AArch64FrameLowering.cpp revision 363496
1//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the AArch64 implementation of TargetFrameLowering class.
10//
11// On AArch64, stack frames are structured as follows:
12//
13// The stack grows downward.
14//
15// All of the individual frame areas on the frame below are optional, i.e. it's
16// possible to create a function so that the particular area isn't present
17// in the frame.
18//
19// At function entry, the "frame" looks as follows:
20//
21// |                                   | Higher address
22// |-----------------------------------|
23// |                                   |
24// | arguments passed on the stack     |
25// |                                   |
26// |-----------------------------------| <- sp
27// |                                   | Lower address
28//
29//
30// After the prologue has run, the frame has the following general structure.
31// Note that this doesn't depict the case where a red-zone is used. Also,
32// technically the last frame area (VLAs) doesn't get created until in the
33// main function body, after the prologue is run. However, it's depicted here
34// for completeness.
35//
36// |                                   | Higher address
37// |-----------------------------------|
38// |                                   |
39// | arguments passed on the stack     |
40// |                                   |
41// |-----------------------------------|
42// |                                   |
43// | (Win64 only) varargs from reg     |
44// |                                   |
45// |-----------------------------------|
46// |                                   |
47// | callee-saved gpr registers        | <--.
48// |                                   |    | On Darwin platforms these
49// |- - - - - - - - - - - - - - - - - -|    | callee saves are swapped,
50// |                                   |    | (frame record first)
51// | prev_fp, prev_lr                  | <--'
52// | (a.k.a. "frame record")           |
53// |-----------------------------------| <- fp(=x29)
54// |                                   |
55// | callee-saved fp/simd/SVE regs     |
56// |                                   |
57// |-----------------------------------|
58// |                                   |
59// |        SVE stack objects          |
60// |                                   |
61// |-----------------------------------|
62// |.empty.space.to.make.part.below....|
63// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64// |.the.standard.16-byte.alignment....|  compile time; if present)
65// |-----------------------------------|
66// |                                   |
67// | local variables of fixed size     |
68// | including spill slots             |
69// |-----------------------------------| <- bp(not defined by ABI,
70// |.variable-sized.local.variables....|       LLVM chooses X19)
71// |.(VLAs)............................| (size of this area is unknown at
72// |...................................|  compile time)
73// |-----------------------------------| <- sp
74// |                                   | Lower address
75//
76//
77// To access the data in a frame, at-compile time, a constant offset must be
78// computable from one of the pointers (fp, bp, sp) to access it. The size
79// of the areas with a dotted background cannot be computed at compile-time
80// if they are present, making it required to have all three of fp, bp and
81// sp to be set up to be able to access all contents in the frame areas,
82// assuming all of the frame areas are non-empty.
83//
84// For most functions, some of the frame areas are empty. For those functions,
85// it may not be necessary to set up fp or bp:
86// * A base pointer is definitely needed when there are both VLAs and local
87//   variables with more-than-default alignment requirements.
88// * A frame pointer is definitely needed when there are local variables with
89//   more-than-default alignment requirements.
90//
91// For Darwin platforms the frame-record (fp, lr) is stored at the top of the
92// callee-saved area, since the unwind encoding does not allow for encoding
93// this dynamically and existing tools depend on this layout. For other
94// platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
95// area to allow SVE stack objects (allocated directly below the callee-saves,
96// if available) to be accessed directly from the framepointer.
97// The SVE spill/fill instructions have VL-scaled addressing modes such
98// as:
99//    ldr z8, [fp, #-7 mul vl]
100// For SVE the size of the vector length (VL) is not known at compile-time, so
101// '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
102// layout, we don't need to add an unscaled offset to the framepointer before
103// accessing the SVE object in the frame.
104//
105// In some cases when a base pointer is not strictly needed, it is generated
106// anyway when offsets from the frame pointer to access local variables become
107// so large that the offset can't be encoded in the immediate fields of loads
108// or stores.
109//
110// FIXME: also explain the redzone concept.
111// FIXME: also explain the concept of reserved call frames.
112//
113//===----------------------------------------------------------------------===//
114
115#include "AArch64FrameLowering.h"
116#include "AArch64InstrInfo.h"
117#include "AArch64MachineFunctionInfo.h"
118#include "AArch64RegisterInfo.h"
119#include "AArch64StackOffset.h"
120#include "AArch64Subtarget.h"
121#include "AArch64TargetMachine.h"
122#include "MCTargetDesc/AArch64AddressingModes.h"
123#include "llvm/ADT/ScopeExit.h"
124#include "llvm/ADT/SmallVector.h"
125#include "llvm/ADT/Statistic.h"
126#include "llvm/CodeGen/LivePhysRegs.h"
127#include "llvm/CodeGen/MachineBasicBlock.h"
128#include "llvm/CodeGen/MachineFrameInfo.h"
129#include "llvm/CodeGen/MachineFunction.h"
130#include "llvm/CodeGen/MachineInstr.h"
131#include "llvm/CodeGen/MachineInstrBuilder.h"
132#include "llvm/CodeGen/MachineMemOperand.h"
133#include "llvm/CodeGen/MachineModuleInfo.h"
134#include "llvm/CodeGen/MachineOperand.h"
135#include "llvm/CodeGen/MachineRegisterInfo.h"
136#include "llvm/CodeGen/RegisterScavenging.h"
137#include "llvm/CodeGen/TargetInstrInfo.h"
138#include "llvm/CodeGen/TargetRegisterInfo.h"
139#include "llvm/CodeGen/TargetSubtargetInfo.h"
140#include "llvm/CodeGen/WinEHFuncInfo.h"
141#include "llvm/IR/Attributes.h"
142#include "llvm/IR/CallingConv.h"
143#include "llvm/IR/DataLayout.h"
144#include "llvm/IR/DebugLoc.h"
145#include "llvm/IR/Function.h"
146#include "llvm/MC/MCAsmInfo.h"
147#include "llvm/MC/MCDwarf.h"
148#include "llvm/Support/CommandLine.h"
149#include "llvm/Support/Debug.h"
150#include "llvm/Support/ErrorHandling.h"
151#include "llvm/Support/MathExtras.h"
152#include "llvm/Support/raw_ostream.h"
153#include "llvm/Target/TargetMachine.h"
154#include "llvm/Target/TargetOptions.h"
155#include <cassert>
156#include <cstdint>
157#include <iterator>
158#include <vector>
159
160using namespace llvm;
161
162#define DEBUG_TYPE "frame-info"
163
164static cl::opt<bool> EnableRedZone("aarch64-redzone",
165                                   cl::desc("enable use of redzone on AArch64"),
166                                   cl::init(false), cl::Hidden);
167
168static cl::opt<bool>
169    ReverseCSRRestoreSeq("reverse-csr-restore-seq",
170                         cl::desc("reverse the CSR restore sequence"),
171                         cl::init(false), cl::Hidden);
172
173STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
174
175/// This is the biggest offset to the stack pointer we can encode in aarch64
176/// instructions (without using a separate calculation and a temp register).
177/// Note that the exception here are vector stores/loads which cannot encode any
178/// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
179static const unsigned DefaultSafeSPDisplacement = 255;
180
181/// Look at each instruction that references stack frames and return the stack
182/// size limit beyond which some of these instructions will require a scratch
183/// register during their expansion later.
184static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
185  // FIXME: For now, just conservatively guestimate based on unscaled indexing
186  // range. We'll end up allocating an unnecessary spill slot a lot, but
187  // realistically that's not a big deal at this stage of the game.
188  for (MachineBasicBlock &MBB : MF) {
189    for (MachineInstr &MI : MBB) {
190      if (MI.isDebugInstr() || MI.isPseudo() ||
191          MI.getOpcode() == AArch64::ADDXri ||
192          MI.getOpcode() == AArch64::ADDSXri)
193        continue;
194
195      for (const MachineOperand &MO : MI.operands()) {
196        if (!MO.isFI())
197          continue;
198
199        StackOffset Offset;
200        if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
201            AArch64FrameOffsetCannotUpdate)
202          return 0;
203      }
204    }
205  }
206  return DefaultSafeSPDisplacement;
207}
208
209TargetStackID::Value
210AArch64FrameLowering::getStackIDForScalableVectors() const {
211  return TargetStackID::SVEVector;
212}
213
214/// Returns the size of the fixed object area (allocated next to sp on entry)
215/// On Win64 this may include a var args area and an UnwindHelp object for EH.
216static unsigned getFixedObjectSize(const MachineFunction &MF,
217                                   const AArch64FunctionInfo *AFI, bool IsWin64,
218                                   bool IsFunclet) {
219  if (!IsWin64 || IsFunclet) {
220    // Only Win64 uses fixed objects, and then only for the function (not
221    // funclets)
222    return 0;
223  } else {
224    // Var args are stored here in the primary function.
225    const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
226    // To support EH funclets we allocate an UnwindHelp object
227    const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
228    return alignTo(VarArgsArea + UnwindHelpObject, 16);
229  }
230}
231
232/// Returns the size of the entire SVE stackframe (calleesaves + spills).
233static StackOffset getSVEStackSize(const MachineFunction &MF) {
234  const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
235  return {(int64_t)AFI->getStackSizeSVE(), MVT::nxv1i8};
236}
237
238bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
239  if (!EnableRedZone)
240    return false;
241  // Don't use the red zone if the function explicitly asks us not to.
242  // This is typically used for kernel code.
243  if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
244    return false;
245
246  const MachineFrameInfo &MFI = MF.getFrameInfo();
247  const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
248  uint64_t NumBytes = AFI->getLocalStackSize();
249
250  return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 ||
251           getSVEStackSize(MF));
252}
253
254/// hasFP - Return true if the specified function should have a dedicated frame
255/// pointer register.
256bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
257  const MachineFrameInfo &MFI = MF.getFrameInfo();
258  const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
259  // Win64 EH requires a frame pointer if funclets are present, as the locals
260  // are accessed off the frame pointer in both the parent function and the
261  // funclets.
262  if (MF.hasEHFunclets())
263    return true;
264  // Retain behavior of always omitting the FP for leaf functions when possible.
265  if (MF.getTarget().Options.DisableFramePointerElim(MF))
266    return true;
267  if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
268      MFI.hasStackMap() || MFI.hasPatchPoint() ||
269      RegInfo->needsStackRealignment(MF))
270    return true;
271  // With large callframes around we may need to use FP to access the scavenging
272  // emergency spillslot.
273  //
274  // Unfortunately some calls to hasFP() like machine verifier ->
275  // getReservedReg() -> hasFP in the middle of global isel are too early
276  // to know the max call frame size. Hopefully conservatively returning "true"
277  // in those cases is fine.
278  // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
279  if (!MFI.isMaxCallFrameSizeComputed() ||
280      MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
281    return true;
282
283  return false;
284}
285
286/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
287/// not required, we reserve argument space for call sites in the function
288/// immediately on entry to the current function.  This eliminates the need for
289/// add/sub sp brackets around call sites.  Returns true if the call frame is
290/// included as part of the stack frame.
291bool
292AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
293  return !MF.getFrameInfo().hasVarSizedObjects();
294}
295
296MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
297    MachineFunction &MF, MachineBasicBlock &MBB,
298    MachineBasicBlock::iterator I) const {
299  const AArch64InstrInfo *TII =
300      static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
301  DebugLoc DL = I->getDebugLoc();
302  unsigned Opc = I->getOpcode();
303  bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
304  uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
305
306  if (!hasReservedCallFrame(MF)) {
307    unsigned Align = getStackAlignment();
308
309    int64_t Amount = I->getOperand(0).getImm();
310    Amount = alignTo(Amount, Align);
311    if (!IsDestroy)
312      Amount = -Amount;
313
314    // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
315    // doesn't have to pop anything), then the first operand will be zero too so
316    // this adjustment is a no-op.
317    if (CalleePopAmount == 0) {
318      // FIXME: in-function stack adjustment for calls is limited to 24-bits
319      // because there's no guaranteed temporary register available.
320      //
321      // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
322      // 1) For offset <= 12-bit, we use LSL #0
323      // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
324      // LSL #0, and the other uses LSL #12.
325      //
326      // Most call frames will be allocated at the start of a function so
327      // this is OK, but it is a limitation that needs dealing with.
328      assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
329      emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, {Amount, MVT::i8},
330                      TII);
331    }
332  } else if (CalleePopAmount != 0) {
333    // If the calling convention demands that the callee pops arguments from the
334    // stack, we want to add it back if we have a reserved call frame.
