AMDGPUISelLowering.cpp revision 360784
1//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This is the parent TargetLowering class for hardware code gen
11/// targets.
12//
13//===----------------------------------------------------------------------===//
14
15#include "AMDGPUISelLowering.h"
16#include "AMDGPU.h"
17#include "AMDGPUCallLowering.h"
18#include "AMDGPUFrameLowering.h"
19#include "AMDGPURegisterInfo.h"
20#include "AMDGPUSubtarget.h"
21#include "AMDGPUTargetMachine.h"
22#include "Utils/AMDGPUBaseInfo.h"
23#include "R600MachineFunctionInfo.h"
24#include "SIInstrInfo.h"
25#include "SIMachineFunctionInfo.h"
26#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
27#include "llvm/CodeGen/Analysis.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/DiagnosticInfo.h"
35#include "llvm/Support/KnownBits.h"
36#include "llvm/Support/MathExtras.h"
37using namespace llvm;
38
39#include "AMDGPUGenCallingConv.inc"
40
41// Find a larger type to do a load / store of a vector with.
42EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
43  unsigned StoreSize = VT.getStoreSizeInBits();
44  if (StoreSize <= 32)
45    return EVT::getIntegerVT(Ctx, StoreSize);
46
47  assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
48  return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
49}
50
51unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
52  EVT VT = Op.getValueType();
53  KnownBits Known = DAG.computeKnownBits(Op);
54  return VT.getSizeInBits() - Known.countMinLeadingZeros();
55}
56
57unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
58  EVT VT = Op.getValueType();
59
60  // In order for this to be a signed 24-bit value, bit 23, must
61  // be a sign bit.
62  return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
63}
64
65AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
66                                           const AMDGPUSubtarget &STI)
67    : TargetLowering(TM), Subtarget(&STI) {
68  // Lower floating point store/load to integer store/load to reduce the number
69  // of patterns in tablegen.
70  setOperationAction(ISD::LOAD, MVT::f32, Promote);
71  AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
72
73  setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
74  AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
75
76  setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
77  AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
78
79  setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
80  AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
81
82  setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
83  AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
84
85  setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
86  AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
87
88  setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
89  AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
90
91  setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
92  AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
93
94  setOperationAction(ISD::LOAD, MVT::i64, Promote);
95  AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
96
97  setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
98  AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
99
100  setOperationAction(ISD::LOAD, MVT::f64, Promote);
101  AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
102
103  setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
104  AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
105
106  // There are no 64-bit extloads. These should be done as a 32-bit extload and
107  // an extension to 64-bit.
108  for (MVT VT : MVT::integer_valuetypes()) {
109    setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
110    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
111    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
112  }
113
114  for (MVT VT : MVT::integer_valuetypes()) {
115    if (VT == MVT::i64)
116      continue;
117
118    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
119    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
120    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
121    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
122
123    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
124    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
125    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
126    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
127
128    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
129    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
130    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
131    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
132  }
133
134  for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
135    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
136    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
137    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
138    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
139    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
140    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
141    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
142    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
143    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
144    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
145    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
146    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
147    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
148    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
149    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
150  }
151
152  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
153  setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
154  setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
155  setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
156  setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
157  setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
158  setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
159
160  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
161  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
162  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
163  setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
164
165  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
166  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
167  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
168  setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
169
170  setOperationAction(ISD::STORE, MVT::f32, Promote);
171  AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
172
173  setOperationAction(ISD::STORE, MVT::v2f32, Promote);
174  AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
175
176  setOperationAction(ISD::STORE, MVT::v3f32, Promote);
177  AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
178
179  setOperationAction(ISD::STORE, MVT::v4f32, Promote);
180  AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
181
182  setOperationAction(ISD::STORE, MVT::v5f32, Promote);
183  AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
184
185  setOperationAction(ISD::STORE, MVT::v8f32, Promote);
186  AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
187
188  setOperationAction(ISD::STORE, MVT::v16f32, Promote);
189  AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
190
191  setOperationAction(ISD::STORE, MVT::v32f32, Promote);
192  AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
193
194  setOperationAction(ISD::STORE, MVT::i64, Promote);
195  AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
196
197  setOperationAction(ISD::STORE, MVT::v2i64, Promote);
198  AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
199
200  setOperationAction(ISD::STORE, MVT::f64, Promote);
201  AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
202
203  setOperationAction(ISD::STORE, MVT::v2f64, Promote);
204  AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
205
206  setTruncStoreAction(MVT::i64, MVT::i1, Expand);
207  setTruncStoreAction(MVT::i64, MVT::i8, Expand);
208  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
209  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
210
211  setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
212  setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
213  setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
214  setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
215
216  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
217  setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
218  setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
219  setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
220  setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
221  setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
222  setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
223
224  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
225  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
226
227  setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
228  setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
229
230  setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
231  setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
232
233  setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
234  setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
235
236
237  setOperationAction(ISD::Constant, MVT::i32, Legal);
238  setOperationAction(ISD::Constant, MVT::i64, Legal);
239  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
240  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
241
242  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
243  setOperationAction(ISD::BRIND, MVT::Other, Expand);
244
245  // This is totally unsupported, just custom lower to produce an error.
246  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
247
248  // Library functions.  These default to Expand, but we have instructions
249  // for them.
250  setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
251  setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
252  setOperationAction(ISD::FPOW,   MVT::f32, Legal);
253  setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
254  setOperationAction(ISD::FABS,   MVT::f32, Legal);
255  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
256  setOperationAction(ISD::FRINT,  MVT::f32, Legal);
257  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
258  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
259  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
260
261  setOperationAction(ISD::FROUND, MVT::f32, Custom);
262  setOperationAction(ISD::FROUND, MVT::f64, Custom);
263
264  setOperationAction(ISD::FLOG, MVT::f32, Custom);
265  setOperationAction(ISD::FLOG10, MVT::f32, Custom);
266  setOperationAction(ISD::FEXP, MVT::f32, Custom);
267
268
269  setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
270  setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
271
272  setOperationAction(ISD::FREM, MVT::f32, Custom);
273  setOperationAction(ISD::FREM, MVT::f64, Custom);
274
275  // Expand to fneg + fadd.
276  setOperationAction(ISD::FSUB, MVT::f64, Expand);
277
278  setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
279  setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
280  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
281  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
282  setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
283  setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
284  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
285  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
286  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
287  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
288  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
289  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
290  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
291  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
292  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
293  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
294  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
295  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
296  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
297  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
298  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
299  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
300
301  setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
302  setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
303  setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
304
305  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
306  for (MVT VT : ScalarIntVTs) {
307    // These should use [SU]DIVREM, so set them to expand
308    setOperationAction(ISD::SDIV, VT, Expand);
309    setOperationAction(ISD::UDIV, VT, Expand);
310    setOperationAction(ISD::SREM, VT, Expand);
311    setOperationAction(ISD::UREM, VT, Expand);
312
313    // GPU does not have divrem function for signed or unsigned.
314    setOperationAction(ISD::SDIVREM, VT, Custom);
315    setOperationAction(ISD::UDIVREM, VT, Custom);
316
317    // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
318    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
319    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
320
321    setOperationAction(ISD::BSWAP, VT, Expand);
322    setOperationAction(ISD::CTTZ, VT, Expand);
323    setOperationAction(ISD::CTLZ, VT, Expand);
324
325    // AMDGPU uses ADDC/SUBC/ADDE/SUBE
326    setOperationAction(ISD::ADDC, VT, Legal);
327    setOperationAction(ISD::SUBC, VT, Legal);
328    setOperationAction(ISD::ADDE, VT, Legal);
329    setOperationAction(ISD::SUBE, VT, Legal);
330  }
331
332  // The hardware supports 32-bit ROTR, but not ROTL.
333  setOperationAction(ISD::ROTL, MVT::i32, Expand);
334  setOperationAction(ISD::ROTL, MVT::i64, Expand);
335  setOperationAction(ISD::ROTR, MVT::i64, Expand);
336
337  setOperationAction(ISD::MUL, MVT::i64, Expand);
338  setOperationAction(ISD::MULHU, MVT::i64, Expand);
339  setOperationAction(ISD::MULHS, MVT::i64, Expand);
340  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
341  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
342  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
343  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
344  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
345
346  setOperationAction(ISD::SMIN, MVT::i32, Legal);
347  setOperationAction(ISD::UMIN, MVT::i32, Legal);
348  setOperationAction(ISD::SMAX, MVT::i32, Legal);
349  setOperationAction(ISD::UMAX, MVT::i32, Legal);
350
351  setOperationAction(ISD::CTTZ, MVT::i64, Custom);
352  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
353  setOperationAction(ISD::CTLZ, MVT::i64, Custom);
354  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
355
356  static const MVT::SimpleValueType VectorIntTypes[] = {
357    MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
358  };
359
360  for (MVT VT : VectorIntTypes) {
361    // Expand the following operations for the current type by default.
362    setOperationAction(ISD::ADD,  VT, Expand);
363    setOperationAction(ISD::AND,  VT, Expand);
364    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
365    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
366    setOperationAction(ISD::MUL,  VT, Expand);
367    setOperationAction(ISD::MULHU, VT, Expand);
368    setOperationAction(ISD::MULHS, VT, Expand);
369    setOperationAction(ISD::OR,   VT, Expand);
370    setOperationAction(ISD::SHL,  VT, Expand);
371    setOperationAction(ISD::SRA,  VT, Expand);
372    setOperationAction(ISD::SRL,  VT, Expand);
373    setOperationAction(ISD::ROTL, VT, Expand);
374    setOperationAction(ISD::ROTR, VT, Expand);
375    setOperationAction(ISD::SUB,  VT, Expand);
376    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
377    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
378    setOperationAction(ISD::SDIV, VT, Expand);
379    setOperationAction(ISD::UDIV, VT, Expand);
380    setOperationAction(ISD::SREM, VT, Expand);
381    setOperationAction(ISD::UREM, VT, Expand);
382    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
383    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
384    setOperationAction(ISD::SDIVREM, VT, Custom);
385    setOperationAction(ISD::UDIVREM, VT, Expand);
386    setOperationAction(ISD::SELECT, VT, Expand);
387    setOperationAction(ISD::VSELECT, VT, Expand);
388    setOperationAction(ISD::SELECT_CC, VT, Expand);
389    setOperationAction(ISD::XOR,  VT, Expand);
390    setOperationAction(ISD::BSWAP, VT, Expand);
391    setOperationAction(ISD::CTPOP, VT, Expand);
392    setOperationAction(ISD::CTTZ, VT, Expand);
393    setOperationAction(ISD::CTLZ, VT, Expand);
394    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
395    setOperationAction(ISD::SETCC, VT, Expand);
396  }
397
398  static const MVT::SimpleValueType FloatVectorTypes[] = {
399     MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
400  };
401
402  for (MVT VT : FloatVectorTypes) {
403    setOperationAction(ISD::FABS, VT, Expand);
404    setOperationAction(ISD::FMINNUM, VT, Expand);
405    setOperationAction(ISD::FMAXNUM, VT, Expand);
406    setOperationAction(ISD::FADD, VT, Expand);
407    setOperationAction(ISD::FCEIL, VT, Expand);
408    setOperationAction(ISD::FCOS, VT, Expand);
409    setOperationAction(ISD::FDIV, VT, Expand);
410    setOperationAction(ISD::FEXP2, VT, Expand);
411    setOperationAction(ISD::FEXP, VT, Expand);
412    setOperationAction(ISD::FLOG2, VT, Expand);
413    setOperationAction(ISD::FREM, VT, Expand);
414    setOperationAction(ISD::FLOG, VT, Expand);
415    setOperationAction(ISD::FLOG10, VT, Expand);
416    setOperationAction(ISD::FPOW, VT, Expand);
417    setOperationAction(ISD::FFLOOR, VT, Expand);
418    setOperationAction(ISD::FTRUNC, VT, Expand);
419    setOperationAction(ISD::FMUL, VT, Expand);
420    setOperationAction(ISD::FMA, VT, Expand);
421    setOperationAction(ISD::FRINT, VT, Expand);
422    setOperationAction(ISD::FNEARBYINT, VT, Expand);
423    setOperationAction(ISD::FSQRT, VT, Expand);
424    setOperationAction(ISD::FSIN, VT, Expand);
425    setOperationAction(ISD::FSUB, VT, Expand);
426    setOperationAction(ISD::FNEG, VT, Expand);
427    setOperationAction(ISD::VSELECT, VT, Expand);
428    setOperationAction(ISD::SELECT_CC, VT, Expand);
429    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
430    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
431    setOperationAction(ISD::SETCC, VT, Expand);
432    setOperationAction(ISD::FCANONICALIZE, VT, Expand);
433  }
434
435  // This causes using an unrolled select operation rather than expansion with
436  // bit operations. This is in general better, but the alternative using BFI
437  // instructions may be better if the select sources are SGPRs.
438  setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
439  AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
440
441  setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
442  AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
443
444  setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
445  AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
446
447  setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
448  AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
449
450  // There are no libcalls of any kind.
451  for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
452    setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
453
454  setSchedulingPreference(Sched::RegPressure);
455  setJumpIsExpensive(true);
456
457  // FIXME: This is only partially true. If we have to do vector compares, any
458  // SGPR pair can be a condition register. If we have a uniform condition, we
459  // are better off doing SALU operations, where there is only one SCC. For now,
460  // we don't have a way of knowing during instruction selection if a condition
461  // will be uniform and we always use vector compares. Assume we are using
462  // vector compares until that is fixed.
463  setHasMultipleConditionRegisters(true);
464
465  setMinCmpXchgSizeInBits(32);
466  setSupportsUnalignedAtomics(false);
467
468  PredictableSelectIsExpensive = false;
469
470  // We want to find all load dependencies for long chains of stores to enable
471  // merging into very wide vectors. The problem is with vectors with > 4
472  // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
473  // vectors are a legal type, even though we have to split the loads
474  // usually. When we can more precisely specify load legality per address
475  // space, we should be able to make FindBetterChain/MergeConsecutiveStores
476  // smarter so that they can figure out what to do in 2 iterations without all
477  // N > 4 stores on the same chain.
478  GatherAllAliasesMaxDepth = 16;
479
480  // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
481  // about these during lowering.
482  MaxStoresPerMemcpy  = 0xffffffff;
483  MaxStoresPerMemmove = 0xffffffff;
484  MaxStoresPerMemset  = 0xffffffff;
485
486  setTargetDAGCombine(ISD::BITCAST);
487  setTargetDAGCombine(ISD::SHL);
488  setTargetDAGCombine(ISD::SRA);
489  setTargetDAGCombine(ISD::SRL);
490  setTargetDAGCombine(ISD::TRUNCATE);
491  setTargetDAGCombine(ISD::MUL);
492  setTargetDAGCombine(ISD::MULHU);
493  setTargetDAGCombine(ISD::MULHS);
494  setTargetDAGCombine(ISD::SELECT);
495  setTargetDAGCombine(ISD::SELECT_CC);
496  setTargetDAGCombine(ISD::STORE);
497  setTargetDAGCombine(ISD::FADD);
498  setTargetDAGCombine(ISD::FSUB);
499  setTargetDAGCombine(ISD::FNEG);
500  setTargetDAGCombine(ISD::FABS);
501  setTargetDAGCombine(ISD::AssertZext);
502  setTargetDAGCombine(ISD::AssertSext);
503  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
504}
505
506//===----------------------------------------------------------------------===//
507// Target Information
508//===----------------------------------------------------------------------===//
509
510LLVM_READNONE
511static bool fnegFoldsIntoOp(unsigned Opc) {
512  switch (Opc) {
513  case ISD::FADD:
514  case ISD::FSUB:
515  case ISD::FMUL:
516  case ISD::FMA:
517  case ISD::FMAD:
518  case ISD::FMINNUM:
519  case ISD::FMAXNUM:
520  case ISD::FMINNUM_IEEE:
521  case ISD::FMAXNUM_IEEE:
522  case ISD::FSIN:
523  case ISD::FTRUNC:
524  case ISD::FRINT:
525  case ISD::FNEARBYINT:
526  case ISD::FCANONICALIZE:
527  case AMDGPUISD::RCP:
528  case AMDGPUISD::RCP_LEGACY:
529  case AMDGPUISD::RCP_IFLAG:
530  case AMDGPUISD::SIN_HW:
531  case AMDGPUISD::FMUL_LEGACY:
532  case AMDGPUISD::FMIN_LEGACY:
533  case AMDGPUISD::FMAX_LEGACY:
534  case AMDGPUISD::FMED3:
535    return true;
536  default:
537    return false;
538  }
539}
540
541/// \p returns true if the operation will definitely need to use a 64-bit
542/// encoding, and thus will use a VOP3 encoding regardless of the source
543/// modifiers.
544LLVM_READONLY
545static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
546  return N->getNumOperands() > 2 || VT == MVT::f64;
547}
548
549// Most FP instructions support source modifiers, but this could be refined
550// slightly.
