything for this call.
898  int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
899
900  if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
901    //  pow/powr/pown(x, 0) == 1
902    DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
903    Constant *cnval = ConstantFP::get(eltType, 1.0);
904    if (getVecSize(FInfo) > 1) {
905      cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
906    }
907    replaceCall(cnval);
908    return true;
909  }
910  if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
911    // pow/powr/pown(x, 1.0) = x
912    DEBUG(errs() << "AMDIC: " << *CI
913                 << " ---> " << *opr0 << "\n");
914    replaceCall(opr0);
915    return true;
916  }
917  if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
918    // pow/powr/pown(x, 2.0) = x*x
919    DEBUG(errs() << "AMDIC: " << *CI
920                 << " ---> " << *opr0 << " * " << *opr0 << "\n");
921    Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
922    replaceCall(nval);
923    return true;
924  }
925  if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
926    // pow/powr/pown(x, -1.0) = 1.0/x
927    DEBUG(errs() << "AMDIC: " << *CI
928                 << " ---> 1 / " << *opr0 << "\n");
929    Constant *cnval = ConstantFP::get(eltType, 1.0);
930    if (getVecSize(FInfo) > 1) {
931      cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
932    }
933    Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
934    replaceCall(nval);
935    return true;
936  }
937
938  Module *M = CI->getModule();
939  if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
940    // pow[r](x, [-]0.5) = sqrt(x)
941    bool issqrt = CF->isExactlyValue(0.5);
942    if (Constant *FPExpr = getFunction(M,
943        AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
944                             : AMDGPULibFunc::EI_RSQRT, FInfo))) {
945      DEBUG(errs() << "AMDIC: " << *CI << " ---> "
946                   << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
947      Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
948                                                        : "__pow2rsqrt");
949      replaceCall(nval);
950      return true;
951    }
952  }
953
954  if (!isUnsafeMath(CI))
955    return false;
956
957  // Unsafe Math optimization
958
959  // Remember that ci_opr1 is set if opr1 is integral
960  if (CF) {
961    double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
962                    ? (double)CF->getValueAPF().convertToFloat()
963                    : CF->getValueAPF().convertToDouble();
964    int ival = (int)dval;
965    if ((double)ival == dval) {
966      ci_opr1 = ival;
967    } else
968      ci_opr1 = 0x11111111;
969  }
970
971  // pow/powr/pown(x, c) = [1/](x*x*..x); where
972  //   trunc(c) == c && the number of x == c && |c| <= 12
973  unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
974  if (abs_opr1 <= 12) {
975    Constant *cnval;
976    Value *nval;
977    if (abs_opr1 == 0) {
978      cnval = ConstantFP::get(eltType, 1.0);
979      if (getVecSize(FInfo) > 1) {
980        cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
981      }
982      nval = cnval;
983    } else {
984      Value *valx2 = nullptr;
985      nval = nullptr;
986      while (abs_opr1 > 0) {
987        valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
988        if (abs_opr1 & 1) {
989          nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
990        }
991        abs_opr1 >>= 1;
992      }
993    }
994
995    if (ci_opr1 < 0) {
996      cnval = ConstantFP::get(eltType, 1.0);
997      if (getVecSize(FInfo) > 1) {
998        cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
999      }
1000      nval = B.CreateFDiv(cnval, nval, "__1powprod");
1001    }
1002    DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1003                 <<  ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 << ")\n");
1004    replaceCall(nval);
1005    return true;
1006  }
1007
1008  // powr ---> exp2(y * log2(x))
1009  // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1010  Constant *ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2,
1011                                                   FInfo));
1012  if (!ExpExpr)
1013    return false;
1014
1015  bool needlog = false;
1016  bool needabs = false;
1017  bool needcopysign = false;
1018  Constant *cnval = nullptr;
1019  if (getVecSize(FInfo) == 1) {
1020    CF = dyn_cast<ConstantFP>(opr0);
1021
1022    if (CF) {
1023      double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1024                   ? (double)CF->getValueAPF().convertToFloat()
1025                   : CF->getValueAPF().convertToDouble();
1026
1027      V = log2(std::abs(V));
1028      cnval = ConstantFP::get(eltType, V);
1029      needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1030                     CF->isNegative();
1031    } else {
1032      needlog = true;
1033      needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1034                               (!CF || CF->isNegative());