335    assert(CalleePopAmount < 0xffffff && "call frame too large");
336    emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
337                    {-(int64_t)CalleePopAmount, MVT::i8}, TII);
338  }
339  return MBB.erase(I);
340}
341
342static bool ShouldSignReturnAddress(MachineFunction &MF) {
343  // The function should be signed in the following situations:
344  // - sign-return-address=all
345  // - sign-return-address=non-leaf and the functions spills the LR
346
347  const Function &F = MF.getFunction();
348  if (!F.hasFnAttribute("sign-return-address"))
349    return false;
350
351  StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString();
352  if (Scope.equals("none"))
353    return false;
354
355  if (Scope.equals("all"))
356    return true;
357
358  assert(Scope.equals("non-leaf") && "Expected all, none or non-leaf");
359
360  for (const auto &Info : MF.getFrameInfo().getCalleeSavedInfo())
361    if (Info.getReg() == AArch64::LR)
362      return true;
363
364  return false;
365}
366
367void AArch64FrameLowering::emitCalleeSavedFrameMoves(
368    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
369  MachineFunction &MF = *MBB.getParent();
370  MachineFrameInfo &MFI = MF.getFrameInfo();
371  const TargetSubtargetInfo &STI = MF.getSubtarget();
372  const MCRegisterInfo *MRI = STI.getRegisterInfo();
373  const TargetInstrInfo *TII = STI.getInstrInfo();
374  DebugLoc DL = MBB.findDebugLoc(MBBI);
375
376  // Add callee saved registers to move list.
377  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
378  if (CSI.empty())
379    return;
380
381  for (const auto &Info : CSI) {
382    unsigned Reg = Info.getReg();
383    int64_t Offset =
384        MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
385    unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
386    unsigned CFIIndex = MF.addFrameInst(
387        MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
388    BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
389        .addCFIIndex(CFIIndex)
390        .setMIFlags(MachineInstr::FrameSetup);
391  }
392}
393
394// Find a scratch register that we can use at the start of the prologue to
395// re-align the stack pointer.  We avoid using callee-save registers since they
396// may appear to be free when this is called from canUseAsPrologue (during
397// shrink wrapping), but then no longer be free when this is called from
398// emitPrologue.
399//
400// FIXME: This is a bit conservative, since in the above case we could use one
401// of the callee-save registers as a scratch temp to re-align the stack pointer,
402// but we would then have to make sure that we were in fact saving at least one
403// callee-save register in the prologue, which is additional complexity that
404// doesn't seem worth the benefit.
405static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
406  MachineFunction *MF = MBB->getParent();
407
408  // If MBB is an entry block, use X9 as the scratch register
409  if (&MF->front() == MBB)
410    return AArch64::X9;
411
412  const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
413  const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
414  LivePhysRegs LiveRegs(TRI);
415  LiveRegs.addLiveIns(*MBB);
416
417  // Mark callee saved registers as used so we will not choose them.
418  const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
419  for (unsigned i = 0; CSRegs[i]; ++i)
420    LiveRegs.addReg(CSRegs[i]);
421
422  // Prefer X9 since it was historically used for the prologue scratch reg.
423  const MachineRegisterInfo &MRI = MF->getRegInfo();
424  if (LiveRegs.available(MRI, AArch64::X9))
425    return AArch64::X9;
426
427  for (unsigned Reg : AArch64::GPR64RegClass) {
428    if (LiveRegs.available(MRI, Reg))
429      return Reg;
430  }
431  return AArch64::NoRegister;
432}
433
434bool AArch64FrameLowering::canUseAsPrologue(
435    const MachineBasicBlock &MBB) const {
436  const MachineFunction *MF = MBB.getParent();
437  MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
438  const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
439  const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
440
441  // Don't need a scratch register if we're not going to re-align the stack.
442  if (!RegInfo->needsStackRealignment(*MF))
443    return true;
444  // Otherwise, we can use any block as long as it has a scratch register
445  // available.
446  return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
447}
448
449static bool windowsRequiresStackProbe(MachineFunction &MF,
450                                      uint64_t StackSizeInBytes) {
451  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
452  if (!Subtarget.isTargetWindows())
453    return false;
454  const Function &F = MF.getFunction();
455  // TODO: When implementing stack protectors, take that into account
456  // for the probe threshold.
457  unsigned StackProbeSize = 4096;
458  if (F.hasFnAttribute("stack-probe-size"))
459    F.getFnAttribute("stack-probe-size")
460        .getValueAsString()
461        .getAsInteger(0, StackProbeSize);
462  return (StackSizeInBytes >= StackProbeSize) &&
463         !F.hasFnAttribute("no-stack-arg-probe");
464}
465
466bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
467    MachineFunction &MF, uint64_t StackBumpBytes) const {
468  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
469  const MachineFrameInfo &MFI = MF.getFrameInfo();
470  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
471  const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
472
473  if (AFI->getLocalStackSize() == 0)
474    return false;
475
476  // 512 is the maximum immediate for stp/ldp that will be used for
477  // callee-save save/restores
478  if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
479    return false;
480
481  if (MFI.hasVarSizedObjects())
482    return false;
483
484  if (RegInfo->needsStackRealignment(MF))
485    return false;
486
487  // This isn't strictly necessary, but it simplifies things a bit since the
488  // current RedZone handling code assumes the SP is adjusted by the
489  // callee-save save/restore code.
490  if (canUseRedZone(MF))
491    return false;
492
493  // When there is an SVE area on the stack, always allocate the
494  // callee-saves and spills/locals separately.
495  if (getSVEStackSize(MF))
496    return false;
497
498  return true;
499}
500
501// Given a load or a store instruction, generate an appropriate unwinding SEH
502// code on Windows.
503static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
504                                             const TargetInstrInfo &TII,
505                                             MachineInstr::MIFlag Flag) {
506  unsigned Opc = MBBI->getOpcode();
507  MachineBasicBlock *MBB = MBBI->getParent();
508  MachineFunction &MF = *MBB->getParent();
509  DebugLoc DL = MBBI->getDebugLoc();
510  unsigned ImmIdx = MBBI->getNumOperands() - 1;
511  int Imm = MBBI->getOperand(ImmIdx).getImm();
512  MachineInstrBuilder MIB;
513  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
514  const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
515
516  switch (Opc) {
517  default:
518    llvm_unreachable("No SEH Opcode for this instruction");
519  case AArch64::LDPDpost:
520    Imm = -Imm;
521    LLVM_FALLTHROUGH;
522  case AArch64::STPDpre: {
523    unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
524    unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
525    MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
526              .addImm(Reg0)
527              .addImm(Reg1)
528              .addImm(Imm * 8)
529              .setMIFlag(Flag);
530    break;
531  }
532  case AArch64::LDPXpost:
533    Imm = -Imm;
534    LLVM_FALLTHROUGH;
535  case AArch64::STPXpre: {
536    Register Reg0 = MBBI->getOperand(1).getReg();
537    Register Reg1 = MBBI->getOperand(2).getReg();
538    if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
539      MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
540                .addImm(Imm * 8)
541                .setMIFlag(Flag);
542    else
543      MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
544                .addImm(RegInfo->getSEHRegNum(Reg0))
545                .addImm(RegInfo->getSEHRegNum(Reg1))
546                .addImm(Imm * 8)
547                .setMIFlag(Flag);
548    break;
549  }
550  case AArch64::LDRDpost:
551    Imm = -Imm;
552    LLVM_FALLTHROUGH;
553  case AArch64::STRDpre: {
554    unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
555    MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
556              .addImm(Reg)
557              .addImm(Imm)
558              .setMIFlag(Flag);
559    break;
560  }
561  case AArch64::LDRXpost:
562    Imm = -Imm;
563    LLVM_FALLTHROUGH;
564  case AArch64::STRXpre: {
565    unsigned Reg =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
566    MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
567              .addImm(Reg)
568              .addImm(Imm)
569              .setMIFlag(Flag);
570    break;
571  }
572  case AArch64::STPDi:
573  case AArch64::LDPDi: {
574    unsigned Reg0 =  RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
575    unsigned Reg1 =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
576    MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
577              .addImm(Reg0)
578              .addImm(Reg1)
579              .addImm(Imm * 8)
580              .setMIFlag(Flag);
581    break;
582  }
583  case AArch64::STPXi:
584  case AArch64::LDPXi: {
585    Register Reg0 = MBBI->getOperand(0).getReg();
586    Register Reg1 = MBBI->getOperand(1).getReg();
587    if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
588      MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
589                .addImm(Imm * 8)
590                .setMIFlag(Flag);
591    else
592      MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
593                .addImm(RegInfo->getSEHRegNum(Reg0))
594                .addImm(RegInfo->getSEHRegNum(Reg1))
595                .addImm(Imm * 8)
596                .setMIFlag(Flag);
597    break;
598  }
599  case AArch64::STRXui:
600  case AArch64::LDRXui: {
601    int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
602    MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
603              .addImm(Reg)
604              .addImm(Imm * 8)
605              .setMIFlag(Flag);
606    break;
607  }
608  case AArch64::STRDui:
609  case AArch64::LDRDui: {
610    unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
611    MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
612              .addImm(Reg)
613              .addImm(Imm * 8)
614              .setMIFlag(Flag);
615    break;
616  }
617  }
618  auto I = MBB->insertAfter(MBBI, MIB);
619  return I;
620}
621
622// Fix up the SEH opcode associated with the save/restore instruction.
623static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
624                           unsigned LocalStackSize) {
625  MachineOperand *ImmOpnd = nullptr;
626  unsigned ImmIdx = MBBI->getNumOperands() - 1;
627  switch (MBBI->getOpcode()) {
628  default:
629    llvm_unreachable("Fix the offset in the SEH instruction");
630  case AArch64::SEH_SaveFPLR:
631  case AArch64::SEH_SaveRegP:
632  case AArch64::SEH_SaveReg:
633  case AArch64::SEH_SaveFRegP:
634  case AArch64::SEH_SaveFReg:
635    ImmOpnd = &MBBI->getOperand(ImmIdx);
636    break;
637  }
638  if (ImmOpnd)
639    ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
640}
641
642// Convert callee-save register save/restore instruction to do stack pointer
643// decrement/increment to allocate/deallocate the callee-save stack area by
644// converting store/load to use pre/post increment version.
645static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
646    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
647    const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
648    bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) {
649  // Ignore instructions that do not operate on SP, i.e. shadow call stack
650  // instructions and associated CFI instruction.
651  while (MBBI->getOpcode() == AArch64::STRXpost ||
652         MBBI->getOpcode() == AArch64::LDRXpre ||
653         MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) {
654    if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION)
655      assert(MBBI->getOperand(0).getReg() != AArch64::SP);
656    ++MBBI;
657  }
658  unsigned NewOpc;
659  int Scale = 1;
660  switch (MBBI->getOpcode()) {
661  default:
662    llvm_unreachable("Unexpected callee-save save/restore opcode!");
663  case AArch64::STPXi:
664    NewOpc = AArch64::STPXpre;
665    Scale = 8;
666    break;
667  case AArch64::STPDi:
668    NewOpc = AArch64::STPDpre;
669    Scale = 8;
670    break;
671  case AArch64::STPQi:
672    NewOpc = AArch64::STPQpre;
673    Scale = 16;
674    break;
675  case AArch64::STRXui:
676    NewOpc = AArch64::STRXpre;
677    break;
678  case AArch64::STRDui:
679    NewOpc = AArch64::STRDpre;
680    break;
681  case AArch64::STRQui:
682    NewOpc = AArch64::STRQpre;
683    break;
684  case AArch64::LDPXi:
685    NewOpc = AArch64::LDPXpost;
686    Scale = 8;
687    break;
688  case AArch64::LDPDi:
689    NewOpc = AArch64::LDPDpost;
690    Scale = 8;
691    break;
692  case AArch64::LDPQi:
693    NewOpc = AArch64::LDPQpost;
694    Scale = 16;
695    break;
696  case AArch64::LDRXui:
697    NewOpc = AArch64::LDRXpost;
698    break;
699  case AArch64::LDRDui:
700    NewOpc = AArch64::LDRDpost;
701    break;
702  case AArch64::LDRQui:
703    NewOpc = AArch64::LDRQpost;
704    break;
705  }
706  // Get rid of the SEH code associated with the old instruction.
