AArch64ISelDAGToDAG.cpp revision 296417
1188943Sthompsa//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
2188943Sthompsa//
3188943Sthompsa//                     The LLVM Compiler Infrastructure
4188943Sthompsa//
5188943Sthompsa// This file is distributed under the University of Illinois Open Source
6188943Sthompsa// License. See LICENSE.TXT for details.
7188943Sthompsa//
8188943Sthompsa//===----------------------------------------------------------------------===//
9188943Sthompsa//
10188943Sthompsa// This file defines an instruction selector for the AArch64 target.
11188943Sthompsa//
12188943Sthompsa//===----------------------------------------------------------------------===//
13188943Sthompsa
14188943Sthompsa#include "AArch64TargetMachine.h"
15188943Sthompsa#include "MCTargetDesc/AArch64AddressingModes.h"
16188943Sthompsa#include "llvm/ADT/APSInt.h"
17188943Sthompsa#include "llvm/CodeGen/SelectionDAGISel.h"
18188943Sthompsa#include "llvm/IR/Function.h" // To access function attributes.
19188943Sthompsa#include "llvm/IR/GlobalValue.h"
20188943Sthompsa#include "llvm/IR/Intrinsics.h"
21188943Sthompsa#include "llvm/Support/Debug.h"
22188943Sthompsa#include "llvm/Support/ErrorHandling.h"
23188943Sthompsa#include "llvm/Support/MathExtras.h"
24188943Sthompsa#include "llvm/Support/raw_ostream.h"
25188943Sthompsa
26188943Sthompsausing namespace llvm;
27188943Sthompsa
28319182Sngie#define DEBUG_TYPE "aarch64-isel"
29188943Sthompsa
30188943Sthompsa//===--------------------------------------------------------------------===//
31188943Sthompsa/// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
32188943Sthompsa/// instructions for SelectionDAG operations.
33188943Sthompsa///
34188943Sthompsanamespace {
35188943Sthompsa
36188943Sthompsaclass AArch64DAGToDAGISel : public SelectionDAGISel {
37188943Sthompsa
38188943Sthompsa  /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
39  /// make the right decision when generating code for different targets.
40  const AArch64Subtarget *Subtarget;
41
42  bool ForCodeSize;
43
44public:
45  explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
46                               CodeGenOpt::Level OptLevel)
47      : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
48        ForCodeSize(false) {}
49
50  const char *getPassName() const override {
51    return "AArch64 Instruction Selection";
52  }
53
54  bool runOnMachineFunction(MachineFunction &MF) override {
55    ForCodeSize = MF.getFunction()->optForSize();
56    Subtarget = &MF.getSubtarget<AArch64Subtarget>();
57    return SelectionDAGISel::runOnMachineFunction(MF);
58  }
59
60  SDNode *Select(SDNode *Node) override;
61
62  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
63  /// inline asm expressions.
64  bool SelectInlineAsmMemoryOperand(const SDValue &Op,
65                                    unsigned ConstraintID,
66                                    std::vector<SDValue> &OutOps) override;
67
68  SDNode *SelectMLAV64LaneV128(SDNode *N);
69  SDNode *SelectMULLV64LaneV128(unsigned IntNo, SDNode *N);
70  bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
71  bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
72  bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
73  bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
74    return SelectShiftedRegister(N, false, Reg, Shift);
75  }
76  bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
77    return SelectShiftedRegister(N, true, Reg, Shift);
78  }
79  bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
80    return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
81  }
82  bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
83    return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
84  }
85  bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
86    return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
87  }
88  bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
89    return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
90  }
91  bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
92    return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
93  }
94  bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
95    return SelectAddrModeIndexed(N, 1, Base, OffImm);
96  }
97  bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
98    return SelectAddrModeIndexed(N, 2, Base, OffImm);
99  }
100  bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
101    return SelectAddrModeIndexed(N, 4, Base, OffImm);
102  }
103  bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
104    return SelectAddrModeIndexed(N, 8, Base, OffImm);
105  }
106  bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
107    return SelectAddrModeIndexed(N, 16, Base, OffImm);
108  }
109  bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
110    return SelectAddrModeUnscaled(N, 1, Base, OffImm);
111  }
112  bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
113    return SelectAddrModeUnscaled(N, 2, Base, OffImm);
114  }
115  bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
116    return SelectAddrModeUnscaled(N, 4, Base, OffImm);
117  }
118  bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
119    return SelectAddrModeUnscaled(N, 8, Base, OffImm);
120  }
121  bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
122    return SelectAddrModeUnscaled(N, 16, Base, OffImm);
123  }
124
125  template<int Width>
126  bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
127                         SDValue &SignExtend, SDValue &DoShift) {
128    return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
129  }
130
131  template<int Width>
132  bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
133                         SDValue &SignExtend, SDValue &DoShift) {
134    return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
135  }
136
137
138  /// Form sequences of consecutive 64/128-bit registers for use in NEON
139  /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
140  /// between 1 and 4 elements. If it contains a single element that is returned
141  /// unchanged; otherwise a REG_SEQUENCE value is returned.
142  SDValue createDTuple(ArrayRef<SDValue> Vecs);
143  SDValue createQTuple(ArrayRef<SDValue> Vecs);
144
145  /// Generic helper for the createDTuple/createQTuple
146  /// functions. Those should almost always be called instead.
147  SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
148                      const unsigned SubRegs[]);
149
150  SDNode *SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
151
152  SDNode *SelectIndexedLoad(SDNode *N, bool &Done);
153
154  SDNode *SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
155                     unsigned SubRegIdx);
156  SDNode *SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
157                         unsigned SubRegIdx);
158  SDNode *SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
159  SDNode *SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
160
161  SDNode *SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
162  SDNode *SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
163  SDNode *SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
164  SDNode *SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
165
166  SDNode *SelectBitfieldExtractOp(SDNode *N);
167  SDNode *SelectBitfieldInsertOp(SDNode *N);
168  SDNode *SelectBitfieldInsertInZeroOp(SDNode *N);
169
170  SDNode *SelectReadRegister(SDNode *N);
171  SDNode *SelectWriteRegister(SDNode *N);
172
173// Include the pieces autogenerated from the target description.
174#include "AArch64GenDAGISel.inc"
175
176private:
177  bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
178                             SDValue &Shift);
179  bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
180                               SDValue &OffImm);
181  bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
182                             SDValue &OffImm);
183  bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
184                              SDValue &OffImm);
185  bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
186                         SDValue &Offset, SDValue &SignExtend,
187                         SDValue &DoShift);
188  bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
189                         SDValue &Offset, SDValue &SignExtend,
190                         SDValue &DoShift);
191  bool isWorthFolding(SDValue V) const;
192  bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
193                         SDValue &Offset, SDValue &SignExtend);
194
195  template<unsigned RegWidth>
196  bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
197    return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
198  }
199
200  bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
201};
202} // end anonymous namespace
203
204/// isIntImmediate - This method tests to see if the node is a constant
205/// operand. If so Imm will receive the 32-bit value.
206static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
207  if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
208    Imm = C->getZExtValue();
209    return true;
210  }
211  return false;
212}
213
214// isIntImmediate - This method tests to see if a constant operand.
215// If so Imm will receive the value.
216static bool isIntImmediate(SDValue N, uint64_t &Imm) {
217  return isIntImmediate(N.getNode(), Imm);
218}
219
220// isOpcWithIntImmediate - This method tests to see if the node is a specific
221// opcode and that it has a immediate integer right operand.
222// If so Imm will receive the 32 bit value.
223static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
224                                  uint64_t &Imm) {
225  return N->getOpcode() == Opc &&
226         isIntImmediate(N->getOperand(1).getNode(), Imm);
227}
228
229bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
230    const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
231  switch(ConstraintID) {
232  default:
233    llvm_unreachable("Unexpected asm memory constraint");
234  case InlineAsm::Constraint_i:
235  case InlineAsm::Constraint_m:
236  case InlineAsm::Constraint_Q:
237    // Require the address to be in a register.  That is safe for all AArch64
238    // variants and it is hard to do anything much smarter without knowing
239    // how the operand is used.
240    OutOps.push_back(Op);
241    return false;
242  }
243  return true;
244}
245
246/// SelectArithImmed - Select an immediate value that can be represented as
247/// a 12-bit value shifted left by either 0 or 12.  If so, return true with
248/// Val set to the 12-bit value and Shift set to the shifter operand.
249bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
250                                           SDValue &Shift) {
251  // This function is called from the addsub_shifted_imm ComplexPattern,
252  // which lists [imm] as the list of opcode it's interested in, however
253  // we still need to check whether the operand is actually an immediate
254  // here because the ComplexPattern opcode list is only used in
255  // root-level opcode matching.
256  if (!isa<ConstantSDNode>(N.getNode()))
257    return false;
258
259  uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
260  unsigned ShiftAmt;
261
262  if (Immed >> 12 == 0) {
263    ShiftAmt = 0;
264  } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
265    ShiftAmt = 12;
266    Immed = Immed >> 12;
267  } else
268    return false;
269
270  unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
271  SDLoc dl(N);
272  Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
273  Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
274  return true;
275}
276
277/// SelectNegArithImmed - As above, but negates the value before trying to
278/// select it.
279bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
280                                              SDValue &Shift) {
281  // This function is called from the addsub_shifted_imm ComplexPattern,
282  // which lists [imm] as the list of opcode it's interested in, however
283  // we still need to check whether the operand is actually an immediate
284  // here because the ComplexPattern opcode list is only used in
285  // root-level opcode matching.
286  if (!isa<ConstantSDNode>(N.getNode()))
287    return false;
288
289  // The immediate operand must be a 24-bit zero-extended immediate.
290  uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
291
292  // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
293  // have the opposite effect on the C flag, so this pattern mustn't match under
294  // those circumstances.
295  if (Immed == 0)
296    return false;
297
298  if (N.getValueType() == MVT::i32)
299    Immed = ~((uint32_t)Immed) + 1;
300  else
301    Immed = ~Immed + 1ULL;
302  if (Immed & 0xFFFFFFFFFF000000ULL)
303    return false;
304
305  Immed &= 0xFFFFFFULL;
306  return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
307                          Shift);
308}
309
310/// getShiftTypeForNode - Translate a shift node to the corresponding
311/// ShiftType value.
312static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
313  switch (N.getOpcode()) {
314  default:
315    return AArch64_AM::InvalidShiftExtend;
316  case ISD::SHL:
317    return AArch64_AM::LSL;
318  case ISD::SRL:
319    return AArch64_AM::LSR;
320  case ISD::SRA:
321    return AArch64_AM::ASR;
322  case ISD::ROTR:
323    return AArch64_AM::ROR;
324  }
325}
326
327/// \brief Determine whether it is worth to fold V into an extended register.
328bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
329  // it hurts if the value is used at least twice, unless we are optimizing
330  // for code size.
331  if (ForCodeSize || V.hasOneUse())
332    return true;
333  return false;
334}
335
336/// SelectShiftedRegister - Select a "shifted register" operand.  If the value
337/// is not shifted, set the Shift operand to default of "LSL 0".  The logical
338/// instructions allow the shifted register to be rotated, but the arithmetic
339/// instructions do not.  The AllowROR parameter specifies whether ROR is
340/// supported.
341bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
342                                                SDValue &Reg, SDValue &Shift) {
343  AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
344  if (ShType == AArch64_AM::InvalidShiftExtend)
345    return false;
346  if (!AllowROR && ShType == AArch64_AM::ROR)
347    return false;
348
349  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
350    unsigned BitSize = N.getValueType().getSizeInBits();
351    unsigned Val = RHS->getZExtValue() & (BitSize - 1);
352    unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
353
354    Reg = N.getOperand(0);
355    Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
356    return isWorthFolding(N);
357  }
358
359  return false;
360}
361
362/// getExtendTypeForNode - Translate an extend node to the corresponding
363/// ExtendType value.
364static AArch64_AM::ShiftExtendType
365getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
366  if (N.getOpcode() == ISD::SIGN_EXTEND ||
367      N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
368    EVT SrcVT;
369    if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
370      SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
371    else
372      SrcVT = N.getOperand(0).getValueType();
373
374    if (!IsLoadStore && SrcVT == MVT::i8)
375      return AArch64_AM::SXTB;
376    else if (!IsLoadStore && SrcVT == MVT::i16)
377      return AArch64_AM::SXTH;
378    else if (SrcVT == MVT::i32)
379      return AArch64_AM::SXTW;
380    assert(SrcVT != MVT::i64 && "extend from 64-bits?");
381
382    return AArch64_AM::InvalidShiftExtend;
383  } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
384             N.getOpcode() == ISD::ANY_EXTEND) {
385    EVT SrcVT = N.getOperand(0).getValueType();
386    if (!IsLoadStore && SrcVT == MVT::i8)
387      return AArch64_AM::UXTB;
388    else if (!IsLoadStore && SrcVT == MVT::i16)
389      return AArch64_AM::UXTH;
390    else if (SrcVT == MVT::i32)
391      return AArch64_AM::UXTW;
392    assert(SrcVT != MVT::i64 && "extend from 64-bits?");
393
394    return AArch64_AM::InvalidShiftExtend;
395  } else if (N.getOpcode() == ISD::AND) {
396    ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
397    if (!CSD)
398      return AArch64_AM::InvalidShiftExtend;
399    uint64_t AndMask = CSD->getZExtValue();
400
401    switch (AndMask) {
402    default:
403      return AArch64_AM::InvalidShiftExtend;
404    case 0xFF:
405      return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
406    case 0xFFFF:
407      return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
408    case 0xFFFFFFFF:
409      return AArch64_AM::UXTW;
410    }
411  }
412
413  return AArch64_AM::InvalidShiftExtend;
414}
415
416// Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
417static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
418  if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
419      DL->getOpcode() != AArch64ISD::DUPLANE32)
420    return false;
421
422  SDValue SV = DL->getOperand(0);
423  if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
424    return false;
425
426  SDValue EV = SV.getOperand(1);
427  if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
428    return false;
429
430  ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
431  ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
432  LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
433  LaneOp = EV.getOperand(0);
434
435  return true;
436}
437
438// Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
439// high lane extract.
