AArch64AsmBackend.cpp revision 360784
1//===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "MCTargetDesc/AArch64FixupKinds.h"
10#include "MCTargetDesc/AArch64MCExpr.h"
11#include "MCTargetDesc/AArch64MCTargetDesc.h"
12#include "Utils/AArch64BaseInfo.h"
13#include "llvm/ADT/Triple.h"
14#include "llvm/BinaryFormat/MachO.h"
15#include "llvm/MC/MCAsmBackend.h"
16#include "llvm/MC/MCAssembler.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/MC/MCDirectives.h"
19#include "llvm/MC/MCELFObjectWriter.h"
20#include "llvm/MC/MCFixupKindInfo.h"
21#include "llvm/MC/MCObjectWriter.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSectionELF.h"
24#include "llvm/MC/MCSectionMachO.h"
25#include "llvm/MC/MCTargetOptions.h"
26#include "llvm/MC/MCValue.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/TargetRegistry.h"
29using namespace llvm;
30
31namespace {
32
33class AArch64AsmBackend : public MCAsmBackend {
34  static const unsigned PCRelFlagVal =
35      MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
36  Triple TheTriple;
37
38public:
39  AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian)
40      : MCAsmBackend(IsLittleEndian ? support::little : support::big),
41        TheTriple(TT) {}
42
43  unsigned getNumFixupKinds() const override {
44    return AArch64::NumTargetFixupKinds;
45  }
46
47  Optional<MCFixupKind> getFixupKind(StringRef Name) const override;
48
49  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
50    const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
51        // This table *must* be in the order that the fixup_* kinds are defined
52        // in AArch64FixupKinds.h.
53        //
54        // Name                           Offset (bits) Size (bits)     Flags
55        {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal},
56        {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal},
57        {"fixup_aarch64_add_imm12", 10, 12, 0},
58        {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0},
59        {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0},
60        {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0},
61        {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0},
62        {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0},
63        {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal},
64        {"fixup_aarch64_movw", 5, 16, 0},
65        {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal},
66        {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal},
67        {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal},
68        {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal},
69        {"fixup_aarch64_tlsdesc_call", 0, 0, 0}};
70
71    if (Kind < FirstTargetFixupKind)
72      return MCAsmBackend::getFixupKindInfo(Kind);
73
74    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
75           "Invalid kind!");
76    return Infos[Kind - FirstTargetFixupKind];
77  }
78
79  void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
80                  const MCValue &Target, MutableArrayRef<char> Data,
81                  uint64_t Value, bool IsResolved,
82                  const MCSubtargetInfo *STI) const override;
83
84  bool mayNeedRelaxation(const MCInst &Inst,
85                         const MCSubtargetInfo &STI) const override;
86  bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
87                            const MCRelaxableFragment *DF,
88                            const MCAsmLayout &Layout) const override;
89  void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI,
90                        MCInst &Res) const override;
91  bool writeNopData(raw_ostream &OS, uint64_t Count) const override;
92
93  void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
94
95  unsigned getPointerSize() const { return 8; }
96
97  unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const;
98
99  bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
100                             const MCValue &Target) override;
101};
102
103} // end anonymous namespace
104
105/// The number of bytes the fixup may change.