707  if (NeedsWinCFI) {
708    auto SEH = std::next(MBBI);
709    if (AArch64InstrInfo::isSEHInstruction(*SEH))
710      SEH->eraseFromParent();
711  }
712
713  MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
714  MIB.addReg(AArch64::SP, RegState::Define);
715
716  // Copy all operands other than the immediate offset.
717  unsigned OpndIdx = 0;
718  for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
719       ++OpndIdx)
720    MIB.add(MBBI->getOperand(OpndIdx));
721
722  assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
723         "Unexpected immediate offset in first/last callee-save save/restore "
724         "instruction!");
725  assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
726         "Unexpected base register in callee-save save/restore instruction!");
727  assert(CSStackSizeInc % Scale == 0);
728  MIB.addImm(CSStackSizeInc / Scale);
729
730  MIB.setMIFlags(MBBI->getFlags());
731  MIB.setMemRefs(MBBI->memoperands());
732
733  // Generate a new SEH code that corresponds to the new instruction.
734  if (NeedsWinCFI) {
735    *HasWinCFI = true;
736    InsertSEH(*MIB, *TII,
737              InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy);
738  }
739
740  return std::prev(MBB.erase(MBBI));
741}
742
743// Fixup callee-save register save/restore instructions to take into account
744// combined SP bump by adding the local stack size to the stack offsets.
745static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
746                                              uint64_t LocalStackSize,
747                                              bool NeedsWinCFI,
748                                              bool *HasWinCFI) {
749  if (AArch64InstrInfo::isSEHInstruction(MI))
750    return;
751
752  unsigned Opc = MI.getOpcode();
753
754  // Ignore instructions that do not operate on SP, i.e. shadow call stack
755  // instructions and associated CFI instruction.
756  if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre ||
757      Opc == AArch64::CFI_INSTRUCTION) {
758    if (Opc != AArch64::CFI_INSTRUCTION)
759      assert(MI.getOperand(0).getReg() != AArch64::SP);
760    return;
761  }
762
763  unsigned Scale;
764  switch (Opc) {
765  case AArch64::STPXi:
766  case AArch64::STRXui:
767  case AArch64::STPDi:
768  case AArch64::STRDui:
769  case AArch64::LDPXi:
770  case AArch64::LDRXui:
771  case AArch64::LDPDi:
772  case AArch64::LDRDui:
773    Scale = 8;
774    break;
775  case AArch64::STPQi:
776  case AArch64::STRQui:
777  case AArch64::LDPQi:
778  case AArch64::LDRQui:
779    Scale = 16;
780    break;
781  default:
782    llvm_unreachable("Unexpected callee-save save/restore opcode!");
783  }
784
785  unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
786  assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
787         "Unexpected base register in callee-save save/restore instruction!");
788  // Last operand is immediate offset that needs fixing.
789  MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
790  // All generated opcodes have scaled offsets.
791  assert(LocalStackSize % Scale == 0);
792  OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
793
794  if (NeedsWinCFI) {
795    *HasWinCFI = true;
796    auto MBBI = std::next(MachineBasicBlock::iterator(MI));
797    assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
798    assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
799           "Expecting a SEH instruction");
800    fixupSEHOpcode(MBBI, LocalStackSize);
801  }
802}
803
804static void adaptForLdStOpt(MachineBasicBlock &MBB,
805                            MachineBasicBlock::iterator FirstSPPopI,
806                            MachineBasicBlock::iterator LastPopI) {
807  // Sometimes (when we restore in the same order as we save), we can end up
808  // with code like this:
809  //
810  // ldp      x26, x25, [sp]
811  // ldp      x24, x23, [sp, #16]
812  // ldp      x22, x21, [sp, #32]
813  // ldp      x20, x19, [sp, #48]
814  // add      sp, sp, #64
815  //
816  // In this case, it is always better to put the first ldp at the end, so
817  // that the load-store optimizer can run and merge the ldp and the add into
818  // a post-index ldp.
819  // If we managed to grab the first pop instruction, move it to the end.
820  if (ReverseCSRRestoreSeq)
821    MBB.splice(FirstSPPopI, &MBB, LastPopI);
822  // We should end up with something like this now:
823  //
824  // ldp      x24, x23, [sp, #16]
825  // ldp      x22, x21, [sp, #32]
826  // ldp      x20, x19, [sp, #48]
827  // ldp      x26, x25, [sp]
828  // add      sp, sp, #64
829  //
830  // and the load-store optimizer can merge the last two instructions into:
831  //
832  // ldp      x26, x25, [sp], #64
833  //
834}
835
836static bool ShouldSignWithAKey(MachineFunction &MF) {
837  const Function &F = MF.getFunction();
838  if (!F.hasFnAttribute("sign-return-address-key"))
839    return true;
840
841  const StringRef Key =
842      F.getFnAttribute("sign-return-address-key").getValueAsString();
843  assert(Key.equals_lower("a_key") || Key.equals_lower("b_key"));
844  return Key.equals_lower("a_key");
845}
846
847static bool needsWinCFI(const MachineFunction &MF) {
848  const Function &F = MF.getFunction();
849  return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
850         F.needsUnwindTableEntry();
851}
852
853static bool isTargetDarwin(const MachineFunction &MF) {
854  return MF.getSubtarget<AArch64Subtarget>().isTargetDarwin();
855}
856
857static bool isTargetWindows(const MachineFunction &MF) {
858  return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
859}
860
861// Convenience function to determine whether I is an SVE callee save.
862static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
863  switch (I->getOpcode()) {
864  default:
865    return false;
866  case AArch64::STR_ZXI:
867  case AArch64::STR_PXI:
868  case AArch64::LDR_ZXI:
869  case AArch64::LDR_PXI:
870    return I->getFlag(MachineInstr::FrameSetup) ||
871           I->getFlag(MachineInstr::FrameDestroy);
872  }
873}
874
875void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
876                                        MachineBasicBlock &MBB) const {
877  MachineBasicBlock::iterator MBBI = MBB.begin();
878  const MachineFrameInfo &MFI = MF.getFrameInfo();
879  const Function &F = MF.getFunction();
880  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
881  const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
882  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
883  MachineModuleInfo &MMI = MF.getMMI();
884  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
885  bool needsFrameMoves =
886      MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
887  bool HasFP = hasFP(MF);
888  bool NeedsWinCFI = needsWinCFI(MF);
889  bool HasWinCFI = false;
890  auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
891
892  bool IsFunclet = MBB.isEHFuncletEntry();
893
894  // At this point, we're going to decide whether or not the function uses a
895  // redzone. In most cases, the function doesn't have a redzone so let's
896  // assume that's false and set it to true in the case that there's a redzone.
897  AFI->setHasRedZone(false);
898
899  // Debug location must be unknown since the first debug location is used
900  // to determine the end of the prologue.
901  DebugLoc DL;
902
903  if (ShouldSignReturnAddress(MF)) {
904    if (ShouldSignWithAKey(MF))
905      BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP))
906          .setMIFlag(MachineInstr::FrameSetup);
907    else {
908      BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
909          .setMIFlag(MachineInstr::FrameSetup);
910      BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP))
911          .setMIFlag(MachineInstr::FrameSetup);
912    }
913
914    unsigned CFIIndex =
915        MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
916    BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
917        .addCFIIndex(CFIIndex)
918        .setMIFlags(MachineInstr::FrameSetup);
919  }
920
921  // All calls are tail calls in GHC calling conv, and functions have no
922  // prologue/epilogue.
923  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
924    return;
925
926  // Set tagged base pointer to the bottom of the stack frame.
927  // Ideally it should match SP value after prologue.
928  AFI->setTaggedBasePointerOffset(MFI.getStackSize());
929
930  const StackOffset &SVEStackSize = getSVEStackSize(MF);
931
932  // getStackSize() includes all the locals in its size calculation. We don't
933  // include these locals when computing the stack size of a funclet, as they
934  // are allocated in the parent's stack frame and accessed via the frame
935  // pointer from the funclet.  We only save the callee saved registers in the
936  // funclet, which are really the callee saved registers of the parent
937  // function, including the funclet.
938  int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
939                               : MFI.getStackSize();
940  if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
941    assert(!HasFP && "unexpected function without stack frame but with FP");
942    assert(!SVEStackSize &&
943           "unexpected function without stack frame but with SVE objects");
944    // All of the stack allocation is for locals.
945    AFI->setLocalStackSize(NumBytes);
946    if (!NumBytes)
947      return;
948    // REDZONE: If the stack size is less than 128 bytes, we don't need
949    // to actually allocate.
950    if (canUseRedZone(MF)) {
951      AFI->setHasRedZone(true);
952      ++NumRedZoneFunctions;
953    } else {
954      emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
955                      {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
956                      false, NeedsWinCFI, &HasWinCFI);
957      if (!NeedsWinCFI && needsFrameMoves) {
958        // Label used to tie together the PROLOG_LABEL and the MachineMoves.
959        MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
960          // Encode the stack size of the leaf function.
961          unsigned CFIIndex = MF.addFrameInst(
962              MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
963          BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
964              .addCFIIndex(CFIIndex)
965              .setMIFlags(MachineInstr::FrameSetup);
966      }
967    }
968
969    if (NeedsWinCFI) {
970      HasWinCFI = true;
971      BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
972          .setMIFlag(MachineInstr::FrameSetup);
973    }
974
975    return;
976  }
977
978  bool IsWin64 =
979      Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
980  unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
981
982  auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
983  // All of the remaining stack allocations are for locals.
984  AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
985  bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
986  if (CombineSPBump) {
987    assert(!SVEStackSize && "Cannot combine SP bump with SVE");
988    emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
989                    {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, false,
990                    NeedsWinCFI, &HasWinCFI);
991    NumBytes = 0;
992  } else if (PrologueSaveSize != 0) {
993    MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
994        MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI);
995    NumBytes -= PrologueSaveSize;
996  }
997  assert(NumBytes >= 0 && "Negative stack allocation size!?");
998
999  // Move past the saves of the callee-saved registers, fixing up the offsets
1000  // and pre-inc if we decided to combine the callee-save and local stack
1001  // pointer bump above.
1002  MachineBasicBlock::iterator End = MBB.end();
1003  while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1004         !IsSVECalleeSave(MBBI)) {
1005    if (CombineSPBump)
1006      fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1007                                        NeedsWinCFI, &HasWinCFI);
1008    ++MBBI;
1009  }
1010
1011  // For funclets the FP belongs to the containing function.
1012  if (!IsFunclet && HasFP) {
1013    // Only set up FP if we actually need to.
1014    int64_t FPOffset = isTargetDarwin(MF) ? (AFI->getCalleeSavedStackSize() - 16) : 0;
1015
1016    if (CombineSPBump)
1017      FPOffset += AFI->getLocalStackSize();
1018
1019    // Issue    sub fp, sp, FPOffset or
1020    //          mov fp,sp          when FPOffset is zero.
1021    // Note: All stores of callee-saved registers are marked as "FrameSetup".
1022    // This code marks the instruction(s) that set the FP also.
1023    emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1024                    {FPOffset, MVT::i8}, TII, MachineInstr::FrameSetup, false,
1025                    NeedsWinCFI, &HasWinCFI);
1026  }
1027
1028  if (windowsRequiresStackProbe(MF, NumBytes)) {
1029    uint64_t NumWords = NumBytes >> 4;
1030    if (NeedsWinCFI) {
1031      HasWinCFI = true;
1032      // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1033      // exceed this amount.  We need to move at most 2^24 - 1 into x15.
1034      // This is at most two instructions, MOVZ follwed by MOVK.
1035      // TODO: Fix to use multiple stack alloc unwind codes for stacks
1036      // exceeding 256MB in size.
