AMDGPUISelLowering.cpp revision 355940
1//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This is the parent TargetLowering class for hardware code gen
11/// targets.
12//
13//===----------------------------------------------------------------------===//
14
15#define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
16#define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
17#define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
18
19#include "AMDGPUISelLowering.h"
20#include "AMDGPU.h"
21#include "AMDGPUCallLowering.h"
22#include "AMDGPUFrameLowering.h"
23#include "AMDGPURegisterInfo.h"
24#include "AMDGPUSubtarget.h"
25#include "AMDGPUTargetMachine.h"
26#include "Utils/AMDGPUBaseInfo.h"
27#include "R600MachineFunctionInfo.h"
28#include "SIInstrInfo.h"
29#include "SIMachineFunctionInfo.h"
30#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31#include "llvm/CodeGen/Analysis.h"
32#include "llvm/CodeGen/CallingConvLower.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/DiagnosticInfo.h"
39#include "llvm/Support/KnownBits.h"
40using namespace llvm;
41
42static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
43                           CCValAssign::LocInfo LocInfo,
44                           ISD::ArgFlagsTy ArgFlags, CCState &State,
45                           const TargetRegisterClass *RC,
46                           unsigned NumRegs) {
47  ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
48  unsigned RegResult = State.AllocateReg(RegList);
49  if (RegResult == AMDGPU::NoRegister)
50    return false;
51
52  State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
53  return true;
54}
55
56static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
57                              CCValAssign::LocInfo LocInfo,
58                              ISD::ArgFlagsTy ArgFlags, CCState &State) {
59  switch (LocVT.SimpleTy) {
60  case MVT::i64:
61  case MVT::f64:
62  case MVT::v2i32:
63  case MVT::v2f32:
64  case MVT::v4i16:
65  case MVT::v4f16: {
66    // Up to SGPR0-SGPR105
67    return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
68                          &AMDGPU::SGPR_64RegClass, 53);
69  }
70  default:
71    return false;
72  }
73}
74
75// Allocate up to VGPR31.
76//
77// TODO: Since there are no VGPR alignent requirements would it be better to
78// split into individual scalar registers?
79static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
80                              CCValAssign::LocInfo LocInfo,
81                              ISD::ArgFlagsTy ArgFlags, CCState &State) {
82  switch (LocVT.SimpleTy) {
83  case MVT::i64:
84  case MVT::f64:
85  case MVT::v2i32:
86  case MVT::v2f32:
87  case MVT::v4i16:
88  case MVT::v4f16: {
89    return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
90                          &AMDGPU::VReg_64RegClass, 31);
91  }
92  case MVT::v4i32:
93  case MVT::v4f32:
94  case MVT::v2i64:
95  case MVT::v2f64: {
96    return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
97                          &AMDGPU::VReg_128RegClass, 29);
98  }
99  case MVT::v8i32:
100  case MVT::v8f32: {
101    return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
102                          &AMDGPU::VReg_256RegClass, 25);
103
104  }
105  case MVT::v16i32:
106  case MVT::v16f32: {
107    return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
108                          &AMDGPU::VReg_512RegClass, 17);
109
110  }
111  default:
112    return false;
113  }
114}
115
116#include "AMDGPUGenCallingConv.inc"
117
118// Find a larger type to do a load / store of a vector with.
119EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
120  unsigned StoreSize = VT.getStoreSizeInBits();
121  if (StoreSize <= 32)
122    return EVT::getIntegerVT(Ctx, StoreSize);
123
124  assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
125  return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
126}
127
128unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
129  EVT VT = Op.getValueType();
130  KnownBits Known = DAG.computeKnownBits(Op);
131  return VT.getSizeInBits() - Known.countMinLeadingZeros();
132}
133
134unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
135  EVT VT = Op.getValueType();
136
137  // In order for this to be a signed 24-bit value, bit 23, must
138  // be a sign bit.
139  return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
140}
141
142AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
143                                           const AMDGPUSubtarget &STI)
144    : TargetLowering(TM), Subtarget(&STI) {
145  // Lower floating point store/load to integer store/load to reduce the number
146  // of patterns in tablegen.
147  setOperationAction(ISD::LOAD, MVT::f32, Promote);
148  AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
149
150  setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
151  AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
152
153  setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
154  AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
155
156  setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
157  AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
158
159  setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
160  AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
161
162  setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
163  AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
164
165  setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
166  AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
167
168  setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
169  AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
170
171  setOperationAction(ISD::LOAD, MVT::i64, Promote);
172  AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
173
174  setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
175  AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
176
177  setOperationAction(ISD::LOAD, MVT::f64, Promote);
178  AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
179
180  setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
181  AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
182
183  // There are no 64-bit extloads. These should be done as a 32-bit extload and
184  // an extension to 64-bit.
185  for (MVT VT : MVT::integer_valuetypes()) {
186    setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
187    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
188    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
189  }
190
191  for (MVT VT : MVT::integer_valuetypes()) {
192    if (VT == MVT::i64)
193      continue;
194
195    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
196    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
197    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
198    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
199
200    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
201    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
202    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
203    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
204
205    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
206    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
207    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
208    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
209  }
210
211  for (MVT VT : MVT::integer_vector_valuetypes()) {
212    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
213    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
214    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
215    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
216    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
217    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
218    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
219    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
220    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
221    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
222    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
223    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
224  }
225
226  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
227  setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
228  setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
229  setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
230
231  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
232  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
233  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
234  setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
235
236  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
237  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
238  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
239  setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
240
241  setOperationAction(ISD::STORE, MVT::f32, Promote);
242  AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
243
244  setOperationAction(ISD::STORE, MVT::v2f32, Promote);
245  AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
246
247  setOperationAction(ISD::STORE, MVT::v3f32, Promote);
248  AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
249
250  setOperationAction(ISD::STORE, MVT::v4f32, Promote);
251  AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
252
253  setOperationAction(ISD::STORE, MVT::v5f32, Promote);
254  AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
255
256  setOperationAction(ISD::STORE, MVT::v8f32, Promote);
257  AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
258
259  setOperationAction(ISD::STORE, MVT::v16f32, Promote);
260  AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
261
262  setOperationAction(ISD::STORE, MVT::v32f32, Promote);
263  AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
264
265  setOperationAction(ISD::STORE, MVT::i64, Promote);
266  AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
267
268  setOperationAction(ISD::STORE, MVT::v2i64, Promote);
269  AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
270
271  setOperationAction(ISD::STORE, MVT::f64, Promote);
272  AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
273
274  setOperationAction(ISD::STORE, MVT::v2f64, Promote);
275  AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
276
277  setTruncStoreAction(MVT::i64, MVT::i1, Expand);
278  setTruncStoreAction(MVT::i64, MVT::i8, Expand);
279  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
280  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
281
282  setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
283  setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
284  setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
285  setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
286
287  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
288  setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
289  setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
290  setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
291
292  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
293  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
294
295  setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
296  setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
297
298  setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
299  setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
300
301  setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
302  setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
303
304
305  setOperationAction(ISD::Constant, MVT::i32, Legal);
306  setOperationAction(ISD::Constant, MVT::i64, Legal);
307  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
308  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
309
310  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
311  setOperationAction(ISD::BRIND, MVT::Other, Expand);
312
313  // This is totally unsupported, just custom lower to produce an error.
314  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
315
316  // Library functions.  These default to Expand, but we have instructions
317  // for them.
318  setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
319  setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
320  setOperationAction(ISD::FPOW,   MVT::f32, Legal);
321  setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
322  setOperationAction(ISD::FABS,   MVT::f32, Legal);
323  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
324  setOperationAction(ISD::FRINT,  MVT::f32, Legal);
325  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
326  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
327  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
328
329  setOperationAction(ISD::FROUND, MVT::f32, Custom);
330  setOperationAction(ISD::FROUND, MVT::f64, Custom);
331
332  setOperationAction(ISD::FLOG, MVT::f32, Custom);
333  setOperationAction(ISD::FLOG10, MVT::f32, Custom);
334  setOperationAction(ISD::FEXP, MVT::f32, Custom);
335
336
337  setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
338  setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
339
340  setOperationAction(ISD::FREM, MVT::f32, Custom);
341  setOperationAction(ISD::FREM, MVT::f64, Custom);
342
343  // Expand to fneg + fadd.
344  setOperationAction(ISD::FSUB, MVT::f64, Expand);
345
346  setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
347  setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
348  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
349  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
350  setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
351  setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
352  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
353  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
354  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
355  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
356  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
357  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
358  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
359  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
360  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
361  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
362  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
363  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
364  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
365  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
366  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
367  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
368
369  setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
370  setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
371  setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
372
373  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
374  for (MVT VT : ScalarIntVTs) {
375    // These should use [SU]DIVREM, so set them to expand
376    setOperationAction(ISD::SDIV, VT, Expand);
377    setOperationAction(ISD::UDIV, VT, Expand);
378    setOperationAction(ISD::SREM, VT, Expand);
379    setOperationAction(ISD::UREM, VT, Expand);
380
381    // GPU does not have divrem function for signed or unsigned.
382    setOperationAction(ISD::SDIVREM, VT, Custom);
383    setOperationAction(ISD::UDIVREM, VT, Custom);
384
385    // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
386    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
387    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
388
389    setOperationAction(ISD::BSWAP, VT, Expand);
390    setOperationAction(ISD::CTTZ, VT, Expand);
391    setOperationAction(ISD::CTLZ, VT, Expand);
392
393    // AMDGPU uses ADDC/SUBC/ADDE/SUBE
394    setOperationAction(ISD::ADDC, VT, Legal);
395    setOperationAction(ISD::SUBC, VT, Legal);
396    setOperationAction(ISD::ADDE, VT, Legal);
397    setOperationAction(ISD::SUBE, VT, Legal);
398  }
399
400  // The hardware supports 32-bit ROTR, but not ROTL.
401  setOperationAction(ISD::ROTL, MVT::i32, Expand);
402  setOperationAction(ISD::ROTL, MVT::i64, Expand);
403  setOperationAction(ISD::ROTR, MVT::i64, Expand);
404
405  setOperationAction(ISD::MUL, MVT::i64, Expand);
406  setOperationAction(ISD::MULHU, MVT::i64, Expand);
407  setOperationAction(ISD::MULHS, MVT::i64, Expand);
408  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
409  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
410  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
411  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
412  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
413
414  setOperationAction(ISD::SMIN, MVT::i32, Legal);
415  setOperationAction(ISD::UMIN, MVT::i32, Legal);
416  setOperationAction(ISD::SMAX, MVT::i32, Legal);
417  setOperationAction(ISD::UMAX, MVT::i32, Legal);
418
419  setOperationAction(ISD::CTTZ, MVT::i64, Custom);
420  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
421  setOperationAction(ISD::CTLZ, MVT::i64, Custom);
422  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
423
424  static const MVT::SimpleValueType VectorIntTypes[] = {
425    MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
426  };
427
428  for (MVT VT : VectorIntTypes) {
429    // Expand the following operations for the current type by default.
430    setOperationAction(ISD::ADD,  VT, Expand);
431    setOperationAction(ISD::AND,  VT, Expand);
432    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
433    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
434    setOperationAction(ISD::MUL,  VT, Expand);
435    setOperationAction(ISD::MULHU, VT, Expand);
436    setOperationAction(ISD::MULHS, VT, Expand);
437    setOperationAction(ISD::OR,   VT, Expand);
438    setOperationAction(ISD::SHL,  VT, Expand);
439    setOperationAction(ISD::SRA,  VT, Expand);
440    setOperationAction(ISD::SRL,  VT, Expand);
441    setOperationAction(ISD::ROTL, VT, Expand);
442    setOperationAction(ISD::ROTR, VT, Expand);
443    setOperationAction(ISD::SUB,  VT, Expand);
444    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
445    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
446    setOperationAction(ISD::SDIV, VT, Expand);
447    setOperationAction(ISD::UDIV, VT, Expand);
448    setOperationAction(ISD::SREM, VT, Expand);
449    setOperationAction(ISD::UREM, VT, Expand);
450    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
451    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
452    setOperationAction(ISD::SDIVREM, VT, Custom);
453    setOperationAction(ISD::UDIVREM, VT, Expand);
454    setOperationAction(ISD::SELECT, VT, Expand);
455    setOperationAction(ISD::VSELECT, VT, Expand);
456    setOperationAction(ISD::SELECT_CC, VT, Expand);
457    setOperationAction(ISD::XOR,  VT, Expand);
458    setOperationAction(ISD::BSWAP, VT, Expand);
459    setOperationAction(ISD::CTPOP, VT, Expand);
460    setOperationAction(ISD::CTTZ, VT, Expand);
461    setOperationAction(ISD::CTLZ, VT, Expand);
462    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
463    setOperationAction(ISD::SETCC, VT, Expand);
464  }
465
466  static const MVT::SimpleValueType FloatVectorTypes[] = {
467     MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
468  };
469
470  for (MVT VT : FloatVectorTypes) {
471    setOperationAction(ISD::FABS, VT, Expand);
472    setOperationAction(ISD::FMINNUM, VT, Expand);
473    setOperationAction(ISD::FMAXNUM, VT, Expand);
474    setOperationAction(ISD::FADD, VT, Expand);
475    setOperationAction(ISD::FCEIL, VT, Expand);
476    setOperationAction(ISD::FCOS, VT, Expand);
477    setOperationAction(ISD::FDIV, VT, Expand);
478    setOperationAction(ISD::FEXP2, VT, Expand);
479    setOperationAction(ISD::FEXP, VT, Expand);
480    setOperationAction(ISD::FLOG2, VT, Expand);
481    setOperationAction(ISD::FREM, VT, Expand);
482    setOperationAction(ISD::FLOG, VT, Expand);
483    setOperationAction(ISD::FLOG10, VT, Expand);
484    setOperationAction(ISD::FPOW, VT, Expand);
485    setOperationAction(ISD::FFLOOR, VT, Expand);
486    setOperationAction(ISD::FTRUNC, VT, Expand);
487    setOperationAction(ISD::FMUL, VT, Expand);
488    setOperationAction(ISD::FMA, VT, Expand);
489    setOperationAction(ISD::FRINT, VT, Expand);
490    setOperationAction(ISD::FNEARBYINT, VT, Expand);
491    setOperationAction(ISD::FSQRT, VT, Expand);
492    setOperationAction(ISD::FSIN, VT, Expand);
493    setOperationAction(ISD::FSUB, VT, Expand);
494    setOperationAction(ISD::FNEG, VT, Expand);
495    setOperationAction(ISD::VSELECT, VT, Expand);
496    setOperationAction(ISD::SELECT_CC, VT, Expand);
497    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
498    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
499    setOperationAction(ISD::SETCC, VT, Expand);
500    setOperationAction(ISD::FCANONICALIZE, VT, Expand);
501  }
502
503  // This causes using an unrolled select operation rather than expansion with
504  // bit operations. This is in general better, but the alternative using BFI
505  // instructions may be better if the select sources are SGPRs.
506  setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
507  AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
508
509  setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
510  AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
511
512  setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
513  AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
514
515  setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
516  AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
517
518  // There are no libcalls of any kind.
519  for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
520    setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
521
522  setBooleanContents(ZeroOrNegativeOneBooleanContent);
523  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
524
525  setSchedulingPreference(Sched::RegPressure);
526  setJumpIsExpensive(true);
527
528  // FIXME: This is only partially true. If we have to do vector compares, any
529  // SGPR pair can be a condition register. If we have a uniform condition, we
530  // are better off doing SALU operations, where there is only one SCC. For now,
531  // we don't have a way of knowing during instruction selection if a condition
532  // will be uniform and we always use vector compares. Assume we are using
533  // vector compares until that is fixed.
534  setHasMultipleConditionRegisters(true);
535
536  setMinCmpXchgSizeInBits(32);
537  setSupportsUnalignedAtomics(false);
538
539  PredictableSelectIsExpensive = false;
540
541  // We want to find all load dependencies for long chains of stores to enable
542  // merging into very wide vectors. The problem is with vectors with > 4
543  // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
544  // vectors are a legal type, even though we have to split the loads
545  // usually. When we can more precisely specify load legality per address
546  // space, we should be able to make FindBetterChain/MergeConsecutiveStores
547  // smarter so that they can figure out what to do in 2 iterations without all
548  // N > 4 stores on the same chain.
549  GatherAllAliasesMaxDepth = 16;
550
551  // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
552  // about these during lowering.