1035    }
1036  } else {
1037    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1038
1039    if (!CDV) {
1040      needlog = true;
1041      needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1042    } else {
1043      assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1044              "Wrong vector size detected");
1045
1046      SmallVector<double, 0> DVal;
1047      for (int i=0; i < getVecSize(FInfo); ++i) {
1048        double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1049                     ? (double)CDV->getElementAsFloat(i)
1050                     : CDV->getElementAsDouble(i);
1051        if (V < 0.0) needcopysign = true;
1052        V = log2(std::abs(V));
1053        DVal.push_back(V);
1054      }
1055      if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1056        SmallVector<float, 0> FVal;
1057        for (unsigned i=0; i < DVal.size(); ++i) {
1058          FVal.push_back((float)DVal[i]);
1059        }
1060        ArrayRef<float> tmp(FVal);
1061        cnval = ConstantDataVector::get(M->getContext(), tmp);
1062      } else {
1063        ArrayRef<double> tmp(DVal);
1064        cnval = ConstantDataVector::get(M->getContext(), tmp);
1065      }
1066    }
1067  }
1068
1069  if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1070    // We cannot handle corner cases for a general pow() function, give up
1071    // unless y is a constant integral value. Then proceed as if it were pown.
1072    if (getVecSize(FInfo) == 1) {
1073      if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1074        double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1075                   ? (double)CF->getValueAPF().convertToFloat()
1076                   : CF->getValueAPF().convertToDouble();
1077        if (y != (double)(int64_t)y)
1078          return false;
1079      } else
1080        return false;
1081    } else {
1082      if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1083        for (int i=0; i < getVecSize(FInfo); ++i) {
1084          double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1085                     ? (double)CDV->getElementAsFloat(i)
1086                     : CDV->getElementAsDouble(i);
1087          if (y != (double)(int64_t)y)
1088            return false;
1089        }
1090      } else
1091        return false;
1092    }
1093  }
1094
1095  Value *nval;
1096  if (needabs) {
1097    Constant *AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS,
1098                                                     FInfo));
1099    if (!AbsExpr)
1100      return false;
1101    nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1102  } else {
1103    nval = cnval ? cnval : opr0;
1104  }
1105  if (needlog) {
1106    Constant *LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2,
1107                                                     FInfo));
1108    if (!LogExpr)
1109      return false;
1110    nval = CreateCallEx(B,LogExpr, nval, "__log2");
1111  }
1112
1113  if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1114    // convert int(32) to fp(f32 or f64)
1115    opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1116  }
1117  nval = B.CreateFMul(opr1, nval, "__ylogx");
1118  nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1119
1120  if (needcopysign) {
1121    Value *opr_n;
1122    Type* rTy = opr0->getType();
1123    Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1124    Type *nTy = nTyS;
1125    if (const VectorType *vTy = dyn_cast<VectorType>(rTy))
1126      nTy = VectorType::get(nTyS, vTy->getNumElements());
1127    unsigned size = nTy->getScalarSizeInBits();
1128    opr_n = CI->getArgOperand(1);
1129    if (opr_n->getType()->isIntegerTy())
1130      opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1131    else
1132      opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1133
1134    Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1135    sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1136    nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1137    nval = B.CreateBitCast(nval, opr0->getType());
1138  }
1139
1140  DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1141               << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1142  replaceCall(nval);
1143
1144  return true;
1145}
1146
1147bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1148                                const FuncInfo &FInfo) {
1149  Value *opr0 = CI->getArgOperand(0);
1150  Value *opr1 = CI->getArgOperand(1);
1151
1152  ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1153  if (!CINT) {
1154    return false;
1155  }
1156  int ci_opr1 = (int)CINT->getSExtValue();
1157  if (ci_opr1 == 1) {  // rootn(x, 1) = x
1158    DEBUG(errs() << "AMDIC: " << *CI
1159                 << " ---> " << *opr0 << "\n");
1160    replaceCall(opr0);
1161    return true;
1162  }
1163  if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1164    std::vector<const Type*> ParamsTys;
1165    ParamsTys.push_back(opr0->getType());