551LLVM_READONLY
552static bool hasSourceMods(const SDNode *N) {
553  if (isa<MemSDNode>(N))
554    return false;
555
556  switch (N->getOpcode()) {
557  case ISD::CopyToReg:
558  case ISD::SELECT:
559  case ISD::FDIV:
560  case ISD::FREM:
561  case ISD::INLINEASM:
562  case ISD::INLINEASM_BR:
563  case AMDGPUISD::DIV_SCALE:
564  case ISD::INTRINSIC_W_CHAIN:
565
566  // TODO: Should really be looking at the users of the bitcast. These are
567  // problematic because bitcasts are used to legalize all stores to integer
568  // types.
569  case ISD::BITCAST:
570    return false;
571  case ISD::INTRINSIC_WO_CHAIN: {
572    switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
573    case Intrinsic::amdgcn_interp_p1:
574    case Intrinsic::amdgcn_interp_p2:
575    case Intrinsic::amdgcn_interp_mov:
576    case Intrinsic::amdgcn_interp_p1_f16:
577    case Intrinsic::amdgcn_interp_p2_f16:
578      return false;
579    default:
580      return true;
581    }
582  }
583  default:
584    return true;
585  }
586}
587
588bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
589                                                 unsigned CostThreshold) {
590  // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
591  // it is truly free to use a source modifier in all cases. If there are
592  // multiple users but for each one will necessitate using VOP3, there will be
593  // a code size increase. Try to avoid increasing code size unless we know it
594  // will save on the instruction count.
595  unsigned NumMayIncreaseSize = 0;
596  MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
597
598  // XXX - Should this limit number of uses to check?
599  for (const SDNode *U : N->uses()) {
600    if (!hasSourceMods(U))
601      return false;
602
603    if (!opMustUseVOP3Encoding(U, VT)) {
604      if (++NumMayIncreaseSize > CostThreshold)
605        return false;
606    }
607  }
608
609  return true;
610}
611
612MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
613  return MVT::i32;
614}
615
616bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
617  return true;
618}
619
620// The backend supports 32 and 64 bit floating point immediates.
621// FIXME: Why are we reporting vectors of FP immediates as legal?
622bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
623                                        bool ForCodeSize) const {
624  EVT ScalarVT = VT.getScalarType();
625  return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
626         (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
627}
628
629// We don't want to shrink f64 / f32 constants.
630bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
631  EVT ScalarVT = VT.getScalarType();
632  return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
633}
634
635bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
636                                                 ISD::LoadExtType ExtTy,
637                                                 EVT NewVT) const {
638  // TODO: This may be worth removing. Check regression tests for diffs.
639  if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
640    return false;
641
642  unsigned NewSize = NewVT.getStoreSizeInBits();
643
644  // If we are reducing to a 32-bit load, this is always better.
645  if (NewSize == 32)
646    return true;
647
648  EVT OldVT = N->getValueType(0);
649  unsigned OldSize = OldVT.getStoreSizeInBits();
650
651  MemSDNode *MN = cast<MemSDNode>(N);
652  unsigned AS = MN->getAddressSpace();
653  // Do not shrink an aligned scalar load to sub-dword.
654  // Scalar engine cannot do sub-dword loads.
655  if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
656      (AS == AMDGPUAS::CONSTANT_ADDRESS ||
657       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
658       (isa<LoadSDNode>(N) &&
659        AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
660      AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
661    return false;
662
663  // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
664  // extloads, so doing one requires using a buffer_load. In cases where we
665  // still couldn't use a scalar load, using the wider load shouldn't really
666  // hurt anything.
667
668  // If the old size already had to be an extload, there's no harm in continuing
669  // to reduce the width.
670  return (OldSize < 32);
671}
672
673bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
674                                                   const SelectionDAG &DAG,
675                                                   const MachineMemOperand &MMO) const {
676
677  assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
678
679  if (LoadTy.getScalarType() == MVT::i32)
680    return false;
681
682  unsigned LScalarSize = LoadTy.getScalarSizeInBits();
683  unsigned CastScalarSize = CastTy.getScalarSizeInBits();
684
685  if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
686    return false;
687
688  bool Fast = false;
689  return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
690                                        CastTy, MMO, &Fast) &&
691         Fast;
692}
693
694// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
695// profitable with the expansion for 64-bit since it's generally good to
696// speculate things.
697// FIXME: These should really have the size as a parameter.
698bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
699  return true;
700}
701
702bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
703  return true;
704}
705
706bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
707  switch (N->getOpcode()) {
708    default:
709    return false;
710    case ISD::EntryToken:
711    case ISD::TokenFactor:
712      return true;
713    case ISD::INTRINSIC_WO_CHAIN:
714    {
715      unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
716      switch (IntrID) {
717        default:
718        return false;
719        case Intrinsic::amdgcn_readfirstlane:
720        case Intrinsic::amdgcn_readlane:
721          return true;
722      }
723    }
724    break;
725    case ISD::LOAD:
726    {
727      if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
728          AMDGPUAS::CONSTANT_ADDRESS_32BIT)
729        return true;
730      return false;
731    }
732    break;
733  }
734}
735
736//===---------------------------------------------------------------------===//
737// Target Properties
738//===---------------------------------------------------------------------===//
739
740bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
741  assert(VT.isFloatingPoint());
742
743  // Packed operations do not have a fabs modifier.
744  return VT == MVT::f32 || VT == MVT::f64 ||
745         (Subtarget->has16BitInsts() && VT == MVT::f16);
746}
747
748bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
749  assert(VT.isFloatingPoint());
750  return VT == MVT::f32 || VT == MVT::f64 ||
751         (Subtarget->has16BitInsts() && VT == MVT::f16) ||
752         (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
753}
754
755bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
756                                                         unsigned NumElem,
757                                                         unsigned AS) const {
758  return true;
759}
760
761bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
762  // There are few operations which truly have vector input operands. Any vector
763  // operation is going to involve operations on each component, and a
764  // build_vector will be a copy per element, so it always makes sense to use a
765  // build_vector input in place of the extracted element to avoid a copy into a
766  // super register.
767  //
768  // We should probably only do this if all users are extracts only, but this
769  // should be the common case.
770  return true;
771}
772
773bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
774  // Truncate is just accessing a subregister.
775
776  unsigned SrcSize = Source.getSizeInBits();
777  unsigned DestSize = Dest.getSizeInBits();
778
779  return DestSize < SrcSize && DestSize % 32 == 0 ;
780}
781
782bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
783  // Truncate is just accessing a subregister.
784
785  unsigned SrcSize = Source->getScalarSizeInBits();
786  unsigned DestSize = Dest->getScalarSizeInBits();
787
788  if (DestSize== 16 && Subtarget->has16BitInsts())
789    return SrcSize >= 32;
790
791  return DestSize < SrcSize && DestSize % 32 == 0;
792}
793
794bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
795  unsigned SrcSize = Src->getScalarSizeInBits();
796  unsigned DestSize = Dest->getScalarSizeInBits();
797
798  if (SrcSize == 16 && Subtarget->has16BitInsts())
799    return DestSize >= 32;
800
801  return SrcSize == 32 && DestSize == 64;
802}
803
804bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
805  // Any register load of a 64-bit value really requires 2 32-bit moves. For all
806  // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
807  // this will enable reducing 64-bit operations the 32-bit, which is always
808  // good.
809
810  if (Src == MVT::i16)
811    return Dest == MVT::i32 ||Dest == MVT::i64 ;
812
813  return Src == MVT::i32 && Dest == MVT::i64;
814}
815
816bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
817  return isZExtFree(Val.getValueType(), VT2);
818}
819
820bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
821  // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
822  // limited number of native 64-bit operations. Shrinking an operation to fit
823  // in a single 32-bit register should always be helpful. As currently used,
824  // this is much less general than the name suggests, and is only used in
825  // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
826  // not profitable, and may actually be harmful.
827  return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
828}
829
830//===---------------------------------------------------------------------===//
831// TargetLowering Callbacks
832//===---------------------------------------------------------------------===//
833
834CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
835                                                  bool IsVarArg) {
836  switch (CC) {
837  case CallingConv::AMDGPU_VS:
838  case CallingConv::AMDGPU_GS:
839  case CallingConv::AMDGPU_PS:
840  case CallingConv::AMDGPU_CS:
841  case CallingConv::AMDGPU_HS:
842  case CallingConv::AMDGPU_ES:
843  case CallingConv::AMDGPU_LS:
844    return CC_AMDGPU;
845  case CallingConv::C:
846  case CallingConv::Fast:
847  case CallingConv::Cold:
848    return CC_AMDGPU_Func;
849  case CallingConv::AMDGPU_KERNEL:
850  case CallingConv::SPIR_KERNEL:
851  default:
852    report_fatal_error("Unsupported calling convention for call");
853  }
854}
855
856CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
857                                                    bool IsVarArg) {
858  switch (CC) {
859  case CallingConv::AMDGPU_KERNEL:
860  case CallingConv::SPIR_KERNEL:
861    llvm_unreachable("kernels should not be handled here");
862  case CallingConv::AMDGPU_VS:
863  case CallingConv::AMDGPU_GS:
864  case CallingConv::AMDGPU_PS:
865  case CallingConv::AMDGPU_CS:
866  case CallingConv::AMDGPU_HS:
867  case CallingConv::AMDGPU_ES:
868  case CallingConv::AMDGPU_LS:
869    return RetCC_SI_Shader;
870  case CallingConv::C:
871  case CallingConv::Fast:
872  case CallingConv::Cold:
873    return RetCC_AMDGPU_Func;
874  default:
875    report_fatal_error("Unsupported calling convention.");
876  }
877}
878
879/// The SelectionDAGBuilder will automatically promote function arguments
880/// with illegal types.  However, this does not work for the AMDGPU targets
881/// since the function arguments are stored in memory as these illegal types.
882/// In order to handle this properly we need to get the original types sizes
883/// from the LLVM IR Function and fixup the ISD:InputArg values before
884/// passing them to AnalyzeFormalArguments()
885
886/// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
887/// input values across multiple registers.  Each item in the Ins array
888/// represents a single value that will be stored in registers.  Ins[x].VT is
889/// the value type of the value that will be stored in the register, so
890/// whatever SDNode we lower the argument to needs to be this type.
891///
892/// In order to correctly lower the arguments we need to know the size of each
893/// argument.  Since Ins[x].VT gives us the size of the register that will
894/// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
895/// for the orignal function argument so that we can deduce the correct memory
896/// type to use for Ins[x].  In most cases the correct memory type will be
897/// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
898/// we have a kernel argument of type v8i8, this argument will be split into
899/// 8 parts and each part will be represented by its own item in the Ins array.
900/// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
901/// the argument before it was split.  From this, we deduce that the memory type
902/// for each individual part is i8.  We pass the memory type as LocVT to the
903/// calling convention analysis function and the register type (Ins[x].VT) as
904/// the ValVT.
905void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
906  CCState &State,
907  const SmallVectorImpl<ISD::InputArg> &Ins) const {
908  const MachineFunction &MF = State.getMachineFunction();
909  const Function &Fn = MF.getFunction();
910  LLVMContext &Ctx = Fn.getParent()->getContext();
911  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
912  const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
913  CallingConv::ID CC = Fn.getCallingConv();
914
915  unsigned MaxAlign = 1;
916  uint64_t ExplicitArgOffset = 0;
917  const DataLayout &DL = Fn.getParent()->getDataLayout();
918
919  unsigned InIndex = 0;
920
921  for (const Argument &Arg : Fn.args()) {
922    Type *BaseArgTy = Arg.getType();
923    unsigned Align = DL.getABITypeAlignment(BaseArgTy);
924    MaxAlign = std::max(Align, MaxAlign);
925    unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
926
927    uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
928    ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
929
930    // We're basically throwing away everything passed into us and starting over
931    // to get accurate in-memory offsets. The "PartOffset" is completely useless
932    // to us as computed in Ins.
933    //
934    // We also need to figure out what type legalization is trying to do to get
935    // the correct memory offsets.
936
937    SmallVector<EVT, 16> ValueVTs;
938    SmallVector<uint64_t, 16> Offsets;
939    ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
940
941    for (unsigned Value = 0, NumValues = ValueVTs.size();
942         Value != NumValues; ++Value) {
943      uint64_t BasePartOffset = Offsets[Value];
944
945      EVT ArgVT = ValueVTs[Value];
946      EVT MemVT = ArgVT;
947      MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
948      unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
949
950      if (NumRegs == 1) {
951        // This argument is not split, so the IR type is the memory type.
952        if (ArgVT.isExtended()) {
953          // We have an extended type, like i24, so we should just use the
954          // register type.
955          MemVT = RegisterVT;
956        } else {
957          MemVT = ArgVT;
958        }
959      } else if (ArgVT.isVector() && RegisterVT.isVector() &&
960                 ArgVT.getScalarType() == RegisterVT.getScalarType()) {
961        assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
962        // We have a vector value which has been split into a vector with
963        // the same scalar type, but fewer elements.  This should handle
964        // all the floating-point vector types.
965        MemVT = RegisterVT;
966      } else if (ArgVT.isVector() &&
967                 ArgVT.getVectorNumElements() == NumRegs) {
968        // This arg has been split so that each element is stored in a separate
969        // register.
970        MemVT = ArgVT.getScalarType();
971      } else if (ArgVT.isExtended()) {
972        // We have an extended type, like i65.
973        MemVT = RegisterVT;
974      } else {
975        unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
976        assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
977        if (RegisterVT.isInteger()) {
978          MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
979        } else if (RegisterVT.isVector()) {
980          assert(!RegisterVT.getScalarType().isFloatingPoint());
981          unsigned NumElements = RegisterVT.getVectorNumElements();
982          assert(MemoryBits % NumElements == 0);
983          // This vector type has been split into another vector type with
984          // a different elements size.
985          EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
986                                           MemoryBits / NumElements);
987          MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
988        } else {
989          llvm_unreachable("cannot deduce memory type.");
990        }
991      }
992
993      // Convert one element vectors to scalar.
994      if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
995        MemVT = MemVT.getScalarType();
996
997      // Round up vec3/vec5 argument.
998      if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
999        assert(MemVT.getVectorNumElements() == 3 ||
1000               MemVT.getVectorNumElements() == 5);
1001        MemVT = MemVT.getPow2VectorType(State.getContext());
1002      }
1003
1004      unsigned PartOffset = 0;
1005      for (unsigned i = 0; i != NumRegs; ++i) {
1006        State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1007                                               BasePartOffset + PartOffset,
1008                                               MemVT.getSimpleVT(),
1009                                               CCValAssign::Full));
1010        PartOffset += MemVT.getStoreSize();
1011      }
1012    }
1013  }
1014}
1015
1016SDValue AMDGPUTargetLowering::LowerReturn(
1017  SDValue Chain, CallingConv::ID CallConv,
1018  bool isVarArg,
1019  const SmallVectorImpl<ISD::OutputArg> &Outs,
1020  const SmallVectorImpl<SDValue> &OutVals,
1021  const SDLoc &DL, SelectionDAG &DAG) const {
1022  // FIXME: Fails for r600 tests
1023  //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1024  // "wave terminate should not have return values");
1025  return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1026}
1027
1028//===---------------------------------------------------------------------===//
1029// Target specific lowering
1030//===---------------------------------------------------------------------===//
1031
1032/// Selects the correct CCAssignFn for a given CallingConvention value.
1033CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1034                                                    bool IsVarArg) {
1035  return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1036}
1037
1038CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1039                                                      bool IsVarArg) {
1040  return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1041}
1042
1043SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1044                                                  SelectionDAG &DAG,
1045                                                  MachineFrameInfo &MFI,
1046                                                  int ClobberedFI) const {
1047  SmallVector<SDValue, 8> ArgChains;
1048  int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1049  int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1050
1051  // Include the original chain at the beginning of the list. When this is
1052  // used by target LowerCall hooks, this helps legalize find the
1053  // CALLSEQ_BEGIN node.
1054  ArgChains.push_back(Chain);
1055
1056  // Add a chain value for each stack argument corresponding
1057  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1058                            UE = DAG.getEntryNode().getNode()->use_end();
1059       U != UE; ++U) {
1060    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1061      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1062        if (FI->getIndex() < 0) {
1063          int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1064          int64_t InLastByte = InFirstByte;
1065          InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1066
1067          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1068              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1069            ArgChains.push_back(SDValue(L, 1));
1070        }
1071      }
1072    }
1073  }
1074
1075  // Build a tokenfactor for all the chains.