1037      if (NumBytes >= (1 << 28))
1038        report_fatal_error("Stack size cannot exceed 256MB for stack "
1039                            "unwinding purposes");
1040
1041      uint32_t LowNumWords = NumWords & 0xFFFF;
1042      BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1043            .addImm(LowNumWords)
1044            .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1045            .setMIFlag(MachineInstr::FrameSetup);
1046      BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1047            .setMIFlag(MachineInstr::FrameSetup);
1048      if ((NumWords & 0xFFFF0000) != 0) {
1049          BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1050              .addReg(AArch64::X15)
1051              .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1052              .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1053              .setMIFlag(MachineInstr::FrameSetup);
1054          BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1055            .setMIFlag(MachineInstr::FrameSetup);
1056      }
1057    } else {
1058      BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1059          .addImm(NumWords)
1060          .setMIFlags(MachineInstr::FrameSetup);
1061    }
1062
1063    switch (MF.getTarget().getCodeModel()) {
1064    case CodeModel::Tiny:
1065    case CodeModel::Small:
1066    case CodeModel::Medium:
1067    case CodeModel::Kernel:
1068      BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1069          .addExternalSymbol("__chkstk")
1070          .addReg(AArch64::X15, RegState::Implicit)
1071          .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1072          .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1073          .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1074          .setMIFlags(MachineInstr::FrameSetup);
1075      if (NeedsWinCFI) {
1076        HasWinCFI = true;
1077        BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1078            .setMIFlag(MachineInstr::FrameSetup);
1079      }
1080      break;
1081    case CodeModel::Large:
1082      BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1083          .addReg(AArch64::X16, RegState::Define)
1084          .addExternalSymbol("__chkstk")
1085          .addExternalSymbol("__chkstk")
1086          .setMIFlags(MachineInstr::FrameSetup);
1087      if (NeedsWinCFI) {
1088        HasWinCFI = true;
1089        BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1090            .setMIFlag(MachineInstr::FrameSetup);
1091      }
1092
1093      BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR))
1094          .addReg(AArch64::X16, RegState::Kill)
1095          .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1096          .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1097          .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1098          .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1099          .setMIFlags(MachineInstr::FrameSetup);
1100      if (NeedsWinCFI) {
1101        HasWinCFI = true;
1102        BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1103            .setMIFlag(MachineInstr::FrameSetup);
1104      }
1105      break;
1106    }
1107
1108    BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1109        .addReg(AArch64::SP, RegState::Kill)
1110        .addReg(AArch64::X15, RegState::Kill)
1111        .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1112        .setMIFlags(MachineInstr::FrameSetup);
1113    if (NeedsWinCFI) {
1114      HasWinCFI = true;
1115      BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1116          .addImm(NumBytes)
1117          .setMIFlag(MachineInstr::FrameSetup);
1118    }
1119    NumBytes = 0;
1120  }
1121
1122  StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1123  MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1124
1125  // Process the SVE callee-saves to determine what space needs to be
1126  // allocated.
1127  if (AFI->getSVECalleeSavedStackSize()) {
1128    // Find callee save instructions in frame.
1129    CalleeSavesBegin = MBBI;
1130    assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1131    while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1132      ++MBBI;
1133    CalleeSavesEnd = MBBI;
1134
1135    int64_t OffsetToFirstCalleeSaveFromSP =
1136        MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex());
1137    StackOffset OffsetToCalleeSavesFromSP =
1138        StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize;
1139    AllocateBefore -= OffsetToCalleeSavesFromSP;
1140    AllocateAfter = SVEStackSize - AllocateBefore;
1141  }
1142
1143  // Allocate space for the callee saves (if any).
1144  emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP,
1145                  -AllocateBefore, TII,
1146                  MachineInstr::FrameSetup);
1147
1148  // Finally allocate remaining SVE stack space.
1149  emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1150                  -AllocateAfter, TII,
1151                  MachineInstr::FrameSetup);
1152
1153  // Allocate space for the rest of the frame.
1154  if (NumBytes) {
1155    // Alignment is required for the parent frame, not the funclet
1156    const bool NeedsRealignment =
1157        !IsFunclet && RegInfo->needsStackRealignment(MF);
1158    unsigned scratchSPReg = AArch64::SP;
1159
1160    if (NeedsRealignment) {
1161      scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1162      assert(scratchSPReg != AArch64::NoRegister);
1163    }
1164
1165    // If we're a leaf function, try using the red zone.
1166    if (!canUseRedZone(MF))
1167      // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1168      // the correct value here, as NumBytes also includes padding bytes,
1169      // which shouldn't be counted here.
1170      emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1171                      {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
1172                      false, NeedsWinCFI, &HasWinCFI);
1173
1174    if (NeedsRealignment) {
1175      const unsigned Alignment = MFI.getMaxAlignment();
1176      const unsigned NrBitsToZero = countTrailingZeros(Alignment);
1177      assert(NrBitsToZero > 1);
1178      assert(scratchSPReg != AArch64::SP);
1179
1180      // SUB X9, SP, NumBytes
1181      //   -- X9 is temporary register, so shouldn't contain any live data here,
1182      //   -- free to use. This is already produced by emitFrameOffset above.
1183      // AND SP, X9, 0b11111...0000
1184      // The logical immediates have a non-trivial encoding. The following
1185      // formula computes the encoded immediate with all ones but
1186      // NrBitsToZero zero bits as least significant bits.
1187      uint32_t andMaskEncoded = (1 << 12)                         // = N
1188                                | ((64 - NrBitsToZero) << 6)      // immr
1189                                | ((64 - NrBitsToZero - 1) << 0); // imms
1190
1191      BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1192          .addReg(scratchSPReg, RegState::Kill)
1193          .addImm(andMaskEncoded);
1194      AFI->setStackRealigned(true);
1195      if (NeedsWinCFI) {
1196        HasWinCFI = true;
1197        BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1198            .addImm(NumBytes & andMaskEncoded)
1199            .setMIFlag(MachineInstr::FrameSetup);
1200      }
1201    }
1202  }
1203
1204  // If we need a base pointer, set it up here. It's whatever the value of the
1205  // stack pointer is at this point. Any variable size objects will be allocated
1206  // after this, so we can still use the base pointer to reference locals.
1207  //
1208  // FIXME: Clarify FrameSetup flags here.
1209  // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1210  // needed.
1211  // For funclets the BP belongs to the containing function.
1212  if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
1213    TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1214                     false);
1215    if (NeedsWinCFI) {
1216      HasWinCFI = true;
1217      BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1218          .setMIFlag(MachineInstr::FrameSetup);
1219    }
1220  }
1221
1222  // The very last FrameSetup instruction indicates the end of prologue. Emit a
1223  // SEH opcode indicating the prologue end.
1224  if (NeedsWinCFI && HasWinCFI) {
1225    BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1226        .setMIFlag(MachineInstr::FrameSetup);
1227  }
1228
1229  // SEH funclets are passed the frame pointer in X1.  If the parent
1230  // function uses the base register, then the base register is used
1231  // directly, and is not retrieved from X1.
1232  if (IsFunclet && F.hasPersonalityFn()) {
1233    EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1234    if (isAsynchronousEHPersonality(Per)) {
1235      BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1236          .addReg(AArch64::X1)
1237          .setMIFlag(MachineInstr::FrameSetup);
1238      MBB.addLiveIn(AArch64::X1);
1239    }
1240  }
1241
1242  if (needsFrameMoves) {
1243    const DataLayout &TD = MF.getDataLayout();
1244    const int StackGrowth = isTargetDarwin(MF)
1245                                ? (2 * -TD.getPointerSize(0))
1246                                : -AFI->getCalleeSavedStackSize();
1247    Register FramePtr = RegInfo->getFrameRegister(MF);
1248    // An example of the prologue:
1249    //
1250    //     .globl __foo
1251    //     .align 2
1252    //  __foo:
1253    // Ltmp0:
1254    //     .cfi_startproc
1255    //     .cfi_personality 155, ___gxx_personality_v0
1256    // Leh_func_begin:
1257    //     .cfi_lsda 16, Lexception33
1258    //
1259    //     stp  xa,bx, [sp, -#offset]!
1260    //     ...
1261    //     stp  x28, x27, [sp, #offset-32]
1262    //     stp  fp, lr, [sp, #offset-16]
1263    //     add  fp, sp, #offset - 16
1264    //     sub  sp, sp, #1360
1265    //
1266    // The Stack:
1267    //       +-------------------------------------------+
1268    // 10000 | ........ | ........ | ........ | ........ |
1269    // 10004 | ........ | ........ | ........ | ........ |
1270    //       +-------------------------------------------+
1271    // 10008 | ........ | ........ | ........ | ........ |
1272    // 1000c | ........ | ........ | ........ | ........ |
1273    //       +===========================================+
1274    // 10010 |                X28 Register               |
1275    // 10014 |                X28 Register               |
1276    //       +-------------------------------------------+
1277    // 10018 |                X27 Register               |
1278    // 1001c |                X27 Register               |
1279    //       +===========================================+
1280    // 10020 |                Frame Pointer              |
1281    // 10024 |                Frame Pointer              |
1282    //       +-------------------------------------------+
1283    // 10028 |                Link Register              |
1284    // 1002c |                Link Register              |
1285    //       +===========================================+
1286    // 10030 | ........ | ........ | ........ | ........ |
1287    // 10034 | ........ | ........ | ........ | ........ |
1288    //       +-------------------------------------------+
1289    // 10038 | ........ | ........ | ........ | ........ |
1290    // 1003c | ........ | ........ | ........ | ........ |
1291    //       +-------------------------------------------+
1292    //
1293    //     [sp] = 10030        ::    >>initial value<<
1294    //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
1295    //     fp = sp == 10020    ::  mov fp, sp
1296    //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
1297    //     sp == 10010         ::    >>final value<<
1298    //
1299    // The frame pointer (w29) points to address 10020. If we use an offset of
1300    // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
1301    // for w27, and -32 for w28:
1302    //
1303    //  Ltmp1:
1304    //     .cfi_def_cfa w29, 16
1305    //  Ltmp2:
1306    //     .cfi_offset w30, -8
1307    //  Ltmp3:
1308    //     .cfi_offset w29, -16
1309    //  Ltmp4:
1310    //     .cfi_offset w27, -24
1311    //  Ltmp5:
1312    //     .cfi_offset w28, -32
1313
1314    if (HasFP) {
1315      // Define the current CFA rule to use the provided FP.
1316      unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1317      unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
1318          nullptr, Reg, StackGrowth - FixedObject));
1319      BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1320          .addCFIIndex(CFIIndex)
1321          .setMIFlags(MachineInstr::FrameSetup);
1322    } else {
1323      // Encode the stack size of the leaf function.
1324      unsigned CFIIndex = MF.addFrameInst(
1325          MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize()));
1326      BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1327          .addCFIIndex(CFIIndex)
1328          .setMIFlags(MachineInstr::FrameSetup);
1329    }
1330
1331    // Now emit the moves for whatever callee saved regs we have (including FP,
1332    // LR if those are saved).
1333    emitCalleeSavedFrameMoves(MBB, MBBI);
1334  }
1335}
1336
1337static void InsertReturnAddressAuth(MachineFunction &MF,
1338                                    MachineBasicBlock &MBB) {
1339  if (!ShouldSignReturnAddress(MF))
1340    return;
1341  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1342  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1343
1344  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1345  DebugLoc DL;
1346  if (MBBI != MBB.end())
1347    DL = MBBI->getDebugLoc();
1348
1349  // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1350  // this instruction can safely used for any v8a architecture.
1351  // From v8.3a onwards there are optimised authenticate LR and return
1352  // instructions, namely RETA{A,B}, that can be used instead.
1353  if (Subtarget.hasV8_3aOps() && MBBI != MBB.end() &&
1354      MBBI->getOpcode() == AArch64::RET_ReallyLR) {
1355    BuildMI(MBB, MBBI, DL,
1356            TII->get(ShouldSignWithAKey(MF) ? AArch64::RETAA : AArch64::RETAB))
1357        .copyImplicitOps(*MBBI);
1358    MBB.erase(MBBI);
1359  } else {
1360    BuildMI(
1361        MBB, MBBI, DL,
1362        TII->get(ShouldSignWithAKey(MF) ? AArch64::AUTIASP : AArch64::AUTIBSP))
1363        .setMIFlag(MachineInstr::FrameDestroy);
1364  }
1365}
1366
1367static bool isFuncletReturnInstr(const MachineInstr &MI) {
1368  switch (MI.getOpcode()) {
1369  default:
1370    return false;
1371  case AArch64::CATCHRET:
1372  case AArch64::CLEANUPRET:
1373    return true;
1374  }
1375}
1376
1377void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1378                                        MachineBasicBlock &MBB) const {
1379  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1380  MachineFrameInfo &MFI = MF.getFrameInfo();
1381  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1382  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1383  DebugLoc DL;
1384  bool IsTailCallReturn = false;
1385  bool NeedsWinCFI = needsWinCFI(MF);
1386  bool HasWinCFI = false;
1387  bool IsFunclet = false;
1388  auto WinCFI = make_scope_exit([&]() {
1389    if (!MF.hasWinCFI())
1390      MF.setHasWinCFI(HasWinCFI);
1391  });
1392
1393  if (MBB.end() != MBBI) {
1394    DL = MBBI->getDebugLoc();
1395    unsigned RetOpcode = MBBI->getOpcode();
1396    IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
1397                       RetOpcode == AArch64::TCRETURNri ||
1398                       RetOpcode == AArch64::TCRETURNriBTI;
1399    IsFunclet = isFuncletReturnInstr(*MBBI);
1400  }
1401
1402  int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1403                               : MFI.getStackSize();
1404  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1405
1406  // All calls are tail calls in GHC calling conv, and functions have no
1407  // prologue/epilogue.
