LTOModule.cpp revision 309124
1//===-- LTOModule.cpp - LLVM Link Time Optimizer --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Link Time Optimization library. This library is
11// intended to be used by linker to optimize code at link time.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/LTO/legacy/LTOModule.h"
16#include "llvm/ADT/Triple.h"
17#include "llvm/Bitcode/ReaderWriter.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DiagnosticPrinter.h"
21#include "llvm/IR/LLVMContext.h"
22#include "llvm/IR/Mangler.h"
23#include "llvm/IR/Metadata.h"
24#include "llvm/IR/Module.h"
25#include "llvm/MC/MCExpr.h"
26#include "llvm/MC/MCInst.h"
27#include "llvm/MC/MCInstrInfo.h"
28#include "llvm/MC/MCParser/MCAsmParser.h"
29#include "llvm/MC/MCParser/MCTargetAsmParser.h"
30#include "llvm/MC/MCSection.h"
31#include "llvm/MC/MCSubtargetInfo.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/MC/SubtargetFeature.h"
34#include "llvm/Object/IRObjectFile.h"
35#include "llvm/Object/ObjectFile.h"
36#include "llvm/Support/FileSystem.h"
37#include "llvm/Support/Host.h"
38#include "llvm/Support/MemoryBuffer.h"
39#include "llvm/Support/Path.h"
40#include "llvm/Support/SourceMgr.h"
41#include "llvm/Support/TargetRegistry.h"
42#include "llvm/Support/TargetSelect.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetLoweringObjectFile.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetSubtargetInfo.h"
47#include "llvm/Transforms/Utils/GlobalStatus.h"
48#include <system_error>
49using namespace llvm;
50using namespace llvm::object;
51
52LTOModule::LTOModule(std::unique_ptr<object::IRObjectFile> Obj,
53                     llvm::TargetMachine *TM)
54    : IRFile(std::move(Obj)), _target(TM) {}
55
56LTOModule::~LTOModule() {}
57
58/// isBitcodeFile - Returns 'true' if the file (or memory contents) is LLVM
59/// bitcode.
60bool LTOModule::isBitcodeFile(const void *Mem, size_t Length) {
61  ErrorOr<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
62      MemoryBufferRef(StringRef((const char *)Mem, Length), "<mem>"));
63  return bool(BCData);
64}
65
66bool LTOModule::isBitcodeFile(const char *Path) {
67  ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
68      MemoryBuffer::getFile(Path);
69  if (!BufferOrErr)
70    return false;
71
72  ErrorOr<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
73      BufferOrErr.get()->getMemBufferRef());
74  return bool(BCData);
75}
76
77bool LTOModule::isThinLTO() {
78  // Right now the detection is only based on the summary presence. We may want
79  // to add a dedicated flag at some point.
80  return hasGlobalValueSummary(IRFile->getMemoryBufferRef(),
81                            [](const DiagnosticInfo &DI) {
82                              DiagnosticPrinterRawOStream DP(errs());
83                              DI.print(DP);
84                              errs() << '\n';
85                              return;
86                            });
87}
88
89bool LTOModule::isBitcodeForTarget(MemoryBuffer *Buffer,
90                                   StringRef TriplePrefix) {
91  ErrorOr<MemoryBufferRef> BCOrErr =
92      IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
93  if (!BCOrErr)
94    return false;
95  LLVMContext Context;
96  std::string Triple = getBitcodeTargetTriple(*BCOrErr, Context);
97  return StringRef(Triple).startswith(TriplePrefix);
98}
99
100std::string LTOModule::getProducerString(MemoryBuffer *Buffer) {
101  ErrorOr<MemoryBufferRef> BCOrErr =
102      IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
103  if (!BCOrErr)
104    return "";
105  LLVMContext Context;
106  return getBitcodeProducerString(*BCOrErr, Context);
107}
108
109ErrorOr<std::unique_ptr<LTOModule>>
110LTOModule::createFromFile(LLVMContext &Context, const char *path,
111                          const TargetOptions &options) {
112  ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
113      MemoryBuffer::getFile(path);
114  if (std::error_code EC = BufferOrErr.getError()) {
115    Context.emitError(EC.message());
116    return EC;
117  }
118  std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
119  return makeLTOModule(Buffer->getMemBufferRef(), options, Context,
120                       /* ShouldBeLazy*/ false);
121}
122
123ErrorOr<std::unique_ptr<LTOModule>>
124LTOModule::createFromOpenFile(LLVMContext &Context, int fd, const char *path,
125                              size_t size, const TargetOptions &options) {
126  return createFromOpenFileSlice(Context, fd, path, size, 0, options);
127}
128
129ErrorOr<std::unique_ptr<LTOModule>>
130LTOModule::createFromOpenFileSlice(LLVMContext &Context, int fd,
131                                   const char *path, size_t map_size,
132                                   off_t offset, const TargetOptions &options) {
133  ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
134      MemoryBuffer::getOpenFileSlice(fd, path, map_size, offset);
135  if (std::error_code EC = BufferOrErr.getError()) {
136    Context.emitError(EC.message());
137    return EC;
138  }
139  std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
140  return makeLTOModule(Buffer->getMemBufferRef(), options, Context,
141                       /* ShouldBeLazy */ false);
142}
143
144ErrorOr<std::unique_ptr<LTOModule>>
145LTOModule::createFromBuffer(LLVMContext &Context, const void *mem,
146                            size_t length, const TargetOptions &options,
147                            StringRef path) {
148  StringRef Data((const char *)mem, length);
149  MemoryBufferRef Buffer(Data, path);
150  return makeLTOModule(Buffer, options, Context, /* ShouldBeLazy */ false);
151}
152
153ErrorOr<std::unique_ptr<LTOModule>>
154LTOModule::createInLocalContext(std::unique_ptr<LLVMContext> Context,
155                                const void *mem, size_t length,
156                                const TargetOptions &options, StringRef path) {
157  StringRef Data((const char *)mem, length);
158  MemoryBufferRef Buffer(Data, path);
159  // If we own a context, we know this is being used only for symbol extraction,
160  // not linking.  Be lazy in that case.