1076  return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1077}
1078
1079SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1080                                                 SmallVectorImpl<SDValue> &InVals,
1081                                                 StringRef Reason) const {
1082  SDValue Callee = CLI.Callee;
1083  SelectionDAG &DAG = CLI.DAG;
1084
1085  const Function &Fn = DAG.getMachineFunction().getFunction();
1086
1087  StringRef FuncName("<unknown>");
1088
1089  if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1090    FuncName = G->getSymbol();
1091  else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1092    FuncName = G->getGlobal()->getName();
1093
1094  DiagnosticInfoUnsupported NoCalls(
1095    Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1096  DAG.getContext()->diagnose(NoCalls);
1097
1098  if (!CLI.IsTailCall) {
1099    for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1100      InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1101  }
1102
1103  return DAG.getEntryNode();
1104}
1105
1106SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1107                                        SmallVectorImpl<SDValue> &InVals) const {
1108  return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1109}
1110
1111SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1112                                                      SelectionDAG &DAG) const {
1113  const Function &Fn = DAG.getMachineFunction().getFunction();
1114
1115  DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1116                                            SDLoc(Op).getDebugLoc());
1117  DAG.getContext()->diagnose(NoDynamicAlloca);
1118  auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1119  return DAG.getMergeValues(Ops, SDLoc());
1120}
1121
1122SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1123                                             SelectionDAG &DAG) const {
1124  switch (Op.getOpcode()) {
1125  default:
1126    Op->print(errs(), &DAG);
1127    llvm_unreachable("Custom lowering code for this"
1128                     "instruction is not implemented yet!");
1129    break;
1130  case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1131  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1132  case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1133  case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1134  case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1135  case ISD::FREM: return LowerFREM(Op, DAG);
1136  case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1137  case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1138  case ISD::FRINT: return LowerFRINT(Op, DAG);
1139  case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1140  case ISD::FROUND: return LowerFROUND(Op, DAG);
1141  case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1142  case ISD::FLOG:
1143    return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef);
1144  case ISD::FLOG10:
1145    return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1146  case ISD::FEXP:
1147    return lowerFEXP(Op, DAG);
1148  case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1149  case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1150  case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1151  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1152  case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1153  case ISD::CTTZ:
1154  case ISD::CTTZ_ZERO_UNDEF:
1155  case ISD::CTLZ:
1156  case ISD::CTLZ_ZERO_UNDEF:
1157    return LowerCTLZ_CTTZ(Op, DAG);
1158  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1159  }
1160  return Op;
1161}
1162
1163void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1164                                              SmallVectorImpl<SDValue> &Results,
1165                                              SelectionDAG &DAG) const {
1166  switch (N->getOpcode()) {
1167  case ISD::SIGN_EXTEND_INREG:
1168    // Different parts of legalization seem to interpret which type of
1169    // sign_extend_inreg is the one to check for custom lowering. The extended
1170    // from type is what really matters, but some places check for custom
1171    // lowering of the result type. This results in trying to use
1172    // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1173    // nothing here and let the illegal result integer be handled normally.
1174    return;
1175  default:
1176    return;
1177  }
1178}
1179
1180bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1181  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1182  if (!GVar || !GVar->hasInitializer())
1183    return false;
1184
1185  return !isa<UndefValue>(GVar->getInitializer());
1186}
1187
1188SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1189                                                 SDValue Op,
1190                                                 SelectionDAG &DAG) const {
1191
1192  const DataLayout &DL = DAG.getDataLayout();
1193  GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1194  const GlobalValue *GV = G->getGlobal();
1195
1196  if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1197      G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1198    if (!MFI->isEntryFunction()) {
1199      const Function &Fn = DAG.getMachineFunction().getFunction();
1200      DiagnosticInfoUnsupported BadLDSDecl(
1201        Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1202      DAG.getContext()->diagnose(BadLDSDecl);
1203    }
1204
1205    // XXX: What does the value of G->getOffset() mean?
1206    assert(G->getOffset() == 0 &&
1207         "Do not know what to do with an non-zero offset");
1208
1209    // TODO: We could emit code to handle the initialization somewhere.
1210    if (!hasDefinedInitializer(GV)) {
1211      unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1212      return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1213    }
1214  }
1215
1216  const Function &Fn = DAG.getMachineFunction().getFunction();
1217  DiagnosticInfoUnsupported BadInit(
1218      Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1219  DAG.getContext()->diagnose(BadInit);
1220  return SDValue();
1221}
1222
1223SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1224                                                  SelectionDAG &DAG) const {
1225  SmallVector<SDValue, 8> Args;
1226
1227  EVT VT = Op.getValueType();
1228  if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1229    SDLoc SL(Op);
1230    SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1231    SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1232
1233    SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1234    return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1235  }
1236
1237  for (const SDUse &U : Op->ops())
1238    DAG.ExtractVectorElements(U.get(), Args);
1239
1240  return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1241}
1242
1243SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1244                                                     SelectionDAG &DAG) const {
1245
1246  SmallVector<SDValue, 8> Args;
1247  unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1248  EVT VT = Op.getValueType();
1249  DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1250                            VT.getVectorNumElements());
1251
1252  return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1253}
1254
1255/// Generate Min/Max node
1256SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1257                                                   SDValue LHS, SDValue RHS,
1258                                                   SDValue True, SDValue False,
1259                                                   SDValue CC,
1260                                                   DAGCombinerInfo &DCI) const {
1261  if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1262    return SDValue();
1263
1264  SelectionDAG &DAG = DCI.DAG;
1265  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1266  switch (CCOpcode) {
1267  case ISD::SETOEQ:
1268  case ISD::SETONE:
1269  case ISD::SETUNE:
1270  case ISD::SETNE:
1271  case ISD::SETUEQ:
1272  case ISD::SETEQ:
1273  case ISD::SETFALSE:
1274  case ISD::SETFALSE2:
1275  case ISD::SETTRUE:
1276  case ISD::SETTRUE2:
1277  case ISD::SETUO:
1278  case ISD::SETO:
1279    break;
1280  case ISD::SETULE:
1281  case ISD::SETULT: {
1282    if (LHS == True)
1283      return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1284    return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1285  }
1286  case ISD::SETOLE:
1287  case ISD::SETOLT:
1288  case ISD::SETLE:
1289  case ISD::SETLT: {
1290    // Ordered. Assume ordered for undefined.
1291
1292    // Only do this after legalization to avoid interfering with other combines
1293    // which might occur.
1294    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1295        !DCI.isCalledByLegalizer())
1296      return SDValue();
1297
1298    // We need to permute the operands to get the correct NaN behavior. The
1299    // selected operand is the second one based on the failing compare with NaN,
1300    // so permute it based on the compare type the hardware uses.
1301    if (LHS == True)
1302      return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1303    return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1304  }
1305  case ISD::SETUGE:
1306  case ISD::SETUGT: {
1307    if (LHS == True)
1308      return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1309    return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1310  }
1311  case ISD::SETGT:
1312  case ISD::SETGE:
1313  case ISD::SETOGE:
1314  case ISD::SETOGT: {
1315    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1316        !DCI.isCalledByLegalizer())
1317      return SDValue();
1318
1319    if (LHS == True)
1320      return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1321    return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1322  }
1323  case ISD::SETCC_INVALID:
1324    llvm_unreachable("Invalid setcc condcode!");
1325  }
1326  return SDValue();
1327}
1328
1329std::pair<SDValue, SDValue>
1330AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1331  SDLoc SL(Op);
1332
1333  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1334
1335  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1336  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1337
1338  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1339  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1340
1341  return std::make_pair(Lo, Hi);
1342}
1343
1344SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1345  SDLoc SL(Op);
1346
1347  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1348  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1349  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1350}
1351
1352SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1353  SDLoc SL(Op);
1354
1355  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1356  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1357  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1358}
1359
1360// Split a vector type into two parts. The first part is a power of two vector.
1361// The second part is whatever is left over, and is a scalar if it would
1362// otherwise be a 1-vector.
1363std::pair<EVT, EVT>
1364AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1365  EVT LoVT, HiVT;
1366  EVT EltVT = VT.getVectorElementType();
1367  unsigned NumElts = VT.getVectorNumElements();
1368  unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1369  LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1370  HiVT = NumElts - LoNumElts == 1
1371             ? EltVT
1372             : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1373  return std::make_pair(LoVT, HiVT);
1374}
1375
1376// Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1377// scalar.
1378std::pair<SDValue, SDValue>
1379AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1380                                  const EVT &LoVT, const EVT &HiVT,
1381                                  SelectionDAG &DAG) const {
1382  assert(LoVT.getVectorNumElements() +
1383                 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1384             N.getValueType().getVectorNumElements() &&
1385         "More vector elements requested than available!");
1386  auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1387  SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1388                           DAG.getConstant(0, DL, IdxTy));
1389  SDValue Hi = DAG.getNode(
1390      HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1391      HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy));
1392  return std::make_pair(Lo, Hi);
1393}
1394
1395SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1396                                              SelectionDAG &DAG) const {
1397  LoadSDNode *Load = cast<LoadSDNode>(Op);
1398  EVT VT = Op.getValueType();
1399  SDLoc SL(Op);
1400
1401
1402  // If this is a 2 element vector, we really want to scalarize and not create
1403  // weird 1 element vectors.
1404  if (VT.getVectorNumElements() == 2) {
1405    SDValue Ops[2];
1406    std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1407    return DAG.getMergeValues(Ops, SL);
1408  }
1409
1410  SDValue BasePtr = Load->getBasePtr();
1411  EVT MemVT = Load->getMemoryVT();
1412
1413  const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1414
1415  EVT LoVT, HiVT;
1416  EVT LoMemVT, HiMemVT;
1417  SDValue Lo, Hi;
1418
1419  std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1420  std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1421  std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1422
1423  unsigned Size = LoMemVT.getStoreSize();
1424  unsigned BaseAlign = Load->getAlignment();
1425  unsigned HiAlign = MinAlign(BaseAlign, Size);
1426
1427  SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1428                                  Load->getChain(), BasePtr, SrcValue, LoMemVT,
1429                                  BaseAlign, Load->getMemOperand()->getFlags());
1430  SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1431  SDValue HiLoad =
1432      DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1433                     HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1434                     HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1435
1436  auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1437  SDValue Join;
1438  if (LoVT == HiVT) {
1439    // This is the case that the vector is power of two so was evenly split.
1440    Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1441  } else {
1442    Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1443                       DAG.getConstant(0, SL, IdxTy));
1444    Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR
1445                                       : ISD::INSERT_VECTOR_ELT,
1446                       SL, VT, Join, HiLoad,
1447                       DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy));
1448  }
1449
1450  SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1451                                     LoLoad.getValue(1), HiLoad.getValue(1))};
1452
1453  return DAG.getMergeValues(Ops, SL);
1454}
1455
1456// Widen a vector load from vec3 to vec4.
1457SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1458                                              SelectionDAG &DAG) const {
1459  LoadSDNode *Load = cast<LoadSDNode>(Op);
1460  EVT VT = Op.getValueType();
1461  assert(VT.getVectorNumElements() == 3);
1462  SDValue BasePtr = Load->getBasePtr();
1463  EVT MemVT = Load->getMemoryVT();
1464  SDLoc SL(Op);
1465  const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1466  unsigned BaseAlign = Load->getAlignment();
1467
1468  EVT WideVT =
1469      EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1470  EVT WideMemVT =
1471      EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1472  SDValue WideLoad = DAG.getExtLoad(
1473      Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1474      WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1475  return DAG.getMergeValues(
1476      {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1477                   DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))),
1478       WideLoad.getValue(1)},
1479      SL);
1480}
1481
1482SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1483                                               SelectionDAG &DAG) const {
1484  StoreSDNode *Store = cast<StoreSDNode>(Op);
1485  SDValue Val = Store->getValue();
1486  EVT VT = Val.getValueType();
1487
1488  // If this is a 2 element vector, we really want to scalarize and not create
1489  // weird 1 element vectors.
1490  if (VT.getVectorNumElements() == 2)
1491    return scalarizeVectorStore(Store, DAG);
1492
1493  EVT MemVT = Store->getMemoryVT();
1494  SDValue Chain = Store->getChain();
1495  SDValue BasePtr = Store->getBasePtr();
1496  SDLoc SL(Op);
1497
1498  EVT LoVT, HiVT;
1499  EVT LoMemVT, HiMemVT;
1500  SDValue Lo, Hi;
1501
1502  std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1503  std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1504  std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1505
1506  SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1507
1508  const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1509  unsigned BaseAlign = Store->getAlignment();
1510  unsigned Size = LoMemVT.getStoreSize();
1511  unsigned HiAlign = MinAlign(BaseAlign, Size);
1512
1513  SDValue LoStore =
1514      DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1515                        Store->getMemOperand()->getFlags());
1516  SDValue HiStore =
1517      DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1518                        HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1519
1520  return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1521}
1522
1523// This is a shortcut for integer division because we have fast i32<->f32
1524// conversions, and fast f32 reciprocal instructions. The fractional part of a
1525// float is enough to accurately represent up to a 24-bit signed integer.
1526SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1527                                            bool Sign) const {
1528  SDLoc DL(Op);
1529  EVT VT = Op.getValueType();
1530  SDValue LHS = Op.getOperand(0);
1531  SDValue RHS = Op.getOperand(1);
1532  MVT IntVT = MVT::i32;
1533  MVT FltVT = MVT::f32;
1534
1535  unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1536  if (LHSSignBits < 9)
1537    return SDValue();
1538
1539  unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1540  if (RHSSignBits < 9)
1541    return SDValue();
1542
1543  unsigned BitSize = VT.getSizeInBits();
1544  unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1545  unsigned DivBits = BitSize - SignBits;
1546  if (Sign)
1547    ++DivBits;
1548
1549  ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1550  ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1551
1552  SDValue jq = DAG.getConstant(1, DL, IntVT);
1553
1554  if (Sign) {
1555    // char|short jq = ia ^ ib;
1556    jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1557
1558    // jq = jq >> (bitsize - 2)
1559    jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1560                     DAG.getConstant(BitSize - 2, DL, VT));
1561
1562    // jq = jq | 0x1
1563    jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1564  }
1565
1566  // int ia = (int)LHS;
1567  SDValue ia = LHS;
1568
1569  // int ib, (int)RHS;
1570  SDValue ib = RHS;
1571
1572  // float fa = (float)ia;
1573  SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1574
1575  // float fb = (float)ib;
1576  SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1577
1578  SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1579                           fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1580
1581  // fq = trunc(fq);
1582  fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1583
1584  // float fqneg = -fq;
1585  SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1586
1587  MachineFunction &MF = DAG.getMachineFunction();
1588  const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1589
1590  // float fr = mad(fqneg, fb, fa);
1591  unsigned OpCode = MFI->getMode().FP32Denormals ?
1592                    (unsigned)AMDGPUISD::FMAD_FTZ :
1593                    (unsigned)ISD::FMAD;
1594  SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1595
1596  // int iq = (int)fq;
1597  SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1598
1599  // fr = fabs(fr);
1600  fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1601
1602  // fb = fabs(fb);
1603  fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1604
1605  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1606
1607  // int cv = fr >= fb;
1608  SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1609
1610  // jq = (cv ? jq : 0);
1611  jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1612
1613  // dst = iq + jq;
1614  SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1615
1616  // Rem needs compensation, it's easier to recompute it
1617  SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1618  Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1619
1620  // Truncate to number of bits this divide really is.
1621  if (Sign) {
1622    SDValue InRegSize
1623      = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1624    Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1625    Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1626  } else {
1627    SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1628    Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1629    Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1630  }
1631
1632  return DAG.getMergeValues({ Div, Rem }, DL);
1633}
1634
1635void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1636                                      SelectionDAG &DAG,
1637                                      SmallVectorImpl<SDValue> &Results) const {
1638  SDLoc DL(Op);
1639  EVT VT = Op.getValueType();
1640
1641  assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1642
1643  EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1644
1645  SDValue One = DAG.getConstant(1, DL, HalfVT);
1646  SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1647
1648  //HiLo split
1649  SDValue LHS = Op.getOperand(0);
1650  SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1651  SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1652
1653  SDValue RHS = Op.getOperand(1);
1654  SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1655  SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1656
1657  if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1658      DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1659
1660    SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1661                              LHS_Lo, RHS_Lo);
1662
1663    SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1664    SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1665
1666    Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1667    Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1668    return;
1669  }
1670
1671  if (isTypeLegal(MVT::i64)) {
1672    MachineFunction &MF = DAG.getMachineFunction();
1673    const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1674
1675    // Compute denominator reciprocal.
1676    unsigned FMAD = MFI->getMode().FP32Denormals ?
1677                    (unsigned)AMDGPUISD::FMAD_FTZ :
1678                    (unsigned)ISD::FMAD;
1679
1680    SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1681    SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1682    SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1683      DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1684      Cvt_Lo);
1685    SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1686    SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1687      DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1688    SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1689      DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1690    SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1691    SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1692      DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1693      Mul1);
1694    SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1695    SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1696    SDValue Rcp64 = DAG.getBitcast(VT,
1697                        DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1698
1699    SDValue Zero64 = DAG.getConstant(0, DL, VT);
1700    SDValue One64  = DAG.getConstant(1, DL, VT);
1701    SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1702    SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1703
1704    SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1705    SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1706    SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1707    SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1708                                    Zero);
1709    SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1710                                    One);
1711
1712    SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1713                                  Mulhi1_Lo, Zero1);
1714    SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1715                                  Mulhi1_Hi, Add1_Lo.getValue(1));
1716    SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1717    SDValue Add1 = DAG.getBitcast(VT,
1718                        DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1719
1720    SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1721    SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1722    SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1723                                    Zero);
1724    SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1725                                    One);
1726
1727    SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1728                                  Mulhi2_Lo, Zero1);
1729    SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1730                                   Mulhi2_Hi, Add1_Lo.getValue(1));
1731    SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1732                                  Zero, Add2_Lo.getValue(1));
1733    SDValue Add2 = DAG.getBitcast(VT,
1734                        DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1735    SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1736
1737    SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1738
1739    SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1740    SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1741    SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1742                                  Mul3_Lo, Zero1);
1743    SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1744                                  Mul3_Hi, Sub1_Lo.getValue(1));
1745    SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1746    SDValue Sub1 = DAG.getBitcast(VT,
1747                        DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1748
1749    SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1750    SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1751                                 ISD::SETUGE);
1752    SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1753                                 ISD::SETUGE);
1754    SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1755
1756    // TODO: Here and below portions of the code can be enclosed into if/endif.