440static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
441                             SDValue &LaneOp, int &LaneIdx) {
442
443  if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
444    std::swap(Op0, Op1);
445    if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
446      return false;
447  }
448  StdOp = Op1;
449  return true;
450}
451
452/// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
453/// is a lane in the upper half of a 128-bit vector.  Recognize and select this
454/// so that we don't emit unnecessary lane extracts.
455SDNode *AArch64DAGToDAGISel::SelectMLAV64LaneV128(SDNode *N) {
456  SDLoc dl(N);
457  SDValue Op0 = N->getOperand(0);
458  SDValue Op1 = N->getOperand(1);
459  SDValue MLAOp1;   // Will hold ordinary multiplicand for MLA.
460  SDValue MLAOp2;   // Will hold lane-accessed multiplicand for MLA.
461  int LaneIdx = -1; // Will hold the lane index.
462
463  if (Op1.getOpcode() != ISD::MUL ||
464      !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
465                        LaneIdx)) {
466    std::swap(Op0, Op1);
467    if (Op1.getOpcode() != ISD::MUL ||
468        !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
469                          LaneIdx))
470      return nullptr;
471  }
472
473  SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
474
475  SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
476
477  unsigned MLAOpc = ~0U;
478
479  switch (N->getSimpleValueType(0).SimpleTy) {
480  default:
481    llvm_unreachable("Unrecognized MLA.");
482  case MVT::v4i16:
483    MLAOpc = AArch64::MLAv4i16_indexed;
484    break;
485  case MVT::v8i16:
486    MLAOpc = AArch64::MLAv8i16_indexed;
487    break;
488  case MVT::v2i32:
489    MLAOpc = AArch64::MLAv2i32_indexed;
490    break;
491  case MVT::v4i32:
492    MLAOpc = AArch64::MLAv4i32_indexed;
493    break;
494  }
495
496  return CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops);
497}
498
499SDNode *AArch64DAGToDAGISel::SelectMULLV64LaneV128(unsigned IntNo, SDNode *N) {
500  SDLoc dl(N);
501  SDValue SMULLOp0;
502  SDValue SMULLOp1;
503  int LaneIdx;
504
505  if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
506                        LaneIdx))
507    return nullptr;
508
509  SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
510
511  SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
512
513  unsigned SMULLOpc = ~0U;
514
515  if (IntNo == Intrinsic::aarch64_neon_smull) {
516    switch (N->getSimpleValueType(0).SimpleTy) {
517    default:
518      llvm_unreachable("Unrecognized SMULL.");
519    case MVT::v4i32:
520      SMULLOpc = AArch64::SMULLv4i16_indexed;
521      break;
522    case MVT::v2i64:
523      SMULLOpc = AArch64::SMULLv2i32_indexed;
524      break;
525    }
526  } else if (IntNo == Intrinsic::aarch64_neon_umull) {
527    switch (N->getSimpleValueType(0).SimpleTy) {
528    default:
529      llvm_unreachable("Unrecognized SMULL.");
530    case MVT::v4i32:
531      SMULLOpc = AArch64::UMULLv4i16_indexed;
532      break;
533    case MVT::v2i64:
534      SMULLOpc = AArch64::UMULLv2i32_indexed;
535      break;
536    }
537  } else
538    llvm_unreachable("Unrecognized intrinsic.");
539
540  return CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops);
541}
542
543/// Instructions that accept extend modifiers like UXTW expect the register
544/// being extended to be a GPR32, but the incoming DAG might be acting on a
545/// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
546/// this is the case.
547static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
548  if (N.getValueType() == MVT::i32)
549    return N;
550
551  SDLoc dl(N);
552  SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
553  MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
554                                               dl, MVT::i32, N, SubReg);
555  return SDValue(Node, 0);
556}
557
558
559/// SelectArithExtendedRegister - Select a "extended register" operand.  This
560/// operand folds in an extend followed by an optional left shift.
561bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
562                                                      SDValue &Shift) {
563  unsigned ShiftVal = 0;
564  AArch64_AM::ShiftExtendType Ext;
565
566  if (N.getOpcode() == ISD::SHL) {
567    ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
568    if (!CSD)
569      return false;
570    ShiftVal = CSD->getZExtValue();
571    if (ShiftVal > 4)
572      return false;
573
574    Ext = getExtendTypeForNode(N.getOperand(0));
575    if (Ext == AArch64_AM::InvalidShiftExtend)
576      return false;
577
578    Reg = N.getOperand(0).getOperand(0);
579  } else {
580    Ext = getExtendTypeForNode(N);
581    if (Ext == AArch64_AM::InvalidShiftExtend)
582      return false;
583
584    Reg = N.getOperand(0);
585  }
586
587  // AArch64 mandates that the RHS of the operation must use the smallest
588  // register class that could contain the size being extended from.  Thus,
589  // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
590  // there might not be an actual 32-bit value in the program.  We can
591  // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
592  assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
593  Reg = narrowIfNeeded(CurDAG, Reg);
594  Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
595                                    MVT::i32);
596  return isWorthFolding(N);
597}
598
599/// If there's a use of this ADDlow that's not itself a load/store then we'll
600/// need to create a real ADD instruction from it anyway and there's no point in
601/// folding it into the mem op. Theoretically, it shouldn't matter, but there's
602/// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
603/// leads to duplicated ADRP instructions.
604static bool isWorthFoldingADDlow(SDValue N) {
605  for (auto Use : N->uses()) {
606    if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
607        Use->getOpcode() != ISD::ATOMIC_LOAD &&
608        Use->getOpcode() != ISD::ATOMIC_STORE)
609      return false;
610
611    // ldar and stlr have much more restrictive addressing modes (just a
612    // register).
613    if (cast<MemSDNode>(Use)->getOrdering() > Monotonic)
614      return false;
615  }
616
617  return true;
618}
619
620/// SelectAddrModeIndexed7S - Select a "register plus scaled signed 7-bit
621/// immediate" address.  The "Size" argument is the size in bytes of the memory
622/// reference, which determines the scale.
623bool AArch64DAGToDAGISel::SelectAddrModeIndexed7S(SDValue N, unsigned Size,
624                                                  SDValue &Base,
625                                                  SDValue &OffImm) {
626  SDLoc dl(N);
627  const DataLayout &DL = CurDAG->getDataLayout();
628  const TargetLowering *TLI = getTargetLowering();
629  if (N.getOpcode() == ISD::FrameIndex) {
630    int FI = cast<FrameIndexSDNode>(N)->getIndex();
631    Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
632    OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
633    return true;
634  }
635
636  // As opposed to the (12-bit) Indexed addressing mode below, the 7-bit signed
637  // selected here doesn't support labels/immediates, only base+offset.
638
639  if (CurDAG->isBaseWithConstantOffset(N)) {
640    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
641      int64_t RHSC = RHS->getSExtValue();
642      unsigned Scale = Log2_32(Size);
643      if ((RHSC & (Size - 1)) == 0 && RHSC >= -(0x40 << Scale) &&
644          RHSC < (0x40 << Scale)) {
645        Base = N.getOperand(0);
646        if (Base.getOpcode() == ISD::FrameIndex) {
647          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
648          Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
649        }
650        OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
651        return true;
652      }
653    }
654  }
655
656  // Base only. The address will be materialized into a register before
657  // the memory is accessed.
658  //    add x0, Xbase, #offset
659  //    stp x1, x2, [x0]
660  Base = N;
661  OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
662  return true;
663}
664
665/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
666/// immediate" address.  The "Size" argument is the size in bytes of the memory
667/// reference, which determines the scale.
668bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
669                                              SDValue &Base, SDValue &OffImm) {
670  SDLoc dl(N);
671  const DataLayout &DL = CurDAG->getDataLayout();
672  const TargetLowering *TLI = getTargetLowering();
673  if (N.getOpcode() == ISD::FrameIndex) {
674    int FI = cast<FrameIndexSDNode>(N)->getIndex();
675    Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
676    OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
677    return true;
678  }
679
680  if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
681    GlobalAddressSDNode *GAN =
682        dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
683    Base = N.getOperand(0);
684    OffImm = N.getOperand(1);
685    if (!GAN)
686      return true;
687
688    const GlobalValue *GV = GAN->getGlobal();
689    unsigned Alignment = GV->getAlignment();
690    Type *Ty = GV->getType()->getElementType();
691    if (Alignment == 0 && Ty->isSized())
692      Alignment = DL.getABITypeAlignment(Ty);
693
694    if (Alignment >= Size)
695      return true;
696  }
697
698  if (CurDAG->isBaseWithConstantOffset(N)) {
699    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
700      int64_t RHSC = (int64_t)RHS->getZExtValue();
701      unsigned Scale = Log2_32(Size);
702      if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
703        Base = N.getOperand(0);
704        if (Base.getOpcode() == ISD::FrameIndex) {
705          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
706          Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
707        }
708        OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
709        return true;
710      }
711    }
712  }
713
714  // Before falling back to our general case, check if the unscaled
715  // instructions can handle this. If so, that's preferable.
716  if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
717    return false;
718
719  // Base only. The address will be materialized into a register before
720  // the memory is accessed.
721  //    add x0, Xbase, #offset
722  //    ldr x0, [x0]
723  Base = N;
724  OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
725  return true;
726}
727
728/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
729/// immediate" address.  This should only match when there is an offset that
730/// is not valid for a scaled immediate addressing mode.  The "Size" argument
731/// is the size in bytes of the memory reference, which is needed here to know
732/// what is valid for a scaled immediate.
733bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
734                                                 SDValue &Base,
735                                                 SDValue &OffImm) {
736  if (!CurDAG->isBaseWithConstantOffset(N))
737    return false;
738  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
739    int64_t RHSC = RHS->getSExtValue();
740    // If the offset is valid as a scaled immediate, don't match here.
741    if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
742        RHSC < (0x1000 << Log2_32(Size)))
743      return false;
744    if (RHSC >= -256 && RHSC < 256) {
745      Base = N.getOperand(0);
746      if (Base.getOpcode() == ISD::FrameIndex) {
747        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
748        const TargetLowering *TLI = getTargetLowering();
749        Base = CurDAG->getTargetFrameIndex(
750            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
751      }
752      OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
753      return true;
754    }
755  }
756  return false;
757}
758
759static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
760  SDLoc dl(N);
761  SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
762  SDValue ImpDef = SDValue(
763      CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
764  MachineSDNode *Node = CurDAG->getMachineNode(
765      TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg);
766  return SDValue(Node, 0);
767}
768
769/// \brief Check if the given SHL node (\p N), can be used to form an
770/// extended register for an addressing mode.
771bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
772                                            bool WantExtend, SDValue &Offset,
773                                            SDValue &SignExtend) {
774  assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
775  ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
776  if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
777    return false;
778
779  SDLoc dl(N);
780  if (WantExtend) {
781    AArch64_AM::ShiftExtendType Ext =
782        getExtendTypeForNode(N.getOperand(0), true);
783    if (Ext == AArch64_AM::InvalidShiftExtend)
784      return false;
785
786    Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
787    SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
788                                           MVT::i32);
789  } else {
790    Offset = N.getOperand(0);
791    SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
792  }
793
794  unsigned LegalShiftVal = Log2_32(Size);
795  unsigned ShiftVal = CSD->getZExtValue();
796
797  if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
798    return false;
799
800  if (isWorthFolding(N))
801    return true;
802
803  return false;
804}
805
806bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
807                                            SDValue &Base, SDValue &Offset,
808                                            SDValue &SignExtend,
809                                            SDValue &DoShift) {
810  if (N.getOpcode() != ISD::ADD)
811    return false;
812  SDValue LHS = N.getOperand(0);
813  SDValue RHS = N.getOperand(1);
814  SDLoc dl(N);
815
816  // We don't want to match immediate adds here, because they are better lowered
817  // to the register-immediate addressing modes.
818  if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
819    return false;
820
821  // Check if this particular node is reused in any non-memory related
822  // operation.  If yes, do not try to fold this node into the address
823  // computation, since the computation will be kept.
824  const SDNode *Node = N.getNode();
825  for (SDNode *UI : Node->uses()) {
826    if (!isa<MemSDNode>(*UI))
827      return false;
828  }
829
830  // Remember if it is worth folding N when it produces extended register.