106static unsigned getFixupKindNumBytes(unsigned Kind) {
107  switch (Kind) {
108  default:
109    llvm_unreachable("Unknown fixup kind!");
110
111  case FK_NONE:
112  case AArch64::fixup_aarch64_tlsdesc_call:
113    return 0;
114
115  case FK_Data_1:
116    return 1;
117
118  case FK_Data_2:
119  case FK_SecRel_2:
120    return 2;
121
122  case AArch64::fixup_aarch64_movw:
123  case AArch64::fixup_aarch64_pcrel_branch14:
124  case AArch64::fixup_aarch64_add_imm12:
125  case AArch64::fixup_aarch64_ldst_imm12_scale1:
126  case AArch64::fixup_aarch64_ldst_imm12_scale2:
127  case AArch64::fixup_aarch64_ldst_imm12_scale4:
128  case AArch64::fixup_aarch64_ldst_imm12_scale8:
129  case AArch64::fixup_aarch64_ldst_imm12_scale16:
130  case AArch64::fixup_aarch64_ldr_pcrel_imm19:
131  case AArch64::fixup_aarch64_pcrel_branch19:
132    return 3;
133
134  case AArch64::fixup_aarch64_pcrel_adr_imm21:
135  case AArch64::fixup_aarch64_pcrel_adrp_imm21:
136  case AArch64::fixup_aarch64_pcrel_branch26:
137  case AArch64::fixup_aarch64_pcrel_call26:
138  case FK_Data_4:
139  case FK_SecRel_4:
140    return 4;
141
142  case FK_Data_8:
143    return 8;
144  }
145}
146
147static unsigned AdrImmBits(unsigned Value) {
148  unsigned lo2 = Value & 0x3;
149  unsigned hi19 = (Value & 0x1ffffc) >> 2;
150  return (hi19 << 5) | (lo2 << 29);
151}
152
153static bool valueFitsIntoFixupKind(unsigned Kind, uint64_t Value) {
154  unsigned NumBits;
155  switch(Kind) {
156  case FK_Data_1: NumBits = 8; break;
157  case FK_Data_2: NumBits = 16; break;
158  case FK_Data_4: NumBits = 32; break;
159  case FK_Data_8: NumBits = 64; break;
160  default: return true;
161  }
162  return isUIntN(NumBits, Value) ||
163    isIntN(NumBits, static_cast<int64_t>(Value));
164}
165
166static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target,
167                                 uint64_t Value, MCContext &Ctx,
168                                 const Triple &TheTriple, bool IsResolved) {
169  int64_t SignedValue = static_cast<int64_t>(Value);
170  switch (Fixup.getTargetKind()) {
171  default:
172    llvm_unreachable("Unknown fixup kind!");
173  case AArch64::fixup_aarch64_pcrel_adr_imm21:
174    if (SignedValue > 2097151 || SignedValue < -2097152)
175      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
176    return AdrImmBits(Value & 0x1fffffULL);
177  case AArch64::fixup_aarch64_pcrel_adrp_imm21:
178    assert(!IsResolved);
179    if (TheTriple.isOSBinFormatCOFF())
180      return AdrImmBits(Value & 0x1fffffULL);
181    return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
182  case AArch64::fixup_aarch64_ldr_pcrel_imm19:
183  case AArch64::fixup_aarch64_pcrel_branch19:
184    // Signed 21-bit immediate
185    if (SignedValue > 2097151 || SignedValue < -2097152)
186      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
187    if (Value & 0x3)
188      Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
189    // Low two bits are not encoded.
190    return (Value >> 2) & 0x7ffff;
191  case AArch64::fixup_aarch64_add_imm12:
192  case AArch64::fixup_aarch64_ldst_imm12_scale1:
193    if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
194      Value &= 0xfff;
195    // Unsigned 12-bit immediate
196    if (Value >= 0x1000)
197      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
198    return Value;
199  case AArch64::fixup_aarch64_ldst_imm12_scale2:
200    if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
201      Value &= 0xfff;
202    // Unsigned 12-bit immediate which gets multiplied by 2
203    if (Value >= 0x2000)
204      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
205    if (Value & 0x1)
206      Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned");
207    return Value >> 1;
208  case AArch64::fixup_aarch64_ldst_imm12_scale4:
209    if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
210      Value &= 0xfff;
211    // Unsigned 12-bit immediate which gets multiplied by 4
212    if (Value >= 0x4000)
213      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
214    if (Value & 0x3)
215      Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned");
216    return Value >> 2;
217  case AArch64::fixup_aarch64_ldst_imm12_scale8:
218    if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
219      Value &= 0xfff;
220    // Unsigned 12-bit immediate which gets multiplied by 8
221    if (Value >= 0x8000)
222      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
223    if (Value & 0x7)
224      Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned");
225    return Value >> 3;
226  case AArch64::fixup_aarch64_ldst_imm12_scale16:
227    if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
228      Value &= 0xfff;
229    // Unsigned 12-bit immediate which gets multiplied by 16
230    if (Value >= 0x10000)
231      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
232    if (Value & 0xf)
233      Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned");
234    return Value >> 4;
235  case AArch64::fixup_aarch64_movw: {
236    AArch64MCExpr::VariantKind RefKind =
237        static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
238    if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS &&
239        AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) {
240      // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't
241      // ever be resolved in the assembler.
242      Ctx.reportError(Fixup.getLoc(),
243                      "relocation for a thread-local variable points to an "
244                      "absolute symbol");
245      return Value;
246    }
247
248    if (!IsResolved) {
249      // FIXME: Figure out when this can actually happen, and verify our
250      // behavior.