1408  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1409    return;
1410
1411  // Initial and residual are named for consistency with the prologue. Note that
1412  // in the epilogue, the residual adjustment is executed first.
1413  uint64_t ArgumentPopSize = 0;
1414  if (IsTailCallReturn) {
1415    MachineOperand &StackAdjust = MBBI->getOperand(1);
1416
1417    // For a tail-call in a callee-pops-arguments environment, some or all of
1418    // the stack may actually be in use for the call's arguments, this is
1419    // calculated during LowerCall and consumed here...
1420    ArgumentPopSize = StackAdjust.getImm();
1421  } else {
1422    // ... otherwise the amount to pop is *all* of the argument space,
1423    // conveniently stored in the MachineFunctionInfo by
1424    // LowerFormalArguments. This will, of course, be zero for the C calling
1425    // convention.
1426    ArgumentPopSize = AFI->getArgumentStackToRestore();
1427  }
1428
1429  // The stack frame should be like below,
1430  //
1431  //      ----------------------                     ---
1432  //      |                    |                      |
1433  //      | BytesInStackArgArea|              CalleeArgStackSize
1434  //      | (NumReusableBytes) |                (of tail call)
1435  //      |                    |                     ---
1436  //      |                    |                      |
1437  //      ---------------------|        ---           |
1438  //      |                    |         |            |
1439  //      |   CalleeSavedReg   |         |            |
1440  //      | (CalleeSavedStackSize)|      |            |
1441  //      |                    |         |            |
1442  //      ---------------------|         |         NumBytes
1443  //      |                    |     StackSize  (StackAdjustUp)
1444  //      |   LocalStackSize   |         |            |
1445  //      | (covering callee   |         |            |
1446  //      |       args)        |         |            |
1447  //      |                    |         |            |
1448  //      ----------------------        ---          ---
1449  //
1450  // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
1451  //             = StackSize + ArgumentPopSize
1452  //
1453  // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
1454  // it as the 2nd argument of AArch64ISD::TC_RETURN.
1455
1456  auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); });
1457
1458  bool IsWin64 =
1459      Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1460  unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1461
1462  uint64_t AfterCSRPopSize = ArgumentPopSize;
1463  auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1464  // We cannot rely on the local stack size set in emitPrologue if the function
1465  // has funclets, as funclets have different local stack size requirements, and
1466  // the current value set in emitPrologue may be that of the containing
1467  // function.
1468  if (MF.hasEHFunclets())
1469    AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1470  bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1471  // Assume we can't combine the last pop with the sp restore.
1472
1473  if (!CombineSPBump && PrologueSaveSize != 0) {
1474    MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1475    while (AArch64InstrInfo::isSEHInstruction(*Pop))
1476      Pop = std::prev(Pop);
1477    // Converting the last ldp to a post-index ldp is valid only if the last
1478    // ldp's offset is 0.
1479    const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
1480    // If the offset is 0, convert it to a post-index ldp.
1481    if (OffsetOp.getImm() == 0)
1482      convertCalleeSaveRestoreToSPPrePostIncDec(
1483          MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false);
1484    else {
1485      // If not, make sure to emit an add after the last ldp.
1486      // We're doing this by transfering the size to be restored from the
1487      // adjustment *before* the CSR pops to the adjustment *after* the CSR
1488      // pops.
1489      AfterCSRPopSize += PrologueSaveSize;
1490    }
1491  }
1492
1493  // Move past the restores of the callee-saved registers.
1494  // If we plan on combining the sp bump of the local stack size and the callee
1495  // save stack size, we might need to adjust the CSR save and restore offsets.
1496  MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
1497  MachineBasicBlock::iterator Begin = MBB.begin();
1498  while (LastPopI != Begin) {
1499    --LastPopI;
1500    if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
1501        IsSVECalleeSave(LastPopI)) {
1502      ++LastPopI;
1503      break;
1504    } else if (CombineSPBump)
1505      fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
1506                                        NeedsWinCFI, &HasWinCFI);
1507  }
1508
1509  if (NeedsWinCFI) {
1510    HasWinCFI = true;
1511    BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
1512        .setMIFlag(MachineInstr::FrameDestroy);
1513  }
1514
1515  const StackOffset &SVEStackSize = getSVEStackSize(MF);
1516
1517  // If there is a single SP update, insert it before the ret and we're done.
1518  if (CombineSPBump) {
1519    assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1520    emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
1521                    {NumBytes + (int64_t)AfterCSRPopSize, MVT::i8}, TII,
1522                    MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1523    if (NeedsWinCFI && HasWinCFI)
1524      BuildMI(MBB, MBB.getFirstTerminator(), DL,
1525              TII->get(AArch64::SEH_EpilogEnd))
1526          .setMIFlag(MachineInstr::FrameDestroy);
1527    return;
1528  }
1529
1530  NumBytes -= PrologueSaveSize;
1531  assert(NumBytes >= 0 && "Negative stack allocation size!?");
1532
1533  // Process the SVE callee-saves to determine what space needs to be
1534  // deallocated.
1535  StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
1536  MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
1537  if (AFI->getSVECalleeSavedStackSize()) {
1538    RestoreBegin = std::prev(RestoreEnd);;
1539    while (IsSVECalleeSave(RestoreBegin) &&
1540           RestoreBegin != MBB.begin())
1541      --RestoreBegin;
1542    ++RestoreBegin;
1543
1544    assert(IsSVECalleeSave(RestoreBegin) &&
1545           IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
1546
1547    int64_t OffsetToFirstCalleeSaveFromSP =
1548        MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex());
1549    StackOffset OffsetToCalleeSavesFromSP =
1550        StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize;
1551    DeallocateBefore = OffsetToCalleeSavesFromSP;
1552    DeallocateAfter = SVEStackSize - DeallocateBefore;
1553  }
1554
1555  // Deallocate the SVE area.
1556  if (SVEStackSize) {
1557    if (AFI->isStackRealigned()) {
1558      if (AFI->getSVECalleeSavedStackSize())
1559        // Set SP to start of SVE area, from which the callee-save reloads
1560        // can be done. The code below will deallocate the stack space
1561        // space by moving FP -> SP.
1562        emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
1563                        -SVEStackSize, TII, MachineInstr::FrameDestroy);
1564    } else {
1565      if (AFI->getSVECalleeSavedStackSize()) {
1566        // Deallocate the non-SVE locals first before we can deallocate (and
1567        // restore callee saves) from the SVE area.
1568        emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1569                        {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy);
1570        NumBytes = 0;
1571      }
1572
1573      emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1574                      DeallocateBefore, TII, MachineInstr::FrameDestroy);
1575
1576      emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
1577                      DeallocateAfter, TII, MachineInstr::FrameDestroy);
1578    }
1579  }
1580
1581  if (!hasFP(MF)) {
1582    bool RedZone = canUseRedZone(MF);
1583    // If this was a redzone leaf function, we don't need to restore the
1584    // stack pointer (but we may need to pop stack args for fastcc).
1585    if (RedZone && AfterCSRPopSize == 0)
1586      return;
1587
1588    bool NoCalleeSaveRestore = PrologueSaveSize == 0;
1589    int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
1590    if (NoCalleeSaveRestore)
1591      StackRestoreBytes += AfterCSRPopSize;
1592
1593    // If we were able to combine the local stack pop with the argument pop,
1594    // then we're done.
1595    bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0;
1596
1597    // If we're done after this, make sure to help the load store optimizer.
1598    if (Done)
1599      adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI);
1600
1601    emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1602                    {StackRestoreBytes, MVT::i8}, TII,
1603                    MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1604    if (Done) {
1605      if (NeedsWinCFI) {
1606        HasWinCFI = true;
1607        BuildMI(MBB, MBB.getFirstTerminator(), DL,
1608                TII->get(AArch64::SEH_EpilogEnd))
1609            .setMIFlag(MachineInstr::FrameDestroy);
1610      }
1611      return;
1612    }
1613
1614    NumBytes = 0;
1615  }
1616
1617  // Restore the original stack pointer.
1618  // FIXME: Rather than doing the math here, we should instead just use
1619  // non-post-indexed loads for the restores if we aren't actually going to
1620  // be able to save any instructions.
1621  if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
1622    int64_t OffsetToFrameRecord =
1623        isTargetDarwin(MF) ? (-(int64_t)AFI->getCalleeSavedStackSize() + 16) : 0;
1624    emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
1625                    {OffsetToFrameRecord, MVT::i8},
1626                    TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
1627  } else if (NumBytes)
1628    emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1629                    {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy, false,
1630                    NeedsWinCFI);
1631
1632  // This must be placed after the callee-save restore code because that code
1633  // assumes the SP is at the same location as it was after the callee-save save
1634  // code in the prologue.
1635  if (AfterCSRPopSize) {
1636    // Find an insertion point for the first ldp so that it goes before the
1637    // shadow call stack epilog instruction. This ensures that the restore of
1638    // lr from x18 is placed after the restore from sp.
1639    auto FirstSPPopI = MBB.getFirstTerminator();
1640    while (FirstSPPopI != Begin) {
1641      auto Prev = std::prev(FirstSPPopI);
1642      if (Prev->getOpcode() != AArch64::LDRXpre ||
1643          Prev->getOperand(0).getReg() == AArch64::SP)
1644        break;
1645      FirstSPPopI = Prev;
1646    }
1647
1648    adaptForLdStOpt(MBB, FirstSPPopI, LastPopI);
1649
1650    emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP,
1651                    {(int64_t)AfterCSRPopSize, MVT::i8}, TII,
1652                    MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1653  }
1654  if (NeedsWinCFI && HasWinCFI)
1655    BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd))
1656        .setMIFlag(MachineInstr::FrameDestroy);
1657
1658  MF.setHasWinCFI(HasWinCFI);
1659}
1660
1661/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1662/// debug info.  It's the same as what we use for resolving the code-gen
1663/// references for now.  FIXME: This can go wrong when references are
1664/// SP-relative and simple call frames aren't used.
1665int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
1666                                                 int FI,
1667                                                 unsigned &FrameReg) const {
1668  return resolveFrameIndexReference(
1669             MF, FI, FrameReg,
1670             /*PreferFP=*/
1671             MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
1672             /*ForSimm=*/false)
1673      .getBytes();
1674}
1675
1676int AArch64FrameLowering::getNonLocalFrameIndexReference(
1677  const MachineFunction &MF, int FI) const {
1678  return getSEHFrameIndexOffset(MF, FI);
1679}
1680
1681static StackOffset getFPOffset(const MachineFunction &MF, int64_t ObjectOffset) {
1682  const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1683  const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1684  bool IsWin64 =
1685      Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1686
1687  unsigned FixedObject =
1688      getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
1689  unsigned FPAdjust = isTargetDarwin(MF)
1690                        ? 16 : AFI->getCalleeSavedStackSize(MF.getFrameInfo());
1691  return {ObjectOffset + FixedObject + FPAdjust, MVT::i8};
1692}
1693
1694static StackOffset getStackOffset(const MachineFunction &MF, int64_t ObjectOffset) {
1695  const auto &MFI = MF.getFrameInfo();
1696  return {ObjectOffset + (int64_t)MFI.getStackSize(), MVT::i8};
1697}
1698
1699int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
1700                                                 int FI) const {
1701  const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1702      MF.getSubtarget().getRegisterInfo());
1703  int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
1704  return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
1705             ? getFPOffset(MF, ObjectOffset).getBytes()
1706             : getStackOffset(MF, ObjectOffset).getBytes();
1707}
1708
1709StackOffset AArch64FrameLowering::resolveFrameIndexReference(
1710    const MachineFunction &MF, int FI, unsigned &FrameReg, bool PreferFP,
1711    bool ForSimm) const {
1712  const auto &MFI = MF.getFrameInfo();
1713  int64_t ObjectOffset = MFI.getObjectOffset(FI);
1714  bool isFixed = MFI.isFixedObjectIndex(FI);
1715  bool isSVE = MFI.getStackID(FI) == TargetStackID::SVEVector;
1716  return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
1717                                     PreferFP, ForSimm);
1718}
1719
1720StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
1721    const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
1722    unsigned &FrameReg, bool PreferFP, bool ForSimm) const {
1723  const auto &MFI = MF.getFrameInfo();
1724  const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1725      MF.getSubtarget().getRegisterInfo());
1726  const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1727  const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1728
1729  int64_t FPOffset = getFPOffset(MF, ObjectOffset).getBytes();
1730  int64_t Offset = getStackOffset(MF, ObjectOffset).getBytes();
1731  bool isCSR =
1732      !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
1733
1734  const StackOffset &SVEStackSize = getSVEStackSize(MF);
1735
1736  // Use frame pointer to reference fixed objects. Use it for locals if
1737  // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1738  // reliable as a base). Make sure useFPForScavengingIndex() does the
1739  // right thing for the emergency spill slot.