831  bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
832
833  // Try to match a shifted extend on the RHS.
834  if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
835      SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
836    Base = LHS;
837    DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
838    return true;
839  }
840
841  // Try to match a shifted extend on the LHS.
842  if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
843      SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
844    Base = RHS;
845    DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
846    return true;
847  }
848
849  // There was no shift, whatever else we find.
850  DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
851
852  AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
853  // Try to match an unshifted extend on the LHS.
854  if (IsExtendedRegisterWorthFolding &&
855      (Ext = getExtendTypeForNode(LHS, true)) !=
856          AArch64_AM::InvalidShiftExtend) {
857    Base = RHS;
858    Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
859    SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
860                                           MVT::i32);
861    if (isWorthFolding(LHS))
862      return true;
863  }
864
865  // Try to match an unshifted extend on the RHS.
866  if (IsExtendedRegisterWorthFolding &&
867      (Ext = getExtendTypeForNode(RHS, true)) !=
868          AArch64_AM::InvalidShiftExtend) {
869    Base = LHS;
870    Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
871    SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
872                                           MVT::i32);
873    if (isWorthFolding(RHS))
874      return true;
875  }
876
877  return false;
878}
879
880// Check if the given immediate is preferred by ADD. If an immediate can be
881// encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
882// encoded by one MOVZ, return true.
883static bool isPreferredADD(int64_t ImmOff) {
884  // Constant in [0x0, 0xfff] can be encoded in ADD.
885  if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
886    return true;
887  // Check if it can be encoded in an "ADD LSL #12".
888  if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
889    // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
890    return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
891           (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
892  return false;
893}
894
895bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
896                                            SDValue &Base, SDValue &Offset,
897                                            SDValue &SignExtend,
898                                            SDValue &DoShift) {
899  if (N.getOpcode() != ISD::ADD)
900    return false;
901  SDValue LHS = N.getOperand(0);
902  SDValue RHS = N.getOperand(1);
903  SDLoc DL(N);
904
905  // Check if this particular node is reused in any non-memory related
906  // operation.  If yes, do not try to fold this node into the address
907  // computation, since the computation will be kept.
908  const SDNode *Node = N.getNode();
909  for (SDNode *UI : Node->uses()) {
910    if (!isa<MemSDNode>(*UI))
911      return false;
912  }
913
914  // Watch out if RHS is a wide immediate, it can not be selected into
915  // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
916  // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
917  // instructions like:
918  //     MOV  X0, WideImmediate
919  //     ADD  X1, BaseReg, X0
920  //     LDR  X2, [X1, 0]
921  // For such situation, using [BaseReg, XReg] addressing mode can save one
922  // ADD/SUB:
923  //     MOV  X0, WideImmediate
924  //     LDR  X2, [BaseReg, X0]
925  if (isa<ConstantSDNode>(RHS)) {
926    int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
927    unsigned Scale = Log2_32(Size);
928    // Skip the immediate can be selected by load/store addressing mode.
929    // Also skip the immediate can be encoded by a single ADD (SUB is also
930    // checked by using -ImmOff).
931    if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
932        isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
933      return false;
934
935    SDValue Ops[] = { RHS };
936    SDNode *MOVI =
937        CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
938    SDValue MOVIV = SDValue(MOVI, 0);
939    // This ADD of two X register will be selected into [Reg+Reg] mode.
940    N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
941  }
942
943  // Remember if it is worth folding N when it produces extended register.
944  bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
945
946  // Try to match a shifted extend on the RHS.
947  if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
948      SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
949    Base = LHS;
950    DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
951    return true;
952  }
953
954  // Try to match a shifted extend on the LHS.
955  if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
956      SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
957    Base = RHS;
958    DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
959    return true;
960  }
961
962  // Match any non-shifted, non-extend, non-immediate add expression.
963  Base = LHS;
964  Offset = RHS;
965  SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
966  DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
967  // Reg1 + Reg2 is free: no check needed.
968  return true;
969}
970
971SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
972  static const unsigned RegClassIDs[] = {
973      AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
974  static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
975                                     AArch64::dsub2, AArch64::dsub3};
976
977  return createTuple(Regs, RegClassIDs, SubRegs);
978}
979
980SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
981  static const unsigned RegClassIDs[] = {
982      AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
983  static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
984                                     AArch64::qsub2, AArch64::qsub3};
985
986  return createTuple(Regs, RegClassIDs, SubRegs);
987}
988
989SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
990                                         const unsigned RegClassIDs[],
991                                         const unsigned SubRegs[]) {
992  // There's no special register-class for a vector-list of 1 element: it's just
993  // a vector.
994  if (Regs.size() == 1)
995    return Regs[0];
996
997  assert(Regs.size() >= 2 && Regs.size() <= 4);
998
999  SDLoc DL(Regs[0]);
1000
1001  SmallVector<SDValue, 4> Ops;
1002
1003  // First operand of REG_SEQUENCE is the desired RegClass.
1004  Ops.push_back(
1005      CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
1006
1007  // Then we get pairs of source & subregister-position for the components.
1008  for (unsigned i = 0; i < Regs.size(); ++i) {
1009    Ops.push_back(Regs[i]);
1010    Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
1011  }
1012
1013  SDNode *N =
1014      CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
1015  return SDValue(N, 0);
1016}
1017
1018SDNode *AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs,
1019                                         unsigned Opc, bool isExt) {
1020  SDLoc dl(N);
1021  EVT VT = N->getValueType(0);
1022
1023  unsigned ExtOff = isExt;
1024
1025  // Form a REG_SEQUENCE to force register allocation.
1026  unsigned Vec0Off = ExtOff + 1;
1027  SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
1028                               N->op_begin() + Vec0Off + NumVecs);
1029  SDValue RegSeq = createQTuple(Regs);
1030
1031  SmallVector<SDValue, 6> Ops;
1032  if (isExt)
1033    Ops.push_back(N->getOperand(1));
1034  Ops.push_back(RegSeq);
1035  Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
1036  return CurDAG->getMachineNode(Opc, dl, VT, Ops);
1037}
1038
1039SDNode *AArch64DAGToDAGISel::SelectIndexedLoad(SDNode *N, bool &Done) {
1040  LoadSDNode *LD = cast<LoadSDNode>(N);
1041  if (LD->isUnindexed())
1042    return nullptr;
1043  EVT VT = LD->getMemoryVT();
1044  EVT DstVT = N->getValueType(0);
1045  ISD::MemIndexedMode AM = LD->getAddressingMode();
1046  bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
1047
1048  // We're not doing validity checking here. That was done when checking
1049  // if we should mark the load as indexed or not. We're just selecting
1050  // the right instruction.
1051  unsigned Opcode = 0;
1052
1053  ISD::LoadExtType ExtType = LD->getExtensionType();
1054  bool InsertTo64 = false;
1055  if (VT == MVT::i64)
1056    Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
1057  else if (VT == MVT::i32) {
1058    if (ExtType == ISD::NON_EXTLOAD)
1059      Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1060    else if (ExtType == ISD::SEXTLOAD)
1061      Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
1062    else {
1063      Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1064      InsertTo64 = true;
1065      // The result of the load is only i32. It's the subreg_to_reg that makes
1066      // it into an i64.
1067      DstVT = MVT::i32;
1068    }
1069  } else if (VT == MVT::i16) {
1070    if (ExtType == ISD::SEXTLOAD) {
1071      if (DstVT == MVT::i64)
1072        Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
1073      else
1074        Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
1075    } else {
1076      Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
1077      InsertTo64 = DstVT == MVT::i64;
1078      // The result of the load is only i32. It's the subreg_to_reg that makes
1079      // it into an i64.
1080      DstVT = MVT::i32;
1081    }
1082  } else if (VT == MVT::i8) {
1083    if (ExtType == ISD::SEXTLOAD) {
1084      if (DstVT == MVT::i64)
1085        Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
1086      else
1087        Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
1088    } else {
1089      Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
1090      InsertTo64 = DstVT == MVT::i64;
1091      // The result of the load is only i32. It's the subreg_to_reg that makes
1092      // it into an i64.
1093      DstVT = MVT::i32;
1094    }
1095  } else if (VT == MVT::f16) {
1096    Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1097  } else if (VT == MVT::f32) {
1098    Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
1099  } else if (VT == MVT::f64 || VT.is64BitVector()) {
1100    Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
1101  } else if (VT.is128BitVector()) {
1102    Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
1103  } else
1104    return nullptr;
1105  SDValue Chain = LD->getChain();
1106  SDValue Base = LD->getBasePtr();
1107  ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
1108  int OffsetVal = (int)OffsetOp->getZExtValue();
1109  SDLoc dl(N);
1110  SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
1111  SDValue Ops[] = { Base, Offset, Chain };
1112  SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
1113                                       MVT::Other, Ops);
1114  // Either way, we're replacing the node, so tell the caller that.
1115  Done = true;
1116  SDValue LoadedVal = SDValue(Res, 1);
1117  if (InsertTo64) {
1118    SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1119    LoadedVal =
1120        SDValue(CurDAG->getMachineNode(
1121                    AArch64::SUBREG_TO_REG, dl, MVT::i64,
1122                    CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
1123                    SubReg),
1124                0);
1125  }
1126
1127  ReplaceUses(SDValue(N, 0), LoadedVal);
1128  ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
1129  ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
1130
1131  return nullptr;
1132}
1133
1134SDNode *AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs,
1135                                        unsigned Opc, unsigned SubRegIdx) {
1136  SDLoc dl(N);
1137  EVT VT = N->getValueType(0);
1138  SDValue Chain = N->getOperand(0);
1139
1140  SDValue Ops[] = {N->getOperand(2), // Mem operand;
1141                   Chain};
1142
1143  const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1144
1145  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1146  SDValue SuperReg = SDValue(Ld, 0);
1147  for (unsigned i = 0; i < NumVecs; ++i)
1148    ReplaceUses(SDValue(N, i),
1149        CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1150
1151  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1152  return nullptr;
1153}
1154
1155SDNode *AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
1156                                            unsigned Opc, unsigned SubRegIdx) {
1157  SDLoc dl(N);
1158  EVT VT = N->getValueType(0);
1159  SDValue Chain = N->getOperand(0);
1160
1161  SDValue Ops[] = {N->getOperand(1), // Mem operand
1162                   N->getOperand(2), // Incremental
1163                   Chain};
1164
1165  const EVT ResTys[] = {MVT::i64, // Type of the write back register
1166                        MVT::Untyped, MVT::Other};
1167
1168  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1169
1170  // Update uses of write back register
1171  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1172
1173  // Update uses of vector list
1174  SDValue SuperReg = SDValue(Ld, 1);
1175  if (NumVecs == 1)
1176    ReplaceUses(SDValue(N, 0), SuperReg);
1177  else
1178    for (unsigned i = 0; i < NumVecs; ++i)
1179      ReplaceUses(SDValue(N, i),
1180          CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1181
1182  // Update the chain
1183  ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1184  return nullptr;
1185}
1186
1187SDNode *AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
1188                                         unsigned Opc) {
1189  SDLoc dl(N);
1190  EVT VT = N->getOperand(2)->getValueType(0);
1191
1192  // Form a REG_SEQUENCE to force register allocation.
1193  bool Is128Bit = VT.getSizeInBits() == 128;
1194  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1195  SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1196
1197  SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
1198  SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
1199
1200  return St;
1201}
1202
1203SDNode *AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
1204                                             unsigned Opc) {
1205  SDLoc dl(N);
1206  EVT VT = N->getOperand(2)->getValueType(0);
1207  const EVT ResTys[] = {MVT::i64,    // Type of the write back register
1208                        MVT::Other}; // Type for the Chain
1209
1210  // Form a REG_SEQUENCE to force register allocation.
1211  bool Is128Bit = VT.getSizeInBits() == 128;
1212  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1213  SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1214
1215  SDValue Ops[] = {RegSeq,
1216                   N->getOperand(NumVecs + 1), // base register
1217                   N->getOperand(NumVecs + 2), // Incremental
1218                   N->getOperand(0)};          // Chain
1219  SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1220
1221  return St;
1222}
1223
1224namespace {
1225/// WidenVector - Given a value in the V64 register class, produce the
1226/// equivalent value in the V128 register class.
1227class WidenVector {
1228  SelectionDAG &DAG;
1229
1230public:
1231  WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
1232
1233  SDValue operator()(SDValue V64Reg) {
1234    EVT VT = V64Reg.getValueType();
1235    unsigned NarrowSize = VT.getVectorNumElements();
1236    MVT EltTy = VT.getVectorElementType().getSimpleVT();
1237    MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
1238    SDLoc DL(V64Reg);
1239
1240    SDValue Undef =
1241        SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
1242    return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
1243  }
1244};
1245} // namespace
1246
1247/// NarrowVector - Given a value in the V128 register class, produce the
1248/// equivalent value in the V64 register class.