1166    Module *M = CI->getModule();
1167    if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT,
1168                                                        FInfo))) {
1169      DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1170      Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1171      replaceCall(nval);
1172      return true;
1173    }
1174  } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1175    Module *M = CI->getModule();
1176    if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT,
1177                                                        FInfo))) {
1178      DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1179      Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1180      replaceCall(nval);
1181      return true;
1182    }
1183  } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1184    DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1185    Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1186                               opr0,
1187                               "__rootn2div");
1188    replaceCall(nval);
1189    return true;
1190  } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1191    std::vector<const Type*> ParamsTys;
1192    ParamsTys.push_back(opr0->getType());
1193    Module *M = CI->getModule();
1194    if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT,
1195                                                        FInfo))) {
1196      DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 << ")\n");
1197      Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1198      replaceCall(nval);
1199      return true;
1200    }
1201  }
1202  return false;
1203}
1204
1205bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1206                                  const FuncInfo &FInfo) {
1207  Value *opr0 = CI->getArgOperand(0);
1208  Value *opr1 = CI->getArgOperand(1);
1209  Value *opr2 = CI->getArgOperand(2);
1210
1211  ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1212  ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1213  if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1214    // fma/mad(a, b, c) = c if a=0 || b=0
1215    DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1216    replaceCall(opr2);
1217    return true;
1218  }
1219  if (CF0 && CF0->isExactlyValue(1.0f)) {
1220    // fma/mad(a, b, c) = b+c if a=1
1221    DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1222                 << *opr1 << " + " << *opr2 << "\n");
1223    Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1224    replaceCall(nval);
1225    return true;
1226  }
1227  if (CF1 && CF1->isExactlyValue(1.0f)) {
1228    // fma/mad(a, b, c) = a+c if b=1
1229    DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1230                 << *opr0 << " + " << *opr2 << "\n");
1231    Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1232    replaceCall(nval);
1233    return true;
1234  }
1235  if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1236    if (CF->isZero()) {
1237      // fma/mad(a, b, c) = a*b if c=0
1238      DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1239                   << *opr0 << " * " << *opr1 << "\n");
1240      Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1241      replaceCall(nval);
1242      return true;
1243    }
1244  }
1245
1246  return false;
1247}
1248
1249// Get a scalar native builtin signle argument FP function
1250Constant* AMDGPULibCalls::getNativeFunction(Module* M, const FuncInfo& FInfo) {
1251  if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1252    return nullptr;
1253  FuncInfo nf = FInfo;
1254  nf.setPrefix(AMDGPULibFunc::NATIVE);
1255  return getFunction(M, nf);
1256}
1257
1258// fold sqrt -> native_sqrt (x)
1259bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1260                               const FuncInfo &FInfo) {
1261  if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1262      (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1263    if (Constant *FPExpr = getNativeFunction(
1264        CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1265      Value *opr0 = CI->getArgOperand(0);
1266      DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1267                   << "sqrt(" << *opr0 << ")\n");
1268      Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1269      replaceCall(nval);
1270      return true;
1271    }
1272  }
1273  return false;
1274}
1275
1276// fold sin, cos -> sincos.
1277bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1278                                 AliasAnalysis *AA) {
1279  AMDGPULibFunc fInfo;
1280  if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1281    return false;
1282
1283  assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1284         fInfo.getId() == AMDGPULibFunc::EI_COS);
1285  bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1286
1287  Value *CArgVal = CI->getArgOperand(0);
1288  BasicBlock * const CBB = CI->getParent();
1289
1290  int const MaxScan = 30;
1291
1292  { // fold in load value.