1740  bool UseFP = false;
1741  if (AFI->hasStackFrame() && !isSVE) {
1742    // We shouldn't prefer using the FP when there is an SVE area
1743    // in between the FP and the non-SVE locals/spills.
1744    PreferFP &= !SVEStackSize;
1745
1746    // Note: Keeping the following as multiple 'if' statements rather than
1747    // merging to a single expression for readability.
1748    //
1749    // Argument access should always use the FP.
1750    if (isFixed) {
1751      UseFP = hasFP(MF);
1752    } else if (isCSR && RegInfo->needsStackRealignment(MF)) {
1753      // References to the CSR area must use FP if we're re-aligning the stack
1754      // since the dynamically-sized alignment padding is between the SP/BP and
1755      // the CSR area.
1756      assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
1757      UseFP = true;
1758    } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) {
1759      // If the FPOffset is negative and we're producing a signed immediate, we
1760      // have to keep in mind that the available offset range for negative
1761      // offsets is smaller than for positive ones. If an offset is available
1762      // via the FP and the SP, use whichever is closest.
1763      bool FPOffsetFits = !ForSimm || FPOffset >= -256;
1764      PreferFP |= Offset > -FPOffset;
1765
1766      if (MFI.hasVarSizedObjects()) {
1767        // If we have variable sized objects, we can use either FP or BP, as the
1768        // SP offset is unknown. We can use the base pointer if we have one and
1769        // FP is not preferred. If not, we're stuck with using FP.
1770        bool CanUseBP = RegInfo->hasBasePointer(MF);
1771        if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
1772          UseFP = PreferFP;
1773        else if (!CanUseBP) { // Can't use BP. Forced to use FP.
1774          assert(!SVEStackSize && "Expected BP to be available");
1775          UseFP = true;
1776        }
1777        // else we can use BP and FP, but the offset from FP won't fit.
1778        // That will make us scavenge registers which we can probably avoid by
1779        // using BP. If it won't fit for BP either, we'll scavenge anyway.
1780      } else if (FPOffset >= 0) {
1781        // Use SP or FP, whichever gives us the best chance of the offset
1782        // being in range for direct access. If the FPOffset is positive,
1783        // that'll always be best, as the SP will be even further away.
1784        UseFP = true;
1785      } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
1786        // Funclets access the locals contained in the parent's stack frame
1787        // via the frame pointer, so we have to use the FP in the parent
1788        // function.
1789        (void) Subtarget;
1790        assert(
1791            Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
1792            "Funclets should only be present on Win64");
1793        UseFP = true;
1794      } else {
1795        // We have the choice between FP and (SP or BP).
1796        if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
1797          UseFP = true;
1798      }
1799    }
1800  }
1801
1802  assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
1803         "In the presence of dynamic stack pointer realignment, "
1804         "non-argument/CSR objects cannot be accessed through the frame pointer");
1805
1806  if (isSVE) {
1807    int64_t OffsetToSVEArea =
1808        MFI.getStackSize() - AFI->getCalleeSavedStackSize();
1809    StackOffset FPOffset = {ObjectOffset, MVT::nxv1i8};
1810    StackOffset SPOffset = SVEStackSize +
1811                           StackOffset(ObjectOffset, MVT::nxv1i8) +
1812                           StackOffset(OffsetToSVEArea, MVT::i8);
1813    // Always use the FP for SVE spills if available and beneficial.
1814    if (hasFP(MF) &&
1815        (SPOffset.getBytes() ||
1816         FPOffset.getScalableBytes() < SPOffset.getScalableBytes() ||
1817         RegInfo->needsStackRealignment(MF))) {
1818      FrameReg = RegInfo->getFrameRegister(MF);
1819      return FPOffset;
1820    }
1821
1822    FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
1823                                           : (unsigned)AArch64::SP;
1824    return SPOffset;
1825  }
1826
1827  StackOffset ScalableOffset = {};
1828  if (UseFP && !(isFixed || isCSR))
1829    ScalableOffset = -SVEStackSize;
1830  if (!UseFP && (isFixed || isCSR))
1831    ScalableOffset = SVEStackSize;
1832
1833  if (UseFP) {
1834    FrameReg = RegInfo->getFrameRegister(MF);
1835    return StackOffset(FPOffset, MVT::i8) + ScalableOffset;
1836  }
1837
1838  // Use the base pointer if we have one.
1839  if (RegInfo->hasBasePointer(MF))
1840    FrameReg = RegInfo->getBaseRegister();
1841  else {
1842    assert(!MFI.hasVarSizedObjects() &&
1843           "Can't use SP when we have var sized objects.");
1844    FrameReg = AArch64::SP;
1845    // If we're using the red zone for this function, the SP won't actually
1846    // be adjusted, so the offsets will be negative. They're also all
1847    // within range of the signed 9-bit immediate instructions.
1848    if (canUseRedZone(MF))
1849      Offset -= AFI->getLocalStackSize();
1850  }
1851
1852  return StackOffset(Offset, MVT::i8) + ScalableOffset;
1853}
1854
1855static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
1856  // Do not set a kill flag on values that are also marked as live-in. This
1857  // happens with the @llvm-returnaddress intrinsic and with arguments passed in
1858  // callee saved registers.
1859  // Omitting the kill flags is conservatively correct even if the live-in
1860  // is not used after all.
1861  bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
1862  return getKillRegState(!IsLiveIn);
1863}
1864
1865static bool produceCompactUnwindFrame(MachineFunction &MF) {
1866  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1867  AttributeList Attrs = MF.getFunction().getAttributes();
1868  return Subtarget.isTargetMachO() &&
1869         !(Subtarget.getTargetLowering()->supportSwiftError() &&
1870           Attrs.hasAttrSomewhere(Attribute::SwiftError));
1871}
1872
1873static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
1874                                             bool NeedsWinCFI) {
1875  // If we are generating register pairs for a Windows function that requires
1876  // EH support, then pair consecutive registers only.  There are no unwind
1877  // opcodes for saves/restores of non-consectuve register pairs.
1878  // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x.
1879  // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
1880
1881  // TODO: LR can be paired with any register.  We don't support this yet in
1882  // the MCLayer.  We need to add support for the save_lrpair unwind code.
1883  if (Reg2 == AArch64::FP)
1884    return true;
1885  if (!NeedsWinCFI)
1886    return false;
1887  if (Reg2 == Reg1 + 1)
1888    return false;
1889  return true;
1890}
1891
1892/// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
1893/// WindowsCFI requires that only consecutive registers can be paired.
1894/// LR and FP need to be allocated together when the frame needs to save
1895/// the frame-record. This means any other register pairing with LR is invalid.
1896static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
1897                                      bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord) {
1898  if (UsesWinAAPCS)
1899    return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI);
1900
1901  // If we need to store the frame record, don't pair any register
1902  // with LR other than FP.
1903  if (NeedsFrameRecord)
1904    return Reg2 == AArch64::LR;
1905
1906  return false;
1907}
1908
1909namespace {
1910
1911struct RegPairInfo {
1912  unsigned Reg1 = AArch64::NoRegister;
1913  unsigned Reg2 = AArch64::NoRegister;
1914  int FrameIdx;
1915  int Offset;
1916  enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
1917
1918  RegPairInfo() = default;
1919
1920  bool isPaired() const { return Reg2 != AArch64::NoRegister; }
1921
1922  unsigned getScale() const {
1923    switch (Type) {
1924    case PPR:
1925      return 2;
1926    case GPR:
1927    case FPR64:
1928      return 8;
1929    case ZPR:
1930    case FPR128:
1931      return 16;
1932    }
1933    llvm_unreachable("Unsupported type");
1934  }
1935
1936  bool isScalable() const { return Type == PPR || Type == ZPR; }
1937};
1938
1939} // end anonymous namespace
1940
1941static void computeCalleeSaveRegisterPairs(
1942    MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI,
1943    const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
1944    bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) {
1945
1946  if (CSI.empty())
1947    return;
1948
1949  bool IsWindows = isTargetWindows(MF);
1950  bool NeedsWinCFI = needsWinCFI(MF);
1951  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1952  MachineFrameInfo &MFI = MF.getFrameInfo();
1953  CallingConv::ID CC = MF.getFunction().getCallingConv();
1954  unsigned Count = CSI.size();
1955  (void)CC;
1956  // MachO's compact unwind format relies on all registers being stored in
1957  // pairs.
1958  assert((!produceCompactUnwindFrame(MF) ||
1959          CC == CallingConv::PreserveMost ||
1960          (Count & 1) == 0) &&
1961         "Odd number of callee-saved regs to spill!");
1962  int ByteOffset = AFI->getCalleeSavedStackSize();
1963  int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
1964  // On Linux, we will have either one or zero non-paired register.  On Windows
1965  // with CFI, we can have multiple unpaired registers in order to utilize the
1966  // available unwind codes.  This flag assures that the alignment fixup is done
1967  // only once, as intened.
1968  bool FixupDone = false;
1969  for (unsigned i = 0; i < Count; ++i) {
1970    RegPairInfo RPI;
1971    RPI.Reg1 = CSI[i].getReg();
1972
1973    if (AArch64::GPR64RegClass.contains(RPI.Reg1))
1974      RPI.Type = RegPairInfo::GPR;
1975    else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
1976      RPI.Type = RegPairInfo::FPR64;
1977    else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
1978      RPI.Type = RegPairInfo::FPR128;
1979    else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
1980      RPI.Type = RegPairInfo::ZPR;
1981    else if (AArch64::PPRRegClass.contains(RPI.Reg1))
1982      RPI.Type = RegPairInfo::PPR;
1983    else
1984      llvm_unreachable("Unsupported register class.");
1985
1986    // Add the next reg to the pair if it is in the same register class.
1987    if (i + 1 < Count) {
1988      unsigned NextReg = CSI[i + 1].getReg();
1989      switch (RPI.Type) {
1990      case RegPairInfo::GPR:
1991        if (AArch64::GPR64RegClass.contains(NextReg) &&
1992            !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, NeedsWinCFI,
1993                                       NeedsFrameRecord))
1994          RPI.Reg2 = NextReg;
1995        break;
1996      case RegPairInfo::FPR64:
1997        if (AArch64::FPR64RegClass.contains(NextReg) &&
1998            !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI))
1999          RPI.Reg2 = NextReg;
2000        break;
2001      case RegPairInfo::FPR128:
2002        if (AArch64::FPR128RegClass.contains(NextReg))
2003          RPI.Reg2 = NextReg;
2004        break;
2005      case RegPairInfo::PPR:
2006      case RegPairInfo::ZPR:
2007        break;
2008      }
2009    }
2010
2011    // If either of the registers to be saved is the lr register, it means that
2012    // we also need to save lr in the shadow call stack.
2013    if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) &&
2014        MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
2015      if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
2016        report_fatal_error("Must reserve x18 to use shadow call stack");
2017      NeedShadowCallStackProlog = true;
2018    }
2019
2020    // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2021    // list to come in sorted by frame index so that we can issue the store
2022    // pair instructions directly. Assert if we see anything otherwise.
2023    //
2024    // The order of the registers in the list is controlled by
2025    // getCalleeSavedRegs(), so they will always be in-order, as well.