1757    // Currently control flow is unconditional and we have 4 selects after
1758    // potential endif to substitute PHIs.
1759
1760    // if C3 != 0 ...
1761    SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1762                                  RHS_Lo, Zero1);
1763    SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1764                                  RHS_Hi, Sub1_Lo.getValue(1));
1765    SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1766                                  Zero, Sub2_Lo.getValue(1));
1767    SDValue Sub2 = DAG.getBitcast(VT,
1768                        DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1769
1770    SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1771
1772    SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1773                                 ISD::SETUGE);
1774    SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1775                                 ISD::SETUGE);
1776    SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1777
1778    // if (C6 != 0)
1779    SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1780
1781    SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1782                                  RHS_Lo, Zero1);
1783    SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1784                                  RHS_Hi, Sub2_Lo.getValue(1));
1785    SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1786                                  Zero, Sub3_Lo.getValue(1));
1787    SDValue Sub3 = DAG.getBitcast(VT,
1788                        DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1789
1790    // endif C6
1791    // endif C3
1792
1793    SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1794    SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1795
1796    SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1797    SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1798
1799    Results.push_back(Div);
1800    Results.push_back(Rem);
1801
1802    return;
1803  }
1804
1805  // r600 expandion.
1806  // Get Speculative values
1807  SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1808  SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1809
1810  SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1811  SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1812  REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1813
1814  SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1815  SDValue DIV_Lo = Zero;
1816
1817  const unsigned halfBitWidth = HalfVT.getSizeInBits();
1818
1819  for (unsigned i = 0; i < halfBitWidth; ++i) {
1820    const unsigned bitPos = halfBitWidth - i - 1;
1821    SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1822    // Get value of high bit
1823    SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1824    HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1825    HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1826
1827    // Shift
1828    REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1829    // Add LHS high bit
1830    REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1831
1832    SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1833    SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1834
1835    DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1836
1837    // Update REM
1838    SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1839    REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1840  }
1841
1842  SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1843  DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1844  Results.push_back(DIV);
1845  Results.push_back(REM);
1846}
1847
1848SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1849                                           SelectionDAG &DAG) const {
1850  SDLoc DL(Op);
1851  EVT VT = Op.getValueType();
1852
1853  if (VT == MVT::i64) {
1854    SmallVector<SDValue, 2> Results;
1855    LowerUDIVREM64(Op, DAG, Results);
1856    return DAG.getMergeValues(Results, DL);
1857  }
1858
1859  if (VT == MVT::i32) {
1860    if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1861      return Res;
1862  }
1863
1864  SDValue Num = Op.getOperand(0);
1865  SDValue Den = Op.getOperand(1);
1866
1867  // RCP =  URECIP(Den) = 2^32 / Den + e
1868  // e is rounding error.
1869  SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1870
1871  // RCP_LO = mul(RCP, Den) */
1872  SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1873
1874  // RCP_HI = mulhu (RCP, Den) */
1875  SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1876
1877  // NEG_RCP_LO = -RCP_LO
1878  SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1879                                                     RCP_LO);
1880
1881  // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1882  SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1883                                           NEG_RCP_LO, RCP_LO,
1884                                           ISD::SETEQ);
1885  // Calculate the rounding error from the URECIP instruction
1886  // E = mulhu(ABS_RCP_LO, RCP)
1887  SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1888
1889  // RCP_A_E = RCP + E
1890  SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1891
1892  // RCP_S_E = RCP - E
1893  SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1894
1895  // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1896  SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1897                                     RCP_A_E, RCP_S_E,
1898                                     ISD::SETEQ);
1899  // Quotient = mulhu(Tmp0, Num)
1900  SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1901
1902  // Num_S_Remainder = Quotient * Den
1903  SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1904
1905  // Remainder = Num - Num_S_Remainder
1906  SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1907
1908  // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1909  SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1910                                                 DAG.getConstant(-1, DL, VT),
1911                                                 DAG.getConstant(0, DL, VT),
1912                                                 ISD::SETUGE);
1913  // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1914  SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1915                                                  Num_S_Remainder,
1916                                                  DAG.getConstant(-1, DL, VT),
1917                                                  DAG.getConstant(0, DL, VT),
1918                                                  ISD::SETUGE);
1919  // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1920  SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1921                                               Remainder_GE_Zero);
1922
1923  // Calculate Division result:
1924
1925  // Quotient_A_One = Quotient + 1
1926  SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1927                                       DAG.getConstant(1, DL, VT));
1928
1929  // Quotient_S_One = Quotient - 1
1930  SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1931                                       DAG.getConstant(1, DL, VT));
1932
1933  // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1934  SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1935                                     Quotient, Quotient_A_One, ISD::SETEQ);
1936
1937  // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1938  Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1939                            Quotient_S_One, Div, ISD::SETEQ);
1940
1941  // Calculate Rem result:
1942
1943  // Remainder_S_Den = Remainder - Den
1944  SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1945
1946  // Remainder_A_Den = Remainder + Den
1947  SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1948
1949  // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1950  SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1951                                    Remainder, Remainder_S_Den, ISD::SETEQ);
1952
1953  // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1954  Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1955                            Remainder_A_Den, Rem, ISD::SETEQ);
1956  SDValue Ops[2] = {
1957    Div,
1958    Rem
1959  };
1960  return DAG.getMergeValues(Ops, DL);
1961}
1962
1963SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1964                                           SelectionDAG &DAG) const {
1965  SDLoc DL(Op);
1966  EVT VT = Op.getValueType();
1967
1968  SDValue LHS = Op.getOperand(0);
1969  SDValue RHS = Op.getOperand(1);
1970
1971  SDValue Zero = DAG.getConstant(0, DL, VT);
1972  SDValue NegOne = DAG.getConstant(-1, DL, VT);
1973
1974  if (VT == MVT::i32) {
1975    if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1976      return Res;
1977  }
1978
1979  if (VT == MVT::i64 &&
1980      DAG.ComputeNumSignBits(LHS) > 32 &&
1981      DAG.ComputeNumSignBits(RHS) > 32) {
1982    EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1983
1984    //HiLo split
1985    SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1986    SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1987    SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1988                                 LHS_Lo, RHS_Lo);
1989    SDValue Res[2] = {
1990      DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1991      DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1992    };
1993    return DAG.getMergeValues(Res, DL);
1994  }
1995
1996  SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1997  SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1998  SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1999  SDValue RSign = LHSign; // Remainder sign is the same as LHS
2000
2001  LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2002  RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2003
2004  LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2005  RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2006
2007  SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2008  SDValue Rem = Div.getValue(1);
2009
2010  Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2011  Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2012
2013  Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2014  Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2015
2016  SDValue Res[2] = {
2017    Div,
2018    Rem
2019  };
2020  return DAG.getMergeValues(Res, DL);
2021}
2022
2023// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2024SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2025  SDLoc SL(Op);
2026  EVT VT = Op.getValueType();
2027  SDValue X = Op.getOperand(0);
2028  SDValue Y = Op.getOperand(1);
2029
2030  // TODO: Should this propagate fast-math-flags?
2031
2032  SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2033  SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2034  SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2035
2036  return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2037}
2038
2039SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2040  SDLoc SL(Op);
2041  SDValue Src = Op.getOperand(0);
2042
2043  // result = trunc(src)
2044  // if (src > 0.0 && src != result)
2045  //   result += 1.0
2046
2047  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2048
2049  const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2050  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2051
2052  EVT SetCCVT =
2053      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2054
2055  SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2056  SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2057  SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2058
2059  SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2060  // TODO: Should this propagate fast-math-flags?
2061  return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2062}
2063
2064static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2065                                  SelectionDAG &DAG) {
2066  const unsigned FractBits = 52;
2067  const unsigned ExpBits = 11;
2068
2069  SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2070                                Hi,
2071                                DAG.getConstant(FractBits - 32, SL, MVT::i32),
2072                                DAG.getConstant(ExpBits, SL, MVT::i32));
2073  SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2074                            DAG.getConstant(1023, SL, MVT::i32));
2075
2076  return Exp;
2077}
2078
2079SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2080  SDLoc SL(Op);
2081  SDValue Src = Op.getOperand(0);
2082
2083  assert(Op.getValueType() == MVT::f64);
2084
2085  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2086  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2087
2088  SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2089
2090  // Extract the upper half, since this is where we will find the sign and
2091  // exponent.
2092  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2093
2094  SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2095
2096  const unsigned FractBits = 52;
2097
2098  // Extract the sign bit.
2099  const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2100  SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2101
2102  // Extend back to 64-bits.
2103  SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2104  SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2105
2106  SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2107  const SDValue FractMask
2108    = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2109
2110  SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2111  SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2112  SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2113
2114  EVT SetCCVT =
2115      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2116
2117  const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2118
2119  SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2120  SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2121
2122  SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2123  SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2124
2125  return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2126}
2127
2128SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2129  SDLoc SL(Op);
2130  SDValue Src = Op.getOperand(0);
2131
2132  assert(Op.getValueType() == MVT::f64);
2133
2134  APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2135  SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2136  SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2137
2138  // TODO: Should this propagate fast-math-flags?
2139
2140  SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2141  SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2142
2143  SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2144
2145  APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2146  SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2147
2148  EVT SetCCVT =
2149      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2150  SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2151
2152  return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2153}
2154
2155SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2156  // FNEARBYINT and FRINT are the same, except in their handling of FP
2157  // exceptions. Those aren't really meaningful for us, and OpenCL only has
2158  // rint, so just treat them as equivalent.
2159  return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2160}
2161
2162// XXX - May require not supporting f32 denormals?
2163
2164// Don't handle v2f16. The extra instructions to scalarize and repack around the
2165// compare and vselect end up producing worse code than scalarizing the whole
2166// operation.
2167SDValue AMDGPUTargetLowering::LowerFROUND_LegalFTRUNC(SDValue Op,
2168                                                      SelectionDAG &DAG) const {
2169  SDLoc SL(Op);
2170  SDValue X = Op.getOperand(0);
2171  EVT VT = Op.getValueType();
2172
2173  SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2174
2175  // TODO: Should this propagate fast-math-flags?
2176
2177  SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2178
2179  SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2180
2181  const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2182  const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2183  const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2184
2185  SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2186
2187  EVT SetCCVT =
2188      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2189
2190  SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2191
2192  SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2193
2194  return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2195}
2196
2197SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2198  SDLoc SL(Op);
2199  SDValue X = Op.getOperand(0);
2200
2201  SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2202
2203  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2204  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2205  const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2206  const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2207  EVT SetCCVT =
2208      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2209
2210  SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2211
2212  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2213
2214  SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2215
2216  const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2217                                       MVT::i64);
2218
2219  SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2220  SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2221                          DAG.getConstant(INT64_C(0x0008000000000000), SL,
2222                                          MVT::i64),
2223                          Exp);
2224
2225  SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2226  SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2227                              DAG.getConstant(0, SL, MVT::i64), Tmp0,
2228                              ISD::SETNE);
2229
2230  SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2231                             D, DAG.getConstant(0, SL, MVT::i64));
2232  SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2233
2234  K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2235  K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2236
2237  SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2238  SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2239  SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2240
2241  SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2242                            ExpEqNegOne,
2243                            DAG.getConstantFP(1.0, SL, MVT::f64),
2244                            DAG.getConstantFP(0.0, SL, MVT::f64));
2245
2246  SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2247
2248  K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2249  K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2250
2251  return K;
2252}
2253
2254SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2255  EVT VT = Op.getValueType();
2256
2257  if (isOperationLegal(ISD::FTRUNC, VT))
2258    return LowerFROUND_LegalFTRUNC(Op, DAG);
2259
2260  if (VT == MVT::f64)
2261    return LowerFROUND64(Op, DAG);
2262
2263  llvm_unreachable("unhandled type");
2264}
2265
2266SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2267  SDLoc SL(Op);
2268  SDValue Src = Op.getOperand(0);
2269
2270  // result = trunc(src);
2271  // if (src < 0.0 && src != result)
2272  //   result += -1.0.
2273
2274  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2275
2276  const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2277  const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2278
2279  EVT SetCCVT =
2280      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2281
2282  SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2283  SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2284  SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2285
2286  SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2287  // TODO: Should this propagate fast-math-flags?
2288  return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2289}
2290
2291SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2292                                        double Log2BaseInverted) const {
2293  EVT VT = Op.getValueType();
2294
2295  SDLoc SL(Op);
2296  SDValue Operand = Op.getOperand(0);
2297  SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2298  SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2299
2300  return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2301}
2302
2303// exp2(M_LOG2E_F * f);
2304SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2305  EVT VT = Op.getValueType();
2306  SDLoc SL(Op);
2307  SDValue Src = Op.getOperand(0);
2308
2309  const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2310  SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2311  return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2312}
2313
2314static bool isCtlzOpc(unsigned Opc) {
2315  return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2316}
2317
2318static bool isCttzOpc(unsigned Opc) {
2319  return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2320}
2321
2322SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2323  SDLoc SL(Op);
2324  SDValue Src = Op.getOperand(0);
2325  bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2326                   Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2327
2328  unsigned ISDOpc, NewOpc;
2329  if (isCtlzOpc(Op.getOpcode())) {
2330    ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2331    NewOpc = AMDGPUISD::FFBH_U32;
2332  } else if (isCttzOpc(Op.getOpcode())) {
2333    ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2334    NewOpc = AMDGPUISD::FFBL_B32;
2335  } else
2336    llvm_unreachable("Unexpected OPCode!!!");
2337
2338
2339  if (ZeroUndef && Src.getValueType() == MVT::i32)
2340    return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2341
2342  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2343
2344  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2345  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2346
2347  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2348  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2349
2350  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2351                                   *DAG.getContext(), MVT::i32);
2352
2353  SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2354  SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2355
2356  SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2357  SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2358
2359  const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2360  SDValue Add, NewOpr;
2361  if (isCtlzOpc(Op.getOpcode())) {
2362    Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2363    // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2364    NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2365  } else {
2366    Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2367    // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2368    NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2369  }
2370
2371  if (!ZeroUndef) {
2372    // Test if the full 64-bit input is zero.
2373
2374    // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2375    // which we probably don't want.
2376    SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2377    SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2378    SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2379
2380    // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2381    // with the same cycles, otherwise it is slower.
2382    // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2383    // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2384
2385    const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2386
2387    // The instruction returns -1 for 0 input, but the defined intrinsic
2388    // behavior is to return the number of bits.
2389    NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2390                         SrcIsZero, Bits32, NewOpr);
2391  }
2392
2393  return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2394}
2395
2396SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2397                                               bool Signed) const {
2398  // Unsigned
2399  // cul2f(ulong u)
2400  //{
2401  //  uint lz = clz(u);
2402  //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2403  //  u = (u << lz) & 0x7fffffffffffffffUL;
2404  //  ulong t = u & 0xffffffffffUL;
2405  //  uint v = (e << 23) | (uint)(u >> 40);
2406  //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2407  //  return as_float(v + r);
2408  //}
2409  // Signed
2410  // cl2f(long l)
2411  //{
2412  //  long s = l >> 63;
2413  //  float r = cul2f((l + s) ^ s);
2414  //  return s ? -r : r;
2415  //}
2416
2417  SDLoc SL(Op);
2418  SDValue Src = Op.getOperand(0);
2419  SDValue L = Src;
2420
2421  SDValue S;
2422  if (Signed) {
2423    const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2424    S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2425
2426    SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2427    L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2428  }
2429
2430  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2431                                   *DAG.getContext(), MVT::f32);
2432
2433
2434  SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2435  SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2436  SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2437  LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2438
2439  SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2440  SDValue E = DAG.getSelect(SL, MVT::i32,
2441    DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2442    DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2443    ZeroI32);
2444
2445  SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2446    DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2447    DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2448
2449  SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2450                          DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2451
2452  SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2453                             U, DAG.getConstant(40, SL, MVT::i64));
2454
2455  SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2456    DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2457    DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2458
2459  SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2460  SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2461  SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2462
2463  SDValue One = DAG.getConstant(1, SL, MVT::i32);
2464
2465  SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2466
2467  SDValue R = DAG.getSelect(SL, MVT::i32,
2468    RCmp,
2469    One,
2470    DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2471  R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2472  R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2473
2474  if (!Signed)
2475    return R;
2476
2477  SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2478  return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2479}
2480
2481SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2482                                               bool Signed) const {
2483  SDLoc SL(Op);
2484  SDValue Src = Op.getOperand(0);
2485
2486  SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2487
2488  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2489                           DAG.getConstant(0, SL, MVT::i32));
2490  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2491                           DAG.getConstant(1, SL, MVT::i32));
2492
2493  SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2494                              SL, MVT::f64, Hi);
2495
2496  SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2497
2498  SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2499                              DAG.getConstant(32, SL, MVT::i32));
2500  // TODO: Should this propagate fast-math-flags?