251      Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet "
252                                      "implemented");
253      return Value;
254    }
255
256    if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
257      switch (AArch64MCExpr::getAddressFrag(RefKind)) {
258      case AArch64MCExpr::VK_G0:
259        break;
260      case AArch64MCExpr::VK_G1:
261        SignedValue = SignedValue >> 16;
262        break;
263      case AArch64MCExpr::VK_G2:
264        SignedValue = SignedValue >> 32;
265        break;
266      case AArch64MCExpr::VK_G3:
267        SignedValue = SignedValue >> 48;
268        break;
269      default:
270        llvm_unreachable("Variant kind doesn't correspond to fixup");
271      }
272
273    } else {
274      switch (AArch64MCExpr::getAddressFrag(RefKind)) {
275      case AArch64MCExpr::VK_G0:
276        break;
277      case AArch64MCExpr::VK_G1:
278        Value = Value >> 16;
279        break;
280      case AArch64MCExpr::VK_G2:
281        Value = Value >> 32;
282        break;
283      case AArch64MCExpr::VK_G3:
284        Value = Value >> 48;
285        break;
286      default:
287        llvm_unreachable("Variant kind doesn't correspond to fixup");
288      }
289    }
290
291    if (RefKind & AArch64MCExpr::VK_NC) {
292      Value &= 0xFFFF;
293    }
294    else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
295      if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
296        Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
297
298      // Invert the negative immediate because it will feed into a MOVN.
299      if (SignedValue < 0)
300        SignedValue = ~SignedValue;
301      Value = static_cast<uint64_t>(SignedValue);
302    }
303    else if (Value > 0xFFFF) {
304      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
305    }
306    return Value;
307  }
308  case AArch64::fixup_aarch64_pcrel_branch14:
309    // Signed 16-bit immediate
310    if (SignedValue > 32767 || SignedValue < -32768)
311      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
312    // Low two bits are not encoded (4-byte alignment assumed).
313    if (Value & 0x3)
314      Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
315    return (Value >> 2) & 0x3fff;
316  case AArch64::fixup_aarch64_pcrel_branch26:
317  case AArch64::fixup_aarch64_pcrel_call26:
318    // Signed 28-bit immediate
319    if (SignedValue > 134217727 || SignedValue < -134217728)
320      Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
321    // Low two bits are not encoded (4-byte alignment assumed).
322    if (Value & 0x3)
323      Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
324    return (Value >> 2) & 0x3ffffff;
325  case FK_Data_1:
326  case FK_Data_2:
327  case FK_Data_4:
328  case FK_Data_8:
329    if (!valueFitsIntoFixupKind(Fixup.getTargetKind(), Value))
330      Ctx.reportError(Fixup.getLoc(), "fixup value too large for data type!");
331    LLVM_FALLTHROUGH;
332  case FK_NONE:
333  case FK_SecRel_2:
334  case FK_SecRel_4:
335    return Value;
336  }
337}
338
339Optional<MCFixupKind> AArch64AsmBackend::getFixupKind(StringRef Name) const {
340  if (TheTriple.isOSBinFormatELF() && Name == "R_AARCH64_NONE")
341    return FK_NONE;
342  return MCAsmBackend::getFixupKind(Name);
343}
344
345/// getFixupKindContainereSizeInBytes - The number of bytes of the
346/// container involved in big endian or 0 if the item is little endian
347unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const {
348  if (Endian == support::little)
349    return 0;
350
351  switch (Kind) {
352  default:
353    llvm_unreachable("Unknown fixup kind!");
354
355  case FK_Data_1:
356    return 1;
357  case FK_Data_2:
358    return 2;
359  case FK_Data_4:
360    return 4;
361  case FK_Data_8:
362    return 8;
363
364  case AArch64::fixup_aarch64_tlsdesc_call:
365  case AArch64::fixup_aarch64_movw:
366  case AArch64::fixup_aarch64_pcrel_branch14:
367  case AArch64::fixup_aarch64_add_imm12:
368  case AArch64::fixup_aarch64_ldst_imm12_scale1:
369  case AArch64::fixup_aarch64_ldst_imm12_scale2:
370  case AArch64::fixup_aarch64_ldst_imm12_scale4:
371  case AArch64::fixup_aarch64_ldst_imm12_scale8:
372  case AArch64::fixup_aarch64_ldst_imm12_scale16:
373  case AArch64::fixup_aarch64_ldr_pcrel_imm19:
374  case AArch64::fixup_aarch64_pcrel_branch19:
375  case AArch64::fixup_aarch64_pcrel_adr_imm21:
376  case AArch64::fixup_aarch64_pcrel_adrp_imm21:
377  case AArch64::fixup_aarch64_pcrel_branch26:
378  case AArch64::fixup_aarch64_pcrel_call26:
379    // Instructions are always little endian
380    return 0;
381  }
382}
383
384void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
385                                   const MCValue &Target,
386                                   MutableArrayRef<char> Data, uint64_t Value,
387                                   bool IsResolved,
388                                   const MCSubtargetInfo *STI) const {
389  unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
390  if (!Value)
391    return; // Doesn't change encoding.
