MCAssembler.cpp revision 205407
1//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "assembler"
11#include "llvm/MC/MCAssembler.h"
12#include "llvm/MC/MCAsmLayout.h"
13#include "llvm/MC/MCCodeEmitter.h"
14#include "llvm/MC/MCExpr.h"
15#include "llvm/MC/MCObjectWriter.h"
16#include "llvm/MC/MCSymbol.h"
17#include "llvm/MC/MCValue.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/raw_ostream.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Target/TargetRegistry.h"
26#include "llvm/Target/TargetAsmBackend.h"
27
28// FIXME: Gross.
29#include "../Target/X86/X86FixupKinds.h"
30
31#include <vector>
32using namespace llvm;
33
34STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
35
36// FIXME FIXME FIXME: There are number of places in this file where we convert
37// what is a 64-bit assembler value used for computation into a value in the
38// object file, which may truncate it. We should detect that truncation where
39// invalid and report errors back.
40
41/* *** */
42
43MCFragment::MCFragment() : Kind(FragmentType(~0)) {
44}
45
46MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
47  : Kind(_Kind),
48    Parent(_Parent),
49    FileSize(~UINT64_C(0))
50{
51  if (Parent)
52    Parent->getFragmentList().push_back(this);
53}
54
55MCFragment::~MCFragment() {
56}
57
58uint64_t MCFragment::getAddress() const {
59  assert(getParent() && "Missing Section!");
60  return getParent()->getAddress() + Offset;
61}
62
63/* *** */
64
65MCSectionData::MCSectionData() : Section(0) {}
66
67MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
68  : Section(&_Section),
69    Alignment(1),
70    Address(~UINT64_C(0)),
71    Size(~UINT64_C(0)),
72    FileSize(~UINT64_C(0)),
73    HasInstructions(false)
74{
75  if (A)
76    A->getSectionList().push_back(this);
77}
78
79/* *** */
80
81MCSymbolData::MCSymbolData() : Symbol(0) {}
82
83MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
84                           uint64_t _Offset, MCAssembler *A)
85  : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
86    IsExternal(false), IsPrivateExtern(false),
87    CommonSize(0), CommonAlign(0), Flags(0), Index(0)
88{
89  if (A)
90    A->getSymbolList().push_back(this);
91}
92
93/* *** */
94
95MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
96                         MCCodeEmitter &_Emitter, raw_ostream &_OS)
97  : Context(_Context), Backend(_Backend), Emitter(_Emitter),
98    OS(_OS), SubsectionsViaSymbols(false)
99{
100}
101
102MCAssembler::~MCAssembler() {
103}
104
105static bool isScatteredFixupFullyResolvedSimple(const MCAssembler &Asm,
106                                                const MCAsmFixup &Fixup,
107                                                const MCDataFragment *DF,
108                                                const MCValue Target,
109                                                const MCSection *BaseSection) {
110  // The effective fixup address is
111  //     addr(atom(A)) + offset(A)
112  //   - addr(atom(B)) - offset(B)
113  //   - addr(<base symbol>) + <fixup offset from base symbol>
114  // and the offsets are not relocatable, so the fixup is fully resolved when
115  //  addr(atom(A)) - addr(atom(B)) - addr(<base symbol>)) == 0.
116  //
117  // The simple (Darwin, except on x86_64) way of dealing with this was to
118  // assume that any reference to a temporary symbol *must* be a temporary
119  // symbol in the same atom, unless the sections differ. Therefore, any PCrel
120  // relocation to a temporary symbol (in the same section) is fully
121  // resolved. This also works in conjunction with absolutized .set, which
122  // requires the compiler to use .set to absolutize the differences between
123  // symbols which the compiler knows to be assembly time constants, so we don't
124  // need to worry about consider symbol differences fully resolved.
125
126  // Non-relative fixups are only resolved if constant.
127  if (!BaseSection)
128    return Target.isAbsolute();
129
130  // Otherwise, relative fixups are only resolved if not a difference and the
131  // target is a temporary in the same section.