2501  return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2502}
2503
2504SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2505                                               SelectionDAG &DAG) const {
2506  // TODO: Factor out code common with LowerSINT_TO_FP.
2507  EVT DestVT = Op.getValueType();
2508  SDValue Src = Op.getOperand(0);
2509  EVT SrcVT = Src.getValueType();
2510
2511  if (SrcVT == MVT::i16) {
2512    if (DestVT == MVT::f16)
2513      return Op;
2514    SDLoc DL(Op);
2515
2516    // Promote src to i32
2517    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2518    return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2519  }
2520
2521  assert(SrcVT == MVT::i64 && "operation should be legal");
2522
2523  if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2524    SDLoc DL(Op);
2525
2526    SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2527    SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2528    SDValue FPRound =
2529        DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2530
2531    return FPRound;
2532  }
2533
2534  if (DestVT == MVT::f32)
2535    return LowerINT_TO_FP32(Op, DAG, false);
2536
2537  assert(DestVT == MVT::f64);
2538  return LowerINT_TO_FP64(Op, DAG, false);
2539}
2540
2541SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2542                                              SelectionDAG &DAG) const {
2543  EVT DestVT = Op.getValueType();
2544
2545  SDValue Src = Op.getOperand(0);
2546  EVT SrcVT = Src.getValueType();
2547
2548  if (SrcVT == MVT::i16) {
2549    if (DestVT == MVT::f16)
2550      return Op;
2551
2552    SDLoc DL(Op);
2553    // Promote src to i32
2554    SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2555    return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2556  }
2557
2558  assert(SrcVT == MVT::i64 && "operation should be legal");
2559
2560  // TODO: Factor out code common with LowerUINT_TO_FP.
2561
2562  if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2563    SDLoc DL(Op);
2564    SDValue Src = Op.getOperand(0);
2565
2566    SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2567    SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2568    SDValue FPRound =
2569        DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2570
2571    return FPRound;
2572  }
2573
2574  if (DestVT == MVT::f32)
2575    return LowerINT_TO_FP32(Op, DAG, true);
2576
2577  assert(DestVT == MVT::f64);
2578  return LowerINT_TO_FP64(Op, DAG, true);
2579}
2580
2581SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2582                                               bool Signed) const {
2583  SDLoc SL(Op);
2584
2585  SDValue Src = Op.getOperand(0);
2586
2587  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2588
2589  SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2590                                 MVT::f64);
2591  SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2592                                 MVT::f64);
2593  // TODO: Should this propagate fast-math-flags?
2594  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2595
2596  SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2597
2598
2599  SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2600
2601  SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2602                           MVT::i32, FloorMul);
2603  SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2604
2605  SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2606
2607  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2608}
2609
2610SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2611  SDLoc DL(Op);
2612  SDValue N0 = Op.getOperand(0);
2613
2614  // Convert to target node to get known bits
2615  if (N0.getValueType() == MVT::f32)
2616    return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2617
2618  if (getTargetMachine().Options.UnsafeFPMath) {
2619    // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2620    return SDValue();
2621  }
2622
2623  assert(N0.getSimpleValueType() == MVT::f64);
2624
2625  // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2626  const unsigned ExpMask = 0x7ff;
2627  const unsigned ExpBiasf64 = 1023;
2628  const unsigned ExpBiasf16 = 15;
2629  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2630  SDValue One = DAG.getConstant(1, DL, MVT::i32);
2631  SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2632  SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2633                           DAG.getConstant(32, DL, MVT::i64));
2634  UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2635  U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2636  SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2637                          DAG.getConstant(20, DL, MVT::i64));
2638  E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2639                  DAG.getConstant(ExpMask, DL, MVT::i32));
2640  // Subtract the fp64 exponent bias (1023) to get the real exponent and
2641  // add the f16 bias (15) to get the biased exponent for the f16 format.
2642  E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2643                  DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2644
2645  SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2646                          DAG.getConstant(8, DL, MVT::i32));
2647  M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2648                  DAG.getConstant(0xffe, DL, MVT::i32));
2649
2650  SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2651                                  DAG.getConstant(0x1ff, DL, MVT::i32));
2652  MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2653
2654  SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2655  M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2656
2657  // (M != 0 ? 0x0200 : 0) | 0x7c00;
2658  SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2659      DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2660                      Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2661
2662  // N = M | (E << 12);
2663  SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2664      DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2665                  DAG.getConstant(12, DL, MVT::i32)));
2666
2667  // B = clamp(1-E, 0, 13);
2668  SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2669                                  One, E);
2670  SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2671  B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2672                  DAG.getConstant(13, DL, MVT::i32));
2673
2674  SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2675                                   DAG.getConstant(0x1000, DL, MVT::i32));
2676
2677  SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2678  SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2679  SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2680  D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2681
2682  SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2683  SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2684                              DAG.getConstant(0x7, DL, MVT::i32));
2685  V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2686                  DAG.getConstant(2, DL, MVT::i32));
2687  SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2688                               One, Zero, ISD::SETEQ);
2689  SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2690                               One, Zero, ISD::SETGT);
2691  V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2692  V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2693
2694  V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2695                      DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2696  V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2697                      I, V, ISD::SETEQ);
2698
2699  // Extract the sign bit.
2700  SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2701                            DAG.getConstant(16, DL, MVT::i32));
2702  Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2703                     DAG.getConstant(0x8000, DL, MVT::i32));
2704
2705  V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2706  return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2707}
2708
2709SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2710                                              SelectionDAG &DAG) const {
2711  SDValue Src = Op.getOperand(0);
2712
2713  // TODO: Factor out code common with LowerFP_TO_UINT.
2714
2715  EVT SrcVT = Src.getValueType();
2716  if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2717    SDLoc DL(Op);
2718
2719    SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2720    SDValue FpToInt32 =
2721        DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2722
2723    return FpToInt32;
2724  }
2725
2726  if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2727    return LowerFP64_TO_INT(Op, DAG, true);
2728
2729  return SDValue();
2730}
2731
2732SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2733                                              SelectionDAG &DAG) const {
2734  SDValue Src = Op.getOperand(0);
2735
2736  // TODO: Factor out code common with LowerFP_TO_SINT.
2737
2738  EVT SrcVT = Src.getValueType();
2739  if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2740    SDLoc DL(Op);
2741
2742    SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2743    SDValue FpToInt32 =
2744        DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2745
2746    return FpToInt32;
2747  }
2748
2749  if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2750    return LowerFP64_TO_INT(Op, DAG, false);
2751
2752  return SDValue();
2753}
2754
2755SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2756                                                     SelectionDAG &DAG) const {
2757  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2758  MVT VT = Op.getSimpleValueType();
2759  MVT ScalarVT = VT.getScalarType();
2760
2761  assert(VT.isVector());
2762
2763  SDValue Src = Op.getOperand(0);
2764  SDLoc DL(Op);
2765
2766  // TODO: Don't scalarize on Evergreen?
2767  unsigned NElts = VT.getVectorNumElements();
2768  SmallVector<SDValue, 8> Args;
2769  DAG.ExtractVectorElements(Src, Args, 0, NElts);
2770
2771  SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2772  for (unsigned I = 0; I < NElts; ++I)
2773    Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2774
2775  return DAG.getBuildVector(VT, DL, Args);
2776}
2777
2778//===----------------------------------------------------------------------===//
2779// Custom DAG optimizations
2780//===----------------------------------------------------------------------===//
2781
2782static bool isU24(SDValue Op, SelectionDAG &DAG) {
2783  return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2784}
2785
2786static bool isI24(SDValue Op, SelectionDAG &DAG) {
2787  EVT VT = Op.getValueType();
2788  return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2789                                     // as unsigned 24-bit values.
2790    AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2791}
2792
2793static SDValue simplifyI24(SDNode *Node24,
2794                           TargetLowering::DAGCombinerInfo &DCI) {
2795  SelectionDAG &DAG = DCI.DAG;
2796  bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2797
2798  SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2799  SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2800  unsigned NewOpcode = Node24->getOpcode();
2801  if (IsIntrin) {
2802    unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2803    NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2804      AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2805  }
2806
2807  APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2808
2809  // First try to simplify using GetDemandedBits which allows the operands to
2810  // have other uses, but will only perform simplifications that involve
2811  // bypassing some nodes for this user.
2812  SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2813  SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2814  if (DemandedLHS || DemandedRHS)
2815    return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2816                       DemandedLHS ? DemandedLHS : LHS,
2817                       DemandedRHS ? DemandedRHS : RHS);
2818
2819  // Now try SimplifyDemandedBits which can simplify the nodes used by our
2820  // operands if this node is the only user.
2821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2822  if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2823    return SDValue(Node24, 0);
2824  if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2825    return SDValue(Node24, 0);
2826
2827  return SDValue();
2828}
2829
2830template <typename IntTy>
2831static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2832                               uint32_t Width, const SDLoc &DL) {
2833  if (Width + Offset < 32) {
2834    uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2835    IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2836    return DAG.getConstant(Result, DL, MVT::i32);
2837  }
2838
2839  return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2840}
2841
2842static bool hasVolatileUser(SDNode *Val) {
2843  for (SDNode *U : Val->uses()) {
2844    if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2845      if (M->isVolatile())
2846        return true;
2847    }
2848  }
2849
2850  return false;
2851}
2852
2853bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2854  // i32 vectors are the canonical memory type.
2855  if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2856    return false;
2857
2858  if (!VT.isByteSized())
2859    return false;
2860
2861  unsigned Size = VT.getStoreSize();
2862
2863  if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2864    return false;
2865
2866  if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2867    return false;
2868
2869  return true;
2870}
2871
2872// Replace load of an illegal type with a store of a bitcast to a friendlier
2873// type.
2874SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2875                                                 DAGCombinerInfo &DCI) const {
2876  if (!DCI.isBeforeLegalize())
2877    return SDValue();
2878
2879  LoadSDNode *LN = cast<LoadSDNode>(N);
2880  if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2881    return SDValue();
2882
2883  SDLoc SL(N);
2884  SelectionDAG &DAG = DCI.DAG;
2885  EVT VT = LN->getMemoryVT();
2886
2887  unsigned Size = VT.getStoreSize();
2888  unsigned Align = LN->getAlignment();
2889  if (Align < Size && isTypeLegal(VT)) {
2890    bool IsFast;
2891    unsigned AS = LN->getAddressSpace();
2892
2893    // Expand unaligned loads earlier than legalization. Due to visitation order
2894    // problems during legalization, the emitted instructions to pack and unpack
2895    // the bytes again are not eliminated in the case of an unaligned copy.
2896    if (!allowsMisalignedMemoryAccesses(
2897            VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2898      SDValue Ops[2];
2899
2900      if (VT.isVector())
2901        std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
2902      else
2903        std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2904
2905      return DAG.getMergeValues(Ops, SDLoc(N));
2906    }
2907
2908    if (!IsFast)
2909      return SDValue();
2910  }
2911
2912  if (!shouldCombineMemoryType(VT))
2913    return SDValue();
2914
2915  EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2916
2917  SDValue NewLoad
2918    = DAG.getLoad(NewVT, SL, LN->getChain(),
2919                  LN->getBasePtr(), LN->getMemOperand());
2920
2921  SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2922  DCI.CombineTo(N, BC, NewLoad.getValue(1));
2923  return SDValue(N, 0);
2924}
2925
2926// Replace store of an illegal type with a store of a bitcast to a friendlier
2927// type.
2928SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2929                                                  DAGCombinerInfo &DCI) const {
2930  if (!DCI.isBeforeLegalize())
2931    return SDValue();
2932
2933  StoreSDNode *SN = cast<StoreSDNode>(N);
2934  if (SN->isVolatile() || !ISD::isNormalStore(SN))
2935    return SDValue();
2936
2937  EVT VT = SN->getMemoryVT();
2938  unsigned Size = VT.getStoreSize();
2939
2940  SDLoc SL(N);
2941  SelectionDAG &DAG = DCI.DAG;
2942  unsigned Align = SN->getAlignment();
2943  if (Align < Size && isTypeLegal(VT)) {
2944    bool IsFast;
2945    unsigned AS = SN->getAddressSpace();
2946
2947    // Expand unaligned stores earlier than legalization. Due to visitation
2948    // order problems during legalization, the emitted instructions to pack and
2949    // unpack the bytes again are not eliminated in the case of an unaligned
2950    // copy.
2951    if (!allowsMisalignedMemoryAccesses(
2952            VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
2953      if (VT.isVector())
2954        return scalarizeVectorStore(SN, DAG);
2955
2956      return expandUnalignedStore(SN, DAG);
2957    }
2958
2959    if (!IsFast)
2960      return SDValue();
2961  }
2962
2963  if (!shouldCombineMemoryType(VT))
2964    return SDValue();
2965
2966  EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2967  SDValue Val = SN->getValue();
2968
2969  //DCI.AddToWorklist(Val.getNode());
2970
2971  bool OtherUses = !Val.hasOneUse();
2972  SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2973  if (OtherUses) {
2974    SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2975    DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2976  }
2977
2978  return DAG.getStore(SN->getChain(), SL, CastVal,
2979                      SN->getBasePtr(), SN->getMemOperand());
2980}
2981
2982// FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2983// but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2984// issues.
2985SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2986                                                        DAGCombinerInfo &DCI) const {
2987  SelectionDAG &DAG = DCI.DAG;
2988  SDValue N0 = N->getOperand(0);
2989
2990  // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2991  //     (vt2 (truncate (assertzext vt0:x, vt1)))
2992  if (N0.getOpcode() == ISD::TRUNCATE) {
2993    SDValue N1 = N->getOperand(1);
2994    EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2995    SDLoc SL(N);
2996
2997    SDValue Src = N0.getOperand(0);
2998    EVT SrcVT = Src.getValueType();
2999    if (SrcVT.bitsGE(ExtVT)) {
3000      SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3001      return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3002    }
3003  }
3004
3005  return SDValue();
3006}
3007
3008SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3009  SDNode *N, DAGCombinerInfo &DCI) const {
3010  unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3011  switch (IID) {
3012  case Intrinsic::amdgcn_mul_i24:
3013  case Intrinsic::amdgcn_mul_u24:
3014    return simplifyI24(N, DCI);
3015  default:
3016    return SDValue();
3017  }
3018}
3019
3020/// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3021/// binary operation \p Opc to it with the corresponding constant operands.
3022SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3023  DAGCombinerInfo &DCI, const SDLoc &SL,
3024  unsigned Opc, SDValue LHS,
3025  uint32_t ValLo, uint32_t ValHi) const {
3026  SelectionDAG &DAG = DCI.DAG;
3027  SDValue Lo, Hi;
3028  std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3029
3030  SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3031  SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3032
3033  SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3034  SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3035
3036  // Re-visit the ands. It's possible we eliminated one of them and it could
3037  // simplify the vector.
3038  DCI.AddToWorklist(Lo.getNode());
3039  DCI.AddToWorklist(Hi.getNode());
3040
3041  SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3042  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3043}
3044
3045SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3046                                                DAGCombinerInfo &DCI) const {
3047  EVT VT = N->getValueType(0);
3048
3049  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3050  if (!RHS)
3051    return SDValue();
3052
3053  SDValue LHS = N->getOperand(0);
3054  unsigned RHSVal = RHS->getZExtValue();
3055  if (!RHSVal)
3056    return LHS;
3057
3058  SDLoc SL(N);
3059  SelectionDAG &DAG = DCI.DAG;
3060
3061  switch (LHS->getOpcode()) {
3062  default:
3063    break;
3064  case ISD::ZERO_EXTEND:
3065  case ISD::SIGN_EXTEND:
3066  case ISD::ANY_EXTEND: {
3067    SDValue X = LHS->getOperand(0);
3068
3069    if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3070        isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3071      // Prefer build_vector as the canonical form if packed types are legal.
3072      // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3073      SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3074       { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3075      return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3076    }
3077
3078    // shl (ext x) => zext (shl x), if shift does not overflow int
3079    if (VT != MVT::i64)
3080      break;
3081    KnownBits Known = DAG.computeKnownBits(X);
3082    unsigned LZ = Known.countMinLeadingZeros();
3083    if (LZ < RHSVal)
3084      break;
3085    EVT XVT = X.getValueType();
3086    SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3087    return DAG.getZExtOrTrunc(Shl, SL, VT);
3088  }
3089  }
3090
3091  if (VT != MVT::i64)
3092    return SDValue();
3093
3094  // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3095
3096  // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3097  // common case, splitting this into a move and a 32-bit shift is faster and
3098  // the same code size.