553  MaxStoresPerMemcpy  = 0xffffffff;
554  MaxStoresPerMemmove = 0xffffffff;
555  MaxStoresPerMemset  = 0xffffffff;
556
557  setTargetDAGCombine(ISD::BITCAST);
558  setTargetDAGCombine(ISD::SHL);
559  setTargetDAGCombine(ISD::SRA);
560  setTargetDAGCombine(ISD::SRL);
561  setTargetDAGCombine(ISD::TRUNCATE);
562  setTargetDAGCombine(ISD::MUL);
563  setTargetDAGCombine(ISD::MULHU);
564  setTargetDAGCombine(ISD::MULHS);
565  setTargetDAGCombine(ISD::SELECT);
566  setTargetDAGCombine(ISD::SELECT_CC);
567  setTargetDAGCombine(ISD::STORE);
568  setTargetDAGCombine(ISD::FADD);
569  setTargetDAGCombine(ISD::FSUB);
570  setTargetDAGCombine(ISD::FNEG);
571  setTargetDAGCombine(ISD::FABS);
572  setTargetDAGCombine(ISD::AssertZext);
573  setTargetDAGCombine(ISD::AssertSext);
574}
575
576//===----------------------------------------------------------------------===//
577// Target Information
578//===----------------------------------------------------------------------===//
579
580LLVM_READNONE
581static bool fnegFoldsIntoOp(unsigned Opc) {
582  switch (Opc) {
583  case ISD::FADD:
584  case ISD::FSUB:
585  case ISD::FMUL:
586  case ISD::FMA:
587  case ISD::FMAD:
588  case ISD::FMINNUM:
589  case ISD::FMAXNUM:
590  case ISD::FMINNUM_IEEE:
591  case ISD::FMAXNUM_IEEE:
592  case ISD::FSIN:
593  case ISD::FTRUNC:
594  case ISD::FRINT:
595  case ISD::FNEARBYINT:
596  case ISD::FCANONICALIZE:
597  case AMDGPUISD::RCP:
598  case AMDGPUISD::RCP_LEGACY:
599  case AMDGPUISD::RCP_IFLAG:
600  case AMDGPUISD::SIN_HW:
601  case AMDGPUISD::FMUL_LEGACY:
602  case AMDGPUISD::FMIN_LEGACY:
603  case AMDGPUISD::FMAX_LEGACY:
604  case AMDGPUISD::FMED3:
605    return true;
606  default:
607    return false;
608  }
609}
610
611/// \p returns true if the operation will definitely need to use a 64-bit
612/// encoding, and thus will use a VOP3 encoding regardless of the source
613/// modifiers.
614LLVM_READONLY
615static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
616  return N->getNumOperands() > 2 || VT == MVT::f64;
617}
618
619// Most FP instructions support source modifiers, but this could be refined
620// slightly.
621LLVM_READONLY
622static bool hasSourceMods(const SDNode *N) {
623  if (isa<MemSDNode>(N))
624    return false;
625
626  switch (N->getOpcode()) {
627  case ISD::CopyToReg:
628  case ISD::SELECT:
629  case ISD::FDIV:
630  case ISD::FREM:
631  case ISD::INLINEASM:
632  case ISD::INLINEASM_BR:
633  case AMDGPUISD::INTERP_P1:
634  case AMDGPUISD::INTERP_P2:
635  case AMDGPUISD::DIV_SCALE:
636
637  // TODO: Should really be looking at the users of the bitcast. These are
638  // problematic because bitcasts are used to legalize all stores to integer
639  // types.
640  case ISD::BITCAST:
641    return false;
642  default:
643    return true;
644  }
645}
646
647bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
648                                                 unsigned CostThreshold) {
649  // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
650  // it is truly free to use a source modifier in all cases. If there are
651  // multiple users but for each one will necessitate using VOP3, there will be
652  // a code size increase. Try to avoid increasing code size unless we know it
653  // will save on the instruction count.
654  unsigned NumMayIncreaseSize = 0;
655  MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
656
657  // XXX - Should this limit number of uses to check?
658  for (const SDNode *U : N->uses()) {
659    if (!hasSourceMods(U))
660      return false;
661
662    if (!opMustUseVOP3Encoding(U, VT)) {
663      if (++NumMayIncreaseSize > CostThreshold)
664        return false;
665    }
666  }
667
668  return true;
669}
670
671MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
672  return MVT::i32;
673}
674
675bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
676  return true;
677}
678
679// The backend supports 32 and 64 bit floating point immediates.
680// FIXME: Why are we reporting vectors of FP immediates as legal?
681bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
682                                        bool ForCodeSize) const {
683  EVT ScalarVT = VT.getScalarType();
684  return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
685         (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
686}
687
688// We don't want to shrink f64 / f32 constants.
689bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
690  EVT ScalarVT = VT.getScalarType();
691  return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
692}
693
694bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
695                                                 ISD::LoadExtType ExtTy,
696                                                 EVT NewVT) const {
697  // TODO: This may be worth removing. Check regression tests for diffs.
698  if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
699    return false;
700
701  unsigned NewSize = NewVT.getStoreSizeInBits();
702
703  // If we are reducing to a 32-bit load, this is always better.
704  if (NewSize == 32)
705    return true;
706
707  EVT OldVT = N->getValueType(0);
708  unsigned OldSize = OldVT.getStoreSizeInBits();
709
710  MemSDNode *MN = cast<MemSDNode>(N);
711  unsigned AS = MN->getAddressSpace();
712  // Do not shrink an aligned scalar load to sub-dword.
713  // Scalar engine cannot do sub-dword loads.
714  if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
715      (AS == AMDGPUAS::CONSTANT_ADDRESS ||
716       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
717       (isa<LoadSDNode>(N) &&
718        AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
719      AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
720    return false;
721
722  // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
723  // extloads, so doing one requires using a buffer_load. In cases where we
724  // still couldn't use a scalar load, using the wider load shouldn't really
725  // hurt anything.
726
727  // If the old size already had to be an extload, there's no harm in continuing
728  // to reduce the width.
729  return (OldSize < 32);
730}
731
732bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
733                                                   const SelectionDAG &DAG,
734                                                   const MachineMemOperand &MMO) const {
735
736  assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
737
738  if (LoadTy.getScalarType() == MVT::i32)
739    return false;
740
741  unsigned LScalarSize = LoadTy.getScalarSizeInBits();
742  unsigned CastScalarSize = CastTy.getScalarSizeInBits();
743
744  if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
745    return false;
746
747  bool Fast = false;
748  return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), CastTy,
749                            MMO, &Fast) && Fast;
750}
751
752// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
753// profitable with the expansion for 64-bit since it's generally good to
754// speculate things.
755// FIXME: These should really have the size as a parameter.
756bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
757  return true;
758}
759
760bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
761  return true;
762}
763
764bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
765  switch (N->getOpcode()) {
766    default:
767    return false;
768    case ISD::EntryToken:
769    case ISD::TokenFactor:
770      return true;
771    case ISD::INTRINSIC_WO_CHAIN:
772    {
773      unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
774      switch (IntrID) {
775        default:
776        return false;
777        case Intrinsic::amdgcn_readfirstlane:
778        case Intrinsic::amdgcn_readlane:
779          return true;
780      }
781    }
782    break;
783    case ISD::LOAD:
784    {
785      const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
786      if (L->getMemOperand()->getAddrSpace()
787      == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
788        return true;
789      return false;
790    }
791    break;
792  }
793}
794
795//===---------------------------------------------------------------------===//
796// Target Properties
797//===---------------------------------------------------------------------===//
798
799bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
800  assert(VT.isFloatingPoint());
801
802  // Packed operations do not have a fabs modifier.
803  return VT == MVT::f32 || VT == MVT::f64 ||
804         (Subtarget->has16BitInsts() && VT == MVT::f16);
805}
806
807bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
808  assert(VT.isFloatingPoint());
809  return VT == MVT::f32 || VT == MVT::f64 ||
810         (Subtarget->has16BitInsts() && VT == MVT::f16) ||
811         (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
812}
813
814bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
815                                                         unsigned NumElem,
816                                                         unsigned AS) const {
817  return true;
818}
819
820bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
821  // There are few operations which truly have vector input operands. Any vector
822  // operation is going to involve operations on each component, and a
823  // build_vector will be a copy per element, so it always makes sense to use a
824  // build_vector input in place of the extracted element to avoid a copy into a
825  // super register.
826  //
827  // We should probably only do this if all users are extracts only, but this
828  // should be the common case.
829  return true;
830}
831
832bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
833  // Truncate is just accessing a subregister.
834
835  unsigned SrcSize = Source.getSizeInBits();
836  unsigned DestSize = Dest.getSizeInBits();
837
838  return DestSize < SrcSize && DestSize % 32 == 0 ;
839}
840
841bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
842  // Truncate is just accessing a subregister.
843
844  unsigned SrcSize = Source->getScalarSizeInBits();
845  unsigned DestSize = Dest->getScalarSizeInBits();
846
847  if (DestSize== 16 && Subtarget->has16BitInsts())
848    return SrcSize >= 32;
849
850  return DestSize < SrcSize && DestSize % 32 == 0;
851}
852
853bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
854  unsigned SrcSize = Src->getScalarSizeInBits();
855  unsigned DestSize = Dest->getScalarSizeInBits();
856
857  if (SrcSize == 16 && Subtarget->has16BitInsts())
858    return DestSize >= 32;
859
860  return SrcSize == 32 && DestSize == 64;
861}
862
863bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
864  // Any register load of a 64-bit value really requires 2 32-bit moves. For all
865  // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
866  // this will enable reducing 64-bit operations the 32-bit, which is always
867  // good.
868
869  if (Src == MVT::i16)
870    return Dest == MVT::i32 ||Dest == MVT::i64 ;
871
872  return Src == MVT::i32 && Dest == MVT::i64;
873}
874
875bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
876  return isZExtFree(Val.getValueType(), VT2);
877}
878
879bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
880  // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
881  // limited number of native 64-bit operations. Shrinking an operation to fit
882  // in a single 32-bit register should always be helpful. As currently used,
883  // this is much less general than the name suggests, and is only used in
884  // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
885  // not profitable, and may actually be harmful.
886  return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
887}
888
889//===---------------------------------------------------------------------===//
890// TargetLowering Callbacks
891//===---------------------------------------------------------------------===//
892
893CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
894                                                  bool IsVarArg) {
895  switch (CC) {
896  case CallingConv::AMDGPU_VS:
897  case CallingConv::AMDGPU_GS:
898  case CallingConv::AMDGPU_PS:
899  case CallingConv::AMDGPU_CS:
900  case CallingConv::AMDGPU_HS:
901  case CallingConv::AMDGPU_ES:
902  case CallingConv::AMDGPU_LS:
903    return CC_AMDGPU;
904  case CallingConv::C:
905  case CallingConv::Fast:
906  case CallingConv::Cold:
907    return CC_AMDGPU_Func;
908  case CallingConv::AMDGPU_KERNEL:
909  case CallingConv::SPIR_KERNEL:
910  default:
911    report_fatal_error("Unsupported calling convention for call");
912  }
913}
914
915CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
916                                                    bool IsVarArg) {
917  switch (CC) {
918  case CallingConv::AMDGPU_KERNEL:
919  case CallingConv::SPIR_KERNEL:
920    llvm_unreachable("kernels should not be handled here");
921  case CallingConv::AMDGPU_VS:
922  case CallingConv::AMDGPU_GS:
923  case CallingConv::AMDGPU_PS:
924  case CallingConv::AMDGPU_CS:
925  case CallingConv::AMDGPU_HS:
926  case CallingConv::AMDGPU_ES:
927  case CallingConv::AMDGPU_LS:
928    return RetCC_SI_Shader;
929  case CallingConv::C:
930  case CallingConv::Fast:
931  case CallingConv::Cold:
932    return RetCC_AMDGPU_Func;
933  default:
934    report_fatal_error("Unsupported calling convention.");
935  }
936}
937
938/// The SelectionDAGBuilder will automatically promote function arguments
939/// with illegal types.  However, this does not work for the AMDGPU targets
940/// since the function arguments are stored in memory as these illegal types.
941/// In order to handle this properly we need to get the original types sizes
942/// from the LLVM IR Function and fixup the ISD:InputArg values before
943/// passing them to AnalyzeFormalArguments()
944
945/// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
946/// input values across multiple registers.  Each item in the Ins array
947/// represents a single value that will be stored in registers.  Ins[x].VT is
948/// the value type of the value that will be stored in the register, so
949/// whatever SDNode we lower the argument to needs to be this type.
950///
951/// In order to correctly lower the arguments we need to know the size of each
952/// argument.  Since Ins[x].VT gives us the size of the register that will
953/// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
954/// for the orignal function argument so that we can deduce the correct memory
955/// type to use for Ins[x].  In most cases the correct memory type will be
956/// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
957/// we have a kernel argument of type v8i8, this argument will be split into
958/// 8 parts and each part will be represented by its own item in the Ins array.
959/// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
960/// the argument before it was split.  From this, we deduce that the memory type
961/// for each individual part is i8.  We pass the memory type as LocVT to the
962/// calling convention analysis function and the register type (Ins[x].VT) as
963/// the ValVT.
964void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
965  CCState &State,
966  const SmallVectorImpl<ISD::InputArg> &Ins) const {
967  const MachineFunction &MF = State.getMachineFunction();
968  const Function &Fn = MF.getFunction();
969  LLVMContext &Ctx = Fn.getParent()->getContext();
970  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
971  const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
972  CallingConv::ID CC = Fn.getCallingConv();
973
974  unsigned MaxAlign = 1;
975  uint64_t ExplicitArgOffset = 0;
976  const DataLayout &DL = Fn.getParent()->getDataLayout();
977
978  unsigned InIndex = 0;
979
980  for (const Argument &Arg : Fn.args()) {
981    Type *BaseArgTy = Arg.getType();
982    unsigned Align = DL.getABITypeAlignment(BaseArgTy);
983    MaxAlign = std::max(Align, MaxAlign);
984    unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
985
986    uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
987    ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
988
989    // We're basically throwing away everything passed into us and starting over
990    // to get accurate in-memory offsets. The "PartOffset" is completely useless
991    // to us as computed in Ins.
992    //
993    // We also need to figure out what type legalization is trying to do to get
994    // the correct memory offsets.
995
996    SmallVector<EVT, 16> ValueVTs;
997    SmallVector<uint64_t, 16> Offsets;
998    ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
999
1000    for (unsigned Value = 0, NumValues = ValueVTs.size();
1001         Value != NumValues; ++Value) {
1002      uint64_t BasePartOffset = Offsets[Value];
1003
1004      EVT ArgVT = ValueVTs[Value];
1005      EVT MemVT = ArgVT;
1006      MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1007      unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1008
1009      if (NumRegs == 1) {
1010        // This argument is not split, so the IR type is the memory type.
1011        if (ArgVT.isExtended()) {
1012          // We have an extended type, like i24, so we should just use the
1013          // register type.
1014          MemVT = RegisterVT;
1015        } else {
1016          MemVT = ArgVT;
1017        }
1018      } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1019                 ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1020        assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1021        // We have a vector value which has been split into a vector with
1022        // the same scalar type, but fewer elements.  This should handle
1023        // all the floating-point vector types.
1024        MemVT = RegisterVT;
1025      } else if (ArgVT.isVector() &&
1026                 ArgVT.getVectorNumElements() == NumRegs) {
1027        // This arg has been split so that each element is stored in a separate
1028        // register.
1029        MemVT = ArgVT.getScalarType();
1030      } else if (ArgVT.isExtended()) {
1031        // We have an extended type, like i65.
1032        MemVT = RegisterVT;
1033      } else {
1034        unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1035        assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1036        if (RegisterVT.isInteger()) {
1037          MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1038        } else if (RegisterVT.isVector()) {
1039          assert(!RegisterVT.getScalarType().isFloatingPoint());
1040          unsigned NumElements = RegisterVT.getVectorNumElements();
1041          assert(MemoryBits % NumElements == 0);
1042          // This vector type has been split into another vector type with
1043          // a different elements size.
1044          EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1045                                           MemoryBits / NumElements);
1046          MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1047        } else {
1048          llvm_unreachable("cannot deduce memory type.");
1049        }
1050      }
1051
1052      // Convert one element vectors to scalar.
1053      if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1054        MemVT = MemVT.getScalarType();
1055
1056      // Round up vec3/vec5 argument.
1057      if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1058        assert(MemVT.getVectorNumElements() == 3 ||
1059               MemVT.getVectorNumElements() == 5);
1060        MemVT = MemVT.getPow2VectorType(State.getContext());
1061      }
1062
1063      unsigned PartOffset = 0;
1064      for (unsigned i = 0; i != NumRegs; ++i) {
1065        State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1066                                               BasePartOffset + PartOffset,
1067                                               MemVT.getSimpleVT(),
1068                                               CCValAssign::Full));
1069        PartOffset += MemVT.getStoreSize();
1070      }
1071    }
1072  }
1073}
1074
1075SDValue AMDGPUTargetLowering::LowerReturn(
1076  SDValue Chain, CallingConv::ID CallConv,
1077  bool isVarArg,
1078  const SmallVectorImpl<ISD::OutputArg> &Outs,
1079  const SmallVectorImpl<SDValue> &OutVals,
1080  const SDLoc &DL, SelectionDAG &DAG) const {
1081  // FIXME: Fails for r600 tests
1082  //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1083  // "wave terminate should not have return values");
1084  return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1085}
1086
1087//===---------------------------------------------------------------------===//
1088// Target specific lowering
1089//===---------------------------------------------------------------------===//
1090
1091/// Selects the correct CCAssignFn for a given CallingConvention value.
1092CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1093                                                    bool IsVarArg) {
1094  return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1095}
1096
1097CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1098                                                      bool IsVarArg) {
1099  return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1100}
1101
1102SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1103                                                  SelectionDAG &DAG,
1104                                                  MachineFrameInfo &MFI,
1105                                                  int ClobberedFI) const {
1106  SmallVector<SDValue, 8> ArgChains;
1107  int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1108  int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1109
1110  // Include the original chain at the beginning of the list. When this is
1111  // used by target LowerCall hooks, this helps legalize find the
1112  // CALLSEQ_BEGIN node.