132  if (Target.isAbsolute() || Target.getSymB())
133    return false;
134
135  const MCSymbol *A = &Target.getSymA()->getSymbol();
136  if (!A->isTemporary() || !A->isInSection() ||
137      &A->getSection() != BaseSection)
138    return false;
139
140  return true;
141}
142
143static bool isScatteredFixupFullyResolved(const MCAssembler &Asm,
144                                          const MCAsmFixup &Fixup,
145                                          const MCDataFragment *DF,
146                                          const MCValue Target,
147                                          const MCSymbolData *BaseSymbol) {
148  // The effective fixup address is
149  //     addr(atom(A)) + offset(A)
150  //   - addr(atom(B)) - offset(B)
151  //   - addr(BaseSymbol) + <fixup offset from base symbol>
152  // and the offsets are not relocatable, so the fixup is fully resolved when
153  //  addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0.
154  //
155  // Note that "false" is almost always conservatively correct (it means we emit
156  // a relocation which is unnecessary), except when it would force us to emit a
157  // relocation which the target cannot encode.
158
159  const MCSymbolData *A_Base = 0, *B_Base = 0;
160  if (const MCSymbolRefExpr *A = Target.getSymA()) {
161    // Modified symbol references cannot be resolved.
162    if (A->getKind() != MCSymbolRefExpr::VK_None)
163      return false;
164
165    A_Base = Asm.getAtom(&Asm.getSymbolData(A->getSymbol()));
166    if (!A_Base)
167      return false;
168  }
169
170  if (const MCSymbolRefExpr *B = Target.getSymB()) {
171    // Modified symbol references cannot be resolved.
172    if (B->getKind() != MCSymbolRefExpr::VK_None)
173      return false;
174
175    B_Base = Asm.getAtom(&Asm.getSymbolData(B->getSymbol()));
176    if (!B_Base)
177      return false;
178  }
179
180  // If there is no base, A and B have to be the same atom for this fixup to be
181  // fully resolved.
182  if (!BaseSymbol)
183    return A_Base == B_Base;
184
185  // Otherwise, B must be missing and A must be the base.
186  return !B_Base && BaseSymbol == A_Base;
187}
188
189bool MCAssembler::isSymbolLinkerVisible(const MCSymbolData *SD) const {
190  // Non-temporary labels should always be visible to the linker.
191  if (!SD->getSymbol().isTemporary())
192    return true;
193
194  // Absolute temporary labels are never visible.
195  if (!SD->getFragment())
196    return false;
197
198  // Otherwise, check if the section requires symbols even for temporary labels.
199  return getBackend().doesSectionRequireSymbols(
200    SD->getFragment()->getParent()->getSection());
201}
202
203const MCSymbolData *MCAssembler::getAtomForAddress(const MCSectionData *Section,
204                                                   uint64_t Address) const {
205  const MCSymbolData *Best = 0;
206  for (MCAssembler::const_symbol_iterator it = symbol_begin(),
207         ie = symbol_end(); it != ie; ++it) {
208    // Ignore non-linker visible symbols.
209    if (!isSymbolLinkerVisible(it))
210      continue;
211
212    // Ignore symbols not in the same section.
213    if (!it->getFragment() || it->getFragment()->getParent() != Section)
214      continue;
215
216    // Otherwise, find the closest symbol preceding this address (ties are
217    // resolved in favor of the last defined symbol).
218    if (it->getAddress() <= Address &&
219        (!Best || it->getAddress() >= Best->getAddress()))
220      Best = it;
221  }
222
223  return Best;
224}
225
226const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
227  // Linker visible symbols define atoms.
228  if (isSymbolLinkerVisible(SD))
229    return SD;
230
231  // Absolute and undefined symbols have no defining atom.
232  if (!SD->getFragment())
233    return 0;
234
235  // Otherwise, search by address.
236  return getAtomForAddress(SD->getFragment()->getParent(), SD->getAddress());
237}
238
239bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout, MCAsmFixup &Fixup,
240                                MCDataFragment *DF,
241                                MCValue &Target, uint64_t &Value) const {
242  if (!Fixup.Value->EvaluateAsRelocatable(Target, &Layout))
243    llvm_report_error("expected relocatable expression");
244
245  // FIXME: How do non-scattered symbols work in ELF? I presume the linker
246  // doesn't support small relocations, but then under what criteria does the
247  // assembler allow symbol differences?