392  MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
393  MCContext &Ctx = Asm.getContext();
394  int64_t SignedValue = static_cast<int64_t>(Value);
395  // Apply any target-specific value adjustments.
396  Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved);
397
398  // Shift the value into position.
399  Value <<= Info.TargetOffset;
400
401  unsigned Offset = Fixup.getOffset();
402  assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
403
404  // Used to point to big endian bytes.
405  unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind());
406
407  // For each byte of the fragment that the fixup touches, mask in the
408  // bits from the fixup value.
409  if (FulleSizeInBytes == 0) {
410    // Handle as little-endian
411    for (unsigned i = 0; i != NumBytes; ++i) {
412      Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
413    }
414  } else {
415    // Handle as big-endian
416    assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!");
417    assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!");
418    for (unsigned i = 0; i != NumBytes; ++i) {
419      unsigned Idx = FulleSizeInBytes - 1 - i;
420      Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
421    }
422  }
423
424  // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to
425  // handle this more cleanly. This may affect the output of -show-mc-encoding.
426  AArch64MCExpr::VariantKind RefKind =
427    static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
428  if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
429    // If the immediate is negative, generate MOVN else MOVZ.
430    // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ.
431    if (SignedValue < 0)
432      Data[Offset + 3] &= ~(1 << 6);
433    else
434      Data[Offset + 3] |= (1 << 6);
435  }
436}
437
438bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst,
439                                          const MCSubtargetInfo &STI) const {
440  return false;
441}
442
443bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
444                                             uint64_t Value,
445                                             const MCRelaxableFragment *DF,
446                                             const MCAsmLayout &Layout) const {
447  // FIXME:  This isn't correct for AArch64. Just moving the "generic" logic
448  // into the targets for now.
449  //
450  // Relax if the value is too big for a (signed) i8.
451  return int64_t(Value) != int64_t(int8_t(Value));
452}
453
454void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
455                                         const MCSubtargetInfo &STI,
456                                         MCInst &Res) const {
457  llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
458}
459
460bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
461  // If the count is not 4-byte aligned, we must be writing data into the text
462  // section (otherwise we have unaligned instructions, and thus have far
463  // bigger problems), so just write zeros instead.
464  OS.write_zeros(Count % 4);
465
466  // We are properly aligned, so write NOPs as requested.
467  Count /= 4;
468  for (uint64_t i = 0; i != Count; ++i)
469    support::endian::write<uint32_t>(OS, 0xd503201f, Endian);
470  return true;
471}
472
473bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm,
474                                              const MCFixup &Fixup,
475                                              const MCValue &Target) {
476  unsigned Kind = Fixup.getKind();
477  if (Kind == FK_NONE)
478    return true;
479
480  // The ADRP instruction adds some multiple of 0x1000 to the current PC &
481  // ~0xfff. This means that the required offset to reach a symbol can vary by
482  // up to one step depending on where the ADRP is in memory. For example:
483  //
484  //     ADRP x0, there
485  //  there:
486  //
487  // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
488  // we'll need that as an offset. At any other address "there" will be in the
489  // same page as the ADRP and the instruction should encode 0x0. Assuming the
490  // section isn't 0x1000-aligned, we therefore need to delegate this decision
491  // to the linker -- a relocation!
492  if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21)
493    return true;
494
495  AArch64MCExpr::VariantKind RefKind =
496      static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
497  AArch64MCExpr::VariantKind SymLoc = AArch64MCExpr::getSymbolLoc(RefKind);
498  // LDR GOT relocations need a relocation
499  if (Kind == AArch64::fixup_aarch64_ldr_pcrel_imm19 &&
500      SymLoc == AArch64MCExpr::VK_GOT)
501    return true;
502  return false;
503}
504
505namespace {
506
507namespace CU {
508
509/// Compact unwind encoding values.
510enum CompactUnwindEncodings {
511  /// A "frameless" leaf function, where no non-volatile registers are
512  /// saved. The return remains in LR throughout the function.