1293    LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1294    if (LI && LI->getParent() == CBB) {
1295      BasicBlock::iterator BBI = LI->getIterator();
1296      Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1297      if (AvailableVal) {
1298        CArgVal->replaceAllUsesWith(AvailableVal);
1299        if (CArgVal->getNumUses() == 0)
1300          LI->eraseFromParent();
1301        CArgVal = CI->getArgOperand(0);
1302      }
1303    }
1304  }
1305
1306  Module *M = CI->getModule();
1307  fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1308  std::string const PairName = fInfo.mangle();
1309
1310  CallInst *UI = nullptr;
1311  for (User* U : CArgVal->users()) {
1312    CallInst *XI = dyn_cast_or_null<CallInst>(U);
1313    if (!XI || XI == CI || XI->getParent() != CBB)
1314      continue;
1315
1316    Function *UCallee = XI->getCalledFunction();
1317    if (!UCallee || !UCallee->getName().equals(PairName))
1318      continue;
1319
1320    BasicBlock::iterator BBI = CI->getIterator();
1321    if (BBI == CI->getParent()->begin())
1322      break;
1323    --BBI;
1324    for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1325      if (cast<Instruction>(BBI) == XI) {
1326        UI = XI;
1327        break;
1328      }
1329    }
1330    if (UI) break;
1331  }
1332
1333  if (!UI) return false;
1334
1335  // Merge the sin and cos.
1336
1337  // for OpenCL 2.0 we have only generic implementation of sincos
1338  // function.
1339  AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1340  const AMDGPUAS AS = AMDGPU::getAMDGPUAS(*M);
1341  nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AS.FLAT_ADDRESS);
1342  Function *Fsincos = dyn_cast_or_null<Function>(getFunction(M, nf));
1343  if (!Fsincos) return false;
1344
1345  BasicBlock::iterator ItOld = B.GetInsertPoint();
1346  AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1347  B.SetInsertPoint(UI);
1348
1349  Value *P = Alloc;
1350  Type *PTy = Fsincos->getFunctionType()->getParamType(1);
1351  // The allocaInst allocates the memory in private address space. This need
1352  // to be bitcasted to point to the address space of cos pointer type.
1353  // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1354  if (PTy->getPointerAddressSpace() != AS.PRIVATE_ADDRESS)
1355    P = B.CreateAddrSpaceCast(Alloc, PTy);
1356  CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1357
1358  DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI
1359               << ") with " << *Call << "\n");
1360
1361  if (!isSin) { // CI->cos, UI->sin
1362    B.SetInsertPoint(&*ItOld);
1363    UI->replaceAllUsesWith(&*Call);
1364    Instruction *Reload = B.CreateLoad(Alloc);
1365    CI->replaceAllUsesWith(Reload);
1366    UI->eraseFromParent();
1367    CI->eraseFromParent();
1368  } else { // CI->sin, UI->cos
1369    Instruction *Reload = B.CreateLoad(Alloc);
1370    UI->replaceAllUsesWith(Reload);
1371    CI->replaceAllUsesWith(Call);
1372    UI->eraseFromParent();
1373    CI->eraseFromParent();
1374  }
1375  return true;
1376}
1377
1378// Get insertion point at entry.
1379BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1380  Function * Func = UI->getParent()->getParent();
1381  BasicBlock * BB = &Func->getEntryBlock();
1382  assert(BB && "Entry block not found!");
1383  BasicBlock::iterator ItNew = BB->begin();
1384  return ItNew;
1385}
1386
1387// Insert a AllocsInst at the beginning of function entry block.