1113  ArgChains.push_back(Chain);
1114
1115  // Add a chain value for each stack argument corresponding
1116  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1117                            UE = DAG.getEntryNode().getNode()->use_end();
1118       U != UE; ++U) {
1119    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1120      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1121        if (FI->getIndex() < 0) {
1122          int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1123          int64_t InLastByte = InFirstByte;
1124          InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1125
1126          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1127              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1128            ArgChains.push_back(SDValue(L, 1));
1129        }
1130      }
1131    }
1132  }
1133
1134  // Build a tokenfactor for all the chains.
1135  return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1136}
1137
1138SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1139                                                 SmallVectorImpl<SDValue> &InVals,
1140                                                 StringRef Reason) const {
1141  SDValue Callee = CLI.Callee;
1142  SelectionDAG &DAG = CLI.DAG;
1143
1144  const Function &Fn = DAG.getMachineFunction().getFunction();
1145
1146  StringRef FuncName("<unknown>");
1147
1148  if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1149    FuncName = G->getSymbol();
1150  else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1151    FuncName = G->getGlobal()->getName();
1152
1153  DiagnosticInfoUnsupported NoCalls(
1154    Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1155  DAG.getContext()->diagnose(NoCalls);
1156
1157  if (!CLI.IsTailCall) {
1158    for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1159      InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1160  }
1161
1162  return DAG.getEntryNode();
1163}
1164
1165SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1166                                        SmallVectorImpl<SDValue> &InVals) const {
1167  return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1168}
1169
1170SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1171                                                      SelectionDAG &DAG) const {
1172  const Function &Fn = DAG.getMachineFunction().getFunction();
1173
1174  DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1175                                            SDLoc(Op).getDebugLoc());
1176  DAG.getContext()->diagnose(NoDynamicAlloca);
1177  auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1178  return DAG.getMergeValues(Ops, SDLoc());
1179}
1180
1181SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1182                                             SelectionDAG &DAG) const {
1183  switch (Op.getOpcode()) {
1184  default:
1185    Op->print(errs(), &DAG);
1186    llvm_unreachable("Custom lowering code for this"
1187                     "instruction is not implemented yet!");
1188    break;
1189  case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1190  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1191  case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1192  case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1193  case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1194  case ISD::FREM: return LowerFREM(Op, DAG);
1195  case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1196  case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1197  case ISD::FRINT: return LowerFRINT(Op, DAG);
1198  case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1199  case ISD::FROUND: return LowerFROUND(Op, DAG);
1200  case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1201  case ISD::FLOG:
1202    return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1203  case ISD::FLOG10:
1204    return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1205  case ISD::FEXP:
1206    return lowerFEXP(Op, DAG);
1207  case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1208  case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1209  case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1210  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1211  case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1212  case ISD::CTTZ:
1213  case ISD::CTTZ_ZERO_UNDEF:
1214  case ISD::CTLZ:
1215  case ISD::CTLZ_ZERO_UNDEF:
1216    return LowerCTLZ_CTTZ(Op, DAG);
1217  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1218  }
1219  return Op;
1220}
1221
1222void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1223                                              SmallVectorImpl<SDValue> &Results,
1224                                              SelectionDAG &DAG) const {
1225  switch (N->getOpcode()) {
1226  case ISD::SIGN_EXTEND_INREG:
1227    // Different parts of legalization seem to interpret which type of
1228    // sign_extend_inreg is the one to check for custom lowering. The extended
1229    // from type is what really matters, but some places check for custom
1230    // lowering of the result type. This results in trying to use
1231    // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1232    // nothing here and let the illegal result integer be handled normally.
1233    return;
1234  default:
1235    return;
1236  }
1237}
1238
1239static bool hasDefinedInitializer(const GlobalValue *GV) {
1240  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1241  if (!GVar || !GVar->hasInitializer())
1242    return false;
1243
1244  return !isa<UndefValue>(GVar->getInitializer());
1245}
1246
1247SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1248                                                 SDValue Op,
1249                                                 SelectionDAG &DAG) const {
1250
1251  const DataLayout &DL = DAG.getDataLayout();
1252  GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1253  const GlobalValue *GV = G->getGlobal();
1254
1255  if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1256      G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1257    if (!MFI->isEntryFunction()) {
1258      const Function &Fn = DAG.getMachineFunction().getFunction();
1259      DiagnosticInfoUnsupported BadLDSDecl(
1260        Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1261      DAG.getContext()->diagnose(BadLDSDecl);
1262    }
1263
1264    // XXX: What does the value of G->getOffset() mean?
1265    assert(G->getOffset() == 0 &&
1266         "Do not know what to do with an non-zero offset");
1267
1268    // TODO: We could emit code to handle the initialization somewhere.
1269    if (!hasDefinedInitializer(GV)) {
1270      unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1271      return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1272    }
1273  }
1274
1275  const Function &Fn = DAG.getMachineFunction().getFunction();
1276  DiagnosticInfoUnsupported BadInit(
1277      Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1278  DAG.getContext()->diagnose(BadInit);
1279  return SDValue();
1280}
1281
1282SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1283                                                  SelectionDAG &DAG) const {
1284  SmallVector<SDValue, 8> Args;
1285
1286  EVT VT = Op.getValueType();
1287  if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1288    SDLoc SL(Op);
1289    SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1290    SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1291
1292    SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1293    return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1294  }
1295
1296  for (const SDUse &U : Op->ops())
1297    DAG.ExtractVectorElements(U.get(), Args);
1298
1299  return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1300}
1301
1302SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1303                                                     SelectionDAG &DAG) const {
1304
1305  SmallVector<SDValue, 8> Args;
1306  unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1307  EVT VT = Op.getValueType();
1308  DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1309                            VT.getVectorNumElements());
1310
1311  return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1312}
1313
1314/// Generate Min/Max node
1315SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1316                                                   SDValue LHS, SDValue RHS,
1317                                                   SDValue True, SDValue False,
1318                                                   SDValue CC,
1319                                                   DAGCombinerInfo &DCI) const {
1320  if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1321    return SDValue();
1322
1323  SelectionDAG &DAG = DCI.DAG;
1324  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1325  switch (CCOpcode) {
1326  case ISD::SETOEQ:
1327  case ISD::SETONE:
1328  case ISD::SETUNE:
1329  case ISD::SETNE:
1330  case ISD::SETUEQ:
1331  case ISD::SETEQ:
1332  case ISD::SETFALSE:
1333  case ISD::SETFALSE2:
1334  case ISD::SETTRUE:
1335  case ISD::SETTRUE2:
1336  case ISD::SETUO:
1337  case ISD::SETO:
1338    break;
1339  case ISD::SETULE:
1340  case ISD::SETULT: {
1341    if (LHS == True)
1342      return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1343    return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1344  }
1345  case ISD::SETOLE:
1346  case ISD::SETOLT:
1347  case ISD::SETLE:
1348  case ISD::SETLT: {
1349    // Ordered. Assume ordered for undefined.
1350
1351    // Only do this after legalization to avoid interfering with other combines
1352    // which might occur.
1353    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1354        !DCI.isCalledByLegalizer())
1355      return SDValue();
1356
1357    // We need to permute the operands to get the correct NaN behavior. The
1358    // selected operand is the second one based on the failing compare with NaN,
1359    // so permute it based on the compare type the hardware uses.
1360    if (LHS == True)
1361      return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1362    return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1363  }
1364  case ISD::SETUGE:
1365  case ISD::SETUGT: {
1366    if (LHS == True)
1367      return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1368    return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1369  }
1370  case ISD::SETGT:
1371  case ISD::SETGE:
1372  case ISD::SETOGE:
1373  case ISD::SETOGT: {
1374    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1375        !DCI.isCalledByLegalizer())
1376      return SDValue();
1377
1378    if (LHS == True)
1379      return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1380    return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1381  }
1382  case ISD::SETCC_INVALID:
1383    llvm_unreachable("Invalid setcc condcode!");
1384  }
1385  return SDValue();
1386}
1387
1388std::pair<SDValue, SDValue>
1389AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1390  SDLoc SL(Op);
1391
1392  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1393
1394  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1395  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1396
1397  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1398  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1399
1400  return std::make_pair(Lo, Hi);
1401}
1402
1403SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1404  SDLoc SL(Op);
1405
1406  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1407  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1408  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1409}
1410
1411SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1412  SDLoc SL(Op);
1413
1414  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1415  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1416  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1417}
1418
1419// Split a vector type into two parts. The first part is a power of two vector.
1420// The second part is whatever is left over, and is a scalar if it would
1421// otherwise be a 1-vector.
1422std::pair<EVT, EVT>
1423AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1424  EVT LoVT, HiVT;
1425  EVT EltVT = VT.getVectorElementType();
1426  unsigned NumElts = VT.getVectorNumElements();
1427  unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1428  LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1429  HiVT = NumElts - LoNumElts == 1
1430             ? EltVT
1431             : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1432  return std::make_pair(LoVT, HiVT);
1433}
1434
1435// Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1436// scalar.
1437std::pair<SDValue, SDValue>
1438AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1439                                  const EVT &LoVT, const EVT &HiVT,
1440                                  SelectionDAG &DAG) const {
1441  assert(LoVT.getVectorNumElements() +
1442                 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1443             N.getValueType().getVectorNumElements() &&
1444         "More vector elements requested than available!");
1445  auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1446  SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1447                           DAG.getConstant(0, DL, IdxTy));
1448  SDValue Hi = DAG.getNode(
1449      HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1450      HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy));
1451  return std::make_pair(Lo, Hi);
1452}
1453
1454SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1455                                              SelectionDAG &DAG) const {
1456  LoadSDNode *Load = cast<LoadSDNode>(Op);
1457  EVT VT = Op.getValueType();
1458
1459
1460  // If this is a 2 element vector, we really want to scalarize and not create
1461  // weird 1 element vectors.
1462  if (VT.getVectorNumElements() == 2)
1463    return scalarizeVectorLoad(Load, DAG);
1464
1465  SDValue BasePtr = Load->getBasePtr();
1466  EVT MemVT = Load->getMemoryVT();
1467  SDLoc SL(Op);
1468
1469  const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1470
1471  EVT LoVT, HiVT;
1472  EVT LoMemVT, HiMemVT;
1473  SDValue Lo, Hi;
1474
1475  std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1476  std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1477  std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1478
1479  unsigned Size = LoMemVT.getStoreSize();
1480  unsigned BaseAlign = Load->getAlignment();
1481  unsigned HiAlign = MinAlign(BaseAlign, Size);
1482
1483  SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1484                                  Load->getChain(), BasePtr, SrcValue, LoMemVT,
1485                                  BaseAlign, Load->getMemOperand()->getFlags());
1486  SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1487  SDValue HiLoad =
1488      DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1489                     HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1490                     HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1491
1492  auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1493  SDValue Join;
1494  if (LoVT == HiVT) {
1495    // This is the case that the vector is power of two so was evenly split.
1496    Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1497  } else {
1498    Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1499                       DAG.getConstant(0, SL, IdxTy));
1500    Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR
1501                                       : ISD::INSERT_VECTOR_ELT,
1502                       SL, VT, Join, HiLoad,
1503                       DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy));
1504  }
1505
1506  SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1507                                     LoLoad.getValue(1), HiLoad.getValue(1))};
1508
1509  return DAG.getMergeValues(Ops, SL);
1510}
1511
1512// Widen a vector load from vec3 to vec4.
1513SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1514                                              SelectionDAG &DAG) const {
1515  LoadSDNode *Load = cast<LoadSDNode>(Op);
1516  EVT VT = Op.getValueType();
1517  assert(VT.getVectorNumElements() == 3);
1518  SDValue BasePtr = Load->getBasePtr();
1519  EVT MemVT = Load->getMemoryVT();
1520  SDLoc SL(Op);
1521  const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1522  unsigned BaseAlign = Load->getAlignment();
1523
1524  EVT WideVT =
1525      EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1526  EVT WideMemVT =
1527      EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1528  SDValue WideLoad = DAG.getExtLoad(
1529      Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1530      WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1531  return DAG.getMergeValues(
1532      {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1533                   DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))),
1534       WideLoad.getValue(1)},
1535      SL);
1536}
1537
1538SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1539                                               SelectionDAG &DAG) const {
1540  StoreSDNode *Store = cast<StoreSDNode>(Op);
1541  SDValue Val = Store->getValue();
1542  EVT VT = Val.getValueType();
1543
1544  // If this is a 2 element vector, we really want to scalarize and not create
1545  // weird 1 element vectors.
1546  if (VT.getVectorNumElements() == 2)
1547    return scalarizeVectorStore(Store, DAG);
1548
1549  EVT MemVT = Store->getMemoryVT();
1550  SDValue Chain = Store->getChain();
1551  SDValue BasePtr = Store->getBasePtr();
1552  SDLoc SL(Op);
1553
1554  EVT LoVT, HiVT;
1555  EVT LoMemVT, HiMemVT;
1556  SDValue Lo, Hi;
1557
1558  std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1559  std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1560  std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1561
1562  SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1563
1564  const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1565  unsigned BaseAlign = Store->getAlignment();
1566  unsigned Size = LoMemVT.getStoreSize();
1567  unsigned HiAlign = MinAlign(BaseAlign, Size);
1568
1569  SDValue LoStore =
1570      DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1571                        Store->getMemOperand()->getFlags());
1572  SDValue HiStore =
1573      DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1574                        HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1575
1576  return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1577}
1578
1579// This is a shortcut for integer division because we have fast i32<->f32
1580// conversions, and fast f32 reciprocal instructions. The fractional part of a
1581// float is enough to accurately represent up to a 24-bit signed integer.
1582SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1583                                            bool Sign) const {
1584  SDLoc DL(Op);
1585  EVT VT = Op.getValueType();
1586  SDValue LHS = Op.getOperand(0);
1587  SDValue RHS = Op.getOperand(1);
1588  MVT IntVT = MVT::i32;
1589  MVT FltVT = MVT::f32;
1590
1591  unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1592  if (LHSSignBits < 9)
1593    return SDValue();
1594
1595  unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1596  if (RHSSignBits < 9)
1597    return SDValue();
1598
1599  unsigned BitSize = VT.getSizeInBits();
1600  unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1601  unsigned DivBits = BitSize - SignBits;
1602  if (Sign)
1603    ++DivBits;
1604
1605  ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1606  ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1607
1608  SDValue jq = DAG.getConstant(1, DL, IntVT);
1609
1610  if (Sign) {
1611    // char|short jq = ia ^ ib;
1612    jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1613
1614    // jq = jq >> (bitsize - 2)
1615    jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1616                     DAG.getConstant(BitSize - 2, DL, VT));
1617
1618    // jq = jq | 0x1
1619    jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1620  }
1621
1622  // int ia = (int)LHS;
1623  SDValue ia = LHS;
1624
1625  // int ib, (int)RHS;
1626  SDValue ib = RHS;
1627
1628  // float fa = (float)ia;
1629  SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1630
1631  // float fb = (float)ib;
1632  SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1633
1634  SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1635                           fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1636
1637  // fq = trunc(fq);
1638  fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1639
1640  // float fqneg = -fq;
1641  SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1642
1643  // float fr = mad(fqneg, fb, fa);
1644  unsigned OpCode = Subtarget->hasFP32Denormals() ?
1645                    (unsigned)AMDGPUISD::FMAD_FTZ :
1646                    (unsigned)ISD::FMAD;
1647  SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1648
1649  // int iq = (int)fq;
1650  SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1651
1652  // fr = fabs(fr);
1653  fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1654
1655  // fb = fabs(fb);
1656  fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1657
1658  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1659
1660  // int cv = fr >= fb;
1661  SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1662
1663  // jq = (cv ? jq : 0);
1664  jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1665
1666  // dst = iq + jq;
1667  SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1668
1669  // Rem needs compensation, it's easier to recompute it
1670  SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1671  Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1672
1673  // Truncate to number of bits this divide really is.
1674  if (Sign) {
1675    SDValue InRegSize
1676      = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1677    Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1678    Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1679  } else {
1680    SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1681    Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1682    Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1683  }
1684
1685  return DAG.getMergeValues({ Div, Rem }, DL);
1686}
1687
1688void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1689                                      SelectionDAG &DAG,
1690                                      SmallVectorImpl<SDValue> &Results) const {
1691  SDLoc DL(Op);
1692  EVT VT = Op.getValueType();
1693
1694  assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1695
1696  EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1697
1698  SDValue One = DAG.getConstant(1, DL, HalfVT);
1699  SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1700
1701  //HiLo split
1702  SDValue LHS = Op.getOperand(0);
1703  SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1704  SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1705
1706  SDValue RHS = Op.getOperand(1);
1707  SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1708  SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1709
1710  if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1711      DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1712
1713    SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1714                              LHS_Lo, RHS_Lo);
1715
1716    SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1717    SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1718
1719    Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1720    Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1721    return;
1722  }
1723
1724  if (isTypeLegal(MVT::i64)) {
1725    // Compute denominator reciprocal.
1726    unsigned FMAD = Subtarget->hasFP32Denormals() ?