1249static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
1250  EVT VT = V128Reg.getValueType();
1251  unsigned WideSize = VT.getVectorNumElements();
1252  MVT EltTy = VT.getVectorElementType().getSimpleVT();
1253  MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
1254
1255  return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
1256                                    V128Reg);
1257}
1258
1259SDNode *AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
1260                                            unsigned Opc) {
1261  SDLoc dl(N);
1262  EVT VT = N->getValueType(0);
1263  bool Narrow = VT.getSizeInBits() == 64;
1264
1265  // Form a REG_SEQUENCE to force register allocation.
1266  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1267
1268  if (Narrow)
1269    std::transform(Regs.begin(), Regs.end(), Regs.begin(),
1270                   WidenVector(*CurDAG));
1271
1272  SDValue RegSeq = createQTuple(Regs);
1273
1274  const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1275
1276  unsigned LaneNo =
1277      cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1278
1279  SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1280                   N->getOperand(NumVecs + 3), N->getOperand(0)};
1281  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1282  SDValue SuperReg = SDValue(Ld, 0);
1283
1284  EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1285  static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1286                                    AArch64::qsub2, AArch64::qsub3 };
1287  for (unsigned i = 0; i < NumVecs; ++i) {
1288    SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
1289    if (Narrow)
1290      NV = NarrowVector(NV, *CurDAG);
1291    ReplaceUses(SDValue(N, i), NV);
1292  }
1293
1294  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1295
1296  return Ld;
1297}
1298
1299SDNode *AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
1300                                                unsigned Opc) {
1301  SDLoc dl(N);
1302  EVT VT = N->getValueType(0);
1303  bool Narrow = VT.getSizeInBits() == 64;
1304
1305  // Form a REG_SEQUENCE to force register allocation.
1306  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1307
1308  if (Narrow)
1309    std::transform(Regs.begin(), Regs.end(), Regs.begin(),
1310                   WidenVector(*CurDAG));
1311
1312  SDValue RegSeq = createQTuple(Regs);
1313
1314  const EVT ResTys[] = {MVT::i64, // Type of the write back register
1315                        RegSeq->getValueType(0), MVT::Other};
1316
1317  unsigned LaneNo =
1318      cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1319
1320  SDValue Ops[] = {RegSeq,
1321                   CurDAG->getTargetConstant(LaneNo, dl,
1322                                             MVT::i64),         // Lane Number
1323                   N->getOperand(NumVecs + 2),                  // Base register
1324                   N->getOperand(NumVecs + 3),                  // Incremental
1325                   N->getOperand(0)};
1326  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1327
1328  // Update uses of the write back register
1329  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1330
1331  // Update uses of the vector list
1332  SDValue SuperReg = SDValue(Ld, 1);
1333  if (NumVecs == 1) {
1334    ReplaceUses(SDValue(N, 0),
1335                Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
1336  } else {
1337    EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1338    static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1339                                      AArch64::qsub2, AArch64::qsub3 };
1340    for (unsigned i = 0; i < NumVecs; ++i) {
1341      SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
1342                                                  SuperReg);
1343      if (Narrow)
1344        NV = NarrowVector(NV, *CurDAG);
1345      ReplaceUses(SDValue(N, i), NV);
1346    }
1347  }
1348
1349  // Update the Chain
1350  ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1351
1352  return Ld;
1353}
1354
1355SDNode *AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
1356                                             unsigned Opc) {
1357  SDLoc dl(N);
1358  EVT VT = N->getOperand(2)->getValueType(0);
1359  bool Narrow = VT.getSizeInBits() == 64;
1360
1361  // Form a REG_SEQUENCE to force register allocation.
1362  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1363
1364  if (Narrow)
1365    std::transform(Regs.begin(), Regs.end(), Regs.begin(),
1366                   WidenVector(*CurDAG));
1367
1368  SDValue RegSeq = createQTuple(Regs);
1369
1370  unsigned LaneNo =
1371      cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1372
1373  SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1374                   N->getOperand(NumVecs + 3), N->getOperand(0)};
1375  SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
1376
1377  // Transfer memoperands.
1378  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1379  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1380  cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
1381
1382  return St;
1383}
1384
1385SDNode *AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
1386                                                 unsigned Opc) {
1387  SDLoc dl(N);
1388  EVT VT = N->getOperand(2)->getValueType(0);
1389  bool Narrow = VT.getSizeInBits() == 64;
1390
1391  // Form a REG_SEQUENCE to force register allocation.
1392  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1393
1394  if (Narrow)
1395    std::transform(Regs.begin(), Regs.end(), Regs.begin(),
1396                   WidenVector(*CurDAG));
1397
1398  SDValue RegSeq = createQTuple(Regs);
1399
1400  const EVT ResTys[] = {MVT::i64, // Type of the write back register
1401                        MVT::Other};
1402
1403  unsigned LaneNo =
1404      cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1405
1406  SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1407                   N->getOperand(NumVecs + 2), // Base Register
1408                   N->getOperand(NumVecs + 3), // Incremental
1409                   N->getOperand(0)};
1410  SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1411
1412  // Transfer memoperands.
1413  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1414  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1415  cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
1416
1417  return St;
1418}
1419
1420static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
1421                                       unsigned &Opc, SDValue &Opd0,
1422                                       unsigned &LSB, unsigned &MSB,
1423                                       unsigned NumberOfIgnoredLowBits,
1424                                       bool BiggerPattern) {
1425  assert(N->getOpcode() == ISD::AND &&
1426         "N must be a AND operation to call this function");
1427
1428  EVT VT = N->getValueType(0);
1429
1430  // Here we can test the type of VT and return false when the type does not
1431  // match, but since it is done prior to that call in the current context
1432  // we turned that into an assert to avoid redundant code.
1433  assert((VT == MVT::i32 || VT == MVT::i64) &&
1434         "Type checking must have been done before calling this function");
1435
1436  // FIXME: simplify-demanded-bits in DAGCombine will probably have
1437  // changed the AND node to a 32-bit mask operation. We'll have to
1438  // undo that as part of the transform here if we want to catch all
1439  // the opportunities.
1440  // Currently the NumberOfIgnoredLowBits argument helps to recover
1441  // form these situations when matching bigger pattern (bitfield insert).
1442
1443  // For unsigned extracts, check for a shift right and mask
1444  uint64_t And_imm = 0;
1445  if (!isOpcWithIntImmediate(N, ISD::AND, And_imm))
1446    return false;
1447
1448  const SDNode *Op0 = N->getOperand(0).getNode();
1449
1450  // Because of simplify-demanded-bits in DAGCombine, the mask may have been
1451  // simplified. Try to undo that
1452  And_imm |= (1 << NumberOfIgnoredLowBits) - 1;
1453
1454  // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1455  if (And_imm & (And_imm + 1))
1456    return false;
1457
1458  bool ClampMSB = false;
1459  uint64_t Srl_imm = 0;
1460  // Handle the SRL + ANY_EXTEND case.
1461  if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
1462      isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, Srl_imm)) {
1463    // Extend the incoming operand of the SRL to 64-bit.
1464    Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
1465    // Make sure to clamp the MSB so that we preserve the semantics of the
1466    // original operations.
1467    ClampMSB = true;
1468  } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
1469             isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
1470                                   Srl_imm)) {
1471    // If the shift result was truncated, we can still combine them.
1472    Opd0 = Op0->getOperand(0).getOperand(0);
1473
1474    // Use the type of SRL node.
1475    VT = Opd0->getValueType(0);
1476  } else if (isOpcWithIntImmediate(Op0, ISD::SRL, Srl_imm)) {
1477    Opd0 = Op0->getOperand(0);
1478  } else if (BiggerPattern) {
1479    // Let's pretend a 0 shift right has been performed.
1480    // The resulting code will be at least as good as the original one
1481    // plus it may expose more opportunities for bitfield insert pattern.
1482    // FIXME: Currently we limit this to the bigger pattern, because
1483    // some optimizations expect AND and not UBFM.
1484    Opd0 = N->getOperand(0);
1485  } else
1486    return false;
1487
1488  // Bail out on large immediates. This happens when no proper
1489  // combining/constant folding was performed.
1490  if (!BiggerPattern && (Srl_imm <= 0 || Srl_imm >= VT.getSizeInBits())) {
1491    DEBUG((dbgs() << N
1492           << ": Found large shift immediate, this should not happen\n"));
1493    return false;
1494  }
1495
1496  LSB = Srl_imm;
1497  MSB = Srl_imm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(And_imm)
1498                                  : countTrailingOnes<uint64_t>(And_imm)) -
1499        1;
1500  if (ClampMSB)
1501    // Since we're moving the extend before the right shift operation, we need
1502    // to clamp the MSB to make sure we don't shift in undefined bits instead of
1503    // the zeros which would get shifted in with the original right shift
1504    // operation.
1505    MSB = MSB > 31 ? 31 : MSB;
1506
1507  Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
1508  return true;
1509}
1510
1511static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
1512                                          SDValue &Opd0, unsigned &LSB,
1513                                          unsigned &MSB) {
1514  // We are looking for the following pattern which basically extracts several
1515  // continuous bits from the source value and places it from the LSB of the
1516  // destination value, all other bits of the destination value or set to zero:
1517  //
1518  // Value2 = AND Value, MaskImm
1519  // SRL Value2, ShiftImm
1520  //
1521  // with MaskImm >> ShiftImm to search for the bit width.
1522  //
1523  // This gets selected into a single UBFM:
1524  //
1525  // UBFM Value, ShiftImm, BitWide + Srl_imm -1
1526  //
1527
1528  if (N->getOpcode() != ISD::SRL)
1529    return false;
1530
1531  uint64_t And_mask = 0;
1532  if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_mask))
1533    return false;
1534
1535  Opd0 = N->getOperand(0).getOperand(0);
1536
1537  uint64_t Srl_imm = 0;
1538  if (!isIntImmediate(N->getOperand(1), Srl_imm))
1539    return false;
1540
1541  // Check whether we really have several bits extract here.
1542  unsigned BitWide = 64 - countLeadingOnes(~(And_mask >> Srl_imm));
1543  if (BitWide && isMask_64(And_mask >> Srl_imm)) {
1544    if (N->getValueType(0) == MVT::i32)
1545      Opc = AArch64::UBFMWri;
1546    else
1547      Opc = AArch64::UBFMXri;
1548
1549    LSB = Srl_imm;
1550    MSB = BitWide + Srl_imm - 1;
1551    return true;
1552  }
1553
1554  return false;
1555}
1556
1557static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
1558                                       unsigned &Immr, unsigned &Imms,
1559                                       bool BiggerPattern) {
1560  assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
1561         "N must be a SHR/SRA operation to call this function");
1562
1563  EVT VT = N->getValueType(0);
1564
1565  // Here we can test the type of VT and return false when the type does not
1566  // match, but since it is done prior to that call in the current context
1567  // we turned that into an assert to avoid redundant code.
1568  assert((VT == MVT::i32 || VT == MVT::i64) &&
1569         "Type checking must have been done before calling this function");
1570
1571  // Check for AND + SRL doing several bits extract.
1572  if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
1573    return true;
1574
1575  // we're looking for a shift of a shift
1576  uint64_t Shl_imm = 0;
1577  uint64_t Trunc_bits = 0;
1578  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
1579    Opd0 = N->getOperand(0).getOperand(0);
1580  } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
1581             N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
1582    // We are looking for a shift of truncate. Truncate from i64 to i32 could
1583    // be considered as setting high 32 bits as zero. Our strategy here is to
1584    // always generate 64bit UBFM. This consistency will help the CSE pass
1585    // later find more redundancy.
1586    Opd0 = N->getOperand(0).getOperand(0);
1587    Trunc_bits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
1588    VT = Opd0->getValueType(0);
1589    assert(VT == MVT::i64 && "the promoted type should be i64");
1590  } else if (BiggerPattern) {
1591    // Let's pretend a 0 shift left has been performed.
1592    // FIXME: Currently we limit this to the bigger pattern case,
1593    // because some optimizations expect AND and not UBFM
1594    Opd0 = N->getOperand(0);
1595  } else
1596    return false;
1597
1598  // Missing combines/constant folding may have left us with strange
1599  // constants.
1600  if (Shl_imm >= VT.getSizeInBits()) {
1601    DEBUG((dbgs() << N
1602           << ": Found large shift immediate, this should not happen\n"));
1603    return false;
1604  }
1605
1606  uint64_t Srl_imm = 0;
1607  if (!isIntImmediate(N->getOperand(1), Srl_imm))
1608    return false;
1609
1610  assert(Srl_imm > 0 && Srl_imm < VT.getSizeInBits() &&
1611         "bad amount in shift node!");
1612  int immr = Srl_imm - Shl_imm;
1613  Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
1614  Imms = VT.getSizeInBits() - Shl_imm - Trunc_bits - 1;
1615  // SRA requires a signed extraction
1616  if (VT == MVT::i32)
1617    Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
1618  else
1619    Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
1620  return true;
1621}
1622
1623static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
1624                                SDValue &Opd0, unsigned &Immr, unsigned &Imms,
1625                                unsigned NumberOfIgnoredLowBits = 0,
1626                                bool BiggerPattern = false) {
1627  if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
1628    return false;
1629
1630  switch (N->getOpcode()) {
1631  default:
1632    if (!N->isMachineOpcode())
1633      return false;
1634    break;
1635  case ISD::AND:
1636    return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
1637                                      NumberOfIgnoredLowBits, BiggerPattern);
1638  case ISD::SRL:
1639  case ISD::SRA:
1640    return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
1641  }
1642
1643  unsigned NOpc = N->getMachineOpcode();
1644  switch (NOpc) {
1645  default:
1646    return false;
1647  case AArch64::SBFMWri:
1648  case AArch64::UBFMWri:
1649  case AArch64::SBFMXri:
1650  case AArch64::UBFMXri:
1651    Opc = NOpc;
1652    Opd0 = N->getOperand(0);
1653    Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
1654    Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
1655    return true;
1656  }
1657  // Unreachable
1658  return false;
1659}
1660
1661SDNode *AArch64DAGToDAGISel::SelectBitfieldExtractOp(SDNode *N) {
1662  unsigned Opc, Immr, Imms;
1663  SDValue Opd0;
1664  if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
1665    return nullptr;
1666
1667  EVT VT = N->getValueType(0);
1668  SDLoc dl(N);
1669
1670  // If the bit extract operation is 64bit but the original type is 32bit, we
1671  // need to add one EXTRACT_SUBREG.