248
249  Value = Target.getConstant();
250
251  bool IsPCRel =
252    Emitter.getFixupKindInfo(Fixup.Kind).Flags & MCFixupKindInfo::FKF_IsPCRel;
253  bool IsResolved = true;
254  if (const MCSymbolRefExpr *A = Target.getSymA()) {
255    if (A->getSymbol().isDefined())
256      Value += getSymbolData(A->getSymbol()).getAddress();
257    else
258      IsResolved = false;
259  }
260  if (const MCSymbolRefExpr *B = Target.getSymB()) {
261    if (B->getSymbol().isDefined())
262      Value -= getSymbolData(B->getSymbol()).getAddress();
263    else
264      IsResolved = false;
265  }
266
267  // If we are using scattered symbols, determine whether this value is actually
268  // resolved; scattering may cause atoms to move.
269  if (IsResolved && getBackend().hasScatteredSymbols()) {
270    if (getBackend().hasReliableSymbolDifference()) {
271      // If this is a PCrel relocation, find the base atom (identified by its
272      // symbol) that the fixup value is relative to.
273      const MCSymbolData *BaseSymbol = 0;
274      if (IsPCRel) {
275        BaseSymbol = getAtomForAddress(
276          DF->getParent(), DF->getAddress() + Fixup.Offset);
277        if (!BaseSymbol)
278          IsResolved = false;
279      }
280
281      if (IsResolved)
282        IsResolved = isScatteredFixupFullyResolved(*this, Fixup, DF, Target,
283                                                   BaseSymbol);
284    } else {
285      const MCSection *BaseSection = 0;
286      if (IsPCRel)
287        BaseSection = &DF->getParent()->getSection();
288
289      IsResolved = isScatteredFixupFullyResolvedSimple(*this, Fixup, DF, Target,
290                                                       BaseSection);
291    }
292  }
293
294  if (IsPCRel)
295    Value -= DF->getAddress() + Fixup.Offset;
296
297  return IsResolved;
298}
299
300void MCAssembler::LayoutSection(MCSectionData &SD) {
301  MCAsmLayout Layout(*this);
302  uint64_t Address = SD.getAddress();
303
304  for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) {
305    MCFragment &F = *it;
306
307    F.setOffset(Address - SD.getAddress());
308
309    // Evaluate fragment size.
310    switch (F.getKind()) {
311    case MCFragment::FT_Align: {
312      MCAlignFragment &AF = cast<MCAlignFragment>(F);
313
314      uint64_t Size = OffsetToAlignment(Address, AF.getAlignment());
315      if (Size > AF.getMaxBytesToEmit())
316        AF.setFileSize(0);
317      else
318        AF.setFileSize(Size);
319      break;
320    }
321
322    case MCFragment::FT_Data:
323    case MCFragment::FT_Fill:
324      F.setFileSize(F.getMaxFileSize());
325      break;
326
327    case MCFragment::FT_Org: {
328      MCOrgFragment &OF = cast<MCOrgFragment>(F);
329
330      int64_t TargetLocation;
331      if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout))
332        llvm_report_error("expected assembly-time absolute expression");
333
334      // FIXME: We need a way to communicate this error.
335      int64_t Offset = TargetLocation - F.getOffset();
336      if (Offset < 0)
337        llvm_report_error("invalid .org offset '" + Twine(TargetLocation) +
338                          "' (at offset '" + Twine(F.getOffset()) + "'");
339
340      F.setFileSize(Offset);
341      break;
342    }
343
344    case MCFragment::FT_ZeroFill: {
345      MCZeroFillFragment &ZFF = cast<MCZeroFillFragment>(F);
346
347      // Align the fragment offset; it is safe to adjust the offset freely since
348      // this is only in virtual sections.
349      Address = RoundUpToAlignment(Address, ZFF.getAlignment());
350      F.setOffset(Address - SD.getAddress());
351
352      // FIXME: This is misnamed.
353      F.setFileSize(ZFF.getSize());
354      break;
355    }
356    }
357
358    Address += F.getFileSize();
359  }
360
361  // Set the section sizes.
362  SD.setSize(Address - SD.getAddress());
363  if (getBackend().isVirtualSection(SD.getSection()))
364    SD.setFileSize(0);
365  else
366    SD.setFileSize(Address - SD.getAddress());
367}
368
369/// WriteNopData - Write optimal nops to the output file for the \arg Count
370/// bytes.  This returns the number of bytes written.  It may return 0 if
371/// the \arg Count is more than the maximum optimal nops.
372///
373/// FIXME this is X86 32-bit specific and should move to a better place.