1727                    (unsigned)AMDGPUISD::FMAD_FTZ :
1728                    (unsigned)ISD::FMAD;
1729
1730    SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1731    SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1732    SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1733      DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1734      Cvt_Lo);
1735    SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1736    SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1737      DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1738    SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1739      DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1740    SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1741    SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1742      DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1743      Mul1);
1744    SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1745    SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1746    SDValue Rcp64 = DAG.getBitcast(VT,
1747                        DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1748
1749    SDValue Zero64 = DAG.getConstant(0, DL, VT);
1750    SDValue One64  = DAG.getConstant(1, DL, VT);
1751    SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1752    SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1753
1754    SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1755    SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1756    SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1757    SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1758                                    Zero);
1759    SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1760                                    One);
1761
1762    SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1763                                  Mulhi1_Lo, Zero1);
1764    SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1765                                  Mulhi1_Hi, Add1_Lo.getValue(1));
1766    SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1767    SDValue Add1 = DAG.getBitcast(VT,
1768                        DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1769
1770    SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1771    SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1772    SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1773                                    Zero);
1774    SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1775                                    One);
1776
1777    SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1778                                  Mulhi2_Lo, Zero1);
1779    SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1780                                   Mulhi2_Hi, Add1_Lo.getValue(1));
1781    SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1782                                  Zero, Add2_Lo.getValue(1));
1783    SDValue Add2 = DAG.getBitcast(VT,
1784                        DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1785    SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1786
1787    SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1788
1789    SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1790    SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1791    SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1792                                  Mul3_Lo, Zero1);
1793    SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1794                                  Mul3_Hi, Sub1_Lo.getValue(1));
1795    SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1796    SDValue Sub1 = DAG.getBitcast(VT,
1797                        DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1798
1799    SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1800    SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1801                                 ISD::SETUGE);
1802    SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1803                                 ISD::SETUGE);
1804    SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1805
1806    // TODO: Here and below portions of the code can be enclosed into if/endif.
1807    // Currently control flow is unconditional and we have 4 selects after
1808    // potential endif to substitute PHIs.
1809
1810    // if C3 != 0 ...
1811    SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1812                                  RHS_Lo, Zero1);
1813    SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1814                                  RHS_Hi, Sub1_Lo.getValue(1));
1815    SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1816                                  Zero, Sub2_Lo.getValue(1));
1817    SDValue Sub2 = DAG.getBitcast(VT,
1818                        DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1819
1820    SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1821
1822    SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1823                                 ISD::SETUGE);
1824    SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1825                                 ISD::SETUGE);
1826    SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1827
1828    // if (C6 != 0)
1829    SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1830
1831    SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1832                                  RHS_Lo, Zero1);
1833    SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1834                                  RHS_Hi, Sub2_Lo.getValue(1));
1835    SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1836                                  Zero, Sub3_Lo.getValue(1));
1837    SDValue Sub3 = DAG.getBitcast(VT,
1838                        DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1839
1840    // endif C6
1841    // endif C3
1842
1843    SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1844    SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1845
1846    SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1847    SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1848
1849    Results.push_back(Div);
1850    Results.push_back(Rem);
1851
1852    return;
1853  }
1854
1855  // r600 expandion.
1856  // Get Speculative values
1857  SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1858  SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1859
1860  SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1861  SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1862  REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1863
1864  SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1865  SDValue DIV_Lo = Zero;
1866
1867  const unsigned halfBitWidth = HalfVT.getSizeInBits();
1868
1869  for (unsigned i = 0; i < halfBitWidth; ++i) {
1870    const unsigned bitPos = halfBitWidth - i - 1;
1871    SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1872    // Get value of high bit
1873    SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1874    HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1875    HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1876
1877    // Shift
1878    REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1879    // Add LHS high bit
1880    REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1881
1882    SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1883    SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1884
1885    DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1886
1887    // Update REM
1888    SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1889    REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1890  }
1891
1892  SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1893  DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1894  Results.push_back(DIV);
1895  Results.push_back(REM);
1896}
1897
1898SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1899                                           SelectionDAG &DAG) const {
1900  SDLoc DL(Op);
1901  EVT VT = Op.getValueType();
1902
1903  if (VT == MVT::i64) {
1904    SmallVector<SDValue, 2> Results;
1905    LowerUDIVREM64(Op, DAG, Results);
1906    return DAG.getMergeValues(Results, DL);
1907  }
1908
1909  if (VT == MVT::i32) {
1910    if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1911      return Res;
1912  }
1913
1914  SDValue Num = Op.getOperand(0);
1915  SDValue Den = Op.getOperand(1);
1916
1917  // RCP =  URECIP(Den) = 2^32 / Den + e
1918  // e is rounding error.
1919  SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1920
1921  // RCP_LO = mul(RCP, Den) */
1922  SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1923
1924  // RCP_HI = mulhu (RCP, Den) */
1925  SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1926
1927  // NEG_RCP_LO = -RCP_LO
1928  SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1929                                                     RCP_LO);
1930
1931  // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1932  SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1933                                           NEG_RCP_LO, RCP_LO,
1934                                           ISD::SETEQ);
1935  // Calculate the rounding error from the URECIP instruction
1936  // E = mulhu(ABS_RCP_LO, RCP)
1937  SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1938
1939  // RCP_A_E = RCP + E
1940  SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1941
1942  // RCP_S_E = RCP - E
1943  SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1944
1945  // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1946  SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1947                                     RCP_A_E, RCP_S_E,
1948                                     ISD::SETEQ);
1949  // Quotient = mulhu(Tmp0, Num)
1950  SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1951
1952  // Num_S_Remainder = Quotient * Den
1953  SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1954
1955  // Remainder = Num - Num_S_Remainder
1956  SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1957
1958  // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1959  SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1960                                                 DAG.getConstant(-1, DL, VT),
1961                                                 DAG.getConstant(0, DL, VT),
1962                                                 ISD::SETUGE);
1963  // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1964  SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1965                                                  Num_S_Remainder,
1966                                                  DAG.getConstant(-1, DL, VT),
1967                                                  DAG.getConstant(0, DL, VT),
1968                                                  ISD::SETUGE);
1969  // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1970  SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1971                                               Remainder_GE_Zero);
1972
1973  // Calculate Division result:
1974
1975  // Quotient_A_One = Quotient + 1
1976  SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1977                                       DAG.getConstant(1, DL, VT));
1978
1979  // Quotient_S_One = Quotient - 1
1980  SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1981                                       DAG.getConstant(1, DL, VT));
1982
1983  // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1984  SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1985                                     Quotient, Quotient_A_One, ISD::SETEQ);
1986
1987  // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1988  Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1989                            Quotient_S_One, Div, ISD::SETEQ);
1990
1991  // Calculate Rem result:
1992
1993  // Remainder_S_Den = Remainder - Den
1994  SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1995
1996  // Remainder_A_Den = Remainder + Den
1997  SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1998
1999  // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
2000  SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
2001                                    Remainder, Remainder_S_Den, ISD::SETEQ);
2002
2003  // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
2004  Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
2005                            Remainder_A_Den, Rem, ISD::SETEQ);
2006  SDValue Ops[2] = {
2007    Div,
2008    Rem
2009  };
2010  return DAG.getMergeValues(Ops, DL);
2011}
2012
2013SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2014                                           SelectionDAG &DAG) const {
2015  SDLoc DL(Op);
2016  EVT VT = Op.getValueType();
2017
2018  SDValue LHS = Op.getOperand(0);
2019  SDValue RHS = Op.getOperand(1);
2020
2021  SDValue Zero = DAG.getConstant(0, DL, VT);
2022  SDValue NegOne = DAG.getConstant(-1, DL, VT);
2023
2024  if (VT == MVT::i32) {
2025    if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2026      return Res;
2027  }
2028
2029  if (VT == MVT::i64 &&
2030      DAG.ComputeNumSignBits(LHS) > 32 &&
2031      DAG.ComputeNumSignBits(RHS) > 32) {
2032    EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2033
2034    //HiLo split
2035    SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2036    SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2037    SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2038                                 LHS_Lo, RHS_Lo);
2039    SDValue Res[2] = {
2040      DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2041      DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2042    };
2043    return DAG.getMergeValues(Res, DL);
2044  }
2045
2046  SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2047  SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2048  SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2049  SDValue RSign = LHSign; // Remainder sign is the same as LHS
2050
2051  LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2052  RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2053
2054  LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2055  RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2056
2057  SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2058  SDValue Rem = Div.getValue(1);
2059
2060  Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2061  Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2062
2063  Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2064  Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2065
2066  SDValue Res[2] = {
2067    Div,
2068    Rem
2069  };
2070  return DAG.getMergeValues(Res, DL);
2071}
2072
2073// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2074SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2075  SDLoc SL(Op);
2076  EVT VT = Op.getValueType();
2077  SDValue X = Op.getOperand(0);
2078  SDValue Y = Op.getOperand(1);
2079
2080  // TODO: Should this propagate fast-math-flags?
2081
2082  SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2083  SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2084  SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2085
2086  return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2087}
2088
2089SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2090  SDLoc SL(Op);
2091  SDValue Src = Op.getOperand(0);
2092
2093  // result = trunc(src)
2094  // if (src > 0.0 && src != result)
2095  //   result += 1.0
2096
2097  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2098
2099  const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2100  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2101
2102  EVT SetCCVT =
2103      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2104
2105  SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2106  SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2107  SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2108
2109  SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2110  // TODO: Should this propagate fast-math-flags?
2111  return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2112}
2113
2114static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2115                                  SelectionDAG &DAG) {
2116  const unsigned FractBits = 52;
2117  const unsigned ExpBits = 11;
2118
2119  SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2120                                Hi,
2121                                DAG.getConstant(FractBits - 32, SL, MVT::i32),
2122                                DAG.getConstant(ExpBits, SL, MVT::i32));
2123  SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2124                            DAG.getConstant(1023, SL, MVT::i32));
2125
2126  return Exp;
2127}
2128
2129SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2130  SDLoc SL(Op);
2131  SDValue Src = Op.getOperand(0);
2132
2133  assert(Op.getValueType() == MVT::f64);
2134
2135  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2136  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2137
2138  SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2139
2140  // Extract the upper half, since this is where we will find the sign and
2141  // exponent.
2142  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2143
2144  SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2145
2146  const unsigned FractBits = 52;
2147
2148  // Extract the sign bit.
2149  const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2150  SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2151
2152  // Extend back to 64-bits.
2153  SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2154  SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2155
2156  SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2157  const SDValue FractMask
2158    = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2159
2160  SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2161  SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2162  SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2163
2164  EVT SetCCVT =
2165      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2166
2167  const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2168
2169  SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2170  SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2171
2172  SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2173  SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2174
2175  return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2176}
2177
2178SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2179  SDLoc SL(Op);
2180  SDValue Src = Op.getOperand(0);
2181
2182  assert(Op.getValueType() == MVT::f64);
2183
2184  APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2185  SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2186  SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2187
2188  // TODO: Should this propagate fast-math-flags?
2189
2190  SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2191  SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2192
2193  SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2194
2195  APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2196  SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2197
2198  EVT SetCCVT =
2199      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2200  SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2201
2202  return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2203}
2204
2205SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2206  // FNEARBYINT and FRINT are the same, except in their handling of FP
2207  // exceptions. Those aren't really meaningful for us, and OpenCL only has
2208  // rint, so just treat them as equivalent.
2209  return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2210}
2211
2212// XXX - May require not supporting f32 denormals?
2213
2214// Don't handle v2f16. The extra instructions to scalarize and repack around the
2215// compare and vselect end up producing worse code than scalarizing the whole
2216// operation.
2217SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2218  SDLoc SL(Op);
2219  SDValue X = Op.getOperand(0);
2220  EVT VT = Op.getValueType();
2221
2222  SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2223
2224  // TODO: Should this propagate fast-math-flags?
2225
2226  SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2227
2228  SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2229
2230  const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2231  const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2232  const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2233
2234  SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2235
2236  EVT SetCCVT =
2237      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2238
2239  SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2240
2241  SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2242
2243  return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2244}
2245
2246SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2247  SDLoc SL(Op);
2248  SDValue X = Op.getOperand(0);
2249
2250  SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2251
2252  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2253  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2254  const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2255  const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2256  EVT SetCCVT =
2257      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2258
2259  SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2260
2261  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2262
2263  SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2264
2265  const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2266                                       MVT::i64);
2267
2268  SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2269  SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2270                          DAG.getConstant(INT64_C(0x0008000000000000), SL,
2271                                          MVT::i64),
2272                          Exp);
2273
2274  SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2275  SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2276                              DAG.getConstant(0, SL, MVT::i64), Tmp0,
2277                              ISD::SETNE);
2278
2279  SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2280                             D, DAG.getConstant(0, SL, MVT::i64));
2281  SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2282
2283  K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2284  K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2285
2286  SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2287  SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2288  SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2289
2290  SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2291                            ExpEqNegOne,
2292                            DAG.getConstantFP(1.0, SL, MVT::f64),
2293                            DAG.getConstantFP(0.0, SL, MVT::f64));
2294
2295  SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2296
2297  K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2298  K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2299
2300  return K;
2301}
2302
2303SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2304  EVT VT = Op.getValueType();
2305
2306  if (VT == MVT::f32 || VT == MVT::f16)
2307    return LowerFROUND32_16(Op, DAG);
2308
2309  if (VT == MVT::f64)
2310    return LowerFROUND64(Op, DAG);
2311
2312  llvm_unreachable("unhandled type");
2313}
2314
2315SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2316  SDLoc SL(Op);
2317  SDValue Src = Op.getOperand(0);
2318
2319  // result = trunc(src);
2320  // if (src < 0.0 && src != result)
2321  //   result += -1.0.
2322
2323  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2324
2325  const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2326  const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2327
2328  EVT SetCCVT =
2329      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2330
2331  SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2332  SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2333  SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2334
2335  SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2336  // TODO: Should this propagate fast-math-flags?
2337  return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2338}
2339
2340SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2341                                        double Log2BaseInverted) const {
2342  EVT VT = Op.getValueType();
2343
2344  SDLoc SL(Op);
2345  SDValue Operand = Op.getOperand(0);
2346  SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2347  SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2348
2349  return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2350}
2351
2352// Return M_LOG2E of appropriate type
2353static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) {
2354  switch (VT.getScalarType().getSimpleVT().SimpleTy) {
2355  case MVT::f32:
2356    return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT);
2357  case MVT::f16:
2358    return DAG.getConstantFP(
2359      APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2360      SL, VT);
2361  case MVT::f64:
2362    return DAG.getConstantFP(
2363      APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT);
2364  default:
2365    llvm_unreachable("unsupported fp type");
2366  }
2367}
2368
2369// exp2(M_LOG2E_F * f);
2370SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2371  EVT VT = Op.getValueType();
2372  SDLoc SL(Op);
2373  SDValue Src = Op.getOperand(0);
2374
2375  const SDValue K = getLog2EVal(DAG, SL, VT);
2376  SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2377  return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2378}
2379
2380static bool isCtlzOpc(unsigned Opc) {
2381  return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2382}
2383
2384static bool isCttzOpc(unsigned Opc) {
2385  return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2386}
2387
2388SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2389  SDLoc SL(Op);
2390  SDValue Src = Op.getOperand(0);
2391  bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2392                   Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2393
2394  unsigned ISDOpc, NewOpc;
2395  if (isCtlzOpc(Op.getOpcode())) {
2396    ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2397    NewOpc = AMDGPUISD::FFBH_U32;
2398  } else if (isCttzOpc(Op.getOpcode())) {
2399    ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2400    NewOpc = AMDGPUISD::FFBL_B32;
2401  } else
2402    llvm_unreachable("Unexpected OPCode!!!");
2403
2404
2405  if (ZeroUndef && Src.getValueType() == MVT::i32)
2406    return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2407
2408  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2409
2410  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2411  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2412
2413  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2414  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2415
2416  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2417                                   *DAG.getContext(), MVT::i32);
2418
2419  SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2420  SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2421
2422  SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2423  SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2424
2425  const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2426  SDValue Add, NewOpr;
2427  if (isCtlzOpc(Op.getOpcode())) {
2428    Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2429    // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2430    NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2431  } else {
2432    Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2433    // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2434    NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2435  }
2436
2437  if (!ZeroUndef) {
2438    // Test if the full 64-bit input is zero.
2439
2440    // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2441    // which we probably don't want.
2442    SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2443    SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2444    SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2445
2446    // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2447    // with the same cycles, otherwise it is slower.
2448    // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2449    // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2450
2451    const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2452
2453    // The instruction returns -1 for 0 input, but the defined intrinsic
2454    // behavior is to return the number of bits.