513  UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
514
515  /// No compact unwind encoding available. Instead the low 23-bits of
516  /// the compact unwind encoding is the offset of the DWARF FDE in the
517  /// __eh_frame section. This mode is never used in object files. It is only
518  /// generated by the linker in final linked images, which have only DWARF info
519  /// for a function.
520  UNWIND_ARM64_MODE_DWARF = 0x03000000,
521
522  /// This is a standard arm64 prologue where FP/LR are immediately
523  /// pushed on the stack, then SP is copied to FP. If there are any
524  /// non-volatile register saved, they are copied into the stack fame in pairs
525  /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
526  /// five X pairs and four D pairs can be saved, but the memory layout must be
527  /// in register number order.
528  UNWIND_ARM64_MODE_FRAME = 0x04000000,
529
530  /// Frame register pair encodings.
531  UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
532  UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
533  UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
534  UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
535  UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
536  UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
537  UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
538  UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
539  UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
540};
541
542} // end CU namespace
543
544// FIXME: This should be in a separate file.
545class DarwinAArch64AsmBackend : public AArch64AsmBackend {
546  const MCRegisterInfo &MRI;
547  bool IsILP32;
548
549  /// Encode compact unwind stack adjustment for frameless functions.
550  /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
551  /// The stack size always needs to be 16 byte aligned.
552  uint32_t encodeStackAdjustment(uint32_t StackSize) const {
553    return (StackSize / 16) << 12;
554  }
555
556public:
557  DarwinAArch64AsmBackend(const Target &T, const Triple &TT,
558                          const MCRegisterInfo &MRI, bool IsILP32)
559      : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI),
560        IsILP32(IsILP32) {}
561
562  std::unique_ptr<MCObjectTargetWriter>
563  createObjectTargetWriter() const override {
564    if (IsILP32)
565      return createAArch64MachObjectWriter(
566          MachO::CPU_TYPE_ARM64_32, MachO::CPU_SUBTYPE_ARM64_32_V8, true);
567    else
568      return createAArch64MachObjectWriter(MachO::CPU_TYPE_ARM64,
569                                           MachO::CPU_SUBTYPE_ARM64_ALL, false);
570  }
571
572  /// Generate the compact unwind encoding from the CFI directives.
573  uint32_t generateCompactUnwindEncoding(
574                             ArrayRef<MCCFIInstruction> Instrs) const override {
575    if (Instrs.empty())
576      return CU::UNWIND_ARM64_MODE_FRAMELESS;
577
578    bool HasFP = false;
579    unsigned StackSize = 0;
580
581    uint32_t CompactUnwindEncoding = 0;
582    for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
583      const MCCFIInstruction &Inst = Instrs[i];
584
585      switch (Inst.getOperation()) {
586      default:
587        // Cannot handle this directive:  bail out.
588        return CU::UNWIND_ARM64_MODE_DWARF;
589      case MCCFIInstruction::OpDefCfa: {
590        // Defines a frame pointer.
591        unsigned XReg =
592            getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true));
593
594        // Other CFA registers than FP are not supported by compact unwind.
595        // Fallback on DWARF.
596        // FIXME: When opt-remarks are supported in MC, add a remark to notify
597        // the user.
598        if (XReg != AArch64::FP)
599          return CU::UNWIND_ARM64_MODE_DWARF;
600
601        assert(XReg == AArch64::FP && "Invalid frame pointer!");
602        assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
603
604        const MCCFIInstruction &LRPush = Instrs[++i];
605        assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
606               "Link register not pushed!");
607        const MCCFIInstruction &FPPush = Instrs[++i];
608        assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
609               "Frame pointer not pushed!");
610
611        unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true);
612        unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true);
613
614        LRReg = getXRegFromWReg(LRReg);
615        FPReg = getXRegFromWReg(FPReg);
616
617        assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
618               "Pushing invalid registers for frame!");
619
620        // Indicate that the function has a frame.
621        CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
622        HasFP = true;
623        break;
624      }
625      case MCCFIInstruction::OpDefCfaOffset: {
626        assert(StackSize == 0 && "We already have the CFA offset!");
627        StackSize = std::abs(Inst.getOffset());
628        break;
629      }
630      case MCCFIInstruction::OpOffset: {
631        // Registers are saved in pairs. We expect there to be two consecutive
632        // `.cfi_offset' instructions with the appropriate registers specified.