374static uint64_t WriteNopData(uint64_t Count, MCObjectWriter *OW) {
375  static const uint8_t Nops[16][16] = {
376    // nop
377    {0x90},
378    // xchg %ax,%ax
379    {0x66, 0x90},
380    // nopl (%[re]ax)
381    {0x0f, 0x1f, 0x00},
382    // nopl 0(%[re]ax)
383    {0x0f, 0x1f, 0x40, 0x00},
384    // nopl 0(%[re]ax,%[re]ax,1)
385    {0x0f, 0x1f, 0x44, 0x00, 0x00},
386    // nopw 0(%[re]ax,%[re]ax,1)
387    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
388    // nopl 0L(%[re]ax)
389    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
390    // nopl 0L(%[re]ax,%[re]ax,1)
391    {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
392    // nopw 0L(%[re]ax,%[re]ax,1)
393    {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
394    // nopw %cs:0L(%[re]ax,%[re]ax,1)
395    {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
396    // nopl 0(%[re]ax,%[re]ax,1)
397    // nopw 0(%[re]ax,%[re]ax,1)
398    {0x0f, 0x1f, 0x44, 0x00, 0x00,
399     0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
400    // nopw 0(%[re]ax,%[re]ax,1)
401    // nopw 0(%[re]ax,%[re]ax,1)
402    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00,
403     0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
404    // nopw 0(%[re]ax,%[re]ax,1)
405    // nopl 0L(%[re]ax) */
406    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00,
407     0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
408    // nopl 0L(%[re]ax)
409    // nopl 0L(%[re]ax)
410    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00,
411     0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
412    // nopl 0L(%[re]ax)
413    // nopl 0L(%[re]ax,%[re]ax,1)
414    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00,
415     0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}
416  };
417
418  if (Count > 15)
419    return 0;
420
421  for (uint64_t i = 0; i < Count; i++)
422    OW->Write8(uint8_t(Nops[Count - 1][i]));
423
424  return Count;
425}
426
427/// WriteFragmentData - Write the \arg F data to the output file.
428static void WriteFragmentData(const MCFragment &F, MCObjectWriter *OW) {
429  uint64_t Start = OW->getStream().tell();
430  (void) Start;
431
432  ++EmittedFragments;
433
434  // FIXME: Embed in fragments instead?
435  switch (F.getKind()) {
436  case MCFragment::FT_Align: {
437    MCAlignFragment &AF = cast<MCAlignFragment>(F);
438    uint64_t Count = AF.getFileSize() / AF.getValueSize();
439
440    // FIXME: This error shouldn't actually occur (the front end should emit
441    // multiple .align directives to enforce the semantics it wants), but is
442    // severe enough that we want to report it. How to handle this?
443    if (Count * AF.getValueSize() != AF.getFileSize())
444      llvm_report_error("undefined .align directive, value size '" +
445                        Twine(AF.getValueSize()) +
446                        "' is not a divisor of padding size '" +
447                        Twine(AF.getFileSize()) + "'");
448
449    // See if we are aligning with nops, and if so do that first to try to fill
450    // the Count bytes.  Then if that did not fill any bytes or there are any
451    // bytes left to fill use the the Value and ValueSize to fill the rest.
452    if (AF.getEmitNops()) {
453      uint64_t NopByteCount = WriteNopData(Count, OW);
454      Count -= NopByteCount;
455    }
456
457    for (uint64_t i = 0; i != Count; ++i) {
458      switch (AF.getValueSize()) {
459      default:
460        assert(0 && "Invalid size!");
461      case 1: OW->Write8 (uint8_t (AF.getValue())); break;
462      case 2: OW->Write16(uint16_t(AF.getValue())); break;
463      case 4: OW->Write32(uint32_t(AF.getValue())); break;
464      case 8: OW->Write64(uint64_t(AF.getValue())); break;
465      }
466    }
467    break;
468  }
469
470  case MCFragment::FT_Data: {
471    OW->WriteBytes(cast<MCDataFragment>(F).getContents().str());
472    break;
473  }
474
475  case MCFragment::FT_Fill: {
476    MCFillFragment &FF = cast<MCFillFragment>(F);
477    for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
478      switch (FF.getValueSize()) {
479      default:
480        assert(0 && "Invalid size!");
481      case 1: OW->Write8 (uint8_t (FF.getValue())); break;
482      case 2: OW->Write16(uint16_t(FF.getValue())); break;
483      case 4: OW->Write32(uint32_t(FF.getValue())); break;
484      case 8: OW->Write64(uint64_t(FF.getValue())); break;
485      }
486    }
487    break;
488  }
489
490  case MCFragment::FT_Org: {
491    MCOrgFragment &OF = cast<MCOrgFragment>(F);
492
493    for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i)
494      OW->Write8(uint8_t(OF.getValue()));
495
496    break;
497  }
498
499  case MCFragment::FT_ZeroFill: {
500    assert(0 && "Invalid zero fill fragment in concrete section!");
501    break;
502  }
503  }
504
505  assert(OW->getStream().tell() - Start == F.getFileSize());
506}
507
508void MCAssembler::WriteSectionData(const MCSectionData *SD,
509                                   MCObjectWriter *OW) const {
510  // Ignore virtual sections.