2455    NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2456                         SrcIsZero, Bits32, NewOpr);
2457  }
2458
2459  return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2460}
2461
2462SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2463                                               bool Signed) const {
2464  // Unsigned
2465  // cul2f(ulong u)
2466  //{
2467  //  uint lz = clz(u);
2468  //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2469  //  u = (u << lz) & 0x7fffffffffffffffUL;
2470  //  ulong t = u & 0xffffffffffUL;
2471  //  uint v = (e << 23) | (uint)(u >> 40);
2472  //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2473  //  return as_float(v + r);
2474  //}
2475  // Signed
2476  // cl2f(long l)
2477  //{
2478  //  long s = l >> 63;
2479  //  float r = cul2f((l + s) ^ s);
2480  //  return s ? -r : r;
2481  //}
2482
2483  SDLoc SL(Op);
2484  SDValue Src = Op.getOperand(0);
2485  SDValue L = Src;
2486
2487  SDValue S;
2488  if (Signed) {
2489    const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2490    S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2491
2492    SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2493    L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2494  }
2495
2496  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2497                                   *DAG.getContext(), MVT::f32);
2498
2499
2500  SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2501  SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2502  SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2503  LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2504
2505  SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2506  SDValue E = DAG.getSelect(SL, MVT::i32,
2507    DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2508    DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2509    ZeroI32);
2510
2511  SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2512    DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2513    DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2514
2515  SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2516                          DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2517
2518  SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2519                             U, DAG.getConstant(40, SL, MVT::i64));
2520
2521  SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2522    DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2523    DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2524
2525  SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2526  SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2527  SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2528
2529  SDValue One = DAG.getConstant(1, SL, MVT::i32);
2530
2531  SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2532
2533  SDValue R = DAG.getSelect(SL, MVT::i32,
2534    RCmp,
2535    One,
2536    DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2537  R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2538  R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2539
2540  if (!Signed)
2541    return R;
2542
2543  SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2544  return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2545}
2546
2547SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2548                                               bool Signed) const {
2549  SDLoc SL(Op);
2550  SDValue Src = Op.getOperand(0);
2551
2552  SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2553
2554  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2555                           DAG.getConstant(0, SL, MVT::i32));
2556  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2557                           DAG.getConstant(1, SL, MVT::i32));
2558
2559  SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2560                              SL, MVT::f64, Hi);
2561
2562  SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2563
2564  SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2565                              DAG.getConstant(32, SL, MVT::i32));
2566  // TODO: Should this propagate fast-math-flags?
2567  return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2568}
2569
2570SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2571                                               SelectionDAG &DAG) const {
2572  assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2573         "operation should be legal");
2574
2575  // TODO: Factor out code common with LowerSINT_TO_FP.
2576
2577  EVT DestVT = Op.getValueType();
2578  if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2579    SDLoc DL(Op);
2580    SDValue Src = Op.getOperand(0);
2581
2582    SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2583    SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2584    SDValue FPRound =
2585        DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2586
2587    return FPRound;
2588  }
2589
2590  if (DestVT == MVT::f32)
2591    return LowerINT_TO_FP32(Op, DAG, false);
2592
2593  assert(DestVT == MVT::f64);
2594  return LowerINT_TO_FP64(Op, DAG, false);
2595}
2596
2597SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2598                                              SelectionDAG &DAG) const {
2599  assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2600         "operation should be legal");
2601
2602  // TODO: Factor out code common with LowerUINT_TO_FP.
2603
2604  EVT DestVT = Op.getValueType();
2605  if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2606    SDLoc DL(Op);
2607    SDValue Src = Op.getOperand(0);
2608
2609    SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2610    SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2611    SDValue FPRound =
2612        DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2613
2614    return FPRound;
2615  }
2616
2617  if (DestVT == MVT::f32)
2618    return LowerINT_TO_FP32(Op, DAG, true);
2619
2620  assert(DestVT == MVT::f64);
2621  return LowerINT_TO_FP64(Op, DAG, true);
2622}
2623
2624SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2625                                               bool Signed) const {
2626  SDLoc SL(Op);
2627
2628  SDValue Src = Op.getOperand(0);
2629
2630  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2631
2632  SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2633                                 MVT::f64);
2634  SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2635                                 MVT::f64);
2636  // TODO: Should this propagate fast-math-flags?
2637  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2638
2639  SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2640
2641
2642  SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2643
2644  SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2645                           MVT::i32, FloorMul);
2646  SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2647
2648  SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2649
2650  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2651}
2652
2653SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2654  SDLoc DL(Op);
2655  SDValue N0 = Op.getOperand(0);
2656
2657  // Convert to target node to get known bits
2658  if (N0.getValueType() == MVT::f32)
2659    return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2660
2661  if (getTargetMachine().Options.UnsafeFPMath) {
2662    // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2663    return SDValue();
2664  }
2665
2666  assert(N0.getSimpleValueType() == MVT::f64);
2667
2668  // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2669  const unsigned ExpMask = 0x7ff;
2670  const unsigned ExpBiasf64 = 1023;
2671  const unsigned ExpBiasf16 = 15;
2672  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2673  SDValue One = DAG.getConstant(1, DL, MVT::i32);
2674  SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2675  SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2676                           DAG.getConstant(32, DL, MVT::i64));
2677  UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2678  U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2679  SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2680                          DAG.getConstant(20, DL, MVT::i64));
2681  E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2682                  DAG.getConstant(ExpMask, DL, MVT::i32));
2683  // Subtract the fp64 exponent bias (1023) to get the real exponent and
2684  // add the f16 bias (15) to get the biased exponent for the f16 format.
2685  E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2686                  DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2687
2688  SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2689                          DAG.getConstant(8, DL, MVT::i32));
2690  M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2691                  DAG.getConstant(0xffe, DL, MVT::i32));
2692
2693  SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2694                                  DAG.getConstant(0x1ff, DL, MVT::i32));
2695  MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2696
2697  SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2698  M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2699
2700  // (M != 0 ? 0x0200 : 0) | 0x7c00;
2701  SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2702      DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2703                      Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2704
2705  // N = M | (E << 12);
2706  SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2707      DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2708                  DAG.getConstant(12, DL, MVT::i32)));
2709
2710  // B = clamp(1-E, 0, 13);
2711  SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2712                                  One, E);
2713  SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2714  B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2715                  DAG.getConstant(13, DL, MVT::i32));
2716
2717  SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2718                                   DAG.getConstant(0x1000, DL, MVT::i32));
2719
2720  SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2721  SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2722  SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2723  D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2724
2725  SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2726  SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2727                              DAG.getConstant(0x7, DL, MVT::i32));
2728  V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2729                  DAG.getConstant(2, DL, MVT::i32));
2730  SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2731                               One, Zero, ISD::SETEQ);
2732  SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2733                               One, Zero, ISD::SETGT);
2734  V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2735  V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2736
2737  V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2738                      DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2739  V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2740                      I, V, ISD::SETEQ);
2741
2742  // Extract the sign bit.
2743  SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2744                            DAG.getConstant(16, DL, MVT::i32));
2745  Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2746                     DAG.getConstant(0x8000, DL, MVT::i32));
2747
2748  V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2749  return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2750}
2751
2752SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2753                                              SelectionDAG &DAG) const {
2754  SDValue Src = Op.getOperand(0);
2755
2756  // TODO: Factor out code common with LowerFP_TO_UINT.
2757
2758  EVT SrcVT = Src.getValueType();
2759  if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2760    SDLoc DL(Op);
2761
2762    SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2763    SDValue FpToInt32 =
2764        DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2765
2766    return FpToInt32;
2767  }
2768
2769  if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2770    return LowerFP64_TO_INT(Op, DAG, true);
2771
2772  return SDValue();
2773}
2774
2775SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2776                                              SelectionDAG &DAG) const {
2777  SDValue Src = Op.getOperand(0);
2778
2779  // TODO: Factor out code common with LowerFP_TO_SINT.
2780
2781  EVT SrcVT = Src.getValueType();
2782  if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2783    SDLoc DL(Op);
2784
2785    SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2786    SDValue FpToInt32 =
2787        DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2788
2789    return FpToInt32;
2790  }
2791
2792  if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2793    return LowerFP64_TO_INT(Op, DAG, false);
2794
2795  return SDValue();
2796}
2797
2798SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2799                                                     SelectionDAG &DAG) const {
2800  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2801  MVT VT = Op.getSimpleValueType();
2802  MVT ScalarVT = VT.getScalarType();
2803
2804  assert(VT.isVector());
2805
2806  SDValue Src = Op.getOperand(0);
2807  SDLoc DL(Op);
2808
2809  // TODO: Don't scalarize on Evergreen?
2810  unsigned NElts = VT.getVectorNumElements();
2811  SmallVector<SDValue, 8> Args;
2812  DAG.ExtractVectorElements(Src, Args, 0, NElts);
2813
2814  SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2815  for (unsigned I = 0; I < NElts; ++I)
2816    Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2817
2818  return DAG.getBuildVector(VT, DL, Args);
2819}
2820
2821//===----------------------------------------------------------------------===//
2822// Custom DAG optimizations
2823//===----------------------------------------------------------------------===//
2824
2825static bool isU24(SDValue Op, SelectionDAG &DAG) {
2826  return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2827}
2828
2829static bool isI24(SDValue Op, SelectionDAG &DAG) {
2830  EVT VT = Op.getValueType();
2831  return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2832                                     // as unsigned 24-bit values.
2833    AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2834}
2835
2836static SDValue simplifyI24(SDNode *Node24,
2837                           TargetLowering::DAGCombinerInfo &DCI) {
2838  SelectionDAG &DAG = DCI.DAG;
2839  SDValue LHS = Node24->getOperand(0);
2840  SDValue RHS = Node24->getOperand(1);
2841
2842  APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2843
2844  // First try to simplify using GetDemandedBits which allows the operands to
2845  // have other uses, but will only perform simplifications that involve
2846  // bypassing some nodes for this user.
2847  SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2848  SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2849  if (DemandedLHS || DemandedRHS)
2850    return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(),
2851                       DemandedLHS ? DemandedLHS : LHS,
2852                       DemandedRHS ? DemandedRHS : RHS);
2853
2854  // Now try SimplifyDemandedBits which can simplify the nodes used by our
2855  // operands if this node is the only user.
2856  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2857  if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2858    return SDValue(Node24, 0);
2859  if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2860    return SDValue(Node24, 0);
2861
2862  return SDValue();
2863}
2864
2865template <typename IntTy>
2866static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2867                               uint32_t Width, const SDLoc &DL) {
2868  if (Width + Offset < 32) {
2869    uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2870    IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2871    return DAG.getConstant(Result, DL, MVT::i32);
2872  }
2873
2874  return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2875}
2876
2877static bool hasVolatileUser(SDNode *Val) {
2878  for (SDNode *U : Val->uses()) {
2879    if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2880      if (M->isVolatile())
2881        return true;
2882    }
2883  }
2884
2885  return false;
2886}
2887
2888bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2889  // i32 vectors are the canonical memory type.
2890  if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2891    return false;
2892
2893  if (!VT.isByteSized())
2894    return false;
2895
2896  unsigned Size = VT.getStoreSize();
2897
2898  if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2899    return false;
2900
2901  if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2902    return false;
2903
2904  return true;
2905}
2906
2907// Find a load or store from corresponding pattern root.
2908// Roots may be build_vector, bitconvert or their combinations.
2909static MemSDNode* findMemSDNode(SDNode *N) {
2910  N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
2911  if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
2912    return MN;
2913  assert(isa<BuildVectorSDNode>(N));
2914  for (SDValue V : N->op_values())
2915    if (MemSDNode *MN =
2916          dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
2917      return MN;
2918  llvm_unreachable("cannot find MemSDNode in the pattern!");
2919}
2920
2921bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned,
2922                                            SelectionDAG &DAG,
2923                                            SDNode *N,
2924                                            SDValue Addr,
2925                                            SDValue &VAddr,
2926                                            SDValue &Offset,
2927                                            SDValue &SLC) const {
2928  const GCNSubtarget &ST =
2929        DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
2930  int64_t OffsetVal = 0;
2931
2932  if (ST.hasFlatInstOffsets() &&
2933      (!ST.hasFlatSegmentOffsetBug() ||
2934       findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
2935      DAG.isBaseWithConstantOffset(Addr)) {
2936    SDValue N0 = Addr.getOperand(0);
2937    SDValue N1 = Addr.getOperand(1);
2938    int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
2939
2940    const SIInstrInfo *TII = ST.getInstrInfo();
2941    if (TII->isLegalFLATOffset(COffsetVal, findMemSDNode(N)->getAddressSpace(),
2942                               IsSigned)) {
2943      Addr = N0;
2944      OffsetVal = COffsetVal;
2945    }
2946  }
2947
2948  VAddr = Addr;
2949  Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
2950  SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1);
2951
2952  return true;
2953}
2954
2955// Replace load of an illegal type with a store of a bitcast to a friendlier
2956// type.
2957SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2958                                                 DAGCombinerInfo &DCI) const {
2959  if (!DCI.isBeforeLegalize())
2960    return SDValue();
2961
2962  LoadSDNode *LN = cast<LoadSDNode>(N);
2963  if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2964    return SDValue();
2965
2966  SDLoc SL(N);
2967  SelectionDAG &DAG = DCI.DAG;
2968  EVT VT = LN->getMemoryVT();
2969
2970  unsigned Size = VT.getStoreSize();
2971  unsigned Align = LN->getAlignment();
2972  if (Align < Size && isTypeLegal(VT)) {
2973    bool IsFast;
2974    unsigned AS = LN->getAddressSpace();
2975
2976    // Expand unaligned loads earlier than legalization. Due to visitation order
2977    // problems during legalization, the emitted instructions to pack and unpack
2978    // the bytes again are not eliminated in the case of an unaligned copy.
2979    if (!allowsMisalignedMemoryAccesses(
2980            VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2981      if (VT.isVector())
2982        return scalarizeVectorLoad(LN, DAG);
2983
2984      SDValue Ops[2];
2985      std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2986      return DAG.getMergeValues(Ops, SDLoc(N));
2987    }
2988
2989    if (!IsFast)
2990      return SDValue();
2991  }
2992
2993  if (!shouldCombineMemoryType(VT))
2994    return SDValue();
2995
2996  EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2997
2998  SDValue NewLoad
2999    = DAG.getLoad(NewVT, SL, LN->getChain(),
3000                  LN->getBasePtr(), LN->getMemOperand());
3001
3002  SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
3003  DCI.CombineTo(N, BC, NewLoad.getValue(1));
3004  return SDValue(N, 0);
3005}
3006
3007// Replace store of an illegal type with a store of a bitcast to a friendlier
3008// type.
3009SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
3010                                                  DAGCombinerInfo &DCI) const {
3011  if (!DCI.isBeforeLegalize())
3012    return SDValue();
3013
3014  StoreSDNode *SN = cast<StoreSDNode>(N);
3015  if (SN->isVolatile() || !ISD::isNormalStore(SN))
3016    return SDValue();
3017
3018  EVT VT = SN->getMemoryVT();
3019  unsigned Size = VT.getStoreSize();
3020
3021  SDLoc SL(N);
3022  SelectionDAG &DAG = DCI.DAG;
3023  unsigned Align = SN->getAlignment();
3024  if (Align < Size && isTypeLegal(VT)) {
3025    bool IsFast;
3026    unsigned AS = SN->getAddressSpace();
3027
3028    // Expand unaligned stores earlier than legalization. Due to visitation
3029    // order problems during legalization, the emitted instructions to pack and
3030    // unpack the bytes again are not eliminated in the case of an unaligned
3031    // copy.
3032    if (!allowsMisalignedMemoryAccesses(
3033            VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
3034      if (VT.isVector())
3035        return scalarizeVectorStore(SN, DAG);
3036
3037      return expandUnalignedStore(SN, DAG);
3038    }
3039
3040    if (!IsFast)
3041      return SDValue();
3042  }
3043
3044  if (!shouldCombineMemoryType(VT))
3045    return SDValue();
3046
3047  EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3048  SDValue Val = SN->getValue();
3049
3050  //DCI.AddToWorklist(Val.getNode());
3051
3052  bool OtherUses = !Val.hasOneUse();
3053  SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3054  if (OtherUses) {
3055    SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3056    DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3057  }
3058
3059  return DAG.getStore(SN->getChain(), SL, CastVal,
3060                      SN->getBasePtr(), SN->getMemOperand());
3061}
3062
3063// FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3064// but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3065// issues.
3066SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3067                                                        DAGCombinerInfo &DCI) const {
3068  SelectionDAG &DAG = DCI.DAG;
3069  SDValue N0 = N->getOperand(0);
3070
3071  // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3072  //     (vt2 (truncate (assertzext vt0:x, vt1)))
3073  if (N0.getOpcode() == ISD::TRUNCATE) {
3074    SDValue N1 = N->getOperand(1);
3075    EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3076    SDLoc SL(N);
3077
3078    SDValue Src = N0.getOperand(0);
3079    EVT SrcVT = Src.getValueType();
3080    if (SrcVT.bitsGE(ExtVT)) {
3081      SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3082      return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3083    }
3084  }
3085
3086  return SDValue();
3087}
3088/// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3089/// binary operation \p Opc to it with the corresponding constant operands.
3090SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3091  DAGCombinerInfo &DCI, const SDLoc &SL,
3092  unsigned Opc, SDValue LHS,
3093  uint32_t ValLo, uint32_t ValHi) const {
3094  SelectionDAG &DAG = DCI.DAG;
3095  SDValue Lo, Hi;
3096  std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3097
3098  SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3099  SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3100
3101  SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3102  SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3103
3104  // Re-visit the ands. It's possible we eliminated one of them and it could
3105  // simplify the vector.
3106  DCI.AddToWorklist(Lo.getNode());
3107  DCI.AddToWorklist(Hi.getNode());
3108
3109  SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3110  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3111}
3112
3113SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3114                                                DAGCombinerInfo &DCI) const {
3115  EVT VT = N->getValueType(0);
3116
3117  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3118  if (!RHS)
3119    return SDValue();
3120
3121  SDValue LHS = N->getOperand(0);
3122  unsigned RHSVal = RHS->getZExtValue();
3123  if (!RHSVal)
3124    return LHS;
3125
3126  SDLoc SL(N);
3127  SelectionDAG &DAG = DCI.DAG;
3128
3129  switch (LHS->getOpcode()) {
3130  default:
3131    break;
3132  case ISD::ZERO_EXTEND:
3133  case ISD::SIGN_EXTEND:
3134  case ISD::ANY_EXTEND: {
3135    SDValue X = LHS->getOperand(0);
3136
3137    if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3138        isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3139      // Prefer build_vector as the canonical form if packed types are legal.