1672  if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
1673    SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
1674                       CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
1675
1676    SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
1677    SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1678    MachineSDNode *Node =
1679        CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i32,
1680                               SDValue(BFM, 0), SubReg);
1681    return Node;
1682  }
1683
1684  SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
1685                   CurDAG->getTargetConstant(Imms, dl, VT)};
1686  return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
1687}
1688
1689/// Does DstMask form a complementary pair with the mask provided by
1690/// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
1691/// this asks whether DstMask zeroes precisely those bits that will be set by
1692/// the other half.
1693static bool isBitfieldDstMask(uint64_t DstMask, APInt BitsToBeInserted,
1694                              unsigned NumberOfIgnoredHighBits, EVT VT) {
1695  assert((VT == MVT::i32 || VT == MVT::i64) &&
1696         "i32 or i64 mask type expected!");
1697  unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
1698
1699  APInt SignificantDstMask = APInt(BitWidth, DstMask);
1700  APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
1701
1702  return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
1703         (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
1704}
1705
1706// Look for bits that will be useful for later uses.
1707// A bit is consider useless as soon as it is dropped and never used
1708// before it as been dropped.
1709// E.g., looking for useful bit of x
1710// 1. y = x & 0x7
1711// 2. z = y >> 2
1712// After #1, x useful bits are 0x7, then the useful bits of x, live through
1713// y.
1714// After #2, the useful bits of x are 0x4.
1715// However, if x is used on an unpredicatable instruction, then all its bits
1716// are useful.
1717// E.g.
1718// 1. y = x & 0x7
1719// 2. z = y >> 2
1720// 3. str x, [@x]
1721static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
1722
1723static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
1724                                              unsigned Depth) {
1725  uint64_t Imm =
1726      cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
1727  Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
1728  UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
1729  getUsefulBits(Op, UsefulBits, Depth + 1);
1730}
1731
1732static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
1733                                             uint64_t Imm, uint64_t MSB,
1734                                             unsigned Depth) {
1735  // inherit the bitwidth value
1736  APInt OpUsefulBits(UsefulBits);
1737  OpUsefulBits = 1;
1738
1739  if (MSB >= Imm) {
1740    OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
1741    --OpUsefulBits;
1742    // The interesting part will be in the lower part of the result
1743    getUsefulBits(Op, OpUsefulBits, Depth + 1);
1744    // The interesting part was starting at Imm in the argument
1745    OpUsefulBits = OpUsefulBits.shl(Imm);
1746  } else {
1747    OpUsefulBits = OpUsefulBits.shl(MSB + 1);
1748    --OpUsefulBits;
1749    // The interesting part will be shifted in the result
1750    OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
1751    getUsefulBits(Op, OpUsefulBits, Depth + 1);
1752    // The interesting part was at zero in the argument
1753    OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
1754  }
1755
1756  UsefulBits &= OpUsefulBits;
1757}
1758
1759static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
1760                                  unsigned Depth) {
1761  uint64_t Imm =
1762      cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
1763  uint64_t MSB =
1764      cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1765
1766  getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
1767}
1768
1769static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
1770                                              unsigned Depth) {
1771  uint64_t ShiftTypeAndValue =
1772      cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1773  APInt Mask(UsefulBits);
1774  Mask.clearAllBits();
1775  Mask.flipAllBits();
1776
1777  if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
1778    // Shift Left
1779    uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
1780    Mask = Mask.shl(ShiftAmt);
1781    getUsefulBits(Op, Mask, Depth + 1);
1782    Mask = Mask.lshr(ShiftAmt);
1783  } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
1784    // Shift Right
1785    // We do not handle AArch64_AM::ASR, because the sign will change the
1786    // number of useful bits
1787    uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
1788    Mask = Mask.lshr(ShiftAmt);
1789    getUsefulBits(Op, Mask, Depth + 1);
1790    Mask = Mask.shl(ShiftAmt);
1791  } else
1792    return;
1793
1794  UsefulBits &= Mask;
1795}
1796
1797static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
1798                                 unsigned Depth) {
1799  uint64_t Imm =
1800      cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1801  uint64_t MSB =
1802      cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
1803
1804  if (Op.getOperand(1) == Orig)
1805    return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
1806
1807  APInt OpUsefulBits(UsefulBits);
1808  OpUsefulBits = 1;
1809
1810  if (MSB >= Imm) {
1811    OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
1812    --OpUsefulBits;
1813    UsefulBits &= ~OpUsefulBits;
1814    getUsefulBits(Op, UsefulBits, Depth + 1);
1815  } else {
1816    OpUsefulBits = OpUsefulBits.shl(MSB + 1);
1817    --OpUsefulBits;
1818    UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
1819    getUsefulBits(Op, UsefulBits, Depth + 1);
1820  }
1821}
1822
1823static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
1824                                SDValue Orig, unsigned Depth) {
1825
1826  // Users of this node should have already been instruction selected
1827  // FIXME: Can we turn that into an assert?
1828  if (!UserNode->isMachineOpcode())
1829    return;
1830
1831  switch (UserNode->getMachineOpcode()) {
1832  default:
1833    return;
1834  case AArch64::ANDSWri:
1835  case AArch64::ANDSXri:
1836  case AArch64::ANDWri:
1837  case AArch64::ANDXri:
1838    // We increment Depth only when we call the getUsefulBits
1839    return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
1840                                             Depth);
1841  case AArch64::UBFMWri:
1842  case AArch64::UBFMXri:
1843    return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
1844
1845  case AArch64::ORRWrs:
1846  case AArch64::ORRXrs:
1847    if (UserNode->getOperand(1) != Orig)
1848      return;
1849    return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
1850                                             Depth);
1851  case AArch64::BFMWri:
1852  case AArch64::BFMXri:
1853    return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
1854  }
1855}
1856
1857static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
1858  if (Depth >= 6)
1859    return;
1860  // Initialize UsefulBits
1861  if (!Depth) {
1862    unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
1863    // At the beginning, assume every produced bits is useful
1864    UsefulBits = APInt(Bitwidth, 0);
1865    UsefulBits.flipAllBits();
1866  }
1867  APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
1868
1869  for (SDNode *Node : Op.getNode()->uses()) {
1870    // A use cannot produce useful bits
1871    APInt UsefulBitsForUse = APInt(UsefulBits);
1872    getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
1873    UsersUsefulBits |= UsefulBitsForUse;
1874  }
1875  // UsefulBits contains the produced bits that are meaningful for the
1876  // current definition, thus a user cannot make a bit meaningful at
1877  // this point
1878  UsefulBits &= UsersUsefulBits;
1879}
1880
1881/// Create a machine node performing a notional SHL of Op by ShlAmount. If
1882/// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
1883/// 0, return Op unchanged.
1884static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
1885  if (ShlAmount == 0)
1886    return Op;
1887
1888  EVT VT = Op.getValueType();
1889  SDLoc dl(Op);
1890  unsigned BitWidth = VT.getSizeInBits();
1891  unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
1892
1893  SDNode *ShiftNode;
1894  if (ShlAmount > 0) {
1895    // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
1896    ShiftNode = CurDAG->getMachineNode(
1897        UBFMOpc, dl, VT, Op,
1898        CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
1899        CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
1900  } else {
1901    // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
1902    assert(ShlAmount < 0 && "expected right shift");
1903    int ShrAmount = -ShlAmount;
1904    ShiftNode = CurDAG->getMachineNode(
1905        UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
1906        CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
1907  }
1908
1909  return SDValue(ShiftNode, 0);
1910}
1911
1912/// Does this tree qualify as an attempt to move a bitfield into position,
1913/// essentially "(and (shl VAL, N), Mask)".
1914static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
1915                                    bool BiggerPattern,
1916                                    SDValue &Src, int &ShiftAmount,
1917                                    int &MaskWidth) {
1918  EVT VT = Op.getValueType();
1919  unsigned BitWidth = VT.getSizeInBits();
1920  (void)BitWidth;
1921  assert(BitWidth == 32 || BitWidth == 64);
1922
1923  APInt KnownZero, KnownOne;
1924  CurDAG->computeKnownBits(Op, KnownZero, KnownOne);
1925
1926  // Non-zero in the sense that they're not provably zero, which is the key
1927  // point if we want to use this value
1928  uint64_t NonZeroBits = (~KnownZero).getZExtValue();
1929
1930  // Discard a constant AND mask if present. It's safe because the node will
1931  // already have been factored into the computeKnownBits calculation above.
1932  uint64_t AndImm;
1933  if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
1934    assert((~APInt(BitWidth, AndImm) & ~KnownZero) == 0);
1935    Op = Op.getOperand(0);
1936  }
1937
1938  // Don't match if the SHL has more than one use, since then we'll end up
1939  // generating SHL+UBFIZ instead of just keeping SHL+AND.
1940  if (!BiggerPattern && !Op.hasOneUse())
1941    return false;
1942
1943  uint64_t ShlImm;
1944  if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
1945    return false;
1946  Op = Op.getOperand(0);
1947
1948  if (!isShiftedMask_64(NonZeroBits))
1949    return false;
1950
1951  ShiftAmount = countTrailingZeros(NonZeroBits);
1952  MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
1953
1954  // BFI encompasses sufficiently many nodes that it's worth inserting an extra
1955  // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
1956  // amount.  BiggerPattern is true when this pattern is being matched for BFI,
1957  // BiggerPattern is false when this pattern is being matched for UBFIZ, in
1958  // which case it is not profitable to insert an extra shift.
1959  if (ShlImm - ShiftAmount != 0 && !BiggerPattern)
1960    return false;
1961  Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
1962
1963  return true;
1964}
1965
1966// Given a OR operation, check if we have the following pattern
1967// ubfm c, b, imm, imm2 (or something that does the same jobs, see
1968//                       isBitfieldExtractOp)
1969// d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
1970//                 countTrailingZeros(mask2) == imm2 - imm + 1
1971// f = d | c
1972// if yes, given reference arguments will be update so that one can replace
1973// the OR instruction with:
1974// f = Opc Opd0, Opd1, LSB, MSB ; where Opc is a BFM, LSB = imm, and MSB = imm2
1975static bool isBitfieldInsertOpFromOr(SDNode *N, unsigned &Opc, SDValue &Dst,
1976                                     SDValue &Src, unsigned &ImmR,
1977                                     unsigned &ImmS, const APInt &UsefulBits,
1978                                     SelectionDAG *CurDAG) {
1979  assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
1980
1981  // Set Opc
1982  EVT VT = N->getValueType(0);
1983  if (VT == MVT::i32)
1984    Opc = AArch64::BFMWri;
1985  else if (VT == MVT::i64)
1986    Opc = AArch64::BFMXri;
1987  else
1988    return false;
1989
1990  // Because of simplify-demanded-bits in DAGCombine, involved masks may not
1991  // have the expected shape. Try to undo that.
1992
1993  unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
1994  unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
1995
1996  // OR is commutative, check all combinations of operand order and values of
1997  // BiggerPattern, i.e.
1998  //     Opd0, Opd1, BiggerPattern=false
1999  //     Opd1, Opd0, BiggerPattern=false
2000  //     Opd0, Opd1, BiggerPattern=true
2001  //     Opd1, Opd0, BiggerPattern=true
2002  // Several of these combinations may match, so check with BiggerPattern=false
2003  // first since that will produce better results by matching more instructions
2004  // and/or inserting fewer extra instructions.
2005  for (int I = 0; I < 4; ++I) {
2006
2007    bool BiggerPattern = I / 2;
2008    SDNode *OrOpd0 = N->getOperand(I % 2).getNode();
2009    SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
2010    SDNode *OrOpd1 = OrOpd1Val.getNode();
2011
2012    unsigned BFXOpc;
2013    int DstLSB, Width;
2014    if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
2015                            NumberOfIgnoredLowBits, BiggerPattern)) {
2016      // Check that the returned opcode is compatible with the pattern,
2017      // i.e., same type and zero extended (U and not S)
2018      if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
2019          (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
2020        continue;
2021
2022      // Compute the width of the bitfield insertion
2023      DstLSB = 0;
2024      Width = ImmS - ImmR + 1;
2025      // FIXME: This constraint is to catch bitfield insertion we may
2026      // want to widen the pattern if we want to grab general bitfied
2027      // move case
2028      if (Width <= 0)
2029        continue;
2030
2031      // If the mask on the insertee is correct, we have a BFXIL operation. We
2032      // can share the ImmR and ImmS values from the already-computed UBFM.