1388AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1389                                         const char *prefix) {
1390  BasicBlock::iterator ItNew = getEntryIns(UI);
1391  Function *UCallee = UI->getCalledFunction();
1392  Type *RetType = UCallee->getReturnType();
1393  B.SetInsertPoint(&*ItNew);
1394  AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1395    std::string(prefix) + UI->getName());
1396  Alloc->setAlignment(UCallee->getParent()->getDataLayout()
1397                       .getTypeAllocSize(RetType));
1398  return Alloc;
1399}
1400
1401bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
1402                                            double& Res0, double& Res1,
1403                                            Constant *copr0, Constant *copr1,
1404                                            Constant *copr2) {
1405  // By default, opr0/opr1/opr3 holds values of float/double type.
1406  // If they are not float/double, each function has to its
1407  // operand separately.
1408  double opr0=0.0, opr1=0.0, opr2=0.0;
1409  ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1410  ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1411  ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1412  if (fpopr0) {
1413    opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1414             ? fpopr0->getValueAPF().convertToDouble()
1415             : (double)fpopr0->getValueAPF().convertToFloat();
1416  }
1417
1418  if (fpopr1) {
1419    opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1420             ? fpopr1->getValueAPF().convertToDouble()
1421             : (double)fpopr1->getValueAPF().convertToFloat();
1422  }
1423
1424  if (fpopr2) {
1425    opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1426             ? fpopr2->getValueAPF().convertToDouble()
1427             : (double)fpopr2->getValueAPF().convertToFloat();
1428  }
1429
1430  switch (FInfo.getId()) {
1431  default : return false;
1432
1433  case AMDGPULibFunc::EI_ACOS:
1434    Res0 = acos(opr0);
1435    return true;
1436
1437  case AMDGPULibFunc::EI_ACOSH:
1438    // acosh(x) == log(x + sqrt(x*x - 1))
1439    Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1440    return true;
1441
1442  case AMDGPULibFunc::EI_ACOSPI:
1443    Res0 = acos(opr0) / MATH_PI;
1444    return true;
1445
1446  case AMDGPULibFunc::EI_ASIN:
1447    Res0 = asin(opr0);
1448    return true;
1449
1450  case AMDGPULibFunc::EI_ASINH:
1451    // asinh(x) == log(x + sqrt(x*x + 1))
1452    Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1453    return true;
1454
1455  case AMDGPULibFunc::EI_ASINPI:
1456    Res0 = asin(opr0) / MATH_PI;
1457    return true;
1458
1459  case AMDGPULibFunc::EI_ATAN:
1460    Res0 = atan(opr0);
1461    return true;
1462
1463  case AMDGPULibFunc::EI_ATANH:
1464    // atanh(x) == (log(x+1) - log(x-1))/2;
1465    Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1466    return true;
1467
1468  case AMDGPULibFunc::EI_ATANPI:
1469    Res0 = atan(opr0) / MATH_PI;
1470    return true;
1471
1472  case AMDGPULibFunc::EI_CBRT:
1473    Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1474    return true;
1475
1476  case AMDGPULibFunc::EI_COS:
1477    Res0 = cos(opr0);
1478    return true;
1479
1480  case AMDGPULibFunc::EI_COSH:
1481    Res0 = cosh(opr0);
1482    return true;
1483
1484  case AMDGPULibFunc::EI_COSPI:
1485    Res0 = cos(MATH_PI * opr0);
1486    return true;