3140      // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3141      SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3142       { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3143      return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3144    }
3145
3146    // shl (ext x) => zext (shl x), if shift does not overflow int
3147    if (VT != MVT::i64)
3148      break;
3149    KnownBits Known = DAG.computeKnownBits(X);
3150    unsigned LZ = Known.countMinLeadingZeros();
3151    if (LZ < RHSVal)
3152      break;
3153    EVT XVT = X.getValueType();
3154    SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3155    return DAG.getZExtOrTrunc(Shl, SL, VT);
3156  }
3157  }
3158
3159  if (VT != MVT::i64)
3160    return SDValue();
3161
3162  // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3163
3164  // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3165  // common case, splitting this into a move and a 32-bit shift is faster and
3166  // the same code size.
3167  if (RHSVal < 32)
3168    return SDValue();
3169
3170  SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3171
3172  SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3173  SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3174
3175  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3176
3177  SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3178  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3179}
3180
3181SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3182                                                DAGCombinerInfo &DCI) const {
3183  if (N->getValueType(0) != MVT::i64)
3184    return SDValue();
3185
3186  const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3187  if (!RHS)
3188    return SDValue();
3189
3190  SelectionDAG &DAG = DCI.DAG;
3191  SDLoc SL(N);
3192  unsigned RHSVal = RHS->getZExtValue();
3193
3194  // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3195  if (RHSVal == 32) {
3196    SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3197    SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3198                                   DAG.getConstant(31, SL, MVT::i32));
3199
3200    SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3201    return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3202  }
3203
3204  // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3205  if (RHSVal == 63) {
3206    SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3207    SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3208                                   DAG.getConstant(31, SL, MVT::i32));
3209    SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3210    return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3211  }
3212
3213  return SDValue();
3214}
3215
3216SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3217                                                DAGCombinerInfo &DCI) const {
3218  auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3219  if (!RHS)
3220    return SDValue();
3221
3222  EVT VT = N->getValueType(0);
3223  SDValue LHS = N->getOperand(0);
3224  unsigned ShiftAmt = RHS->getZExtValue();
3225  SelectionDAG &DAG = DCI.DAG;
3226  SDLoc SL(N);
3227
3228  // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3229  // this improves the ability to match BFE patterns in isel.
3230  if (LHS.getOpcode() == ISD::AND) {
3231    if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3232      if (Mask->getAPIntValue().isShiftedMask() &&
3233          Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3234        return DAG.getNode(
3235            ISD::AND, SL, VT,
3236            DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3237            DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3238      }
3239    }
3240  }
3241
3242  if (VT != MVT::i64)
3243    return SDValue();
3244
3245  if (ShiftAmt < 32)
3246    return SDValue();
3247
3248  // srl i64:x, C for C >= 32
3249  // =>
3250  //   build_pair (srl hi_32(x), C - 32), 0
3251  SDValue One = DAG.getConstant(1, SL, MVT::i32);
3252  SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3253
3254  SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3255  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3256
3257  SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3258  SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3259
3260  SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3261
3262  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3263}
3264
3265SDValue AMDGPUTargetLowering::performTruncateCombine(
3266  SDNode *N, DAGCombinerInfo &DCI) const {
3267  SDLoc SL(N);
3268  SelectionDAG &DAG = DCI.DAG;
3269  EVT VT = N->getValueType(0);
3270  SDValue Src = N->getOperand(0);
3271
3272  // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3273  if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3274    SDValue Vec = Src.getOperand(0);
3275    if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3276      SDValue Elt0 = Vec.getOperand(0);
3277      EVT EltVT = Elt0.getValueType();
3278      if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3279        if (EltVT.isFloatingPoint()) {
3280          Elt0 = DAG.getNode(ISD::BITCAST, SL,
3281                             EltVT.changeTypeToInteger(), Elt0);
3282        }
3283
3284        return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3285      }
3286    }
3287  }
3288
3289  // Equivalent of above for accessing the high element of a vector as an
3290  // integer operation.
3291  // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3292  if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3293    if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3294      if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3295        SDValue BV = stripBitcast(Src.getOperand(0));
3296        if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3297            BV.getValueType().getVectorNumElements() == 2) {
3298          SDValue SrcElt = BV.getOperand(1);
3299          EVT SrcEltVT = SrcElt.getValueType();
3300          if (SrcEltVT.isFloatingPoint()) {
3301            SrcElt = DAG.getNode(ISD::BITCAST, SL,
3302                                 SrcEltVT.changeTypeToInteger(), SrcElt);
3303          }
3304
3305          return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3306        }
3307      }
3308    }
3309  }
3310
3311  // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3312  //
3313  // i16 (trunc (srl i64:x, K)), K <= 16 ->
3314  //     i16 (trunc (srl (i32 (trunc x), K)))
3315  if (VT.getScalarSizeInBits() < 32) {
3316    EVT SrcVT = Src.getValueType();
3317    if (SrcVT.getScalarSizeInBits() > 32 &&
3318        (Src.getOpcode() == ISD::SRL ||
3319         Src.getOpcode() == ISD::SRA ||
3320         Src.getOpcode() == ISD::SHL)) {
3321      SDValue Amt = Src.getOperand(1);
3322      KnownBits Known = DAG.computeKnownBits(Amt);
3323      unsigned Size = VT.getScalarSizeInBits();
3324      if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3325          (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3326        EVT MidVT = VT.isVector() ?
3327          EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3328                           VT.getVectorNumElements()) : MVT::i32;
3329
3330        EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3331        SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3332                                    Src.getOperand(0));
3333        DCI.AddToWorklist(Trunc.getNode());
3334
3335        if (Amt.getValueType() != NewShiftVT) {
3336          Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3337          DCI.AddToWorklist(Amt.getNode());
3338        }
3339
3340        SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3341                                          Trunc, Amt);
3342        return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3343      }
3344    }
3345  }
3346
3347  return SDValue();
3348}
3349
3350// We need to specifically handle i64 mul here to avoid unnecessary conversion
3351// instructions. If we only match on the legalized i64 mul expansion,
3352// SimplifyDemandedBits will be unable to remove them because there will be
3353// multiple uses due to the separate mul + mulh[su].
3354static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3355                        SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3356  if (Size <= 32) {
3357    unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3358    return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3359  }
3360
3361  // Because we want to eliminate extension instructions before the
3362  // operation, we need to create a single user here (i.e. not the separate
3363  // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3364
3365  unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3366
3367  SDValue Mul = DAG.getNode(MulOpc, SL,
3368                            DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3369
3370  return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3371                     Mul.getValue(0), Mul.getValue(1));
3372}
3373
3374SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3375                                                DAGCombinerInfo &DCI) const {
3376  EVT VT = N->getValueType(0);
3377
3378  unsigned Size = VT.getSizeInBits();
3379  if (VT.isVector() || Size > 64)
3380    return SDValue();
3381
3382  // There are i16 integer mul/mad.
3383  if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3384    return SDValue();
3385
3386  SelectionDAG &DAG = DCI.DAG;
3387  SDLoc DL(N);
3388
3389  SDValue N0 = N->getOperand(0);
3390  SDValue N1 = N->getOperand(1);
3391
3392  // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3393  // in the source into any_extends if the result of the mul is truncated. Since
3394  // we can assume the high bits are whatever we want, use the underlying value
3395  // to avoid the unknown high bits from interfering.
3396  if (N0.getOpcode() == ISD::ANY_EXTEND)
3397    N0 = N0.getOperand(0);
3398
3399  if (N1.getOpcode() == ISD::ANY_EXTEND)
3400    N1 = N1.getOperand(0);
3401
3402  SDValue Mul;
3403
3404  if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3405    N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3406    N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3407    Mul = getMul24(DAG, DL, N0, N1, Size, false);
3408  } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3409    N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3410    N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3411    Mul = getMul24(DAG, DL, N0, N1, Size, true);
3412  } else {
3413    return SDValue();
3414  }
3415
3416  // We need to use sext even for MUL_U24, because MUL_U24 is used
3417  // for signed multiply of 8 and 16-bit types.
3418  return DAG.getSExtOrTrunc(Mul, DL, VT);
3419}
3420
3421SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3422                                                  DAGCombinerInfo &DCI) const {
3423  EVT VT = N->getValueType(0);
3424
3425  if (!Subtarget->hasMulI24() || VT.isVector())
3426    return SDValue();
3427
3428  SelectionDAG &DAG = DCI.DAG;
3429  SDLoc DL(N);
3430
3431  SDValue N0 = N->getOperand(0);
3432  SDValue N1 = N->getOperand(1);
3433
3434  if (!isI24(N0, DAG) || !isI24(N1, DAG))
3435    return SDValue();
3436
3437  N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3438  N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3439
3440  SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3441  DCI.AddToWorklist(Mulhi.getNode());
3442  return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3443}
3444
3445SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3446                                                  DAGCombinerInfo &DCI) const {
3447  EVT VT = N->getValueType(0);
3448
3449  if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3450    return SDValue();
3451
3452  SelectionDAG &DAG = DCI.DAG;
3453  SDLoc DL(N);
3454
3455  SDValue N0 = N->getOperand(0);
3456  SDValue N1 = N->getOperand(1);
3457
3458  if (!isU24(N0, DAG) || !isU24(N1, DAG))
3459    return SDValue();
3460
3461  N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3462  N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3463
3464  SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3465  DCI.AddToWorklist(Mulhi.getNode());
3466  return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3467}
3468
3469SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3470  SDNode *N, DAGCombinerInfo &DCI) const {
3471  SelectionDAG &DAG = DCI.DAG;
3472
3473  // Simplify demanded bits before splitting into multiple users.
3474  if (SDValue V = simplifyI24(N, DCI))
3475    return V;
3476
3477  SDValue N0 = N->getOperand(0);
3478  SDValue N1 = N->getOperand(1);
3479
3480  bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3481
3482  unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3483  unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3484
3485  SDLoc SL(N);
3486
3487  SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3488  SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3489  return DAG.getMergeValues({ MulLo, MulHi }, SL);
3490}
3491
3492static bool isNegativeOne(SDValue Val) {
3493  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3494    return C->isAllOnesValue();
3495  return false;
3496}
3497
3498SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3499                                          SDValue Op,
3500                                          const SDLoc &DL,
3501                                          unsigned Opc) const {
3502  EVT VT = Op.getValueType();
3503  EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3504  if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3505                              LegalVT != MVT::i16))
3506    return SDValue();
3507
3508  if (VT != MVT::i32)
3509    Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3510
3511  SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3512  if (VT != MVT::i32)
3513    FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3514
3515  return FFBX;
3516}
3517
3518// The native instructions return -1 on 0 input. Optimize out a select that
3519// produces -1 on 0.
3520//
3521// TODO: If zero is not undef, we could also do this if the output is compared
3522// against the bitwidth.
3523//
3524// TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3525SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3526                                                 SDValue LHS, SDValue RHS,
3527                                                 DAGCombinerInfo &DCI) const {
3528  ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3529  if (!CmpRhs || !CmpRhs->isNullValue())
3530    return SDValue();
3531
3532  SelectionDAG &DAG = DCI.DAG;
3533  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3534  SDValue CmpLHS = Cond.getOperand(0);
3535
3536  unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3537                                           AMDGPUISD::FFBH_U32;
3538
3539  // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3540  // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3541  if (CCOpcode == ISD::SETEQ &&
3542      (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3543      RHS.getOperand(0) == CmpLHS &&
3544      isNegativeOne(LHS)) {
3545    return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3546  }
3547
3548  // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3549  // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3550  if (CCOpcode == ISD::SETNE &&
3551      (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3552      LHS.getOperand(0) == CmpLHS &&
3553      isNegativeOne(RHS)) {
3554    return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3555  }
3556
3557  return SDValue();
3558}
3559
3560static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3561                                         unsigned Op,
3562                                         const SDLoc &SL,
3563                                         SDValue Cond,
3564                                         SDValue N1,
3565                                         SDValue N2) {
3566  SelectionDAG &DAG = DCI.DAG;
3567  EVT VT = N1.getValueType();
3568
3569  SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3570                                  N1.getOperand(0), N2.getOperand(0));
3571  DCI.AddToWorklist(NewSelect.getNode());
3572  return DAG.getNode(Op, SL, VT, NewSelect);
3573}
3574
3575// Pull a free FP operation out of a select so it may fold into uses.
3576//
3577// select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3578// select c, (fneg x), k -> fneg (select c, x, (fneg k))
3579//
3580// select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3581// select c, (fabs x), +k -> fabs (select c, x, k)
3582static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3583                                    SDValue N) {
3584  SelectionDAG &DAG = DCI.DAG;
3585  SDValue Cond = N.getOperand(0);
3586  SDValue LHS = N.getOperand(1);
3587  SDValue RHS = N.getOperand(2);
3588
3589  EVT VT = N.getValueType();
3590  if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3591      (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3592    return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3593                                     SDLoc(N), Cond, LHS, RHS);
3594  }
3595
3596  bool Inv = false;
3597  if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3598    std::swap(LHS, RHS);
3599    Inv = true;
3600  }
3601
3602  // TODO: Support vector constants.
3603  ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3604  if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3605    SDLoc SL(N);
3606    // If one side is an fneg/fabs and the other is a constant, we can push the
3607    // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3608    SDValue NewLHS = LHS.getOperand(0);
3609    SDValue NewRHS = RHS;
3610
3611    // Careful: if the neg can be folded up, don't try to pull it back down.
3612    bool ShouldFoldNeg = true;
3613
3614    if (NewLHS.hasOneUse()) {
3615      unsigned Opc = NewLHS.getOpcode();
3616      if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3617        ShouldFoldNeg = false;
3618      if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3619        ShouldFoldNeg = false;
3620    }
3621
3622    if (ShouldFoldNeg) {
3623      if (LHS.getOpcode() == ISD::FNEG)
3624        NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3625      else if (CRHS->isNegative())
3626        return SDValue();
3627
3628      if (Inv)
3629        std::swap(NewLHS, NewRHS);
3630
3631      SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3632                                      Cond, NewLHS, NewRHS);
3633      DCI.AddToWorklist(NewSelect.getNode());
3634      return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3635    }
3636  }
3637
3638  return SDValue();
3639}
3640
3641
3642SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3643                                                   DAGCombinerInfo &DCI) const {
3644  if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3645    return Folded;
3646
3647  SDValue Cond = N->getOperand(0);
3648  if (Cond.getOpcode() != ISD::SETCC)
3649    return SDValue();
3650
3651  EVT VT = N->getValueType(0);
3652  SDValue LHS = Cond.getOperand(0);
3653  SDValue RHS = Cond.getOperand(1);
3654  SDValue CC = Cond.getOperand(2);
3655
3656  SDValue True = N->getOperand(1);
3657  SDValue False = N->getOperand(2);
3658
3659  if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3660    SelectionDAG &DAG = DCI.DAG;
3661    if (DAG.isConstantValueOfAnyType(True) &&
3662        !DAG.isConstantValueOfAnyType(False)) {
3663      // Swap cmp + select pair to move constant to false input.
3664      // This will allow using VOPC cndmasks more often.
3665      // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3666
3667      SDLoc SL(N);
3668      ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3669                                            LHS.getValueType().isInteger());
3670
3671      SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3672      return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3673    }
3674
3675    if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3676      SDValue MinMax
3677        = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3678      // Revisit this node so we can catch min3/max3/med3 patterns.
3679      //DCI.AddToWorklist(MinMax.getNode());
3680      return MinMax;
3681    }
3682  }
3683
3684  // There's no reason to not do this if the condition has other uses.
3685  return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3686}
3687
3688static bool isInv2Pi(const APFloat &APF) {
3689  static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3690  static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3691  static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3692
3693  return APF.bitwiseIsEqual(KF16) ||
3694         APF.bitwiseIsEqual(KF32) ||
3695         APF.bitwiseIsEqual(KF64);
3696}
3697
3698// 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3699// additional cost to negate them.
3700bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3701  if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3702    if (C->isZero() && !C->isNegative())
3703      return true;
3704
3705    if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3706      return true;
3707  }
3708
3709  return false;
3710}
3711
3712static unsigned inverseMinMax(unsigned Opc) {
3713  switch (Opc) {
3714  case ISD::FMAXNUM:
3715    return ISD::FMINNUM;
3716  case ISD::FMINNUM:
3717    return ISD::FMAXNUM;
3718  case ISD::FMAXNUM_IEEE:
3719    return ISD::FMINNUM_IEEE;
3720  case ISD::FMINNUM_IEEE:
3721    return ISD::FMAXNUM_IEEE;
3722  case AMDGPUISD::FMAX_LEGACY:
3723    return AMDGPUISD::FMIN_LEGACY;
3724  case AMDGPUISD::FMIN_LEGACY:
3725    return  AMDGPUISD::FMAX_LEGACY;
3726  default:
3727    llvm_unreachable("invalid min/max opcode");
3728  }
3729}
3730
3731SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3732                                                 DAGCombinerInfo &DCI) const {
3733  SelectionDAG &DAG = DCI.DAG;
3734  SDValue N0 = N->getOperand(0);
3735  EVT VT = N->getValueType(0);
3736
3737  unsigned Opc = N0.getOpcode();
3738
3739  // If the input has multiple uses and we can either fold the negate down, or
3740  // the other uses cannot, give up. This both prevents unprofitable
3741  // transformations and infinite loops: we won't repeatedly try to fold around
3742  // a negate that has no 'good' form.