3099  if (RHSVal < 32)
3100    return SDValue();
3101
3102  SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3103
3104  SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3105  SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3106
3107  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3108
3109  SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3110  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3111}
3112
3113SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3114                                                DAGCombinerInfo &DCI) const {
3115  if (N->getValueType(0) != MVT::i64)
3116    return SDValue();
3117
3118  const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3119  if (!RHS)
3120    return SDValue();
3121
3122  SelectionDAG &DAG = DCI.DAG;
3123  SDLoc SL(N);
3124  unsigned RHSVal = RHS->getZExtValue();
3125
3126  // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3127  if (RHSVal == 32) {
3128    SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3129    SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3130                                   DAG.getConstant(31, SL, MVT::i32));
3131
3132    SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3133    return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3134  }
3135
3136  // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3137  if (RHSVal == 63) {
3138    SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3139    SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3140                                   DAG.getConstant(31, SL, MVT::i32));
3141    SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3142    return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3143  }
3144
3145  return SDValue();
3146}
3147
3148SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3149                                                DAGCombinerInfo &DCI) const {
3150  auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3151  if (!RHS)
3152    return SDValue();
3153
3154  EVT VT = N->getValueType(0);
3155  SDValue LHS = N->getOperand(0);
3156  unsigned ShiftAmt = RHS->getZExtValue();
3157  SelectionDAG &DAG = DCI.DAG;
3158  SDLoc SL(N);
3159
3160  // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3161  // this improves the ability to match BFE patterns in isel.
3162  if (LHS.getOpcode() == ISD::AND) {
3163    if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3164      if (Mask->getAPIntValue().isShiftedMask() &&
3165          Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3166        return DAG.getNode(
3167            ISD::AND, SL, VT,
3168            DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3169            DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3170      }
3171    }
3172  }
3173
3174  if (VT != MVT::i64)
3175    return SDValue();
3176
3177  if (ShiftAmt < 32)
3178    return SDValue();
3179
3180  // srl i64:x, C for C >= 32
3181  // =>
3182  //   build_pair (srl hi_32(x), C - 32), 0
3183  SDValue One = DAG.getConstant(1, SL, MVT::i32);
3184  SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3185
3186  SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3187  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3188
3189  SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3190  SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3191
3192  SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3193
3194  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3195}
3196
3197SDValue AMDGPUTargetLowering::performTruncateCombine(
3198  SDNode *N, DAGCombinerInfo &DCI) const {
3199  SDLoc SL(N);
3200  SelectionDAG &DAG = DCI.DAG;
3201  EVT VT = N->getValueType(0);
3202  SDValue Src = N->getOperand(0);
3203
3204  // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3205  if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3206    SDValue Vec = Src.getOperand(0);
3207    if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3208      SDValue Elt0 = Vec.getOperand(0);
3209      EVT EltVT = Elt0.getValueType();
3210      if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3211        if (EltVT.isFloatingPoint()) {
3212          Elt0 = DAG.getNode(ISD::BITCAST, SL,
3213                             EltVT.changeTypeToInteger(), Elt0);
3214        }
3215
3216        return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3217      }
3218    }
3219  }
3220
3221  // Equivalent of above for accessing the high element of a vector as an
3222  // integer operation.
3223  // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3224  if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3225    if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3226      if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3227        SDValue BV = stripBitcast(Src.getOperand(0));
3228        if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3229            BV.getValueType().getVectorNumElements() == 2) {
3230          SDValue SrcElt = BV.getOperand(1);
3231          EVT SrcEltVT = SrcElt.getValueType();
3232          if (SrcEltVT.isFloatingPoint()) {
3233            SrcElt = DAG.getNode(ISD::BITCAST, SL,
3234                                 SrcEltVT.changeTypeToInteger(), SrcElt);
3235          }
3236
3237          return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3238        }
3239      }
3240    }
3241  }
3242
3243  // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3244  //
3245  // i16 (trunc (srl i64:x, K)), K <= 16 ->
3246  //     i16 (trunc (srl (i32 (trunc x), K)))
3247  if (VT.getScalarSizeInBits() < 32) {
3248    EVT SrcVT = Src.getValueType();
3249    if (SrcVT.getScalarSizeInBits() > 32 &&
3250        (Src.getOpcode() == ISD::SRL ||
3251         Src.getOpcode() == ISD::SRA ||
3252         Src.getOpcode() == ISD::SHL)) {
3253      SDValue Amt = Src.getOperand(1);
3254      KnownBits Known = DAG.computeKnownBits(Amt);
3255      unsigned Size = VT.getScalarSizeInBits();
3256      if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3257          (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3258        EVT MidVT = VT.isVector() ?
3259          EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3260                           VT.getVectorNumElements()) : MVT::i32;
3261
3262        EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3263        SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3264                                    Src.getOperand(0));
3265        DCI.AddToWorklist(Trunc.getNode());
3266
3267        if (Amt.getValueType() != NewShiftVT) {
3268          Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3269          DCI.AddToWorklist(Amt.getNode());
3270        }
3271
3272        SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3273                                          Trunc, Amt);
3274        return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3275      }
3276    }
3277  }
3278
3279  return SDValue();
3280}
3281
3282// We need to specifically handle i64 mul here to avoid unnecessary conversion
3283// instructions. If we only match on the legalized i64 mul expansion,
3284// SimplifyDemandedBits will be unable to remove them because there will be
3285// multiple uses due to the separate mul + mulh[su].
3286static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3287                        SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3288  if (Size <= 32) {
3289    unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3290    return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3291  }
3292
3293  // Because we want to eliminate extension instructions before the
3294  // operation, we need to create a single user here (i.e. not the separate
3295  // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3296
3297  unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3298
3299  SDValue Mul = DAG.getNode(MulOpc, SL,
3300                            DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3301
3302  return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3303                     Mul.getValue(0), Mul.getValue(1));
3304}
3305
3306SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3307                                                DAGCombinerInfo &DCI) const {
3308  EVT VT = N->getValueType(0);
3309
3310  unsigned Size = VT.getSizeInBits();
3311  if (VT.isVector() || Size > 64)
3312    return SDValue();
3313
3314  // There are i16 integer mul/mad.
3315  if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3316    return SDValue();
3317
3318  SelectionDAG &DAG = DCI.DAG;
3319  SDLoc DL(N);
3320
3321  SDValue N0 = N->getOperand(0);
3322  SDValue N1 = N->getOperand(1);
3323
3324  // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3325  // in the source into any_extends if the result of the mul is truncated. Since
3326  // we can assume the high bits are whatever we want, use the underlying value
3327  // to avoid the unknown high bits from interfering.
3328  if (N0.getOpcode() == ISD::ANY_EXTEND)
3329    N0 = N0.getOperand(0);
3330
3331  if (N1.getOpcode() == ISD::ANY_EXTEND)
3332    N1 = N1.getOperand(0);
3333
3334  SDValue Mul;
3335
3336  if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3337    N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3338    N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3339    Mul = getMul24(DAG, DL, N0, N1, Size, false);
3340  } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3341    N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3342    N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3343    Mul = getMul24(DAG, DL, N0, N1, Size, true);
3344  } else {
3345    return SDValue();
3346  }
3347
3348  // We need to use sext even for MUL_U24, because MUL_U24 is used
3349  // for signed multiply of 8 and 16-bit types.
3350  return DAG.getSExtOrTrunc(Mul, DL, VT);
3351}
3352
3353SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3354                                                  DAGCombinerInfo &DCI) const {
3355  EVT VT = N->getValueType(0);
3356
3357  if (!Subtarget->hasMulI24() || VT.isVector())
3358    return SDValue();
3359
3360  SelectionDAG &DAG = DCI.DAG;
3361  SDLoc DL(N);
3362
3363  SDValue N0 = N->getOperand(0);
3364  SDValue N1 = N->getOperand(1);
3365
3366  if (!isI24(N0, DAG) || !isI24(N1, DAG))
3367    return SDValue();
3368
3369  N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3370  N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3371
3372  SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3373  DCI.AddToWorklist(Mulhi.getNode());
3374  return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3375}
3376
3377SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3378                                                  DAGCombinerInfo &DCI) const {
3379  EVT VT = N->getValueType(0);
3380
3381  if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3382    return SDValue();
3383
3384  SelectionDAG &DAG = DCI.DAG;
3385  SDLoc DL(N);
3386
3387  SDValue N0 = N->getOperand(0);
3388  SDValue N1 = N->getOperand(1);
3389
3390  if (!isU24(N0, DAG) || !isU24(N1, DAG))
3391    return SDValue();
3392
3393  N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3394  N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3395
3396  SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3397  DCI.AddToWorklist(Mulhi.getNode());
3398  return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3399}
3400
3401SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3402  SDNode *N, DAGCombinerInfo &DCI) const {
3403  SelectionDAG &DAG = DCI.DAG;
3404
3405  // Simplify demanded bits before splitting into multiple users.
3406  if (SDValue V = simplifyI24(N, DCI))
3407    return V;
3408
3409  SDValue N0 = N->getOperand(0);
3410  SDValue N1 = N->getOperand(1);
3411
3412  bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3413
3414  unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3415  unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3416
3417  SDLoc SL(N);
3418
3419  SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3420  SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3421  return DAG.getMergeValues({ MulLo, MulHi }, SL);
3422}
3423
3424static bool isNegativeOne(SDValue Val) {
3425  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3426    return C->isAllOnesValue();
3427  return false;
3428}
3429
3430SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3431                                          SDValue Op,
3432                                          const SDLoc &DL,
3433                                          unsigned Opc) const {
3434  EVT VT = Op.getValueType();
3435  EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3436  if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3437                              LegalVT != MVT::i16))
3438    return SDValue();
3439
3440  if (VT != MVT::i32)
3441    Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3442
3443  SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3444  if (VT != MVT::i32)
3445    FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3446
3447  return FFBX;
3448}
3449
3450// The native instructions return -1 on 0 input. Optimize out a select that
3451// produces -1 on 0.
3452//
3453// TODO: If zero is not undef, we could also do this if the output is compared
3454// against the bitwidth.
3455//
3456// TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3457SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3458                                                 SDValue LHS, SDValue RHS,
3459                                                 DAGCombinerInfo &DCI) const {
3460  ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3461  if (!CmpRhs || !CmpRhs->isNullValue())
3462    return SDValue();
3463
3464  SelectionDAG &DAG = DCI.DAG;
3465  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3466  SDValue CmpLHS = Cond.getOperand(0);
3467
3468  unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3469                                           AMDGPUISD::FFBH_U32;
3470
3471  // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3472  // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3473  if (CCOpcode == ISD::SETEQ &&
3474      (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3475      RHS.getOperand(0) == CmpLHS &&
3476      isNegativeOne(LHS)) {
3477    return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3478  }
3479
3480  // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3481  // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3482  if (CCOpcode == ISD::SETNE &&
3483      (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3484      LHS.getOperand(0) == CmpLHS &&
3485      isNegativeOne(RHS)) {
3486    return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3487  }
3488
3489  return SDValue();
3490}
3491
3492static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3493                                         unsigned Op,
3494                                         const SDLoc &SL,
3495                                         SDValue Cond,
3496                                         SDValue N1,
3497                                         SDValue N2) {
3498  SelectionDAG &DAG = DCI.DAG;
3499  EVT VT = N1.getValueType();
3500
3501  SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3502                                  N1.getOperand(0), N2.getOperand(0));
3503  DCI.AddToWorklist(NewSelect.getNode());
3504  return DAG.getNode(Op, SL, VT, NewSelect);
3505}
3506
3507// Pull a free FP operation out of a select so it may fold into uses.
3508//
3509// select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3510// select c, (fneg x), k -> fneg (select c, x, (fneg k))
3511//
3512// select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3513// select c, (fabs x), +k -> fabs (select c, x, k)
3514static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3515                                    SDValue N) {
3516  SelectionDAG &DAG = DCI.DAG;
3517  SDValue Cond = N.getOperand(0);
3518  SDValue LHS = N.getOperand(1);
3519  SDValue RHS = N.getOperand(2);
3520
3521  EVT VT = N.getValueType();
3522  if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3523      (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3524    return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3525                                     SDLoc(N), Cond, LHS, RHS);
3526  }
3527
3528  bool Inv = false;
3529  if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3530    std::swap(LHS, RHS);
3531    Inv = true;
3532  }
3533
3534  // TODO: Support vector constants.
3535  ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3536  if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3537    SDLoc SL(N);
3538    // If one side is an fneg/fabs and the other is a constant, we can push the
3539    // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3540    SDValue NewLHS = LHS.getOperand(0);
3541    SDValue NewRHS = RHS;
3542
3543    // Careful: if the neg can be folded up, don't try to pull it back down.
3544    bool ShouldFoldNeg = true;
3545
3546    if (NewLHS.hasOneUse()) {
3547      unsigned Opc = NewLHS.getOpcode();
3548      if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3549        ShouldFoldNeg = false;
3550      if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3551        ShouldFoldNeg = false;
3552    }
3553
3554    if (ShouldFoldNeg) {
3555      if (LHS.getOpcode() == ISD::FNEG)
3556        NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3557      else if (CRHS->isNegative())
3558        return SDValue();
3559
3560      if (Inv)
3561        std::swap(NewLHS, NewRHS);
3562
3563      SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3564                                      Cond, NewLHS, NewRHS);
3565      DCI.AddToWorklist(NewSelect.getNode());
3566      return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3567    }
3568  }
3569
3570  return SDValue();
3571}
3572
3573
3574SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3575                                                   DAGCombinerInfo &DCI) const {
3576  if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3577    return Folded;
3578
3579  SDValue Cond = N->getOperand(0);
3580  if (Cond.getOpcode() != ISD::SETCC)
3581    return SDValue();
3582
3583  EVT VT = N->getValueType(0);
3584  SDValue LHS = Cond.getOperand(0);
3585  SDValue RHS = Cond.getOperand(1);
3586  SDValue CC = Cond.getOperand(2);
3587
3588  SDValue True = N->getOperand(1);
3589  SDValue False = N->getOperand(2);
3590
3591  if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3592    SelectionDAG &DAG = DCI.DAG;
3593    if (DAG.isConstantValueOfAnyType(True) &&
3594        !DAG.isConstantValueOfAnyType(False)) {
3595      // Swap cmp + select pair to move constant to false input.
3596      // This will allow using VOPC cndmasks more often.
3597      // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3598
3599      SDLoc SL(N);
3600      ISD::CondCode NewCC =
3601          getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3602
3603      SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3604      return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3605    }
3606
3607    if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3608      SDValue MinMax
3609        = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3610      // Revisit this node so we can catch min3/max3/med3 patterns.
3611      //DCI.AddToWorklist(MinMax.getNode());
3612      return MinMax;
3613    }
3614  }
3615
3616  // There's no reason to not do this if the condition has other uses.
3617  return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3618}
3619
3620static bool isInv2Pi(const APFloat &APF) {
3621  static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3622  static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3623  static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3624
3625  return APF.bitwiseIsEqual(KF16) ||
3626         APF.bitwiseIsEqual(KF32) ||
3627         APF.bitwiseIsEqual(KF64);
3628}
3629
3630// 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3631// additional cost to negate them.
3632bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3633  if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3634    if (C->isZero() && !C->isNegative())
3635      return true;
3636
3637    if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3638      return true;
3639  }
3640
3641  return false;
3642}
3643
3644static unsigned inverseMinMax(unsigned Opc) {
3645  switch (Opc) {
3646  case ISD::FMAXNUM:
3647    return ISD::FMINNUM;
3648  case ISD::FMINNUM:
3649    return ISD::FMAXNUM;
3650  case ISD::FMAXNUM_IEEE:
3651    return ISD::FMINNUM_IEEE;
3652  case ISD::FMINNUM_IEEE:
3653    return ISD::FMAXNUM_IEEE;
3654  case AMDGPUISD::FMAX_LEGACY:
3655    return AMDGPUISD::FMIN_LEGACY;
3656  case AMDGPUISD::FMIN_LEGACY:
3657    return  AMDGPUISD::FMAX_LEGACY;
3658  default:
3659    llvm_unreachable("invalid min/max opcode");
3660  }
3661}
3662
3663SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3664                                                 DAGCombinerInfo &DCI) const {
3665  SelectionDAG &DAG = DCI.DAG;
3666  SDValue N0 = N->getOperand(0);
3667  EVT VT = N->getValueType(0);
3668
3669  unsigned Opc = N0.getOpcode();
3670
3671  // If the input has multiple uses and we can either fold the negate down, or
3672  // the other uses cannot, give up. This both prevents unprofitable
3673  // transformations and infinite loops: we won't repeatedly try to fold around
3674  // a negate that has no 'good' form.
3675  if (N0.hasOneUse()) {
3676    // This may be able to fold into the source, but at a code size cost. Don't
3677    // fold if the fold into the user is free.
3678    if (allUsesHaveSourceMods(N, 0))
3679      return SDValue();
3680  } else {
3681    if (fnegFoldsIntoOp(Opc) &&
3682        (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3683      return SDValue();
3684  }
3685
3686  SDLoc SL(N);
3687  switch (Opc) {
3688  case ISD::FADD: {
3689    if (!mayIgnoreSignedZero(N0))
3690      return SDValue();
3691
3692    // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3693    SDValue LHS = N0.getOperand(0);
3694    SDValue RHS = N0.getOperand(1);
3695
3696    if (LHS.getOpcode() != ISD::FNEG)
3697      LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3698    else
3699      LHS = LHS.getOperand(0);
3700
3701    if (RHS.getOpcode() != ISD::FNEG)
3702      RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3703    else
3704      RHS = RHS.getOperand(0);
3705
3706    SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3707    if (Res.getOpcode() != ISD::FADD)
3708      return SDValue(); // Op got folded away.