633        unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true);
634        if (i + 1 == e)
635          return CU::UNWIND_ARM64_MODE_DWARF;
636
637        const MCCFIInstruction &Inst2 = Instrs[++i];
638        if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
639          return CU::UNWIND_ARM64_MODE_DWARF;
640        unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true);
641
642        // N.B. The encodings must be in register number order, and the X
643        // registers before the D registers.
644
645        // X19/X20 pair = 0x00000001,
646        // X21/X22 pair = 0x00000002,
647        // X23/X24 pair = 0x00000004,
648        // X25/X26 pair = 0x00000008,
649        // X27/X28 pair = 0x00000010
650        Reg1 = getXRegFromWReg(Reg1);
651        Reg2 = getXRegFromWReg(Reg2);
652
653        if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
654            (CompactUnwindEncoding & 0xF1E) == 0)
655          CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
656        else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
657                 (CompactUnwindEncoding & 0xF1C) == 0)
658          CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
659        else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
660                 (CompactUnwindEncoding & 0xF18) == 0)
661          CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
662        else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
663                 (CompactUnwindEncoding & 0xF10) == 0)
664          CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
665        else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
666                 (CompactUnwindEncoding & 0xF00) == 0)
667          CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
668        else {
669          Reg1 = getDRegFromBReg(Reg1);
670          Reg2 = getDRegFromBReg(Reg2);
671
672          // D8/D9 pair   = 0x00000100,
673          // D10/D11 pair = 0x00000200,
674          // D12/D13 pair = 0x00000400,
675          // D14/D15 pair = 0x00000800
676          if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
677              (CompactUnwindEncoding & 0xE00) == 0)
678            CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
679          else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
680                   (CompactUnwindEncoding & 0xC00) == 0)
681            CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
682          else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
683                   (CompactUnwindEncoding & 0x800) == 0)
684            CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
685          else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
686            CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
687          else
688            // A pair was pushed which we cannot handle.
689            return CU::UNWIND_ARM64_MODE_DWARF;
690        }
691
692        break;
693      }
694      }
695    }
696
697    if (!HasFP) {
698      // With compact unwind info we can only represent stack adjustments of up
699      // to 65520 bytes.
700      if (StackSize > 65520)
701        return CU::UNWIND_ARM64_MODE_DWARF;
702
703      CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
704      CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
705    }
706
707    return CompactUnwindEncoding;
708  }
709};
710
711} // end anonymous namespace
712
713namespace {
714
715class ELFAArch64AsmBackend : public AArch64AsmBackend {
716public:
717  uint8_t OSABI;
718  bool IsILP32;
719
720  ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI,
721                       bool IsLittleEndian, bool IsILP32)
722      : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI),
723        IsILP32(IsILP32) {}
724
725  std::unique_ptr<MCObjectTargetWriter>
726  createObjectTargetWriter() const override {
727    return createAArch64ELFObjectWriter(OSABI, IsILP32);
728  }
729};
730
731}
732
733namespace {
734class COFFAArch64AsmBackend : public AArch64AsmBackend {
735public:
736  COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple)
737      : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {}
738
739  std::unique_ptr<MCObjectTargetWriter>
740  createObjectTargetWriter() const override {
741    return createAArch64WinCOFFObjectWriter();
742  }
743};
744}
745
746MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
747                                              const MCSubtargetInfo &STI,
748                                              const MCRegisterInfo &MRI,
749                                              const MCTargetOptions &Options) {
750  const Triple &TheTriple = STI.getTargetTriple();
751  if (TheTriple.isOSBinFormatMachO()) {
752    const bool IsILP32 = TheTriple.isArch32Bit();
753    return new DarwinAArch64AsmBackend(T, TheTriple, MRI, IsILP32);
754  }
755
756  if (TheTriple.isOSBinFormatCOFF())
757    return new COFFAArch64AsmBackend(T, TheTriple);
758
759  assert(TheTriple.isOSBinFormatELF() && "Invalid target");
760
761  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
762  bool IsILP32 = Options.getABIName() == "ilp32";
763  return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true,
764                                  IsILP32);
765}
766
767MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
768                                              const MCSubtargetInfo &STI,
769                                              const MCRegisterInfo &MRI,
770                                              const MCTargetOptions &Options) {
771  const Triple &TheTriple = STI.getTargetTriple();
772  assert(TheTriple.isOSBinFormatELF() &&
773         "Big endian is only supported for ELF targets!");
774  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
775  bool IsILP32 = Options.getABIName() == "ilp32";
776  return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false,
777                                  IsILP32);
778}
779