511  if (getBackend().isVirtualSection(SD->getSection())) {
512    assert(SD->getFileSize() == 0);
513    return;
514  }
515
516  uint64_t Start = OW->getStream().tell();
517  (void) Start;
518
519  for (MCSectionData::const_iterator it = SD->begin(),
520         ie = SD->end(); it != ie; ++it)
521    WriteFragmentData(*it, OW);
522
523  // Add section padding.
524  assert(SD->getFileSize() >= SD->getSize() && "Invalid section sizes!");
525  OW->WriteZeros(SD->getFileSize() - SD->getSize());
526
527  assert(OW->getStream().tell() - Start == SD->getFileSize());
528}
529
530void MCAssembler::Finish() {
531  DEBUG_WITH_TYPE("mc-dump", {
532      llvm::errs() << "assembler backend - pre-layout\n--\n";
533      dump(); });
534
535  // Layout until everything fits.
536  while (LayoutOnce())
537    continue;
538
539  DEBUG_WITH_TYPE("mc-dump", {
540      llvm::errs() << "assembler backend - post-layout\n--\n";
541      dump(); });
542
543  // FIXME: Factor out MCObjectWriter.
544  llvm::OwningPtr<MCObjectWriter> Writer(getBackend().createObjectWriter(OS));
545  if (!Writer)
546    llvm_report_error("unable to create object writer!");
547
548  // Allow the object writer a chance to perform post-layout binding (for
549  // example, to set the index fields in the symbol data).
550  Writer->ExecutePostLayoutBinding(*this);
551
552  // Evaluate and apply the fixups, generating relocation entries as necessary.
553  //
554  // FIXME: Share layout object.
555  MCAsmLayout Layout(*this);
556  for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
557    for (MCSectionData::iterator it2 = it->begin(),
558           ie2 = it->end(); it2 != ie2; ++it2) {
559      MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
560      if (!DF)
561        continue;
562
563      for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
564             ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
565        MCAsmFixup &Fixup = *it3;
566
567        // Evaluate the fixup.
568        MCValue Target;
569        uint64_t FixedValue;
570        if (!EvaluateFixup(Layout, Fixup, DF, Target, FixedValue)) {
571          // The fixup was unresolved, we need a relocation. Inform the object
572          // writer of the relocation, and give it an opportunity to adjust the
573          // fixup value if need be.
574          Writer->RecordRelocation(*this, *DF, Fixup, Target, FixedValue);
575        }
576
577        getBackend().ApplyFixup(Fixup, *DF, FixedValue);
578      }
579    }
580  }
581
582  // Write the object file.
583  Writer->WriteObject(*this);
584  OS.flush();
585}
586
587bool MCAssembler::FixupNeedsRelaxation(MCAsmFixup &Fixup, MCDataFragment *DF) {
588  // FIXME: Share layout object.
589  MCAsmLayout Layout(*this);
590
591  // Currently we only need to relax X86::reloc_pcrel_1byte.
592  if (unsigned(Fixup.Kind) != X86::reloc_pcrel_1byte)
593    return false;
594
595  // If we cannot resolve the fixup value, it requires relaxation.
596  MCValue Target;
597  uint64_t Value;
598  if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
599    return true;
600
601  // Otherwise, relax if the value is too big for a (signed) i8.
602  return int64_t(Value) != int64_t(int8_t(Value));
603}
604
605bool MCAssembler::LayoutOnce() {
606  // Layout the concrete sections and fragments.
607  uint64_t Address = 0;
608  MCSectionData *Prev = 0;
609  for (iterator it = begin(), ie = end(); it != ie; ++it) {
610    MCSectionData &SD = *it;
611
612    // Skip virtual sections.