3709    if (!N0.hasOneUse())
3710      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3711    return Res;
3712  }
3713  case ISD::FMUL:
3714  case AMDGPUISD::FMUL_LEGACY: {
3715    // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3716    // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3717    SDValue LHS = N0.getOperand(0);
3718    SDValue RHS = N0.getOperand(1);
3719
3720    if (LHS.getOpcode() == ISD::FNEG)
3721      LHS = LHS.getOperand(0);
3722    else if (RHS.getOpcode() == ISD::FNEG)
3723      RHS = RHS.getOperand(0);
3724    else
3725      RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3726
3727    SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3728    if (Res.getOpcode() != Opc)
3729      return SDValue(); // Op got folded away.
3730    if (!N0.hasOneUse())
3731      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3732    return Res;
3733  }
3734  case ISD::FMA:
3735  case ISD::FMAD: {
3736    if (!mayIgnoreSignedZero(N0))
3737      return SDValue();
3738
3739    // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3740    SDValue LHS = N0.getOperand(0);
3741    SDValue MHS = N0.getOperand(1);
3742    SDValue RHS = N0.getOperand(2);
3743
3744    if (LHS.getOpcode() == ISD::FNEG)
3745      LHS = LHS.getOperand(0);
3746    else if (MHS.getOpcode() == ISD::FNEG)
3747      MHS = MHS.getOperand(0);
3748    else
3749      MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3750
3751    if (RHS.getOpcode() != ISD::FNEG)
3752      RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3753    else
3754      RHS = RHS.getOperand(0);
3755
3756    SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3757    if (Res.getOpcode() != Opc)
3758      return SDValue(); // Op got folded away.
3759    if (!N0.hasOneUse())
3760      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3761    return Res;
3762  }
3763  case ISD::FMAXNUM:
3764  case ISD::FMINNUM:
3765  case ISD::FMAXNUM_IEEE:
3766  case ISD::FMINNUM_IEEE:
3767  case AMDGPUISD::FMAX_LEGACY:
3768  case AMDGPUISD::FMIN_LEGACY: {
3769    // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3770    // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3771    // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3772    // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3773
3774    SDValue LHS = N0.getOperand(0);
3775    SDValue RHS = N0.getOperand(1);
3776
3777    // 0 doesn't have a negated inline immediate.
3778    // TODO: This constant check should be generalized to other operations.
3779    if (isConstantCostlierToNegate(RHS))
3780      return SDValue();
3781
3782    SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3783    SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3784    unsigned Opposite = inverseMinMax(Opc);
3785
3786    SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3787    if (Res.getOpcode() != Opposite)
3788      return SDValue(); // Op got folded away.
3789    if (!N0.hasOneUse())
3790      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3791    return Res;
3792  }
3793  case AMDGPUISD::FMED3: {
3794    SDValue Ops[3];
3795    for (unsigned I = 0; I < 3; ++I)
3796      Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3797
3798    SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3799    if (Res.getOpcode() != AMDGPUISD::FMED3)
3800      return SDValue(); // Op got folded away.
3801    if (!N0.hasOneUse())
3802      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3803    return Res;
3804  }
3805  case ISD::FP_EXTEND:
3806  case ISD::FTRUNC:
3807  case ISD::FRINT:
3808  case ISD::FNEARBYINT: // XXX - Should fround be handled?
3809  case ISD::FSIN:
3810  case ISD::FCANONICALIZE:
3811  case AMDGPUISD::RCP:
3812  case AMDGPUISD::RCP_LEGACY:
3813  case AMDGPUISD::RCP_IFLAG:
3814  case AMDGPUISD::SIN_HW: {
3815    SDValue CvtSrc = N0.getOperand(0);
3816    if (CvtSrc.getOpcode() == ISD::FNEG) {
3817      // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3818      // (fneg (rcp (fneg x))) -> (rcp x)
3819      return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3820    }
3821
3822    if (!N0.hasOneUse())
3823      return SDValue();
3824
3825    // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3826    // (fneg (rcp x)) -> (rcp (fneg x))
3827    SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3828    return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3829  }
3830  case ISD::FP_ROUND: {
3831    SDValue CvtSrc = N0.getOperand(0);
3832
3833    if (CvtSrc.getOpcode() == ISD::FNEG) {
3834      // (fneg (fp_round (fneg x))) -> (fp_round x)
3835      return DAG.getNode(ISD::FP_ROUND, SL, VT,
3836                         CvtSrc.getOperand(0), N0.getOperand(1));
3837    }
3838
3839    if (!N0.hasOneUse())
3840      return SDValue();
3841
3842    // (fneg (fp_round x)) -> (fp_round (fneg x))
3843    SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3844    return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3845  }
3846  case ISD::FP16_TO_FP: {
3847    // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3848    // f16, but legalization of f16 fneg ends up pulling it out of the source.
3849    // Put the fneg back as a legal source operation that can be matched later.
3850    SDLoc SL(N);
3851
3852    SDValue Src = N0.getOperand(0);
3853    EVT SrcVT = Src.getValueType();
3854
3855    // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3856    SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3857                                  DAG.getConstant(0x8000, SL, SrcVT));
3858    return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3859  }
3860  default:
3861    return SDValue();
3862  }
3863}
3864
3865SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3866                                                 DAGCombinerInfo &DCI) const {
3867  SelectionDAG &DAG = DCI.DAG;
3868  SDValue N0 = N->getOperand(0);
3869
3870  if (!N0.hasOneUse())
3871    return SDValue();
3872
3873  switch (N0.getOpcode()) {
3874  case ISD::FP16_TO_FP: {
3875    assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3876    SDLoc SL(N);
3877    SDValue Src = N0.getOperand(0);
3878    EVT SrcVT = Src.getValueType();
3879
3880    // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3881    SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3882                                  DAG.getConstant(0x7fff, SL, SrcVT));
3883    return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3884  }
3885  default:
3886    return SDValue();
3887  }
3888}
3889
3890SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3891                                                DAGCombinerInfo &DCI) const {
3892  const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3893  if (!CFP)
3894    return SDValue();
3895
3896  // XXX - Should this flush denormals?
3897  const APFloat &Val = CFP->getValueAPF();
3898  APFloat One(Val.getSemantics(), "1.0");
3899  return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3900}
3901
3902SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3903                                                DAGCombinerInfo &DCI) const {
3904  SelectionDAG &DAG = DCI.DAG;
3905  SDLoc DL(N);
3906
3907  switch(N->getOpcode()) {
3908  default:
3909    break;
3910  case ISD::BITCAST: {
3911    EVT DestVT = N->getValueType(0);
3912
3913    // Push casts through vector builds. This helps avoid emitting a large
3914    // number of copies when materializing floating point vector constants.
3915    //
3916    // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3917    //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3918    if (DestVT.isVector()) {
3919      SDValue Src = N->getOperand(0);
3920      if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3921        EVT SrcVT = Src.getValueType();
3922        unsigned NElts = DestVT.getVectorNumElements();
3923
3924        if (SrcVT.getVectorNumElements() == NElts) {
3925          EVT DestEltVT = DestVT.getVectorElementType();
3926
3927          SmallVector<SDValue, 8> CastedElts;
3928          SDLoc SL(N);
3929          for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3930            SDValue Elt = Src.getOperand(I);
3931            CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3932          }
3933
3934          return DAG.getBuildVector(DestVT, SL, CastedElts);
3935        }
3936      }
3937    }
3938
3939    if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3940      break;
3941
3942    // Fold bitcasts of constants.
3943    //
3944    // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3945    // TODO: Generalize and move to DAGCombiner
3946    SDValue Src = N->getOperand(0);
3947    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3948      if (Src.getValueType() == MVT::i64) {
3949        SDLoc SL(N);
3950        uint64_t CVal = C->getZExtValue();
3951        SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3952                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3953                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3954        return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3955      }
3956    }
3957
3958    if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3959      const APInt &Val = C->getValueAPF().bitcastToAPInt();
3960      SDLoc SL(N);
3961      uint64_t CVal = Val.getZExtValue();
3962      SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3963                                DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3964                                DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3965
3966      return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3967    }
3968
3969    break;
3970  }
3971  case ISD::SHL: {
3972    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3973      break;
3974
3975    return performShlCombine(N, DCI);
3976  }
3977  case ISD::SRL: {
3978    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3979      break;
3980
3981    return performSrlCombine(N, DCI);
3982  }
3983  case ISD::SRA: {
3984    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3985      break;
3986
3987    return performSraCombine(N, DCI);
3988  }
3989  case ISD::TRUNCATE:
3990    return performTruncateCombine(N, DCI);
3991  case ISD::MUL:
3992    return performMulCombine(N, DCI);
3993  case ISD::MULHS:
3994    return performMulhsCombine(N, DCI);
3995  case ISD::MULHU:
3996    return performMulhuCombine(N, DCI);
3997  case AMDGPUISD::MUL_I24:
3998  case AMDGPUISD::MUL_U24:
3999  case AMDGPUISD::MULHI_I24:
4000  case AMDGPUISD::MULHI_U24: {
4001    if (SDValue V = simplifyI24(N, DCI))
4002      return V;
4003    return SDValue();
4004  }
4005  case AMDGPUISD::MUL_LOHI_I24:
4006  case AMDGPUISD::MUL_LOHI_U24:
4007    return performMulLoHi24Combine(N, DCI);
4008  case ISD::SELECT:
4009    return performSelectCombine(N, DCI);
4010  case ISD::FNEG:
4011    return performFNegCombine(N, DCI);
4012  case ISD::FABS:
4013    return performFAbsCombine(N, DCI);
4014  case AMDGPUISD::BFE_I32:
4015  case AMDGPUISD::BFE_U32: {
4016    assert(!N->getValueType(0).isVector() &&
4017           "Vector handling of BFE not implemented");
4018    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4019    if (!Width)
4020      break;
4021
4022    uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4023    if (WidthVal == 0)
4024      return DAG.getConstant(0, DL, MVT::i32);
4025
4026    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4027    if (!Offset)
4028      break;
4029
4030    SDValue BitsFrom = N->getOperand(0);
4031    uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4032
4033    bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4034
4035    if (OffsetVal == 0) {
4036      // This is already sign / zero extended, so try to fold away extra BFEs.
4037      unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4038
4039      unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4040      if (OpSignBits >= SignBits)
4041        return BitsFrom;
4042
4043      EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4044      if (Signed) {
4045        // This is a sign_extend_inreg. Replace it to take advantage of existing
4046        // DAG Combines. If not eliminated, we will match back to BFE during
4047        // selection.
4048
4049        // TODO: The sext_inreg of extended types ends, although we can could
4050        // handle them in a single BFE.
4051        return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4052                           DAG.getValueType(SmallVT));
4053      }
4054
4055      return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4056    }
4057
4058    if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4059      if (Signed) {
4060        return constantFoldBFE<int32_t>(DAG,
4061                                        CVal->getSExtValue(),
4062                                        OffsetVal,
4063                                        WidthVal,
4064                                        DL);
4065      }
4066
4067      return constantFoldBFE<uint32_t>(DAG,
4068                                       CVal->getZExtValue(),
4069                                       OffsetVal,
4070                                       WidthVal,
4071                                       DL);
4072    }
4073
4074    if ((OffsetVal + WidthVal) >= 32 &&
4075        !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4076      SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4077      return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4078                         BitsFrom, ShiftVal);
4079    }
4080
4081    if (BitsFrom.hasOneUse()) {
4082      APInt Demanded = APInt::getBitsSet(32,
4083                                         OffsetVal,
4084                                         OffsetVal + WidthVal);
4085
4086      KnownBits Known;
4087      TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4088                                            !DCI.isBeforeLegalizeOps());
4089      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4090      if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4091          TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4092        DCI.CommitTargetLoweringOpt(TLO);
4093      }
4094    }
4095
4096    break;
4097  }
4098  case ISD::LOAD:
4099    return performLoadCombine(N, DCI);
4100  case ISD::STORE:
4101    return performStoreCombine(N, DCI);
4102  case AMDGPUISD::RCP:
4103  case AMDGPUISD::RCP_IFLAG:
4104    return performRcpCombine(N, DCI);
4105  case ISD::AssertZext:
4106  case ISD::AssertSext:
4107    return performAssertSZExtCombine(N, DCI);
4108  case ISD::INTRINSIC_WO_CHAIN:
4109    return performIntrinsicWOChainCombine(N, DCI);
4110  }
4111  return SDValue();
4112}
4113
4114//===----------------------------------------------------------------------===//
4115// Helper functions
4116//===----------------------------------------------------------------------===//
4117
4118SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4119                                                   const TargetRegisterClass *RC,
4120                                                   unsigned Reg, EVT VT,
4121                                                   const SDLoc &SL,
4122                                                   bool RawReg) const {
4123  MachineFunction &MF = DAG.getMachineFunction();
4124  MachineRegisterInfo &MRI = MF.getRegInfo();
4125  unsigned VReg;
4126
4127  if (!MRI.isLiveIn(Reg)) {
4128    VReg = MRI.createVirtualRegister(RC);
4129    MRI.addLiveIn(Reg, VReg);
4130  } else {
4131    VReg = MRI.getLiveInVirtReg(Reg);
4132  }
4133
4134  if (RawReg)
4135    return DAG.getRegister(VReg, VT);
4136
4137  return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4138}
4139
4140// This may be called multiple times, and nothing prevents creating multiple
4141// objects at the same offset. See if we already defined this object.
4142static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4143                                       int64_t Offset) {
4144  for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4145    if (MFI.getObjectOffset(I) == Offset) {
4146      assert(MFI.getObjectSize(I) == Size);
4147      return I;
4148    }
4149  }
4150
4151  return MFI.CreateFixedObject(Size, Offset, true);
4152}
4153
4154SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4155                                                  EVT VT,
4156                                                  const SDLoc &SL,
4157                                                  int64_t Offset) const {
4158  MachineFunction &MF = DAG.getMachineFunction();
4159  MachineFrameInfo &MFI = MF.getFrameInfo();
4160  int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4161
4162  auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4163  SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4164
4165  return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4166                     MachineMemOperand::MODereferenceable |
4167                     MachineMemOperand::MOInvariant);
4168}
4169
4170SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4171                                                   const SDLoc &SL,
4172                                                   SDValue Chain,
4173                                                   SDValue ArgVal,
4174                                                   int64_t Offset) const {
4175  MachineFunction &MF = DAG.getMachineFunction();
4176  MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4177
4178  SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4179  SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4180                               MachineMemOperand::MODereferenceable);
4181  return Store;
4182}
4183
4184SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4185                                             const TargetRegisterClass *RC,
4186                                             EVT VT, const SDLoc &SL,
4187                                             const ArgDescriptor &Arg) const {
4188  assert(Arg && "Attempting to load missing argument");