2026    assert((!RPI.isPaired() ||
2027            (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) &&
2028           "Out of order callee saved regs!");
2029
2030    assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2031            RPI.Reg1 == AArch64::LR) &&
2032           "FrameRecord must be allocated together with LR");
2033
2034    // Windows AAPCS has FP and LR reversed.
2035    assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2036            RPI.Reg2 == AArch64::LR) &&
2037           "FrameRecord must be allocated together with LR");
2038
2039    // MachO's compact unwind format relies on all registers being stored in
2040    // adjacent register pairs.
2041    assert((!produceCompactUnwindFrame(MF) ||
2042            CC == CallingConv::PreserveMost ||
2043            (RPI.isPaired() &&
2044             ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2045              RPI.Reg1 + 1 == RPI.Reg2))) &&
2046           "Callee-save registers not saved as adjacent register pair!");
2047
2048    RPI.FrameIdx = CSI[i].getFrameIdx();
2049
2050    int Scale = RPI.getScale();
2051    if (RPI.isScalable())
2052      ScalableByteOffset -= Scale;
2053    else
2054      ByteOffset -= RPI.isPaired() ? 2 * Scale : Scale;
2055
2056    assert(!(RPI.isScalable() && RPI.isPaired()) &&
2057           "Paired spill/fill instructions don't exist for SVE vectors");
2058
2059    // Round up size of non-pair to pair size if we need to pad the
2060    // callee-save area to ensure 16-byte alignment.
2061    if (AFI->hasCalleeSaveStackFreeSpace() && !FixupDone &&
2062        !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2063        !RPI.isPaired()) {
2064      FixupDone = true;
2065      ByteOffset -= 8;
2066      assert(ByteOffset % 16 == 0);
2067      assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16);
2068      MFI.setObjectAlignment(RPI.FrameIdx, 16);
2069    }
2070
2071    int Offset = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2072    assert(Offset % Scale == 0);
2073    RPI.Offset = Offset / Scale;
2074
2075    assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2076            (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2077           "Offset out of bounds for LDP/STP immediate");
2078
2079    RegPairs.push_back(RPI);
2080    if (RPI.isPaired())
2081      ++i;
2082  }
2083}
2084
2085bool AArch64FrameLowering::spillCalleeSavedRegisters(
2086    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2087    const std::vector<CalleeSavedInfo> &CSI,
2088    const TargetRegisterInfo *TRI) const {
2089  MachineFunction &MF = *MBB.getParent();
2090  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2091  bool NeedsWinCFI = needsWinCFI(MF);
2092  DebugLoc DL;
2093  SmallVector<RegPairInfo, 8> RegPairs;
2094
2095  bool NeedShadowCallStackProlog = false;
2096  computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2097                                 NeedShadowCallStackProlog, hasFP(MF));
2098  const MachineRegisterInfo &MRI = MF.getRegInfo();
2099
2100  if (NeedShadowCallStackProlog) {
2101    // Shadow call stack prolog: str x30, [x18], #8
2102    BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost))
2103        .addReg(AArch64::X18, RegState::Define)
2104        .addReg(AArch64::LR)
2105        .addReg(AArch64::X18)
2106        .addImm(8)
2107        .setMIFlag(MachineInstr::FrameSetup);
2108
2109    if (NeedsWinCFI)
2110      BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop))
2111          .setMIFlag(MachineInstr::FrameSetup);
2112
2113    if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) {
2114      // Emit a CFI instruction that causes 8 to be subtracted from the value of
2115      // x18 when unwinding past this frame.
2116      static const char CFIInst[] = {
2117          dwarf::DW_CFA_val_expression,
2118          18, // register
2119          2,  // length
2120          static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
2121          static_cast<char>(-8) & 0x7f, // addend (sleb128)
2122      };
2123      unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
2124          nullptr, StringRef(CFIInst, sizeof(CFIInst))));
2125      BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION))
2126          .addCFIIndex(CFIIndex)
2127          .setMIFlag(MachineInstr::FrameSetup);
2128    }
2129
2130    // This instruction also makes x18 live-in to the entry block.
2131    MBB.addLiveIn(AArch64::X18);
2132  }
2133
2134  for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
2135       ++RPII) {
2136    RegPairInfo RPI = *RPII;
2137    unsigned Reg1 = RPI.Reg1;
2138    unsigned Reg2 = RPI.Reg2;
2139    unsigned StrOpc;
2140
2141    // Issue sequence of spills for cs regs.  The first spill may be converted
2142    // to a pre-decrement store later by emitPrologue if the callee-save stack
2143    // area allocation can't be combined with the local stack area allocation.
2144    // For example:
2145    //    stp     x22, x21, [sp, #0]     // addImm(+0)
2146    //    stp     x20, x19, [sp, #16]    // addImm(+2)
2147    //    stp     fp, lr, [sp, #32]      // addImm(+4)
2148    // Rationale: This sequence saves uop updates compared to a sequence of
2149    // pre-increment spills like stp xi,xj,[sp,#-16]!
2150    // Note: Similar rationale and sequence for restores in epilog.
2151    unsigned Size, Align;
2152    switch (RPI.Type) {
2153    case RegPairInfo::GPR:
2154       StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2155       Size = 8;
2156       Align = 8;
2157       break;
2158    case RegPairInfo::FPR64:
2159       StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2160       Size = 8;
2161       Align = 8;
2162       break;
2163    case RegPairInfo::FPR128:
2164       StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2165       Size = 16;
2166       Align = 16;
2167       break;
2168    case RegPairInfo::ZPR:
2169       StrOpc = AArch64::STR_ZXI;
2170       Size = 16;
2171       Align = 16;
2172       break;
2173    case RegPairInfo::PPR:
2174       StrOpc = AArch64::STR_PXI;
2175       Size = 2;
2176       Align = 2;
2177       break;
2178    }
2179    LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2180               if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2181               dbgs() << ") -> fi#(" << RPI.FrameIdx;
2182               if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2183               dbgs() << ")\n");
2184
2185    assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2186           "Windows unwdinding requires a consecutive (FP,LR) pair");
2187    // Windows unwind codes require consecutive registers if registers are
2188    // paired.  Make the switch here, so that the code below will save (x,x+1)
2189    // and not (x+1,x).
2190    unsigned FrameIdxReg1 = RPI.FrameIdx;
2191    unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2192    if (NeedsWinCFI && RPI.isPaired()) {
2193      std::swap(Reg1, Reg2);
2194      std::swap(FrameIdxReg1, FrameIdxReg2);
2195    }
2196    MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2197    if (!MRI.isReserved(Reg1))
2198      MBB.addLiveIn(Reg1);
2199    if (RPI.isPaired()) {
2200      if (!MRI.isReserved(Reg2))
2201        MBB.addLiveIn(Reg2);
2202      MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2203      MIB.addMemOperand(MF.getMachineMemOperand(
2204          MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2205          MachineMemOperand::MOStore, Size, Align));
2206    }
2207    MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2208        .addReg(AArch64::SP)
2209        .addImm(RPI.Offset) // [sp, #offset*scale],
2210                            // where factor*scale is implicit
2211        .setMIFlag(MachineInstr::FrameSetup);
2212    MIB.addMemOperand(MF.getMachineMemOperand(
2213        MachinePointerInfo::getFixedStack(MF,FrameIdxReg1),
2214        MachineMemOperand::MOStore, Size, Align));
2215    if (NeedsWinCFI)
2216      InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2217
2218    // Update the StackIDs of the SVE stack slots.
2219    MachineFrameInfo &MFI = MF.getFrameInfo();
2220    if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2221      MFI.setStackID(RPI.FrameIdx, TargetStackID::SVEVector);
2222
2223  }
2224  return true;
2225}
2226
2227bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2228    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2229    std::vector<CalleeSavedInfo> &CSI,
2230    const TargetRegisterInfo *TRI) const {
2231  MachineFunction &MF = *MBB.getParent();
2232  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2233  DebugLoc DL;
2234  SmallVector<RegPairInfo, 8> RegPairs;
2235  bool NeedsWinCFI = needsWinCFI(MF);
2236
2237  if (MI != MBB.end())
2238    DL = MI->getDebugLoc();
2239
2240  bool NeedShadowCallStackProlog = false;
2241  computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2242                                 NeedShadowCallStackProlog, hasFP(MF));
2243
2244  auto EmitMI = [&](const RegPairInfo &RPI) {
2245    unsigned Reg1 = RPI.Reg1;
2246    unsigned Reg2 = RPI.Reg2;
2247
2248    // Issue sequence of restores for cs regs. The last restore may be converted
2249    // to a post-increment load later by emitEpilogue if the callee-save stack
2250    // area allocation can't be combined with the local stack area allocation.
2251    // For example:
2252    //    ldp     fp, lr, [sp, #32]       // addImm(+4)
2253    //    ldp     x20, x19, [sp, #16]     // addImm(+2)
2254    //    ldp     x22, x21, [sp, #0]      // addImm(+0)
2255    // Note: see comment in spillCalleeSavedRegisters()
2256    unsigned LdrOpc;
2257    unsigned Size, Align;
2258    switch (RPI.Type) {
2259    case RegPairInfo::GPR:
2260       LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2261       Size = 8;
2262       Align = 8;
2263       break;
2264    case RegPairInfo::FPR64:
2265       LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2266       Size = 8;
2267       Align = 8;
2268       break;
2269    case RegPairInfo::FPR128:
2270       LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2271       Size = 16;
2272       Align = 16;
2273       break;
2274    case RegPairInfo::ZPR:
2275       LdrOpc = AArch64::LDR_ZXI;
2276       Size = 16;
2277       Align = 16;
2278       break;
2279    case RegPairInfo::PPR:
2280       LdrOpc = AArch64::LDR_PXI;
2281       Size = 2;
2282       Align = 2;
2283       break;
2284    }
2285    LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2286               if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2287               dbgs() << ") -> fi#(" << RPI.FrameIdx;
2288               if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2289               dbgs() << ")\n");
2290
2291    // Windows unwind codes require consecutive registers if registers are
2292    // paired.  Make the switch here, so that the code below will save (x,x+1)
2293    // and not (x+1,x).
2294    unsigned FrameIdxReg1 = RPI.FrameIdx;
2295    unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2296    if (NeedsWinCFI && RPI.isPaired()) {
2297      std::swap(Reg1, Reg2);
2298      std::swap(FrameIdxReg1, FrameIdxReg2);
2299    }
2300    MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
2301    if (RPI.isPaired()) {
2302      MIB.addReg(Reg2, getDefRegState(true));
2303      MIB.addMemOperand(MF.getMachineMemOperand(
2304          MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2305          MachineMemOperand::MOLoad, Size, Align));
2306    }
2307    MIB.addReg(Reg1, getDefRegState(true))
2308        .addReg(AArch64::SP)
2309        .addImm(RPI.Offset) // [sp, #offset*scale]
2310                            // where factor*scale is implicit
2311        .setMIFlag(MachineInstr::FrameDestroy);
2312    MIB.addMemOperand(MF.getMachineMemOperand(
2313        MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2314        MachineMemOperand::MOLoad, Size, Align));
2315    if (NeedsWinCFI)
2316      InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2317  };
2318
2319  // SVE objects are always restored in reverse order.
2320  for (const RegPairInfo &RPI : reverse(RegPairs))
2321    if (RPI.isScalable())
2322      EmitMI(RPI);
2323
2324  if (ReverseCSRRestoreSeq) {
2325    for (const RegPairInfo &RPI : reverse(RegPairs))
2326      if (!RPI.isScalable())
2327        EmitMI(RPI);
2328  } else
2329    for (const RegPairInfo &RPI : RegPairs)
2330      if (!RPI.isScalable())
2331        EmitMI(RPI);
2332
2333  if (NeedShadowCallStackProlog) {
2334    // Shadow call stack epilog: ldr x30, [x18, #-8]!
2335    BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre))
2336        .addReg(AArch64::X18, RegState::Define)
2337        .addReg(AArch64::LR, RegState::Define)
2338        .addReg(AArch64::X18)
2339        .addImm(-8)
2340        .setMIFlag(MachineInstr::FrameDestroy);
2341  }
2342
2343  return true;
2344}
2345
2346void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2347                                                BitVector &SavedRegs,
2348                                                RegScavenger *RS) const {
2349  // All calls are tail calls in GHC calling conv, and functions have no
2350  // prologue/epilogue.