613    if (getBackend().isVirtualSection(SD.getSection()))
614      continue;
615
616    // Align this section if necessary by adding padding bytes to the previous
617    // section.
618    if (uint64_t Pad = OffsetToAlignment(Address, it->getAlignment())) {
619      assert(Prev && "Missing prev section!");
620      Prev->setFileSize(Prev->getFileSize() + Pad);
621      Address += Pad;
622    }
623
624    // Layout the section fragments and its size.
625    SD.setAddress(Address);
626    LayoutSection(SD);
627    Address += SD.getFileSize();
628
629    Prev = &SD;
630  }
631
632  // Layout the virtual sections.
633  for (iterator it = begin(), ie = end(); it != ie; ++it) {
634    MCSectionData &SD = *it;
635
636    if (!getBackend().isVirtualSection(SD.getSection()))
637      continue;
638
639    // Align this section if necessary by adding padding bytes to the previous
640    // section.
641    if (uint64_t Pad = OffsetToAlignment(Address, it->getAlignment()))
642      Address += Pad;
643
644    SD.setAddress(Address);
645    LayoutSection(SD);
646    Address += SD.getSize();
647  }
648
649  // Scan the fixups in order and relax any that don't fit.
650  for (iterator it = begin(), ie = end(); it != ie; ++it) {
651    MCSectionData &SD = *it;
652
653    for (MCSectionData::iterator it2 = SD.begin(),
654           ie2 = SD.end(); it2 != ie2; ++it2) {
655      MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
656      if (!DF)
657        continue;
658
659      for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
660             ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
661        MCAsmFixup &Fixup = *it3;
662
663        // Check whether we need to relax this fixup.
664        if (!FixupNeedsRelaxation(Fixup, DF))
665          continue;
666
667        // Relax the instruction.
668        //
669        // FIXME: This is a huge temporary hack which just looks for x86
670        // branches; the only thing we need to relax on x86 is
671        // 'X86::reloc_pcrel_1byte'. Once we have MCInst fragments, this will be
672        // replaced by a TargetAsmBackend hook (most likely tblgen'd) to relax
673        // an individual MCInst.
674        SmallVectorImpl<char> &C = DF->getContents();
675        uint64_t PrevOffset = Fixup.Offset;
676        unsigned Amt = 0;
677
678          // jcc instructions
679        if (unsigned(C[Fixup.Offset-1]) >= 0x70 &&
680            unsigned(C[Fixup.Offset-1]) <= 0x7f) {
681          C[Fixup.Offset] = C[Fixup.Offset-1] + 0x10;
682          C[Fixup.Offset-1] = char(0x0f);
683          ++Fixup.Offset;
684          Amt = 4;
685
686          // jmp rel8
687        } else if (C[Fixup.Offset-1] == char(0xeb)) {
688          C[Fixup.Offset-1] = char(0xe9);
689          Amt = 3;
690
691        } else
692          llvm_unreachable("unknown 1 byte pcrel instruction!");
693
694        Fixup.Value = MCBinaryExpr::Create(
695          MCBinaryExpr::Sub, Fixup.Value,
696          MCConstantExpr::Create(3, getContext()),
697          getContext());
698        C.insert(C.begin() + Fixup.Offset, Amt, char(0));
699        Fixup.Kind = MCFixupKind(X86::reloc_pcrel_4byte);
700
701        // Update the remaining fixups, which have slid.
702        //
703        // FIXME: This is bad for performance, but will be eliminated by the
704        // move to MCInst specific fragments.
705        ++it3;
706        for (; it3 != ie3; ++it3)
707          it3->Offset += Amt;
708
709        // Update all the symbols for this fragment, which may have slid.
710        //
711        // FIXME: This is really really bad for performance, but will be
712        // eliminated by the move to MCInst specific fragments.
713        for (MCAssembler::symbol_iterator it = symbol_begin(),
714               ie = symbol_end(); it != ie; ++it) {
715          MCSymbolData &SD = *it;
716
717          if (it->getFragment() != DF)
718            continue;
719
720          if (SD.getOffset() > PrevOffset)
721            SD.setOffset(SD.getOffset() + Amt);
722        }
723
724        // Restart layout.
725        //
726        // FIXME: This is O(N^2), but will be eliminated once we have a smart
727        // MCAsmLayout object.