2033    } else if (isBitfieldPositioningOp(CurDAG, SDValue(OrOpd0, 0),
2034                                       BiggerPattern,
2035                                       Src, DstLSB, Width)) {
2036      ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
2037      ImmS = Width - 1;
2038    } else
2039      continue;
2040
2041    // Check the second part of the pattern
2042    EVT VT = OrOpd1->getValueType(0);
2043    assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
2044
2045    // Compute the Known Zero for the candidate of the first operand.
2046    // This allows to catch more general case than just looking for
2047    // AND with imm. Indeed, simplify-demanded-bits may have removed
2048    // the AND instruction because it proves it was useless.
2049    APInt KnownZero, KnownOne;
2050    CurDAG->computeKnownBits(OrOpd1Val, KnownZero, KnownOne);
2051
2052    // Check if there is enough room for the second operand to appear
2053    // in the first one
2054    APInt BitsToBeInserted =
2055        APInt::getBitsSet(KnownZero.getBitWidth(), DstLSB, DstLSB + Width);
2056
2057    if ((BitsToBeInserted & ~KnownZero) != 0)
2058      continue;
2059
2060    // Set the first operand
2061    uint64_t Imm;
2062    if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
2063        isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
2064      // In that case, we can eliminate the AND
2065      Dst = OrOpd1->getOperand(0);
2066    else
2067      // Maybe the AND has been removed by simplify-demanded-bits
2068      // or is useful because it discards more bits
2069      Dst = OrOpd1Val;
2070
2071    // both parts match
2072    return true;
2073  }
2074
2075  return false;
2076}
2077
2078SDNode *AArch64DAGToDAGISel::SelectBitfieldInsertOp(SDNode *N) {
2079  if (N->getOpcode() != ISD::OR)
2080    return nullptr;
2081
2082  unsigned Opc;
2083  unsigned LSB, MSB;
2084  SDValue Opd0, Opd1;
2085  EVT VT = N->getValueType(0);
2086  APInt NUsefulBits;
2087  getUsefulBits(SDValue(N, 0), NUsefulBits);
2088
2089  // If all bits are not useful, just return UNDEF.
2090  if (!NUsefulBits)
2091    return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, VT);
2092
2093  if (!isBitfieldInsertOpFromOr(N, Opc, Opd0, Opd1, LSB, MSB, NUsefulBits,
2094                                CurDAG))
2095    return nullptr;
2096
2097  SDLoc dl(N);
2098  SDValue Ops[] = { Opd0,
2099                    Opd1,
2100                    CurDAG->getTargetConstant(LSB, dl, VT),
2101                    CurDAG->getTargetConstant(MSB, dl, VT) };
2102  return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2103}
2104
2105/// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
2106/// equivalent of a left shift by a constant amount followed by an and masking
2107/// out a contiguous set of bits.
2108SDNode *AArch64DAGToDAGISel::SelectBitfieldInsertInZeroOp(SDNode *N) {
2109  if (N->getOpcode() != ISD::AND)
2110    return nullptr;
2111
2112  EVT VT = N->getValueType(0);
2113  unsigned Opc;
2114  if (VT == MVT::i32)
2115    Opc = AArch64::UBFMWri;
2116  else if (VT == MVT::i64)
2117    Opc = AArch64::UBFMXri;
2118  else
2119    return nullptr;
2120
2121  SDValue Op0;
2122  int DstLSB, Width;
2123  if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
2124                               Op0, DstLSB, Width))
2125    return nullptr;
2126
2127  // ImmR is the rotate right amount.
2128  unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
2129  // ImmS is the most significant bit of the source to be moved.
2130  unsigned ImmS = Width - 1;
2131
2132  SDLoc DL(N);
2133  SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
2134                   CurDAG->getTargetConstant(ImmS, DL, VT)};
2135  return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2136}
2137
2138bool
2139AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
2140                                              unsigned RegWidth) {
2141  APFloat FVal(0.0);
2142  if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
2143    FVal = CN->getValueAPF();
2144  else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
2145    // Some otherwise illegal constants are allowed in this case.
2146    if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
2147        !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
2148      return false;
2149
2150    ConstantPoolSDNode *CN =
2151        dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
2152    FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
2153  } else
2154    return false;
2155
2156  // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
2157  // is between 1 and 32 for a destination w-register, or 1 and 64 for an
2158  // x-register.
2159  //
2160  // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
2161  // want THIS_NODE to be 2^fbits. This is much easier to deal with using
2162  // integers.
2163  bool IsExact;
2164
2165  // fbits is between 1 and 64 in the worst-case, which means the fmul
2166  // could have 2^64 as an actual operand. Need 65 bits of precision.
2167  APSInt IntVal(65, true);
2168  FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
2169
2170  // N.b. isPowerOf2 also checks for > 0.
2171  if (!IsExact || !IntVal.isPowerOf2()) return false;
2172  unsigned FBits = IntVal.logBase2();
2173
2174  // Checks above should have guaranteed that we haven't lost information in
2175  // finding FBits, but it must still be in range.
2176  if (FBits == 0 || FBits > RegWidth) return false;
2177
2178  FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
2179  return true;
2180}
2181
2182// Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
2183// of the string and obtains the integer values from them and combines these
2184// into a single value to be used in the MRS/MSR instruction.
2185static int getIntOperandFromRegisterString(StringRef RegString) {
2186  SmallVector<StringRef, 5> Fields;
2187  RegString.split(Fields, ':');
2188
2189  if (Fields.size() == 1)
2190    return -1;
2191
2192  assert(Fields.size() == 5
2193            && "Invalid number of fields in read register string");
2194
2195  SmallVector<int, 5> Ops;
2196  bool AllIntFields = true;
2197
2198  for (StringRef Field : Fields) {
2199    unsigned IntField;
2200    AllIntFields &= !Field.getAsInteger(10, IntField);
2201    Ops.push_back(IntField);
2202  }
2203
2204  assert(AllIntFields &&
2205          "Unexpected non-integer value in special register string.");
2206
2207  // Need to combine the integer fields of the string into a single value
2208  // based on the bit encoding of MRS/MSR instruction.
2209  return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
2210         (Ops[3] << 3) | (Ops[4]);
2211}
2212
2213// Lower the read_register intrinsic to an MRS instruction node if the special
2214// register string argument is either of the form detailed in the ALCE (the
2215// form described in getIntOperandsFromRegsterString) or is a named register
2216// known by the MRS SysReg mapper.
2217SDNode *AArch64DAGToDAGISel::SelectReadRegister(SDNode *N) {
2218  const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2219  const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2220  SDLoc DL(N);
2221
2222  int Reg = getIntOperandFromRegisterString(RegString->getString());
2223  if (Reg != -1)
2224    return CurDAG->getMachineNode(AArch64::MRS, DL, N->getSimpleValueType(0),
2225                                  MVT::Other,
2226                                  CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2227                                  N->getOperand(0));
2228
2229  // Use the sysreg mapper to map the remaining possible strings to the
2230  // value for the register to be used for the instruction operand.
2231  AArch64SysReg::MRSMapper mapper;
2232  bool IsValidSpecialReg;
2233  Reg = mapper.fromString(RegString->getString(),
2234                          Subtarget->getFeatureBits(),
2235                          IsValidSpecialReg);
2236  if (IsValidSpecialReg)
2237    return CurDAG->getMachineNode(AArch64::MRS, DL, N->getSimpleValueType(0),
2238                                  MVT::Other,
2239                                  CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2240                                  N->getOperand(0));
2241
2242  return nullptr;
2243}
2244
2245// Lower the write_register intrinsic to an MSR instruction node if the special
2246// register string argument is either of the form detailed in the ALCE (the
2247// form described in getIntOperandsFromRegsterString) or is a named register
2248// known by the MSR SysReg mapper.
2249SDNode *AArch64DAGToDAGISel::SelectWriteRegister(SDNode *N) {
2250  const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2251  const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2252  SDLoc DL(N);
2253
2254  int Reg = getIntOperandFromRegisterString(RegString->getString());
2255  if (Reg != -1)
2256    return CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
2257                                  CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2258                                  N->getOperand(2), N->getOperand(0));
2259
2260  // Check if the register was one of those allowed as the pstatefield value in
2261  // the MSR (immediate) instruction. To accept the values allowed in the
2262  // pstatefield for the MSR (immediate) instruction, we also require that an
2263  // immediate value has been provided as an argument, we know that this is
2264  // the case as it has been ensured by semantic checking.
2265  AArch64PState::PStateMapper PMapper;
2266  bool IsValidSpecialReg;
2267  Reg = PMapper.fromString(RegString->getString(),
2268                           Subtarget->getFeatureBits(),
2269                           IsValidSpecialReg);
2270  if (IsValidSpecialReg) {
2271    assert (isa<ConstantSDNode>(N->getOperand(2))
2272              && "Expected a constant integer expression.");
2273    uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
2274    unsigned State;
2275    if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO) {
2276      assert(Immed < 2 && "Bad imm");
2277      State = AArch64::MSRpstateImm1;
2278    } else {
2279      assert(Immed < 16 && "Bad imm");
2280      State = AArch64::MSRpstateImm4;
2281    }
2282    return CurDAG->getMachineNode(State, DL, MVT::Other,
2283                                  CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2284                                  CurDAG->getTargetConstant(Immed, DL, MVT::i16),
2285                                  N->getOperand(0));
2286  }
2287
2288  // Use the sysreg mapper to attempt to map the remaining possible strings
2289  // to the value for the register to be used for the MSR (register)
2290  // instruction operand.
2291  AArch64SysReg::MSRMapper Mapper;
2292  Reg = Mapper.fromString(RegString->getString(),
2293                          Subtarget->getFeatureBits(),
2294                          IsValidSpecialReg);
2295
2296  if (IsValidSpecialReg)
2297    return CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
2298                                  CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2299                                  N->getOperand(2), N->getOperand(0));
2300
2301  return nullptr;
2302}
2303
2304SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
2305  // Dump information about the Node being selected
2306  DEBUG(errs() << "Selecting: ");
2307  DEBUG(Node->dump(CurDAG));
2308  DEBUG(errs() << "\n");
2309
2310  // If we have a custom node, we already have selected!
2311  if (Node->isMachineOpcode()) {
2312    DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
2313    Node->setNodeId(-1);
2314    return nullptr;
2315  }
2316
2317  // Few custom selection stuff.
2318  SDNode *ResNode = nullptr;
2319  EVT VT = Node->getValueType(0);
2320
2321  switch (Node->getOpcode()) {
2322  default:
2323    break;
2324
2325  case ISD::READ_REGISTER:
2326    if (SDNode *Res = SelectReadRegister(Node))
2327      return Res;
2328    break;
2329
2330  case ISD::WRITE_REGISTER:
2331    if (SDNode *Res = SelectWriteRegister(Node))
2332      return Res;
2333    break;
2334
2335  case ISD::ADD:
2336    if (SDNode *I = SelectMLAV64LaneV128(Node))
2337      return I;
2338    break;
2339
2340  case ISD::LOAD: {
2341    // Try to select as an indexed load. Fall through to normal processing
2342    // if we can't.
2343    bool Done = false;
2344    SDNode *I = SelectIndexedLoad(Node, Done);
2345    if (Done)
2346      return I;
2347    break;
2348  }
2349
2350  case ISD::SRL:
2351  case ISD::AND:
2352  case ISD::SRA:
2353    if (SDNode *I = SelectBitfieldExtractOp(Node))
2354      return I;
2355    if (SDNode *I = SelectBitfieldInsertInZeroOp(Node))
2356      return I;
2357    break;
2358
2359  case ISD::OR:
2360    if (SDNode *I = SelectBitfieldInsertOp(Node))
2361      return I;
2362    break;
2363
2364  case ISD::EXTRACT_VECTOR_ELT: {
2365    // Extracting lane zero is a special case where we can just use a plain
2366    // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
2367    // the rest of the compiler, especially the register allocator and copyi
2368    // propagation, to reason about, so is preferred when it's possible to
2369    // use it.
2370    ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
2371    // Bail and use the default Select() for non-zero lanes.
2372    if (LaneNode->getZExtValue() != 0)
2373      break;
2374    // If the element type is not the same as the result type, likewise
2375    // bail and use the default Select(), as there's more to do than just
2376    // a cross-class COPY. This catches extracts of i8 and i16 elements
2377    // since they will need an explicit zext.