3743  if (N0.hasOneUse()) {
3744    // This may be able to fold into the source, but at a code size cost. Don't
3745    // fold if the fold into the user is free.
3746    if (allUsesHaveSourceMods(N, 0))
3747      return SDValue();
3748  } else {
3749    if (fnegFoldsIntoOp(Opc) &&
3750        (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3751      return SDValue();
3752  }
3753
3754  SDLoc SL(N);
3755  switch (Opc) {
3756  case ISD::FADD: {
3757    if (!mayIgnoreSignedZero(N0))
3758      return SDValue();
3759
3760    // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3761    SDValue LHS = N0.getOperand(0);
3762    SDValue RHS = N0.getOperand(1);
3763
3764    if (LHS.getOpcode() != ISD::FNEG)
3765      LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3766    else
3767      LHS = LHS.getOperand(0);
3768
3769    if (RHS.getOpcode() != ISD::FNEG)
3770      RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3771    else
3772      RHS = RHS.getOperand(0);
3773
3774    SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3775    if (Res.getOpcode() != ISD::FADD)
3776      return SDValue(); // Op got folded away.
3777    if (!N0.hasOneUse())
3778      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3779    return Res;
3780  }
3781  case ISD::FMUL:
3782  case AMDGPUISD::FMUL_LEGACY: {
3783    // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3784    // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3785    SDValue LHS = N0.getOperand(0);
3786    SDValue RHS = N0.getOperand(1);
3787
3788    if (LHS.getOpcode() == ISD::FNEG)
3789      LHS = LHS.getOperand(0);
3790    else if (RHS.getOpcode() == ISD::FNEG)
3791      RHS = RHS.getOperand(0);
3792    else
3793      RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3794
3795    SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3796    if (Res.getOpcode() != Opc)
3797      return SDValue(); // Op got folded away.
3798    if (!N0.hasOneUse())
3799      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3800    return Res;
3801  }
3802  case ISD::FMA:
3803  case ISD::FMAD: {
3804    if (!mayIgnoreSignedZero(N0))
3805      return SDValue();
3806
3807    // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3808    SDValue LHS = N0.getOperand(0);
3809    SDValue MHS = N0.getOperand(1);
3810    SDValue RHS = N0.getOperand(2);
3811
3812    if (LHS.getOpcode() == ISD::FNEG)
3813      LHS = LHS.getOperand(0);
3814    else if (MHS.getOpcode() == ISD::FNEG)
3815      MHS = MHS.getOperand(0);
3816    else
3817      MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3818
3819    if (RHS.getOpcode() != ISD::FNEG)
3820      RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3821    else
3822      RHS = RHS.getOperand(0);
3823
3824    SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3825    if (Res.getOpcode() != Opc)
3826      return SDValue(); // Op got folded away.
3827    if (!N0.hasOneUse())
3828      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3829    return Res;
3830  }
3831  case ISD::FMAXNUM:
3832  case ISD::FMINNUM:
3833  case ISD::FMAXNUM_IEEE:
3834  case ISD::FMINNUM_IEEE:
3835  case AMDGPUISD::FMAX_LEGACY:
3836  case AMDGPUISD::FMIN_LEGACY: {
3837    // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3838    // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3839    // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3840    // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3841
3842    SDValue LHS = N0.getOperand(0);
3843    SDValue RHS = N0.getOperand(1);
3844
3845    // 0 doesn't have a negated inline immediate.
3846    // TODO: This constant check should be generalized to other operations.
3847    if (isConstantCostlierToNegate(RHS))
3848      return SDValue();
3849
3850    SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3851    SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3852    unsigned Opposite = inverseMinMax(Opc);
3853
3854    SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3855    if (Res.getOpcode() != Opposite)
3856      return SDValue(); // Op got folded away.
3857    if (!N0.hasOneUse())
3858      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3859    return Res;
3860  }
3861  case AMDGPUISD::FMED3: {
3862    SDValue Ops[3];
3863    for (unsigned I = 0; I < 3; ++I)
3864      Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3865
3866    SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3867    if (Res.getOpcode() != AMDGPUISD::FMED3)
3868      return SDValue(); // Op got folded away.
3869    if (!N0.hasOneUse())
3870      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3871    return Res;
3872  }
3873  case ISD::FP_EXTEND:
3874  case ISD::FTRUNC:
3875  case ISD::FRINT:
3876  case ISD::FNEARBYINT: // XXX - Should fround be handled?
3877  case ISD::FSIN:
3878  case ISD::FCANONICALIZE:
3879  case AMDGPUISD::RCP:
3880  case AMDGPUISD::RCP_LEGACY:
3881  case AMDGPUISD::RCP_IFLAG:
3882  case AMDGPUISD::SIN_HW: {
3883    SDValue CvtSrc = N0.getOperand(0);
3884    if (CvtSrc.getOpcode() == ISD::FNEG) {
3885      // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3886      // (fneg (rcp (fneg x))) -> (rcp x)
3887      return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3888    }
3889
3890    if (!N0.hasOneUse())
3891      return SDValue();
3892
3893    // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3894    // (fneg (rcp x)) -> (rcp (fneg x))
3895    SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3896    return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3897  }
3898  case ISD::FP_ROUND: {
3899    SDValue CvtSrc = N0.getOperand(0);
3900
3901    if (CvtSrc.getOpcode() == ISD::FNEG) {
3902      // (fneg (fp_round (fneg x))) -> (fp_round x)
3903      return DAG.getNode(ISD::FP_ROUND, SL, VT,
3904                         CvtSrc.getOperand(0), N0.getOperand(1));
3905    }
3906
3907    if (!N0.hasOneUse())
3908      return SDValue();
3909
3910    // (fneg (fp_round x)) -> (fp_round (fneg x))
3911    SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3912    return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3913  }
3914  case ISD::FP16_TO_FP: {
3915    // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3916    // f16, but legalization of f16 fneg ends up pulling it out of the source.
3917    // Put the fneg back as a legal source operation that can be matched later.
3918    SDLoc SL(N);
3919
3920    SDValue Src = N0.getOperand(0);
3921    EVT SrcVT = Src.getValueType();
3922
3923    // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3924    SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3925                                  DAG.getConstant(0x8000, SL, SrcVT));
3926    return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3927  }
3928  default:
3929    return SDValue();
3930  }
3931}
3932
3933SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3934                                                 DAGCombinerInfo &DCI) const {
3935  SelectionDAG &DAG = DCI.DAG;
3936  SDValue N0 = N->getOperand(0);
3937
3938  if (!N0.hasOneUse())
3939    return SDValue();
3940
3941  switch (N0.getOpcode()) {
3942  case ISD::FP16_TO_FP: {
3943    assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3944    SDLoc SL(N);
3945    SDValue Src = N0.getOperand(0);
3946    EVT SrcVT = Src.getValueType();
3947
3948    // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3949    SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3950                                  DAG.getConstant(0x7fff, SL, SrcVT));
3951    return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3952  }
3953  default:
3954    return SDValue();
3955  }
3956}
3957
3958SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3959                                                DAGCombinerInfo &DCI) const {
3960  const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3961  if (!CFP)
3962    return SDValue();
3963
3964  // XXX - Should this flush denormals?
3965  const APFloat &Val = CFP->getValueAPF();
3966  APFloat One(Val.getSemantics(), "1.0");
3967  return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3968}
3969
3970SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3971                                                DAGCombinerInfo &DCI) const {
3972  SelectionDAG &DAG = DCI.DAG;
3973  SDLoc DL(N);
3974
3975  switch(N->getOpcode()) {
3976  default:
3977    break;
3978  case ISD::BITCAST: {
3979    EVT DestVT = N->getValueType(0);
3980
3981    // Push casts through vector builds. This helps avoid emitting a large
3982    // number of copies when materializing floating point vector constants.
3983    //
3984    // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3985    //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3986    if (DestVT.isVector()) {
3987      SDValue Src = N->getOperand(0);
3988      if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3989        EVT SrcVT = Src.getValueType();
3990        unsigned NElts = DestVT.getVectorNumElements();
3991
3992        if (SrcVT.getVectorNumElements() == NElts) {
3993          EVT DestEltVT = DestVT.getVectorElementType();
3994
3995          SmallVector<SDValue, 8> CastedElts;
3996          SDLoc SL(N);
3997          for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3998            SDValue Elt = Src.getOperand(I);
3999            CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
4000          }
4001
4002          return DAG.getBuildVector(DestVT, SL, CastedElts);
4003        }
4004      }
4005    }
4006
4007    if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
4008      break;
4009
4010    // Fold bitcasts of constants.
4011    //
4012    // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4013    // TODO: Generalize and move to DAGCombiner
4014    SDValue Src = N->getOperand(0);
4015    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
4016      if (Src.getValueType() == MVT::i64) {
4017        SDLoc SL(N);
4018        uint64_t CVal = C->getZExtValue();
4019        SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4020                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4021                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4022        return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
4023      }
4024    }
4025
4026    if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
4027      const APInt &Val = C->getValueAPF().bitcastToAPInt();
4028      SDLoc SL(N);
4029      uint64_t CVal = Val.getZExtValue();
4030      SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4031                                DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4032                                DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4033
4034      return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
4035    }
4036
4037    break;
4038  }
4039  case ISD::SHL: {
4040    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4041      break;
4042
4043    return performShlCombine(N, DCI);
4044  }
4045  case ISD::SRL: {
4046    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4047      break;
4048
4049    return performSrlCombine(N, DCI);
4050  }
4051  case ISD::SRA: {
4052    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4053      break;
4054
4055    return performSraCombine(N, DCI);
4056  }
4057  case ISD::TRUNCATE:
4058    return performTruncateCombine(N, DCI);
4059  case ISD::MUL:
4060    return performMulCombine(N, DCI);
4061  case ISD::MULHS:
4062    return performMulhsCombine(N, DCI);
4063  case ISD::MULHU:
4064    return performMulhuCombine(N, DCI);
4065  case AMDGPUISD::MUL_I24:
4066  case AMDGPUISD::MUL_U24:
4067  case AMDGPUISD::MULHI_I24:
4068  case AMDGPUISD::MULHI_U24: {
4069    if (SDValue V = simplifyI24(N, DCI))
4070      return V;
4071    return SDValue();
4072  }
4073  case AMDGPUISD::MUL_LOHI_I24:
4074  case AMDGPUISD::MUL_LOHI_U24:
4075    return performMulLoHi24Combine(N, DCI);
4076  case ISD::SELECT:
4077    return performSelectCombine(N, DCI);
4078  case ISD::FNEG:
4079    return performFNegCombine(N, DCI);
4080  case ISD::FABS:
4081    return performFAbsCombine(N, DCI);
4082  case AMDGPUISD::BFE_I32:
4083  case AMDGPUISD::BFE_U32: {
4084    assert(!N->getValueType(0).isVector() &&
4085           "Vector handling of BFE not implemented");
4086    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4087    if (!Width)
4088      break;
4089
4090    uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4091    if (WidthVal == 0)
4092      return DAG.getConstant(0, DL, MVT::i32);
4093
4094    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4095    if (!Offset)
4096      break;
4097
4098    SDValue BitsFrom = N->getOperand(0);
4099    uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4100
4101    bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4102
4103    if (OffsetVal == 0) {
4104      // This is already sign / zero extended, so try to fold away extra BFEs.
4105      unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4106
4107      unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4108      if (OpSignBits >= SignBits)
4109        return BitsFrom;
4110
4111      EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4112      if (Signed) {
4113        // This is a sign_extend_inreg. Replace it to take advantage of existing
4114        // DAG Combines. If not eliminated, we will match back to BFE during
4115        // selection.
4116
4117        // TODO: The sext_inreg of extended types ends, although we can could
4118        // handle them in a single BFE.
4119        return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4120                           DAG.getValueType(SmallVT));
4121      }
4122
4123      return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4124    }
4125
4126    if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4127      if (Signed) {
4128        return constantFoldBFE<int32_t>(DAG,
4129                                        CVal->getSExtValue(),
4130                                        OffsetVal,
4131                                        WidthVal,
4132                                        DL);
4133      }
4134
4135      return constantFoldBFE<uint32_t>(DAG,
4136                                       CVal->getZExtValue(),
4137                                       OffsetVal,
4138                                       WidthVal,
4139                                       DL);
4140    }
4141
4142    if ((OffsetVal + WidthVal) >= 32 &&
4143        !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4144      SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4145      return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4146                         BitsFrom, ShiftVal);
4147    }
4148
4149    if (BitsFrom.hasOneUse()) {
4150      APInt Demanded = APInt::getBitsSet(32,
4151                                         OffsetVal,
4152                                         OffsetVal + WidthVal);
4153
4154      KnownBits Known;
4155      TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4156                                            !DCI.isBeforeLegalizeOps());
4157      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4158      if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4159          TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4160        DCI.CommitTargetLoweringOpt(TLO);
4161      }
4162    }
4163
4164    break;
4165  }
4166  case ISD::LOAD:
4167    return performLoadCombine(N, DCI);
4168  case ISD::STORE:
4169    return performStoreCombine(N, DCI);
4170  case AMDGPUISD::RCP:
4171  case AMDGPUISD::RCP_IFLAG:
4172    return performRcpCombine(N, DCI);
4173  case ISD::AssertZext:
4174  case ISD::AssertSext:
4175    return performAssertSZExtCombine(N, DCI);
4176  }
4177  return SDValue();
4178}
4179
4180//===----------------------------------------------------------------------===//
4181// Helper functions
4182//===----------------------------------------------------------------------===//
4183
4184SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4185                                                   const TargetRegisterClass *RC,
4186                                                   unsigned Reg, EVT VT,
4187                                                   const SDLoc &SL,
4188                                                   bool RawReg) const {
4189  MachineFunction &MF = DAG.getMachineFunction();
4190  MachineRegisterInfo &MRI = MF.getRegInfo();
4191  unsigned VReg;
4192
4193  if (!MRI.isLiveIn(Reg)) {
4194    VReg = MRI.createVirtualRegister(RC);
4195    MRI.addLiveIn(Reg, VReg);
4196  } else {
4197    VReg = MRI.getLiveInVirtReg(Reg);
4198  }
4199
4200  if (RawReg)
4201    return DAG.getRegister(VReg, VT);
4202
4203  return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4204}
4205
4206SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4207                                                  EVT VT,
4208                                                  const SDLoc &SL,
4209                                                  int64_t Offset) const {
4210  MachineFunction &MF = DAG.getMachineFunction();
4211  MachineFrameInfo &MFI = MF.getFrameInfo();
4212
4213  int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
4214  auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4215  SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4216
4217  return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4218                     MachineMemOperand::MODereferenceable |
4219                     MachineMemOperand::MOInvariant);
4220}
4221
4222SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4223                                                   const SDLoc &SL,
4224                                                   SDValue Chain,
4225                                                   SDValue ArgVal,
4226                                                   int64_t Offset) const {
4227  MachineFunction &MF = DAG.getMachineFunction();
4228  MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4229
4230  SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4231  SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4232                               MachineMemOperand::MODereferenceable);
4233  return Store;
4234}
4235
4236SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4237                                             const TargetRegisterClass *RC,
4238                                             EVT VT, const SDLoc &SL,
4239                                             const ArgDescriptor &Arg) const {
4240  assert(Arg && "Attempting to load missing argument");