728        return true;
729      }
730    }
731  }
732
733  return false;
734}
735
736// Debugging methods
737
738namespace llvm {
739
740raw_ostream &operator<<(raw_ostream &OS, const MCAsmFixup &AF) {
741  OS << "<MCAsmFixup" << " Offset:" << AF.Offset << " Value:" << *AF.Value
742     << " Kind:" << AF.Kind << ">";
743  return OS;
744}
745
746}
747
748void MCFragment::dump() {
749  raw_ostream &OS = llvm::errs();
750
751  OS << "<MCFragment " << (void*) this << " Offset:" << Offset
752     << " FileSize:" << FileSize;
753
754  OS << ">";
755}
756
757void MCAlignFragment::dump() {
758  raw_ostream &OS = llvm::errs();
759
760  OS << "<MCAlignFragment ";
761  this->MCFragment::dump();
762  OS << "\n       ";
763  OS << " Alignment:" << getAlignment()
764     << " Value:" << getValue() << " ValueSize:" << getValueSize()
765     << " MaxBytesToEmit:" << getMaxBytesToEmit() << ">";
766}
767
768void MCDataFragment::dump() {
769  raw_ostream &OS = llvm::errs();
770
771  OS << "<MCDataFragment ";
772  this->MCFragment::dump();
773  OS << "\n       ";
774  OS << " Contents:[";
775  for (unsigned i = 0, e = getContents().size(); i != e; ++i) {
776    if (i) OS << ",";
777    OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
778  }
779  OS << "] (" << getContents().size() << " bytes)";
780
781  if (!getFixups().empty()) {
782    OS << ",\n       ";
783    OS << " Fixups:[";
784    for (fixup_iterator it = fixup_begin(), ie = fixup_end(); it != ie; ++it) {
785      if (it != fixup_begin()) OS << ",\n                ";
786      OS << *it;
787    }
788    OS << "]";
789  }
790
791  OS << ">";
792}
793
794void MCFillFragment::dump() {
795  raw_ostream &OS = llvm::errs();
796
797  OS << "<MCFillFragment ";
798  this->MCFragment::dump();
799  OS << "\n       ";
800  OS << " Value:" << getValue() << " ValueSize:" << getValueSize()
801     << " Count:" << getCount() << ">";
802}
803
804void MCOrgFragment::dump() {
805  raw_ostream &OS = llvm::errs();
806
807  OS << "<MCOrgFragment ";
808  this->MCFragment::dump();
809  OS << "\n       ";
810  OS << " Offset:" << getOffset() << " Value:" << getValue() << ">";
811}
812
813void MCZeroFillFragment::dump() {
814  raw_ostream &OS = llvm::errs();
815
816  OS << "<MCZeroFillFragment ";
817  this->MCFragment::dump();
818  OS << "\n       ";
819  OS << " Size:" << getSize() << " Alignment:" << getAlignment() << ">";
820}
821
822void MCSectionData::dump() {
823  raw_ostream &OS = llvm::errs();
824
825  OS << "<MCSectionData";
826  OS << " Alignment:" << getAlignment() << " Address:" << Address
827     << " Size:" << Size << " FileSize:" << FileSize
828     << " Fragments:[\n      ";
829  for (iterator it = begin(), ie = end(); it != ie; ++it) {
830    if (it != begin()) OS << ",\n      ";
831    it->dump();
832  }
833  OS << "]>";
834}
835
836void MCSymbolData::dump() {
837  raw_ostream &OS = llvm::errs();
838
839  OS << "<MCSymbolData Symbol:" << getSymbol()
840     << " Fragment:" << getFragment() << " Offset:" << getOffset()
841     << " Flags:" << getFlags() << " Index:" << getIndex();
842  if (isCommon())
843    OS << " (common, size:" << getCommonSize()
844       << " align: " << getCommonAlignment() << ")";
845  if (isExternal())
846    OS << " (external)";
847  if (isPrivateExtern())
848    OS << " (private extern)";
849  OS << ">";
850}
851
852void MCAssembler::dump() {
853  raw_ostream &OS = llvm::errs();
854
855  OS << "<MCAssembler\n";
856  OS << "  Sections:[\n    ";
857  for (iterator it = begin(), ie = end(); it != ie; ++it) {
858    if (it != begin()) OS << ",\n    ";
859    it->dump();
860  }
861  OS << "],\n";
862  OS << "  Symbols:[";
863
864  for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
865    if (it != symbol_begin()) OS << ",\n           ";
866    it->dump();
867  }
868  OS << "]>\n";
869}
870