4189
4190  SDValue V = Arg.isRegister() ?
4191    CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4192    loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4193
4194  if (!Arg.isMasked())
4195    return V;
4196
4197  unsigned Mask = Arg.getMask();
4198  unsigned Shift = countTrailingZeros<unsigned>(Mask);
4199  V = DAG.getNode(ISD::SRL, SL, VT, V,
4200                  DAG.getShiftAmountConstant(Shift, VT, SL));
4201  return DAG.getNode(ISD::AND, SL, VT, V,
4202                     DAG.getConstant(Mask >> Shift, SL, VT));
4203}
4204
4205uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4206    const MachineFunction &MF, const ImplicitParameter Param) const {
4207  const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4208  const AMDGPUSubtarget &ST =
4209      AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4210  unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4211  const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4212  uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4213                       ExplicitArgOffset;
4214  switch (Param) {
4215  case GRID_DIM:
4216    return ArgOffset;
4217  case GRID_OFFSET:
4218    return ArgOffset + 4;
4219  }
4220  llvm_unreachable("unexpected implicit parameter type");
4221}
4222
4223#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4224
4225const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4226  switch ((AMDGPUISD::NodeType)Opcode) {
4227  case AMDGPUISD::FIRST_NUMBER: break;
4228  // AMDIL DAG nodes
4229  NODE_NAME_CASE(UMUL);
4230  NODE_NAME_CASE(BRANCH_COND);
4231
4232  // AMDGPU DAG nodes
4233  NODE_NAME_CASE(IF)
4234  NODE_NAME_CASE(ELSE)
4235  NODE_NAME_CASE(LOOP)
4236  NODE_NAME_CASE(CALL)
4237  NODE_NAME_CASE(TC_RETURN)
4238  NODE_NAME_CASE(TRAP)
4239  NODE_NAME_CASE(RET_FLAG)
4240  NODE_NAME_CASE(RETURN_TO_EPILOG)
4241  NODE_NAME_CASE(ENDPGM)
4242  NODE_NAME_CASE(DWORDADDR)
4243  NODE_NAME_CASE(FRACT)
4244  NODE_NAME_CASE(SETCC)
4245  NODE_NAME_CASE(SETREG)
4246  NODE_NAME_CASE(DENORM_MODE)
4247  NODE_NAME_CASE(FMA_W_CHAIN)
4248  NODE_NAME_CASE(FMUL_W_CHAIN)
4249  NODE_NAME_CASE(CLAMP)
4250  NODE_NAME_CASE(COS_HW)
4251  NODE_NAME_CASE(SIN_HW)
4252  NODE_NAME_CASE(FMAX_LEGACY)
4253  NODE_NAME_CASE(FMIN_LEGACY)
4254  NODE_NAME_CASE(FMAX3)
4255  NODE_NAME_CASE(SMAX3)
4256  NODE_NAME_CASE(UMAX3)
4257  NODE_NAME_CASE(FMIN3)
4258  NODE_NAME_CASE(SMIN3)
4259  NODE_NAME_CASE(UMIN3)
4260  NODE_NAME_CASE(FMED3)
4261  NODE_NAME_CASE(SMED3)
4262  NODE_NAME_CASE(UMED3)
4263  NODE_NAME_CASE(FDOT2)
4264  NODE_NAME_CASE(URECIP)
4265  NODE_NAME_CASE(DIV_SCALE)
4266  NODE_NAME_CASE(DIV_FMAS)
4267  NODE_NAME_CASE(DIV_FIXUP)
4268  NODE_NAME_CASE(FMAD_FTZ)
4269  NODE_NAME_CASE(TRIG_PREOP)
4270  NODE_NAME_CASE(RCP)
4271  NODE_NAME_CASE(RSQ)
4272  NODE_NAME_CASE(RCP_LEGACY)
4273  NODE_NAME_CASE(RSQ_LEGACY)
4274  NODE_NAME_CASE(RCP_IFLAG)
4275  NODE_NAME_CASE(FMUL_LEGACY)
4276  NODE_NAME_CASE(RSQ_CLAMP)
4277  NODE_NAME_CASE(LDEXP)
4278  NODE_NAME_CASE(FP_CLASS)
4279  NODE_NAME_CASE(DOT4)
4280  NODE_NAME_CASE(CARRY)
4281  NODE_NAME_CASE(BORROW)
4282  NODE_NAME_CASE(BFE_U32)
4283  NODE_NAME_CASE(BFE_I32)
4284  NODE_NAME_CASE(BFI)
4285  NODE_NAME_CASE(BFM)
4286  NODE_NAME_CASE(FFBH_U32)
4287  NODE_NAME_CASE(FFBH_I32)
4288  NODE_NAME_CASE(FFBL_B32)
4289  NODE_NAME_CASE(MUL_U24)
4290  NODE_NAME_CASE(MUL_I24)
4291  NODE_NAME_CASE(MULHI_U24)
4292  NODE_NAME_CASE(MULHI_I24)
4293  NODE_NAME_CASE(MUL_LOHI_U24)
4294  NODE_NAME_CASE(MUL_LOHI_I24)
4295  NODE_NAME_CASE(MAD_U24)
4296  NODE_NAME_CASE(MAD_I24)
4297  NODE_NAME_CASE(MAD_I64_I32)
4298  NODE_NAME_CASE(MAD_U64_U32)
4299  NODE_NAME_CASE(PERM)
4300  NODE_NAME_CASE(TEXTURE_FETCH)
4301  NODE_NAME_CASE(EXPORT)
4302  NODE_NAME_CASE(EXPORT_DONE)
4303  NODE_NAME_CASE(R600_EXPORT)
4304  NODE_NAME_CASE(CONST_ADDRESS)
4305  NODE_NAME_CASE(REGISTER_LOAD)
4306  NODE_NAME_CASE(REGISTER_STORE)
4307  NODE_NAME_CASE(SAMPLE)
4308  NODE_NAME_CASE(SAMPLEB)
4309  NODE_NAME_CASE(SAMPLED)
4310  NODE_NAME_CASE(SAMPLEL)
4311  NODE_NAME_CASE(CVT_F32_UBYTE0)
4312  NODE_NAME_CASE(CVT_F32_UBYTE1)
4313  NODE_NAME_CASE(CVT_F32_UBYTE2)
4314  NODE_NAME_CASE(CVT_F32_UBYTE3)
4315  NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4316  NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4317  NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4318  NODE_NAME_CASE(CVT_PK_I16_I32)
4319  NODE_NAME_CASE(CVT_PK_U16_U32)
4320  NODE_NAME_CASE(FP_TO_FP16)
4321  NODE_NAME_CASE(FP16_ZEXT)
4322  NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4323  NODE_NAME_CASE(CONST_DATA_PTR)
4324  NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4325  NODE_NAME_CASE(LDS)
4326  NODE_NAME_CASE(KILL)
4327  NODE_NAME_CASE(DUMMY_CHAIN)
4328  case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4329  NODE_NAME_CASE(INTERP_P1LL_F16)
4330  NODE_NAME_CASE(INTERP_P1LV_F16)
4331  NODE_NAME_CASE(INTERP_P2_F16)
4332  NODE_NAME_CASE(LOAD_D16_HI)
4333  NODE_NAME_CASE(LOAD_D16_LO)
4334  NODE_NAME_CASE(LOAD_D16_HI_I8)
4335  NODE_NAME_CASE(LOAD_D16_HI_U8)
4336  NODE_NAME_CASE(LOAD_D16_LO_I8)
4337  NODE_NAME_CASE(LOAD_D16_LO_U8)
4338  NODE_NAME_CASE(STORE_MSKOR)
4339  NODE_NAME_CASE(LOAD_CONSTANT)
4340  NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4341  NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4342  NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4343  NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4344  NODE_NAME_CASE(DS_ORDERED_COUNT)
4345  NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4346  NODE_NAME_CASE(ATOMIC_INC)
4347  NODE_NAME_CASE(ATOMIC_DEC)
4348  NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4349  NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4350  NODE_NAME_CASE(BUFFER_LOAD)
4351  NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4352  NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4353  NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4354  NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4355  NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4356  NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4357  NODE_NAME_CASE(SBUFFER_LOAD)
4358  NODE_NAME_CASE(BUFFER_STORE)
4359  NODE_NAME_CASE(BUFFER_STORE_BYTE)
4360  NODE_NAME_CASE(BUFFER_STORE_SHORT)
4361  NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4362  NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4363  NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4364  NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4365  NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4366  NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4367  NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4368  NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4369  NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4370  NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4371  NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4372  NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4373  NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4374  NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4375  NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4376  NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4377  NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4378  NODE_NAME_CASE(ATOMIC_PK_FADD)
4379
4380  case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4381  }
4382  return nullptr;
4383}
4384
4385SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4386                                              SelectionDAG &DAG, int Enabled,
4387                                              int &RefinementSteps,
4388                                              bool &UseOneConstNR,
4389                                              bool Reciprocal) const {
4390  EVT VT = Operand.getValueType();
4391
4392  if (VT == MVT::f32) {
4393    RefinementSteps = 0;
4394    return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4395  }
4396
4397  // TODO: There is also f64 rsq instruction, but the documentation is less
4398  // clear on its precision.
4399
4400  return SDValue();
4401}
4402
4403SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4404                                               SelectionDAG &DAG, int Enabled,
4405                                               int &RefinementSteps) const {
4406  EVT VT = Operand.getValueType();
4407
4408  if (VT == MVT::f32) {
4409    // Reciprocal, < 1 ulp error.
4410    //
4411    // This reciprocal approximation converges to < 0.5 ulp error with one
4412    // newton rhapson performed with two fused multiple adds (FMAs).
4413
4414    RefinementSteps = 0;
4415    return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4416  }
4417
4418  // TODO: There is also f64 rcp instruction, but the documentation is less
4419  // clear on its precision.
4420
4421  return SDValue();
4422}
4423
4424void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4425    const SDValue Op, KnownBits &Known,
4426    const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4427
4428  Known.resetAll(); // Don't know anything.
4429
4430  unsigned Opc = Op.getOpcode();
4431
4432  switch (Opc) {
4433  default:
4434    break;
4435  case AMDGPUISD::CARRY:
4436  case AMDGPUISD::BORROW: {
4437    Known.Zero = APInt::getHighBitsSet(32, 31);
4438    break;
4439  }
4440
4441  case AMDGPUISD::BFE_I32:
4442  case AMDGPUISD::BFE_U32: {
4443    ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4444    if (!CWidth)
4445      return;
4446
4447    uint32_t Width = CWidth->getZExtValue() & 0x1f;
4448
4449    if (Opc == AMDGPUISD::BFE_U32)
4450      Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4451
4452    break;
4453  }
4454  case AMDGPUISD::FP_TO_FP16:
4455  case AMDGPUISD::FP16_ZEXT: {
4456    unsigned BitWidth = Known.getBitWidth();
4457
4458    // High bits are zero.
4459    Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4460    break;
4461  }
4462  case AMDGPUISD::MUL_U24:
4463  case AMDGPUISD::MUL_I24: {
4464    KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4465    KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4466    unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4467                      RHSKnown.countMinTrailingZeros();
4468    Known.Zero.setLowBits(std::min(TrailZ, 32u));
4469    // Skip extra check if all bits are known zeros.
4470    if (TrailZ >= 32)
4471      break;
4472
4473    // Truncate to 24 bits.
4474    LHSKnown = LHSKnown.trunc(24);
4475    RHSKnown = RHSKnown.trunc(24);
4476
4477    if (Opc == AMDGPUISD::MUL_I24) {
4478      unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4479      unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4480      unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4481      if (MaxValBits >= 32)
4482        break;
4483      bool LHSNegative = LHSKnown.isNegative();
4484      bool LHSNonNegative = LHSKnown.isNonNegative();
4485      bool LHSPositive = LHSKnown.isStrictlyPositive();
4486      bool RHSNegative = RHSKnown.isNegative();
4487      bool RHSNonNegative = RHSKnown.isNonNegative();
4488      bool RHSPositive = RHSKnown.isStrictlyPositive();
4489
4490      if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4491        Known.Zero.setHighBits(32 - MaxValBits);
4492      else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4493        Known.One.setHighBits(32 - MaxValBits);
4494    } else {
4495      unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4496      unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4497      unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4498      if (MaxValBits >= 32)
4499        break;
4500      Known.Zero.setHighBits(32 - MaxValBits);
4501    }
4502    break;
4503  }
4504  case AMDGPUISD::PERM: {
4505    ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4506    if (!CMask)
4507      return;
4508
4509    KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4510    KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4511    unsigned Sel = CMask->getZExtValue();
4512
4513    for (unsigned I = 0; I < 32; I += 8) {
4514      unsigned SelBits = Sel & 0xff;
4515      if (SelBits < 4) {
4516        SelBits *= 8;
4517        Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4518        Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4519      } else if (SelBits < 7) {
4520        SelBits = (SelBits & 3) * 8;
4521        Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4522        Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4523      } else if (SelBits == 0x0c) {
4524        Known.Zero |= 0xFFull << I;
4525      } else if (SelBits > 0x0c) {
4526        Known.One |= 0xFFull << I;
4527      }
4528      Sel >>= 8;
4529    }
4530    break;
4531  }
4532  case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4533    Known.Zero.setHighBits(24);
4534    break;
4535  }
4536  case AMDGPUISD::BUFFER_LOAD_USHORT: {
4537    Known.Zero.setHighBits(16);
4538    break;
4539  }
4540  case AMDGPUISD::LDS: {
4541    auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4542    unsigned Align = GA->getGlobal()->getAlignment();
4543
4544    Known.Zero.setHighBits(16);
4545    if (Align)
4546      Known.Zero.setLowBits(Log2_32(Align));
4547    break;
4548  }
4549  case ISD::INTRINSIC_WO_CHAIN: {
4550    unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4551    switch (IID) {
4552    case Intrinsic::amdgcn_mbcnt_lo:
4553    case Intrinsic::amdgcn_mbcnt_hi: {
4554      const GCNSubtarget &ST =
4555          DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4556      // These return at most the wavefront size - 1.
4557      unsigned Size = Op.getValueType().getSizeInBits();
4558      Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4559      break;
4560    }
4561    default:
4562      break;
4563    }
4564  }
4565  }
4566}
4567
4568unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4569    SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4570    unsigned Depth) const {
4571  switch (Op.getOpcode()) {
4572  case AMDGPUISD::BFE_I32: {
4573    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4574    if (!Width)
4575      return 1;
4576
4577    unsigned SignBits = 32 - Width->getZExtValue() + 1;
4578    if (!isNullConstant(Op.getOperand(1)))
4579      return SignBits;
4580
4581    // TODO: Could probably figure something out with non-0 offsets.
4582    unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4583    return std::max(SignBits, Op0SignBits);
4584  }
4585
4586  case AMDGPUISD::BFE_U32: {
4587    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4588    return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4589  }
4590
4591  case AMDGPUISD::CARRY:
4592  case AMDGPUISD::BORROW:
4593    return 31;
4594  case AMDGPUISD::BUFFER_LOAD_BYTE:
4595    return 25;
4596  case AMDGPUISD::BUFFER_LOAD_SHORT:
4597    return 17;
4598  case AMDGPUISD::BUFFER_LOAD_UBYTE:
4599    return 24;
4600  case AMDGPUISD::BUFFER_LOAD_USHORT:
4601    return 16;
4602  case AMDGPUISD::FP_TO_FP16:
4603  case AMDGPUISD::FP16_ZEXT:
4604    return 16;
4605  default:
4606    return 1;
4607  }
4608}
4609
4610bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4611                                                        const SelectionDAG &DAG,
4612                                                        bool SNaN,
4613                                                        unsigned Depth) const {
4614  unsigned Opcode = Op.getOpcode();
4615  switch (Opcode) {
4616  case AMDGPUISD::FMIN_LEGACY:
4617  case AMDGPUISD::FMAX_LEGACY: {
4618    if (SNaN)
4619      return true;
4620
4621    // TODO: Can check no nans on one of the operands for each one, but which
4622    // one?
4623    return false;
4624  }
4625  case AMDGPUISD::FMUL_LEGACY:
4626  case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4627    if (SNaN)
4628      return true;
4629    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4630           DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4631  }
4632  case AMDGPUISD::FMED3:
4633  case AMDGPUISD::FMIN3:
4634  case AMDGPUISD::FMAX3:
4635  case AMDGPUISD::FMAD_FTZ: {
4636    if (SNaN)
4637      return true;
4638    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4639           DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4640           DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4641  }
4642  case AMDGPUISD::CVT_F32_UBYTE0:
4643  case AMDGPUISD::CVT_F32_UBYTE1:
4644  case AMDGPUISD::CVT_F32_UBYTE2:
4645  case AMDGPUISD::CVT_F32_UBYTE3:
4646    return true;
4647
4648  case AMDGPUISD::RCP:
4649  case AMDGPUISD::RSQ:
4650  case AMDGPUISD::RCP_LEGACY:
4651  case AMDGPUISD::RSQ_LEGACY:
4652  case AMDGPUISD::RSQ_CLAMP: {
4653    if (SNaN)
4654      return true;
4655
4656    // TODO: Need is known positive check.
4657    return false;
4658  }
4659  case AMDGPUISD::LDEXP:
4660  case AMDGPUISD::FRACT: {
4661    if (SNaN)
4662      return true;
4663    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4664  }
4665  case AMDGPUISD::DIV_SCALE:
4666  case AMDGPUISD::DIV_FMAS:
4667  case AMDGPUISD::DIV_FIXUP:
4668  case AMDGPUISD::TRIG_PREOP:
4669    // TODO: Refine on operands.
4670    return SNaN;
4671  case AMDGPUISD::SIN_HW:
4672  case AMDGPUISD::COS_HW: {
4673    // TODO: Need check for infinity
4674    return SNaN;
4675  }
4676  case ISD::INTRINSIC_WO_CHAIN: {
4677    unsigned IntrinsicID
4678      = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4679    // TODO: Handle more intrinsics
4680    switch (IntrinsicID) {
4681    case Intrinsic::amdgcn_cubeid:
4682      return true;
4683
4684    case Intrinsic::amdgcn_frexp_mant: {
4685      if (SNaN)
4686        return true;
4687      return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4688    }
4689    case Intrinsic::amdgcn_cvt_pkrtz: {
4690      if (SNaN)
4691        return true;
4692      return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4693             DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4694    }
4695    case Intrinsic::amdgcn_fdot2:
4696      // TODO: Refine on operand
4697      return SNaN;
4698    default:
4699      return false;
4700    }
4701  }
4702  default:
4703    return false;
4704  }
4705}
4706
4707TargetLowering::AtomicExpansionKind
4708AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4709  switch (RMW->getOperation()) {
4710  case AtomicRMWInst::Nand:
4711  case AtomicRMWInst::FAdd:
4712  case AtomicRMWInst::FSub:
4713    return AtomicExpansionKind::CmpXChg;
4714  default:
4715    return AtomicExpansionKind::None;
4716  }
4717}
4718