2378    if (VT != Node->getOperand(0).getValueType().getVectorElementType())
2379      break;
2380    unsigned SubReg;
2381    switch (Node->getOperand(0)
2382                .getValueType()
2383                .getVectorElementType()
2384                .getSizeInBits()) {
2385    default:
2386      llvm_unreachable("Unexpected vector element type!");
2387    case 64:
2388      SubReg = AArch64::dsub;
2389      break;
2390    case 32:
2391      SubReg = AArch64::ssub;
2392      break;
2393    case 16:
2394      SubReg = AArch64::hsub;
2395      break;
2396    case 8:
2397      llvm_unreachable("unexpected zext-requiring extract element!");
2398    }
2399    SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
2400                                                     Node->getOperand(0));
2401    DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
2402    DEBUG(Extract->dumpr(CurDAG));
2403    DEBUG(dbgs() << "\n");
2404    return Extract.getNode();
2405  }
2406  case ISD::Constant: {
2407    // Materialize zero constants as copies from WZR/XZR.  This allows
2408    // the coalescer to propagate these into other instructions.
2409    ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
2410    if (ConstNode->isNullValue()) {
2411      if (VT == MVT::i32)
2412        return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
2413                                      AArch64::WZR, MVT::i32).getNode();
2414      else if (VT == MVT::i64)
2415        return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
2416                                      AArch64::XZR, MVT::i64).getNode();
2417    }
2418    break;
2419  }
2420
2421  case ISD::FrameIndex: {
2422    // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
2423    int FI = cast<FrameIndexSDNode>(Node)->getIndex();
2424    unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
2425    const TargetLowering *TLI = getTargetLowering();
2426    SDValue TFI = CurDAG->getTargetFrameIndex(
2427        FI, TLI->getPointerTy(CurDAG->getDataLayout()));
2428    SDLoc DL(Node);
2429    SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
2430                      CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
2431    return CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
2432  }
2433  case ISD::INTRINSIC_W_CHAIN: {
2434    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2435    switch (IntNo) {
2436    default:
2437      break;
2438    case Intrinsic::aarch64_ldaxp:
2439    case Intrinsic::aarch64_ldxp: {
2440      unsigned Op =
2441          IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
2442      SDValue MemAddr = Node->getOperand(2);
2443      SDLoc DL(Node);
2444      SDValue Chain = Node->getOperand(0);
2445
2446      SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
2447                                          MVT::Other, MemAddr, Chain);
2448
2449      // Transfer memoperands.
2450      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2451      MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
2452      cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
2453      return Ld;
2454    }
2455    case Intrinsic::aarch64_stlxp:
2456    case Intrinsic::aarch64_stxp: {
2457      unsigned Op =
2458          IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
2459      SDLoc DL(Node);
2460      SDValue Chain = Node->getOperand(0);
2461      SDValue ValLo = Node->getOperand(2);
2462      SDValue ValHi = Node->getOperand(3);
2463      SDValue MemAddr = Node->getOperand(4);
2464
2465      // Place arguments in the right order.
2466      SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
2467
2468      SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
2469      // Transfer memoperands.
2470      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2471      MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
2472      cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
2473
2474      return St;
2475    }
2476    case Intrinsic::aarch64_neon_ld1x2:
2477      if (VT == MVT::v8i8)
2478        return SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
2479      else if (VT == MVT::v16i8)
2480        return SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
2481      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2482        return SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
2483      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2484        return SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
2485      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2486        return SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
2487      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2488        return SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
2489      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2490        return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
2491      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2492        return SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
2493      break;
2494    case Intrinsic::aarch64_neon_ld1x3:
2495      if (VT == MVT::v8i8)
2496        return SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
2497      else if (VT == MVT::v16i8)
2498        return SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
2499      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2500        return SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
2501      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2502        return SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
2503      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2504        return SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
2505      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2506        return SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
2507      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2508        return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
2509      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2510        return SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
2511      break;
2512    case Intrinsic::aarch64_neon_ld1x4:
2513      if (VT == MVT::v8i8)
2514        return SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
2515      else if (VT == MVT::v16i8)
2516        return SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
2517      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2518        return SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
2519      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2520        return SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
2521      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2522        return SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
2523      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2524        return SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
2525      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2526        return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
2527      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2528        return SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
2529      break;
2530    case Intrinsic::aarch64_neon_ld2:
2531      if (VT == MVT::v8i8)
2532        return SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
2533      else if (VT == MVT::v16i8)
2534        return SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
2535      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2536        return SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
2537      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2538        return SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
2539      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2540        return SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
2541      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2542        return SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
2543      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2544        return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
2545      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2546        return SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
2547      break;
2548    case Intrinsic::aarch64_neon_ld3:
2549      if (VT == MVT::v8i8)
2550        return SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
2551      else if (VT == MVT::v16i8)
2552        return SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
2553      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2554        return SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
2555      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2556        return SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
2557      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2558        return SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
2559      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2560        return SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
2561      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2562        return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
2563      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2564        return SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
2565      break;
2566    case Intrinsic::aarch64_neon_ld4:
2567      if (VT == MVT::v8i8)
2568        return SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
2569      else if (VT == MVT::v16i8)
2570        return SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
2571      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2572        return SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
2573      else if (VT == MVT::v8i16  || VT == MVT::v8f16)
2574        return SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
2575      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2576        return SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
2577      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2578        return SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
2579      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2580        return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
2581      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2582        return SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
2583      break;
2584    case Intrinsic::aarch64_neon_ld2r:
2585      if (VT == MVT::v8i8)
2586        return SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
2587      else if (VT == MVT::v16i8)
2588        return SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
2589      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2590        return SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
2591      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2592        return SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
2593      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2594        return SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
2595      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2596        return SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
2597      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2598        return SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
2599      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2600        return SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
2601      break;
2602    case Intrinsic::aarch64_neon_ld3r:
2603      if (VT == MVT::v8i8)
2604        return SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
2605      else if (VT == MVT::v16i8)
2606        return SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
2607      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2608        return SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
2609      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2610        return SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
2611      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2612        return SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
2613      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2614        return SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
2615      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2616        return SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
2617      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2618        return SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
2619      break;
2620    case Intrinsic::aarch64_neon_ld4r:
2621      if (VT == MVT::v8i8)
2622        return SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
2623      else if (VT == MVT::v16i8)
2624        return SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
2625      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2626        return SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
2627      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2628        return SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
2629      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2630        return SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
2631      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2632        return SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
2633      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2634        return SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
2635      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2636        return SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
2637      break;
2638    case Intrinsic::aarch64_neon_ld2lane:
2639      if (VT == MVT::v16i8 || VT == MVT::v8i8)
2640        return SelectLoadLane(Node, 2, AArch64::LD2i8);
2641      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
2642               VT == MVT::v8f16)
2643        return SelectLoadLane(Node, 2, AArch64::LD2i16);
2644      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
2645               VT == MVT::v2f32)
2646        return SelectLoadLane(Node, 2, AArch64::LD2i32);
2647      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
2648               VT == MVT::v1f64)
2649        return SelectLoadLane(Node, 2, AArch64::LD2i64);
2650      break;
2651    case Intrinsic::aarch64_neon_ld3lane:
2652      if (VT == MVT::v16i8 || VT == MVT::v8i8)
2653        return SelectLoadLane(Node, 3, AArch64::LD3i8);
2654      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
2655               VT == MVT::v8f16)
2656        return SelectLoadLane(Node, 3, AArch64::LD3i16);
2657      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
2658               VT == MVT::v2f32)
2659        return SelectLoadLane(Node, 3, AArch64::LD3i32);
2660      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
2661               VT == MVT::v1f64)
2662        return SelectLoadLane(Node, 3, AArch64::LD3i64);
2663      break;
2664    case Intrinsic::aarch64_neon_ld4lane:
2665      if (VT == MVT::v16i8 || VT == MVT::v8i8)
2666        return SelectLoadLane(Node, 4, AArch64::LD4i8);
2667      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
2668               VT == MVT::v8f16)
2669        return SelectLoadLane(Node, 4, AArch64::LD4i16);
2670      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
2671               VT == MVT::v2f32)
2672        return SelectLoadLane(Node, 4, AArch64::LD4i32);
2673      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
2674               VT == MVT::v1f64)
2675        return SelectLoadLane(Node, 4, AArch64::LD4i64);
2676      break;
2677    }
2678  } break;
2679  case ISD::INTRINSIC_WO_CHAIN: {
2680    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
2681    switch (IntNo) {
2682    default:
2683      break;
2684    case Intrinsic::aarch64_neon_tbl2:
2685      return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBLv8i8Two
2686                                                  : AArch64::TBLv16i8Two,
2687                         false);
2688    case Intrinsic::aarch64_neon_tbl3:
2689      return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
2690                                                  : AArch64::TBLv16i8Three,
2691                         false);
2692    case Intrinsic::aarch64_neon_tbl4:
2693      return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
2694                                                  : AArch64::TBLv16i8Four,
2695                         false);
2696    case Intrinsic::aarch64_neon_tbx2:
2697      return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBXv8i8Two
2698                                                  : AArch64::TBXv16i8Two,
2699                         true);
2700    case Intrinsic::aarch64_neon_tbx3:
2701      return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
2702                                                  : AArch64::TBXv16i8Three,
2703                         true);
2704    case Intrinsic::aarch64_neon_tbx4:
2705      return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
2706                                                  : AArch64::TBXv16i8Four,
2707                         true);
2708    case Intrinsic::aarch64_neon_smull:
2709    case Intrinsic::aarch64_neon_umull:
2710      if (SDNode *N = SelectMULLV64LaneV128(IntNo, Node))
2711        return N;
2712      break;
2713    }
2714    break;
2715  }
2716  case ISD::INTRINSIC_VOID: {
2717    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2718    if (Node->getNumOperands() >= 3)
2719      VT = Node->getOperand(2)->getValueType(0);
2720    switch (IntNo) {
2721    default:
2722      break;
2723    case Intrinsic::aarch64_neon_st1x2: {
2724      if (VT == MVT::v8i8)
2725        return SelectStore(Node, 2, AArch64::ST1Twov8b);
2726      else if (VT == MVT::v16i8)
2727        return SelectStore(Node, 2, AArch64::ST1Twov16b);
2728      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2729        return SelectStore(Node, 2, AArch64::ST1Twov4h);
2730      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2731        return SelectStore(Node, 2, AArch64::ST1Twov8h);
2732      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2733        return SelectStore(Node, 2, AArch64::ST1Twov2s);
2734      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2735        return SelectStore(Node, 2, AArch64::ST1Twov4s);
2736      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2737        return SelectStore(Node, 2, AArch64::ST1Twov2d);
2738      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2739        return SelectStore(Node, 2, AArch64::ST1Twov1d);
2740      break;
2741    }
2742    case Intrinsic::aarch64_neon_st1x3: {
2743      if (VT == MVT::v8i8)
2744        return SelectStore(Node, 3, AArch64::ST1Threev8b);
2745      else if (VT == MVT::v16i8)
2746        return SelectStore(Node, 3, AArch64::ST1Threev16b);
2747      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2748        return SelectStore(Node, 3, AArch64::ST1Threev4h);
2749      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2750        return SelectStore(Node, 3, AArch64::ST1Threev8h);
2751      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2752        return SelectStore(Node, 3, AArch64::ST1Threev2s);
2753      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2754        return SelectStore(Node, 3, AArch64::ST1Threev4s);
2755      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2756        return SelectStore(Node, 3, AArch64::ST1Threev2d);
2757      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2758        return SelectStore(Node, 3, AArch64::ST1Threev1d);
2759      break;
2760    }
2761    case Intrinsic::aarch64_neon_st1x4: {
2762      if (VT == MVT::v8i8)
2763        return SelectStore(Node, 4, AArch64::ST1Fourv8b);
2764      else if (VT == MVT::v16i8)
2765        return SelectStore(Node, 4, AArch64::ST1Fourv16b);
2766      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2767        return SelectStore(Node, 4, AArch64::ST1Fourv4h);
2768      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2769        return SelectStore(Node, 4, AArch64::ST1Fourv8h);
2770      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2771        return SelectStore(Node, 4, AArch64::ST1Fourv2s);
2772      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2773        return SelectStore(Node, 4, AArch64::ST1Fourv4s);
2774      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2775        return SelectStore(Node, 4, AArch64::ST1Fourv2d);
2776      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2777        return SelectStore(Node, 4, AArch64::ST1Fourv1d);
2778      break;
2779    }
2780    case Intrinsic::aarch64_neon_st2: {
2781      if (VT == MVT::v8i8)
2782        return SelectStore(Node, 2, AArch64::ST2Twov8b);
2783      else if (VT == MVT::v16i8)
2784        return SelectStore(Node, 2, AArch64::ST2Twov16b);
2785      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2786        return SelectStore(Node, 2, AArch64::ST2Twov4h);
2787      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2788        return SelectStore(Node, 2, AArch64::ST2Twov8h);
2789      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2790        return SelectStore(Node, 2, AArch64::ST2Twov2s);
2791      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2792        return SelectStore(Node, 2, AArch64::ST2Twov4s);
2793      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2794        return SelectStore(Node, 2, AArch64::ST2Twov2d);
2795      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2796        return SelectStore(Node, 2, AArch64::ST1Twov1d);
2797      break;
2798    }
2799    case Intrinsic::aarch64_neon_st3: {
2800      if (VT == MVT::v8i8)
2801        return SelectStore(Node, 3, AArch64::ST3Threev8b);
2802      else if (VT == MVT::v16i8)
2803        return SelectStore(Node, 3, AArch64::ST3Threev16b);
2804      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2805        return SelectStore(Node, 3, AArch64::ST3Threev4h);
2806      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2807        return SelectStore(Node, 3, AArch64::ST3Threev8h);
2808      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2809        return SelectStore(Node, 3, AArch64::ST3Threev2s);
2810      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2811        return SelectStore(Node, 3, AArch64::ST3Threev4s);
2812      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2813        return SelectStore(Node, 3, AArch64::ST3Threev2d);
2814      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2815        return SelectStore(Node, 3, AArch64::ST1Threev1d);
2816      break;
2817    }
2818    case Intrinsic::aarch64_neon_st4: {
2819      if (VT == MVT::v8i8)
2820        return SelectStore(Node, 4, AArch64::ST4Fourv8b);
2821      else if (VT == MVT::v16i8)
2822        return SelectStore(Node, 4, AArch64::ST4Fourv16b);
2823      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2824        return SelectStore(Node, 4, AArch64::ST4Fourv4h);
2825      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2826        return SelectStore(Node, 4, AArch64::ST4Fourv8h);
2827      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2828        return SelectStore(Node, 4, AArch64::ST4Fourv2s);
2829      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2830        return SelectStore(Node, 4, AArch64::ST4Fourv4s);
2831      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2832        return SelectStore(Node, 4, AArch64::ST4Fourv2d);
2833      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2834        return SelectStore(Node, 4, AArch64::ST1Fourv1d);
2835      break;
2836    }
2837    case Intrinsic::aarch64_neon_st2lane: {
2838      if (VT == MVT::v16i8 || VT == MVT::v8i8)
2839        return SelectStoreLane(Node, 2, AArch64::ST2i8);
2840      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
2841               VT == MVT::v8f16)
2842        return SelectStoreLane(Node, 2, AArch64::ST2i16);
2843      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
2844               VT == MVT::v2f32)
2845        return SelectStoreLane(Node, 2, AArch64::ST2i32);