1487
1488  case AMDGPULibFunc::EI_EXP:
1489    Res0 = exp(opr0);
1490    return true;
1491
1492  case AMDGPULibFunc::EI_EXP2:
1493    Res0 = pow(2.0, opr0);
1494    return true;
1495
1496  case AMDGPULibFunc::EI_EXP10:
1497    Res0 = pow(10.0, opr0);
1498    return true;
1499
1500  case AMDGPULibFunc::EI_EXPM1:
1501    Res0 = exp(opr0) - 1.0;
1502    return true;
1503
1504  case AMDGPULibFunc::EI_LOG:
1505    Res0 = log(opr0);
1506    return true;
1507
1508  case AMDGPULibFunc::EI_LOG2:
1509    Res0 = log(opr0) / log(2.0);
1510    return true;
1511
1512  case AMDGPULibFunc::EI_LOG10:
1513    Res0 = log(opr0) / log(10.0);
1514    return true;
1515
1516  case AMDGPULibFunc::EI_RSQRT:
1517    Res0 = 1.0 / sqrt(opr0);
1518    return true;
1519
1520  case AMDGPULibFunc::EI_SIN:
1521    Res0 = sin(opr0);
1522    return true;
1523
1524  case AMDGPULibFunc::EI_SINH:
1525    Res0 = sinh(opr0);
1526    return true;
1527
1528  case AMDGPULibFunc::EI_SINPI:
1529    Res0 = sin(MATH_PI * opr0);
1530    return true;
1531
1532  case AMDGPULibFunc::EI_SQRT:
1533    Res0 = sqrt(opr0);
1534    return true;
1535
1536  case AMDGPULibFunc::EI_TAN:
1537    Res0 = tan(opr0);
1538    return true;
1539
1540  case AMDGPULibFunc::EI_TANH:
1541    Res0 = tanh(opr0);
1542    return true;
1543
1544  case AMDGPULibFunc::EI_TANPI:
1545    Res0 = tan(MATH_PI * opr0);
1546    return true;
1547
1548  case AMDGPULibFunc::EI_RECIP:
1549    Res0 = 1.0 / opr0;
1550    return true;
1551
1552  // two-arg functions
1553  case AMDGPULibFunc::EI_DIVIDE:
1554    Res0 = opr0 / opr1;
1555    return true;
1556
1557  case AMDGPULibFunc::EI_POW:
1558  case AMDGPULibFunc::EI_POWR:
1559    Res0 = pow(opr0, opr1);
1560    return true;
1561
1562  case AMDGPULibFunc::EI_POWN: {
1563    if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1564      double val = (double)iopr1->getSExtValue();
1565      Res0 = pow(opr0, val);
1566      return true;
1567    }
1568    return false;
1569  }
1570
1571  case AMDGPULibFunc::EI_ROOTN: {
1572    if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1573      double val = (double)iopr1->getSExtValue();
1574      Res0 = pow(opr0, 1.0 / val);
1575      return true;
1576    }
1577    return false;
1578  }
1579
1580  // with ptr arg
1581  case AMDGPULibFunc::EI_SINCOS:
1582    Res0 = sin(opr0);
1583    Res1 = cos(opr0);
1584    return true;
1585
1586  // three-arg functions
1587  case AMDGPULibFunc::EI_FMA:
1588  case AMDGPULibFunc::EI_MAD:
1589    Res0 = opr0 * opr1 + opr2;
1590    return true;
1591  }
1592
1593  return false;
1594}
1595
1596bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
1597  int numArgs = (int)aCI->getNumArgOperands();
1598  if (numArgs > 3)
1599    return false;
1600
1601  Constant *copr0 = nullptr;
1602  Constant *copr1 = nullptr;
1603  Constant *copr2 = nullptr;
1604  if (numArgs > 0) {
1605    if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1606      return false;
1607  }
1608
1609  if (numArgs > 1) {
1610    if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1611      if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1612        return false;
1613    }
1614  }
1615
1616  if (numArgs > 2) {
1617    if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1618      return false;
1619  }
1620
1621  // At this point, all arguments to aCI are constants.
1622
1623  // max vector size is 16, and sincos will generate two results.