2351  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2352    return;
2353
2354  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2355  const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2356      MF.getSubtarget().getRegisterInfo());
2357  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2358  unsigned UnspilledCSGPR = AArch64::NoRegister;
2359  unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2360
2361  MachineFrameInfo &MFI = MF.getFrameInfo();
2362  const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2363
2364  unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2365                                ? RegInfo->getBaseRegister()
2366                                : (unsigned)AArch64::NoRegister;
2367
2368  unsigned ExtraCSSpill = 0;
2369  // Figure out which callee-saved registers to save/restore.
2370  for (unsigned i = 0; CSRegs[i]; ++i) {
2371    const unsigned Reg = CSRegs[i];
2372
2373    // Add the base pointer register to SavedRegs if it is callee-save.
2374    if (Reg == BasePointerReg)
2375      SavedRegs.set(Reg);
2376
2377    bool RegUsed = SavedRegs.test(Reg);
2378    unsigned PairedReg = AArch64::NoRegister;
2379    if (AArch64::GPR64RegClass.contains(Reg) ||
2380        AArch64::FPR64RegClass.contains(Reg) ||
2381        AArch64::FPR128RegClass.contains(Reg))
2382      PairedReg = CSRegs[i ^ 1];
2383
2384    if (!RegUsed) {
2385      if (AArch64::GPR64RegClass.contains(Reg) &&
2386          !RegInfo->isReservedReg(MF, Reg)) {
2387        UnspilledCSGPR = Reg;
2388        UnspilledCSGPRPaired = PairedReg;
2389      }
2390      continue;
2391    }
2392
2393    // MachO's compact unwind format relies on all registers being stored in
2394    // pairs.
2395    // FIXME: the usual format is actually better if unwinding isn't needed.
2396    if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister &&
2397        !SavedRegs.test(PairedReg)) {
2398      SavedRegs.set(PairedReg);
2399      if (AArch64::GPR64RegClass.contains(PairedReg) &&
2400          !RegInfo->isReservedReg(MF, PairedReg))
2401        ExtraCSSpill = PairedReg;
2402    }
2403  }
2404
2405  // Calculates the callee saved stack size.
2406  unsigned CSStackSize = 0;
2407  unsigned SVECSStackSize = 0;
2408  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2409  const MachineRegisterInfo &MRI = MF.getRegInfo();
2410  for (unsigned Reg : SavedRegs.set_bits()) {
2411    auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
2412    if (AArch64::PPRRegClass.contains(Reg) ||
2413        AArch64::ZPRRegClass.contains(Reg))
2414      SVECSStackSize += RegSize;
2415    else
2416      CSStackSize += RegSize;
2417  }
2418
2419  // Save number of saved regs, so we can easily update CSStackSize later.
2420  unsigned NumSavedRegs = SavedRegs.count();
2421
2422  // The frame record needs to be created by saving the appropriate registers
2423  uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
2424  if (hasFP(MF) ||
2425      windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
2426    SavedRegs.set(AArch64::FP);
2427    SavedRegs.set(AArch64::LR);
2428  }
2429
2430  LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2431             for (unsigned Reg
2432                  : SavedRegs.set_bits()) dbgs()
2433             << ' ' << printReg(Reg, RegInfo);
2434             dbgs() << "\n";);
2435
2436  // If any callee-saved registers are used, the frame cannot be eliminated.
2437  int64_t SVEStackSize =
2438      alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
2439  bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
2440
2441  // The CSR spill slots have not been allocated yet, so estimateStackSize
2442  // won't include them.
2443  unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
2444
2445  // Conservatively always assume BigStack when there are SVE spills.
2446  bool BigStack = SVEStackSize ||
2447                  (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
2448  if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
2449    AFI->setHasStackFrame(true);
2450
2451  // Estimate if we might need to scavenge a register at some point in order
2452  // to materialize a stack offset. If so, either spill one additional
2453  // callee-saved register or reserve a special spill slot to facilitate
2454  // register scavenging. If we already spilled an extra callee-saved register
2455  // above to keep the number of spills even, we don't need to do anything else
2456  // here.
2457  if (BigStack) {
2458    if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
2459      LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
2460                        << " to get a scratch register.\n");
2461      SavedRegs.set(UnspilledCSGPR);
2462      // MachO's compact unwind format relies on all registers being stored in
2463      // pairs, so if we need to spill one extra for BigStack, then we need to
2464      // store the pair.
2465      if (produceCompactUnwindFrame(MF))
2466        SavedRegs.set(UnspilledCSGPRPaired);
2467      ExtraCSSpill = UnspilledCSGPR;
2468    }
2469
2470    // If we didn't find an extra callee-saved register to spill, create
2471    // an emergency spill slot.
2472    if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
2473      const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2474      const TargetRegisterClass &RC = AArch64::GPR64RegClass;
2475      unsigned Size = TRI->getSpillSize(RC);
2476      unsigned Align = TRI->getSpillAlignment(RC);
2477      int FI = MFI.CreateStackObject(Size, Align, false);
2478      RS->addScavengingFrameIndex(FI);
2479      LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2480                        << " as the emergency spill slot.\n");
2481    }
2482  }
2483
2484  // Adding the size of additional 64bit GPR saves.
2485  CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
2486  uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
2487  LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2488               << EstimatedStackSize + AlignedCSStackSize
2489               << " bytes.\n");
2490
2491  assert((!MFI.isCalleeSavedInfoValid() ||
2492          AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
2493         "Should not invalidate callee saved info");
2494
2495  // Round up to register pair alignment to avoid additional SP adjustment
2496  // instructions.
2497  AFI->setCalleeSavedStackSize(AlignedCSStackSize);
2498  AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
2499  AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
2500}
2501
2502bool AArch64FrameLowering::enableStackSlotScavenging(
2503    const MachineFunction &MF) const {
2504  const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2505  return AFI->hasCalleeSaveStackFreeSpace();
2506}
2507
2508/// returns true if there are any SVE callee saves.
2509static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
2510                                      int &Min, int &Max) {
2511  Min = std::numeric_limits<int>::max();
2512  Max = std::numeric_limits<int>::min();
2513
2514  if (!MFI.isCalleeSavedInfoValid())
2515    return false;
2516
2517  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2518  for (auto &CS : CSI) {
2519    if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
2520        AArch64::PPRRegClass.contains(CS.getReg())) {
2521      assert((Max == std::numeric_limits<int>::min() ||
2522              Max + 1 == CS.getFrameIdx()) &&
2523             "SVE CalleeSaves are not consecutive");
2524
2525      Min = std::min(Min, CS.getFrameIdx());
2526      Max = std::max(Max, CS.getFrameIdx());
2527    }
2528  }
2529  return Min != std::numeric_limits<int>::max();
2530}
2531
2532// Process all the SVE stack objects and determine offsets for each
2533// object. If AssignOffsets is true, the offsets get assigned.
2534// Fills in the first and last callee-saved frame indices into
2535// Min/MaxCSFrameIndex, respectively.
2536// Returns the size of the stack.
2537static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
2538                                              int &MinCSFrameIndex,
2539                                              int &MaxCSFrameIndex,
2540                                              bool AssignOffsets) {
2541  // First process all fixed stack objects.
2542  int64_t Offset = 0;
2543  for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
2544    if (MFI.getStackID(I) == TargetStackID::SVEVector) {
2545      int64_t FixedOffset = -MFI.getObjectOffset(I);
2546      if (FixedOffset > Offset)
2547        Offset = FixedOffset;
2548    }
2549
2550  auto Assign = [&MFI](int FI, int64_t Offset) {
2551    LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
2552    MFI.setObjectOffset(FI, Offset);
2553  };
2554
2555  // Then process all callee saved slots.
2556  if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
2557    // Make sure to align the last callee save slot.
2558    MFI.setObjectAlignment(MaxCSFrameIndex, 16U);
2559
2560    // Assign offsets to the callee save slots.
2561    for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
2562      Offset += MFI.getObjectSize(I);
2563      Offset = alignTo(Offset, MFI.getObjectAlignment(I));
2564      if (AssignOffsets)
2565        Assign(I, -Offset);
2566    }
2567  }
2568
2569  // Create a buffer of SVE objects to allocate and sort it.
2570  SmallVector<int, 8> ObjectsToAllocate;
2571  for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
2572    unsigned StackID = MFI.getStackID(I);
2573    if (StackID != TargetStackID::SVEVector)
2574      continue;
2575    if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
2576      continue;
2577    if (MFI.isDeadObjectIndex(I))
2578      continue;
2579
2580    ObjectsToAllocate.push_back(I);
2581  }
2582
2583  // Allocate all SVE locals and spills
2584  for (unsigned FI : ObjectsToAllocate) {
2585    unsigned Align = MFI.getObjectAlignment(FI);
2586    // FIXME: Given that the length of SVE vectors is not necessarily a power of
2587    // two, we'd need to align every object dynamically at runtime if the
2588    // alignment is larger than 16. This is not yet supported.
2589    if (Align > 16)
2590      report_fatal_error(
2591          "Alignment of scalable vectors > 16 bytes is not yet supported");
2592
2593    Offset = alignTo(Offset + MFI.getObjectSize(FI), Align);
2594    if (AssignOffsets)
2595      Assign(FI, -Offset);
2596  }
2597
2598  return Offset;
2599}
2600
2601int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
2602    MachineFrameInfo &MFI) const {
2603  int MinCSFrameIndex, MaxCSFrameIndex;
2604  return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
2605}
2606
2607int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
2608    MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
2609  return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
2610                                        true);
2611}
2612
2613void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
2614    MachineFunction &MF, RegScavenger *RS) const {
2615  MachineFrameInfo &MFI = MF.getFrameInfo();
2616
2617  assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
2618         "Upwards growing stack unsupported");
2619
2620  int MinCSFrameIndex, MaxCSFrameIndex;
2621  int64_t SVEStackSize =
2622      assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
2623
2624  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2625  AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
2626  AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
2627
2628  // If this function isn't doing Win64-style C++ EH, we don't need to do
2629  // anything.
2630  if (!MF.hasEHFunclets())
2631    return;
2632  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2633  WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2634
2635  MachineBasicBlock &MBB = MF.front();
2636  auto MBBI = MBB.begin();
2637  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2638    ++MBBI;
2639
2640  // Create an UnwindHelp object.
2641  // The UnwindHelp object is allocated at the start of the fixed object area
2642  int64_t FixedObject =
2643      getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
2644  int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
2645                                           /*SPOffset*/ -FixedObject,
2646                                           /*IsImmutable=*/false);
2647  EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
2648
2649  // We need to store -2 into the UnwindHelp object at the start of the
2650  // function.
2651  DebugLoc DL;
2652  RS->enterBasicBlockEnd(MBB);
2653  RS->backward(std::prev(MBBI));
2654  unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
2655  assert(DstReg && "There must be a free register after frame setup");
2656  BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
2657  BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
2658      .addReg(DstReg, getKillRegState(true))
2659      .addFrameIndex(UnwindHelpFI)
2660      .addImm(0);
2661}
2662
2663/// For Win64 AArch64 EH, the offset to the Unwind object is from the SP before
2664/// the update.  This is easily retrieved as it is exactly the offset that is set
2665/// in processFunctionBeforeFrameFinalized.
2666int AArch64FrameLowering::getFrameIndexReferencePreferSP(
2667    const MachineFunction &MF, int FI, unsigned &FrameReg,
2668    bool IgnoreSPUpdates) const {
2669  const MachineFrameInfo &MFI = MF.getFrameInfo();
2670  if (IgnoreSPUpdates) {
2671    LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
2672                      << MFI.getObjectOffset(FI) << "\n");
2673    FrameReg = AArch64::SP;
2674    return MFI.getObjectOffset(FI);
2675  }
2676
2677  return getFrameIndexReference(MF, FI, FrameReg);
2678}
2679
2680/// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
2681/// the parent's frame pointer
2682unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
2683    const MachineFunction &MF) const {
2684  return 0;
2685}
2686
2687/// Funclets only need to account for space for the callee saved registers,
2688/// as the locals are accounted for in the parent's stack frame.
2689unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
2690    const MachineFunction &MF) const {
2691  // This is the size of the pushed CSRs.
2692  unsigned CSSize =
2693      MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
2694  // This is the amount of stack a funclet needs to allocate.
2695  return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
2696                 getStackAlignment());
2697}
2698