2846      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
2847               VT == MVT::v1f64)
2848        return SelectStoreLane(Node, 2, AArch64::ST2i64);
2849      break;
2850    }
2851    case Intrinsic::aarch64_neon_st3lane: {
2852      if (VT == MVT::v16i8 || VT == MVT::v8i8)
2853        return SelectStoreLane(Node, 3, AArch64::ST3i8);
2854      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
2855               VT == MVT::v8f16)
2856        return SelectStoreLane(Node, 3, AArch64::ST3i16);
2857      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
2858               VT == MVT::v2f32)
2859        return SelectStoreLane(Node, 3, AArch64::ST3i32);
2860      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
2861               VT == MVT::v1f64)
2862        return SelectStoreLane(Node, 3, AArch64::ST3i64);
2863      break;
2864    }
2865    case Intrinsic::aarch64_neon_st4lane: {
2866      if (VT == MVT::v16i8 || VT == MVT::v8i8)
2867        return SelectStoreLane(Node, 4, AArch64::ST4i8);
2868      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
2869               VT == MVT::v8f16)
2870        return SelectStoreLane(Node, 4, AArch64::ST4i16);
2871      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
2872               VT == MVT::v2f32)
2873        return SelectStoreLane(Node, 4, AArch64::ST4i32);
2874      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
2875               VT == MVT::v1f64)
2876        return SelectStoreLane(Node, 4, AArch64::ST4i64);
2877      break;
2878    }
2879    }
2880    break;
2881  }
2882  case AArch64ISD::LD2post: {
2883    if (VT == MVT::v8i8)
2884      return SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
2885    else if (VT == MVT::v16i8)
2886      return SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
2887    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2888      return SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
2889    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2890      return SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
2891    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2892      return SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
2893    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2894      return SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
2895    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2896      return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
2897    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2898      return SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
2899    break;
2900  }
2901  case AArch64ISD::LD3post: {
2902    if (VT == MVT::v8i8)
2903      return SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
2904    else if (VT == MVT::v16i8)
2905      return SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
2906    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2907      return SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
2908    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2909      return SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
2910    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2911      return SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
2912    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2913      return SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
2914    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2915      return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
2916    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2917      return SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
2918    break;
2919  }
2920  case AArch64ISD::LD4post: {
2921    if (VT == MVT::v8i8)
2922      return SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
2923    else if (VT == MVT::v16i8)
2924      return SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
2925    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2926      return SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
2927    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2928      return SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
2929    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2930      return SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
2931    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2932      return SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
2933    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2934      return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
2935    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2936      return SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
2937    break;
2938  }
2939  case AArch64ISD::LD1x2post: {
2940    if (VT == MVT::v8i8)
2941      return SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
2942    else if (VT == MVT::v16i8)
2943      return SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
2944    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2945      return SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
2946    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2947      return SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
2948    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2949      return SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
2950    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2951      return SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
2952    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2953      return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
2954    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2955      return SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
2956    break;
2957  }
2958  case AArch64ISD::LD1x3post: {
2959    if (VT == MVT::v8i8)
2960      return SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
2961    else if (VT == MVT::v16i8)
2962      return SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
2963    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2964      return SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
2965    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2966      return SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
2967    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2968      return SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
2969    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2970      return SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
2971    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2972      return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
2973    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2974      return SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
2975    break;
2976  }
2977  case AArch64ISD::LD1x4post: {
2978    if (VT == MVT::v8i8)
2979      return SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
2980    else if (VT == MVT::v16i8)
2981      return SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
2982    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
2983      return SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
2984    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2985      return SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
2986    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
2987      return SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
2988    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2989      return SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
2990    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
2991      return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
2992    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2993      return SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
2994    break;
2995  }
2996  case AArch64ISD::LD1DUPpost: {
2997    if (VT == MVT::v8i8)
2998      return SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
2999    else if (VT == MVT::v16i8)
3000      return SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
3001    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3002      return SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
3003    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3004      return SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
3005    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3006      return SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
3007    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3008      return SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
3009    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3010      return SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
3011    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3012      return SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
3013    break;
3014  }
3015  case AArch64ISD::LD2DUPpost: {
3016    if (VT == MVT::v8i8)
3017      return SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
3018    else if (VT == MVT::v16i8)
3019      return SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
3020    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3021      return SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
3022    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3023      return SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
3024    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3025      return SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
3026    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3027      return SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
3028    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3029      return SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
3030    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3031      return SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
3032    break;
3033  }
3034  case AArch64ISD::LD3DUPpost: {
3035    if (VT == MVT::v8i8)
3036      return SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
3037    else if (VT == MVT::v16i8)
3038      return SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
3039    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3040      return SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
3041    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3042      return SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
3043    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3044      return SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
3045    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3046      return SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
3047    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3048      return SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
3049    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3050      return SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
3051    break;
3052  }
3053  case AArch64ISD::LD4DUPpost: {
3054    if (VT == MVT::v8i8)
3055      return SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
3056    else if (VT == MVT::v16i8)
3057      return SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
3058    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3059      return SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
3060    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3061      return SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
3062    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3063      return SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
3064    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3065      return SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
3066    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3067      return SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
3068    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3069      return SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
3070    break;
3071  }
3072  case AArch64ISD::LD1LANEpost: {
3073    if (VT == MVT::v16i8 || VT == MVT::v8i8)
3074      return SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
3075    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3076             VT == MVT::v8f16)
3077      return SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
3078    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3079             VT == MVT::v2f32)
3080      return SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
3081    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3082             VT == MVT::v1f64)
3083      return SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
3084    break;
3085  }
3086  case AArch64ISD::LD2LANEpost: {
3087    if (VT == MVT::v16i8 || VT == MVT::v8i8)
3088      return SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
3089    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3090             VT == MVT::v8f16)
3091      return SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
3092    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3093             VT == MVT::v2f32)
3094      return SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
3095    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3096             VT == MVT::v1f64)
3097      return SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
3098    break;
3099  }
3100  case AArch64ISD::LD3LANEpost: {
3101    if (VT == MVT::v16i8 || VT == MVT::v8i8)
3102      return SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
3103    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3104             VT == MVT::v8f16)
3105      return SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
3106    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3107             VT == MVT::v2f32)
3108      return SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
3109    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3110             VT == MVT::v1f64)
3111      return SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
3112    break;
3113  }
3114  case AArch64ISD::LD4LANEpost: {
3115    if (VT == MVT::v16i8 || VT == MVT::v8i8)
3116      return SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
3117    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3118             VT == MVT::v8f16)
3119      return SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
3120    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3121             VT == MVT::v2f32)
3122      return SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
3123    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3124             VT == MVT::v1f64)
3125      return SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
3126    break;
3127  }
3128  case AArch64ISD::ST2post: {
3129    VT = Node->getOperand(1).getValueType();
3130    if (VT == MVT::v8i8)
3131      return SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
3132    else if (VT == MVT::v16i8)
3133      return SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
3134    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3135      return SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
3136    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3137      return SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
3138    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3139      return SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
3140    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3141      return SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
3142    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3143      return SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
3144    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3145      return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
3146    break;
3147  }
3148  case AArch64ISD::ST3post: {
3149    VT = Node->getOperand(1).getValueType();
3150    if (VT == MVT::v8i8)
3151      return SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
3152    else if (VT == MVT::v16i8)
3153      return SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
3154    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3155      return SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
3156    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3157      return SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
3158    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3159      return SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
3160    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3161      return SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
3162    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3163      return SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
3164    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3165      return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
3166    break;
3167  }
3168  case AArch64ISD::ST4post: {
3169    VT = Node->getOperand(1).getValueType();
3170    if (VT == MVT::v8i8)
3171      return SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
3172    else if (VT == MVT::v16i8)
3173      return SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
3174    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3175      return SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
3176    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3177      return SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
3178    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3179      return SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
3180    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3181      return SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
3182    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3183      return SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
3184    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3185      return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
3186    break;
3187  }
3188  case AArch64ISD::ST1x2post: {
3189    VT = Node->getOperand(1).getValueType();
3190    if (VT == MVT::v8i8)
3191      return SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
3192    else if (VT == MVT::v16i8)
3193      return SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
3194    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3195      return SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
3196    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3197      return SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
3198    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3199      return SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
3200    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3201      return SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
3202    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3203      return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
3204    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3205      return SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
3206    break;
3207  }
3208  case AArch64ISD::ST1x3post: {
3209    VT = Node->getOperand(1).getValueType();
3210    if (VT == MVT::v8i8)
3211      return SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
3212    else if (VT == MVT::v16i8)
3213      return SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
3214    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3215      return SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
3216    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3217      return SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
3218    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3219      return SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
3220    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3221      return SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
3222    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3223      return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
3224    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3225      return SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
3226    break;
3227  }
3228  case AArch64ISD::ST1x4post: {
3229    VT = Node->getOperand(1).getValueType();
3230    if (VT == MVT::v8i8)
3231      return SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
3232    else if (VT == MVT::v16i8)
3233      return SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
3234    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
3235      return SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
3236    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3237      return SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
3238    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
3239      return SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
3240    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3241      return SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
3242    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
3243      return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
3244    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3245      return SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
3246    break;
3247  }
3248  case AArch64ISD::ST2LANEpost: {
3249    VT = Node->getOperand(1).getValueType();
3250    if (VT == MVT::v16i8 || VT == MVT::v8i8)
3251      return SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
3252    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3253             VT == MVT::v8f16)
3254      return SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
3255    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3256             VT == MVT::v2f32)
3257      return SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
3258    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3259             VT == MVT::v1f64)
3260      return SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
3261    break;
3262  }
3263  case AArch64ISD::ST3LANEpost: {
3264    VT = Node->getOperand(1).getValueType();
3265    if (VT == MVT::v16i8 || VT == MVT::v8i8)
3266      return SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
3267    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3268             VT == MVT::v8f16)
3269      return SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
3270    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3271             VT == MVT::v2f32)
3272      return SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
3273    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3274             VT == MVT::v1f64)
3275      return SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
3276    break;
3277  }
3278  case AArch64ISD::ST4LANEpost: {
3279    VT = Node->getOperand(1).getValueType();
3280    if (VT == MVT::v16i8 || VT == MVT::v8i8)
3281      return SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
3282    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3283             VT == MVT::v8f16)
3284      return SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
3285    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3286             VT == MVT::v2f32)
3287      return SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
3288    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3289             VT == MVT::v1f64)
3290      return SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
3291    break;
3292  }
3293  }
3294
3295  // Select the default instruction
3296  ResNode = SelectCode(Node);
3297
3298  DEBUG(errs() << "=> ");
3299  if (ResNode == nullptr || ResNode == Node)
3300    DEBUG(Node->dump(CurDAG));
3301  else
3302    DEBUG(ResNode->dump(CurDAG));
3303  DEBUG(errs() << "\n");
3304
3305  return ResNode;
3306}
3307
3308/// createAArch64ISelDag - This pass converts a legalized DAG into a
3309/// AArch64-specific DAG, ready for instruction scheduling.
3310FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
3311                                         CodeGenOpt::Level OptLevel) {
3312  return new AArch64DAGToDAGISel(TM, OptLevel);
3313}
3314