1624  double DVal0[16], DVal1[16];
1625  bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1626  if (getVecSize(FInfo) == 1) {
1627    if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1628                                DVal1[0], copr0, copr1, copr2)) {
1629      return false;
1630    }
1631  } else {
1632    ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1633    ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1634    ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1635    for (int i=0; i < getVecSize(FInfo); ++i) {
1636      Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1637      Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1638      Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1639      if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1640                                  DVal1[i], celt0, celt1, celt2)) {
1641        return false;
1642      }
1643    }
1644  }
1645
1646  LLVMContext &context = CI->getParent()->getParent()->getContext();
1647  Constant *nval0, *nval1;
1648  if (getVecSize(FInfo) == 1) {
1649    nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1650    if (hasTwoResults)
1651      nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1652  } else {
1653    if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1654      SmallVector <float, 0> FVal0, FVal1;
1655      for (int i=0; i < getVecSize(FInfo); ++i)
1656        FVal0.push_back((float)DVal0[i]);
1657      ArrayRef<float> tmp0(FVal0);
1658      nval0 = ConstantDataVector::get(context, tmp0);
1659      if (hasTwoResults) {
1660        for (int i=0; i < getVecSize(FInfo); ++i)
1661          FVal1.push_back((float)DVal1[i]);
1662        ArrayRef<float> tmp1(FVal1);
1663        nval1 = ConstantDataVector::get(context, tmp1);
1664      }
1665    } else {
1666      ArrayRef<double> tmp0(DVal0);
1667      nval0 = ConstantDataVector::get(context, tmp0);
1668      if (hasTwoResults) {
1669        ArrayRef<double> tmp1(DVal1);
1670        nval1 = ConstantDataVector::get(context, tmp1);
1671      }
1672    }
1673  }
1674
1675  if (hasTwoResults) {
1676    // sincos
1677    assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1678           "math function with ptr arg not supported yet");
1679    new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1680  }
1681
1682  replaceCall(nval0);
1683  return true;
1684}
1685
1686// Public interface to the Simplify LibCalls pass.
1687FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt) {
1688  return new AMDGPUSimplifyLibCalls(Opt);
1689}
1690
1691FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1692  return new AMDGPUUseNativeCalls();
1693}
1694
1695static bool setFastFlags(Function &F, const TargetOptions &Options) {
1696  AttrBuilder B;
1697
1698  if (Options.UnsafeFPMath || Options.NoInfsFPMath)
1699    B.addAttribute("no-infs-fp-math", "true");
1700  if (Options.UnsafeFPMath || Options.NoNaNsFPMath)
1701    B.addAttribute("no-nans-fp-math", "true");
1702  if (Options.UnsafeFPMath) {
1703    B.addAttribute("less-precise-fpmad", "true");
1704    B.addAttribute("unsafe-fp-math", "true");
1705  }
1706
1707  if (!B.hasAttributes())
1708    return false;
1709
1710  F.addAttributes(AttributeList::FunctionIndex, B);
1711
1712  return true;
1713}
1714
1715bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1716  if (skipFunction(F))
1717    return false;
1718
1719  bool Changed = false;
1720  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1721
1722  DEBUG(dbgs() << "AMDIC: process function ";
1723        F.printAsOperand(dbgs(), false, F.getParent());
1724        dbgs() << '\n';);
1725
1726  if (!EnablePreLink)
1727    Changed |= setFastFlags(F, Options);
1728
1729  for (auto &BB : F) {
1730    for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1731      // Ignore non-calls.
1732      CallInst *CI = dyn_cast<CallInst>(I);
1733      ++I;
1734      if (!CI) continue;
1735
1736      // Ignore indirect calls.
1737      Function *Callee = CI->getCalledFunction();
1738      if (Callee == 0) continue;
1739
1740      DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1741            dbgs().flush());
1742      if(Simplifier.fold(CI, AA))
1743        Changed = true;
1744    }
1745  }
1746  return Changed;
1747}
1748
1749bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1750  if (skipFunction(F) || UseNative.empty())
1751    return false;
1752
1753  bool Changed = false;
1754  for (auto &BB : F) {
1755    for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1756      // Ignore non-calls.
1757      CallInst *CI = dyn_cast<CallInst>(I);
1758      ++I;
1759      if (!CI) continue;
1760
1761      // Ignore indirect calls.
1762      Function *Callee = CI->getCalledFunction();
1763      if (Callee == 0) continue;
1764
1765      if(Simplifier.useNative(CI))
1766        Changed = true;
1767    }
1768  }
1769  return Changed;
1770}
1771