4241
4242  SDValue V = Arg.isRegister() ?
4243    CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4244    loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4245
4246  if (!Arg.isMasked())
4247    return V;
4248
4249  unsigned Mask = Arg.getMask();
4250  unsigned Shift = countTrailingZeros<unsigned>(Mask);
4251  V = DAG.getNode(ISD::SRL, SL, VT, V,
4252                  DAG.getShiftAmountConstant(Shift, VT, SL));
4253  return DAG.getNode(ISD::AND, SL, VT, V,
4254                     DAG.getConstant(Mask >> Shift, SL, VT));
4255}
4256
4257uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4258    const MachineFunction &MF, const ImplicitParameter Param) const {
4259  const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4260  const AMDGPUSubtarget &ST =
4261      AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4262  unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4263  unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
4264  uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4265                       ExplicitArgOffset;
4266  switch (Param) {
4267  case GRID_DIM:
4268    return ArgOffset;
4269  case GRID_OFFSET:
4270    return ArgOffset + 4;
4271  }
4272  llvm_unreachable("unexpected implicit parameter type");
4273}
4274
4275#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4276
4277const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4278  switch ((AMDGPUISD::NodeType)Opcode) {
4279  case AMDGPUISD::FIRST_NUMBER: break;
4280  // AMDIL DAG nodes
4281  NODE_NAME_CASE(UMUL);
4282  NODE_NAME_CASE(BRANCH_COND);
4283
4284  // AMDGPU DAG nodes
4285  NODE_NAME_CASE(IF)
4286  NODE_NAME_CASE(ELSE)
4287  NODE_NAME_CASE(LOOP)
4288  NODE_NAME_CASE(CALL)
4289  NODE_NAME_CASE(TC_RETURN)
4290  NODE_NAME_CASE(TRAP)
4291  NODE_NAME_CASE(RET_FLAG)
4292  NODE_NAME_CASE(RETURN_TO_EPILOG)
4293  NODE_NAME_CASE(ENDPGM)
4294  NODE_NAME_CASE(DWORDADDR)
4295  NODE_NAME_CASE(FRACT)
4296  NODE_NAME_CASE(SETCC)
4297  NODE_NAME_CASE(SETREG)
4298  NODE_NAME_CASE(FMA_W_CHAIN)
4299  NODE_NAME_CASE(FMUL_W_CHAIN)
4300  NODE_NAME_CASE(CLAMP)
4301  NODE_NAME_CASE(COS_HW)
4302  NODE_NAME_CASE(SIN_HW)
4303  NODE_NAME_CASE(FMAX_LEGACY)
4304  NODE_NAME_CASE(FMIN_LEGACY)
4305  NODE_NAME_CASE(FMAX3)
4306  NODE_NAME_CASE(SMAX3)
4307  NODE_NAME_CASE(UMAX3)
4308  NODE_NAME_CASE(FMIN3)
4309  NODE_NAME_CASE(SMIN3)
4310  NODE_NAME_CASE(UMIN3)
4311  NODE_NAME_CASE(FMED3)
4312  NODE_NAME_CASE(SMED3)
4313  NODE_NAME_CASE(UMED3)
4314  NODE_NAME_CASE(FDOT2)
4315  NODE_NAME_CASE(URECIP)
4316  NODE_NAME_CASE(DIV_SCALE)
4317  NODE_NAME_CASE(DIV_FMAS)
4318  NODE_NAME_CASE(DIV_FIXUP)
4319  NODE_NAME_CASE(FMAD_FTZ)
4320  NODE_NAME_CASE(TRIG_PREOP)
4321  NODE_NAME_CASE(RCP)
4322  NODE_NAME_CASE(RSQ)
4323  NODE_NAME_CASE(RCP_LEGACY)
4324  NODE_NAME_CASE(RSQ_LEGACY)
4325  NODE_NAME_CASE(RCP_IFLAG)
4326  NODE_NAME_CASE(FMUL_LEGACY)
4327  NODE_NAME_CASE(RSQ_CLAMP)
4328  NODE_NAME_CASE(LDEXP)
4329  NODE_NAME_CASE(FP_CLASS)
4330  NODE_NAME_CASE(DOT4)
4331  NODE_NAME_CASE(CARRY)
4332  NODE_NAME_CASE(BORROW)
4333  NODE_NAME_CASE(BFE_U32)
4334  NODE_NAME_CASE(BFE_I32)
4335  NODE_NAME_CASE(BFI)
4336  NODE_NAME_CASE(BFM)
4337  NODE_NAME_CASE(FFBH_U32)
4338  NODE_NAME_CASE(FFBH_I32)
4339  NODE_NAME_CASE(FFBL_B32)
4340  NODE_NAME_CASE(MUL_U24)
4341  NODE_NAME_CASE(MUL_I24)
4342  NODE_NAME_CASE(MULHI_U24)
4343  NODE_NAME_CASE(MULHI_I24)
4344  NODE_NAME_CASE(MUL_LOHI_U24)
4345  NODE_NAME_CASE(MUL_LOHI_I24)
4346  NODE_NAME_CASE(MAD_U24)
4347  NODE_NAME_CASE(MAD_I24)
4348  NODE_NAME_CASE(MAD_I64_I32)
4349  NODE_NAME_CASE(MAD_U64_U32)
4350  NODE_NAME_CASE(PERM)
4351  NODE_NAME_CASE(TEXTURE_FETCH)
4352  NODE_NAME_CASE(EXPORT)
4353  NODE_NAME_CASE(EXPORT_DONE)
4354  NODE_NAME_CASE(R600_EXPORT)
4355  NODE_NAME_CASE(CONST_ADDRESS)
4356  NODE_NAME_CASE(REGISTER_LOAD)
4357  NODE_NAME_CASE(REGISTER_STORE)
4358  NODE_NAME_CASE(SAMPLE)
4359  NODE_NAME_CASE(SAMPLEB)
4360  NODE_NAME_CASE(SAMPLED)
4361  NODE_NAME_CASE(SAMPLEL)
4362  NODE_NAME_CASE(CVT_F32_UBYTE0)
4363  NODE_NAME_CASE(CVT_F32_UBYTE1)
4364  NODE_NAME_CASE(CVT_F32_UBYTE2)
4365  NODE_NAME_CASE(CVT_F32_UBYTE3)
4366  NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4367  NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4368  NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4369  NODE_NAME_CASE(CVT_PK_I16_I32)
4370  NODE_NAME_CASE(CVT_PK_U16_U32)
4371  NODE_NAME_CASE(FP_TO_FP16)
4372  NODE_NAME_CASE(FP16_ZEXT)
4373  NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4374  NODE_NAME_CASE(CONST_DATA_PTR)
4375  NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4376  NODE_NAME_CASE(LDS)
4377  NODE_NAME_CASE(KILL)
4378  NODE_NAME_CASE(DUMMY_CHAIN)
4379  case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4380  NODE_NAME_CASE(INIT_EXEC)
4381  NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
4382  NODE_NAME_CASE(SENDMSG)
4383  NODE_NAME_CASE(SENDMSGHALT)
4384  NODE_NAME_CASE(INTERP_MOV)
4385  NODE_NAME_CASE(INTERP_P1)
4386  NODE_NAME_CASE(INTERP_P2)
4387  NODE_NAME_CASE(INTERP_P1LL_F16)
4388  NODE_NAME_CASE(INTERP_P1LV_F16)
4389  NODE_NAME_CASE(INTERP_P2_F16)
4390  NODE_NAME_CASE(LOAD_D16_HI)
4391  NODE_NAME_CASE(LOAD_D16_LO)
4392  NODE_NAME_CASE(LOAD_D16_HI_I8)
4393  NODE_NAME_CASE(LOAD_D16_HI_U8)
4394  NODE_NAME_CASE(LOAD_D16_LO_I8)
4395  NODE_NAME_CASE(LOAD_D16_LO_U8)
4396  NODE_NAME_CASE(STORE_MSKOR)
4397  NODE_NAME_CASE(LOAD_CONSTANT)
4398  NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4399  NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4400  NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4401  NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4402  NODE_NAME_CASE(DS_ORDERED_COUNT)
4403  NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4404  NODE_NAME_CASE(ATOMIC_INC)
4405  NODE_NAME_CASE(ATOMIC_DEC)
4406  NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4407  NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4408  NODE_NAME_CASE(BUFFER_LOAD)
4409  NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4410  NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4411  NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4412  NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4413  NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4414  NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4415  NODE_NAME_CASE(SBUFFER_LOAD)
4416  NODE_NAME_CASE(BUFFER_STORE)
4417  NODE_NAME_CASE(BUFFER_STORE_BYTE)
4418  NODE_NAME_CASE(BUFFER_STORE_SHORT)
4419  NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4420  NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4421  NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4422  NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4423  NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4424  NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4425  NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4426  NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4427  NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4428  NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4429  NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4430  NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4431  NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4432  NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4433  NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4434  NODE_NAME_CASE(ATOMIC_FADD)
4435  NODE_NAME_CASE(ATOMIC_PK_FADD)
4436
4437  case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4438  }
4439  return nullptr;
4440}
4441
4442SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4443                                              SelectionDAG &DAG, int Enabled,
4444                                              int &RefinementSteps,
4445                                              bool &UseOneConstNR,
4446                                              bool Reciprocal) const {
4447  EVT VT = Operand.getValueType();
4448
4449  if (VT == MVT::f32) {
4450    RefinementSteps = 0;
4451    return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4452  }
4453
4454  // TODO: There is also f64 rsq instruction, but the documentation is less
4455  // clear on its precision.
4456
4457  return SDValue();
4458}
4459
4460SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4461                                               SelectionDAG &DAG, int Enabled,
4462                                               int &RefinementSteps) const {
4463  EVT VT = Operand.getValueType();
4464
4465  if (VT == MVT::f32) {
4466    // Reciprocal, < 1 ulp error.
4467    //
4468    // This reciprocal approximation converges to < 0.5 ulp error with one
4469    // newton rhapson performed with two fused multiple adds (FMAs).
4470
4471    RefinementSteps = 0;
4472    return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4473  }
4474
4475  // TODO: There is also f64 rcp instruction, but the documentation is less
4476  // clear on its precision.
4477
4478  return SDValue();
4479}
4480
4481void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4482    const SDValue Op, KnownBits &Known,
4483    const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4484
4485  Known.resetAll(); // Don't know anything.
4486
4487  unsigned Opc = Op.getOpcode();
4488
4489  switch (Opc) {
4490  default:
4491    break;
4492  case AMDGPUISD::CARRY:
4493  case AMDGPUISD::BORROW: {
4494    Known.Zero = APInt::getHighBitsSet(32, 31);
4495    break;
4496  }
4497
4498  case AMDGPUISD::BFE_I32:
4499  case AMDGPUISD::BFE_U32: {
4500    ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4501    if (!CWidth)
4502      return;
4503
4504    uint32_t Width = CWidth->getZExtValue() & 0x1f;
4505
4506    if (Opc == AMDGPUISD::BFE_U32)
4507      Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4508
4509    break;
4510  }
4511  case AMDGPUISD::FP_TO_FP16:
4512  case AMDGPUISD::FP16_ZEXT: {
4513    unsigned BitWidth = Known.getBitWidth();
4514
4515    // High bits are zero.
4516    Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4517    break;
4518  }
4519  case AMDGPUISD::MUL_U24:
4520  case AMDGPUISD::MUL_I24: {
4521    KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4522    KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4523    unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4524                      RHSKnown.countMinTrailingZeros();
4525    Known.Zero.setLowBits(std::min(TrailZ, 32u));
4526
4527    // Truncate to 24 bits.
4528    LHSKnown = LHSKnown.trunc(24);
4529    RHSKnown = RHSKnown.trunc(24);
4530
4531    bool Negative = false;
4532    if (Opc == AMDGPUISD::MUL_I24) {
4533      unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4534      unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4535      unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4536      if (MaxValBits >= 32)
4537        break;
4538      bool LHSNegative = LHSKnown.isNegative();
4539      bool LHSPositive = LHSKnown.isNonNegative();
4540      bool RHSNegative = RHSKnown.isNegative();
4541      bool RHSPositive = RHSKnown.isNonNegative();
4542      if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4543        break;
4544      Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4545      if (Negative)
4546        Known.One.setHighBits(32 - MaxValBits);
4547      else
4548        Known.Zero.setHighBits(32 - MaxValBits);
4549    } else {
4550      unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4551      unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4552      unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4553      if (MaxValBits >= 32)
4554        break;
4555      Known.Zero.setHighBits(32 - MaxValBits);
4556    }
4557    break;
4558  }
4559  case AMDGPUISD::PERM: {
4560    ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4561    if (!CMask)
4562      return;
4563
4564    KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4565    KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4566    unsigned Sel = CMask->getZExtValue();
4567
4568    for (unsigned I = 0; I < 32; I += 8) {
4569      unsigned SelBits = Sel & 0xff;
4570      if (SelBits < 4) {
4571        SelBits *= 8;
4572        Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4573        Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4574      } else if (SelBits < 7) {
4575        SelBits = (SelBits & 3) * 8;
4576        Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4577        Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4578      } else if (SelBits == 0x0c) {
4579        Known.Zero |= 0xff << I;
4580      } else if (SelBits > 0x0c) {
4581        Known.One |= 0xff << I;
4582      }
4583      Sel >>= 8;
4584    }
4585    break;
4586  }
4587  case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4588    Known.Zero.setHighBits(24);
4589    break;
4590  }
4591  case AMDGPUISD::BUFFER_LOAD_USHORT: {
4592    Known.Zero.setHighBits(16);
4593    break;
4594  }
4595  case AMDGPUISD::LDS: {
4596    auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4597    unsigned Align = GA->getGlobal()->getAlignment();
4598
4599    Known.Zero.setHighBits(16);
4600    if (Align)
4601      Known.Zero.setLowBits(Log2_32(Align));
4602    break;
4603  }
4604  case ISD::INTRINSIC_WO_CHAIN: {
4605    unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4606    switch (IID) {
4607    case Intrinsic::amdgcn_mbcnt_lo:
4608    case Intrinsic::amdgcn_mbcnt_hi: {
4609      const GCNSubtarget &ST =
4610          DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4611      // These return at most the wavefront size - 1.
4612      unsigned Size = Op.getValueType().getSizeInBits();
4613      Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4614      break;
4615    }
4616    default:
4617      break;
4618    }
4619  }
4620  }
4621}
4622
4623unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4624    SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4625    unsigned Depth) const {
4626  switch (Op.getOpcode()) {
4627  case AMDGPUISD::BFE_I32: {
4628    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4629    if (!Width)
4630      return 1;
4631
4632    unsigned SignBits = 32 - Width->getZExtValue() + 1;
4633    if (!isNullConstant(Op.getOperand(1)))
4634      return SignBits;
4635
4636    // TODO: Could probably figure something out with non-0 offsets.
4637    unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4638    return std::max(SignBits, Op0SignBits);
4639  }
4640
4641  case AMDGPUISD::BFE_U32: {
4642    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4643    return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4644  }
4645
4646  case AMDGPUISD::CARRY:
4647  case AMDGPUISD::BORROW:
4648    return 31;
4649  case AMDGPUISD::BUFFER_LOAD_BYTE:
4650    return 25;
4651  case AMDGPUISD::BUFFER_LOAD_SHORT:
4652    return 17;
4653  case AMDGPUISD::BUFFER_LOAD_UBYTE:
4654    return 24;
4655  case AMDGPUISD::BUFFER_LOAD_USHORT:
4656    return 16;
4657  case AMDGPUISD::FP_TO_FP16:
4658  case AMDGPUISD::FP16_ZEXT:
4659    return 16;
4660  default:
4661    return 1;
4662  }
4663}
4664
4665bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4666                                                        const SelectionDAG &DAG,
4667                                                        bool SNaN,
4668                                                        unsigned Depth) const {
4669  unsigned Opcode = Op.getOpcode();
4670  switch (Opcode) {
4671  case AMDGPUISD::FMIN_LEGACY:
4672  case AMDGPUISD::FMAX_LEGACY: {
4673    if (SNaN)
4674      return true;
4675
4676    // TODO: Can check no nans on one of the operands for each one, but which
4677    // one?
4678    return false;
4679  }
4680  case AMDGPUISD::FMUL_LEGACY:
4681  case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4682    if (SNaN)
4683      return true;
4684    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4685           DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4686  }
4687  case AMDGPUISD::FMED3:
4688  case AMDGPUISD::FMIN3:
4689  case AMDGPUISD::FMAX3:
4690  case AMDGPUISD::FMAD_FTZ: {
4691    if (SNaN)
4692      return true;
4693    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4694           DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4695           DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4696  }
4697  case AMDGPUISD::CVT_F32_UBYTE0:
4698  case AMDGPUISD::CVT_F32_UBYTE1:
4699  case AMDGPUISD::CVT_F32_UBYTE2:
4700  case AMDGPUISD::CVT_F32_UBYTE3:
4701    return true;
4702
4703  case AMDGPUISD::RCP:
4704  case AMDGPUISD::RSQ:
4705  case AMDGPUISD::RCP_LEGACY:
4706  case AMDGPUISD::RSQ_LEGACY:
4707  case AMDGPUISD::RSQ_CLAMP: {
4708    if (SNaN)
4709      return true;
4710
4711    // TODO: Need is known positive check.
4712    return false;
4713  }
4714  case AMDGPUISD::LDEXP:
4715  case AMDGPUISD::FRACT: {
4716    if (SNaN)
4717      return true;
4718    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4719  }
4720  case AMDGPUISD::DIV_SCALE:
4721  case AMDGPUISD::DIV_FMAS:
4722  case AMDGPUISD::DIV_FIXUP:
4723  case AMDGPUISD::TRIG_PREOP:
4724    // TODO: Refine on operands.
4725    return SNaN;
4726  case AMDGPUISD::SIN_HW:
4727  case AMDGPUISD::COS_HW: {
4728    // TODO: Need check for infinity
4729    return SNaN;
4730  }
4731  case ISD::INTRINSIC_WO_CHAIN: {
4732    unsigned IntrinsicID
4733      = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4734    // TODO: Handle more intrinsics
4735    switch (IntrinsicID) {
4736    case Intrinsic::amdgcn_cubeid:
4737      return true;
4738
4739    case Intrinsic::amdgcn_frexp_mant: {
4740      if (SNaN)
4741        return true;
4742      return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4743    }
4744    case Intrinsic::amdgcn_cvt_pkrtz: {
4745      if (SNaN)
4746        return true;
4747      return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4748             DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4749    }
4750    case Intrinsic::amdgcn_fdot2:
4751      // TODO: Refine on operand
4752      return SNaN;
4753    default:
4754      return false;
4755    }
4756  }
4757  default:
4758    return false;
4759  }
4760}
4761
4762TargetLowering::AtomicExpansionKind
4763AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4764  switch (RMW->getOperation()) {
4765  case AtomicRMWInst::Nand:
4766  case AtomicRMWInst::FAdd:
4767  case AtomicRMWInst::FSub:
4768    return AtomicExpansionKind::CmpXChg;
4769  default:
4770    return AtomicExpansionKind::None;
4771  }
4772}
4773