161  ErrorOr<std::unique_ptr<LTOModule>> Ret =
162      makeLTOModule(Buffer, options, *Context, /* ShouldBeLazy */ true);
163  if (Ret)
164    (*Ret)->OwnedContext = std::move(Context);
165  return Ret;
166}
167
168static ErrorOr<std::unique_ptr<Module>>
169parseBitcodeFileImpl(MemoryBufferRef Buffer, LLVMContext &Context,
170                     bool ShouldBeLazy) {
171
172  // Find the buffer.
173  ErrorOr<MemoryBufferRef> MBOrErr =
174      IRObjectFile::findBitcodeInMemBuffer(Buffer);
175  if (std::error_code EC = MBOrErr.getError()) {
176    Context.emitError(EC.message());
177    return EC;
178  }
179
180  if (!ShouldBeLazy) {
181    // Parse the full file.
182    ErrorOr<std::unique_ptr<Module>> M = parseBitcodeFile(*MBOrErr, Context);
183    if (std::error_code EC = M.getError())
184      return EC;
185    return std::move(*M);
186  }
187
188  // Parse lazily.
189  std::unique_ptr<MemoryBuffer> LightweightBuf =
190      MemoryBuffer::getMemBuffer(*MBOrErr, false);
191  ErrorOr<std::unique_ptr<Module>> M = getLazyBitcodeModule(
192      std::move(LightweightBuf), Context, true /*ShouldLazyLoadMetadata*/);
193  if (std::error_code EC = M.getError())
194    return EC;
195  return std::move(*M);
196}
197
198ErrorOr<std::unique_ptr<LTOModule>>
199LTOModule::makeLTOModule(MemoryBufferRef Buffer, const TargetOptions &options,
200                         LLVMContext &Context, bool ShouldBeLazy) {
201  ErrorOr<std::unique_ptr<Module>> MOrErr =
202      parseBitcodeFileImpl(Buffer, Context, ShouldBeLazy);
203  if (std::error_code EC = MOrErr.getError())
204    return EC;
205  std::unique_ptr<Module> &M = *MOrErr;
206
207  std::string TripleStr = M->getTargetTriple();
208  if (TripleStr.empty())
209    TripleStr = sys::getDefaultTargetTriple();
210  llvm::Triple Triple(TripleStr);
211
212  // find machine architecture for this module
213  std::string errMsg;
214  const Target *march = TargetRegistry::lookupTarget(TripleStr, errMsg);
215  if (!march)
216    return std::unique_ptr<LTOModule>(nullptr);
217
218  // construct LTOModule, hand over ownership of module and target
219  SubtargetFeatures Features;
220  Features.getDefaultSubtargetFeatures(Triple);
221  std::string FeatureStr = Features.getString();
222  // Set a default CPU for Darwin triples.
223  std::string CPU;
224  if (Triple.isOSDarwin()) {
225    if (Triple.getArch() == llvm::Triple::x86_64)
226      CPU = "core2";
227    else if (Triple.getArch() == llvm::Triple::x86)
228      CPU = "yonah";
229    else if (Triple.getArch() == llvm::Triple::aarch64)
230      CPU = "cyclone";
231  }
232
233  TargetMachine *target =
234      march->createTargetMachine(TripleStr, CPU, FeatureStr, options, None);
235  M->setDataLayout(target->createDataLayout());
236
237  std::unique_ptr<object::IRObjectFile> IRObj(
238      new object::IRObjectFile(Buffer, std::move(M)));
239
240  std::unique_ptr<LTOModule> Ret(new LTOModule(std::move(IRObj), target));
241  Ret->parseSymbols();
242  Ret->parseMetadata();
243
244  return std::move(Ret);
245}
246
247/// Create a MemoryBuffer from a memory range with an optional name.
248std::unique_ptr<MemoryBuffer>
249LTOModule::makeBuffer(const void *mem, size_t length, StringRef name) {
250  const char *startPtr = (const char*)mem;
251  return MemoryBuffer::getMemBuffer(StringRef(startPtr, length), name, false);
252}
253
254/// objcClassNameFromExpression - Get string that the data pointer points to.
255bool
256LTOModule::objcClassNameFromExpression(const Constant *c, std::string &name) {
257  if (const ConstantExpr *ce = dyn_cast<ConstantExpr>(c)) {
258    Constant *op = ce->getOperand(0);
259    if (GlobalVariable *gvn = dyn_cast<GlobalVariable>(op)) {
260      Constant *cn = gvn->getInitializer();
261      if (ConstantDataArray *ca = dyn_cast<ConstantDataArray>(cn)) {
262        if (ca->isCString()) {
263          name = (".objc_class_name_" + ca->getAsCString()).str();
264          return true;
265        }
266      }
267    }
268  }
269  return false;
270}
271
272/// addObjCClass - Parse i386/ppc ObjC class data structure.
273void LTOModule::addObjCClass(const GlobalVariable *clgv) {
274  const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
275  if (!c) return;
276
277  // second slot in __OBJC,__class is pointer to superclass name
278  std::string superclassName;
279  if (objcClassNameFromExpression(c->getOperand(1), superclassName)) {
280    auto IterBool =
281        _undefines.insert(std::make_pair(superclassName, NameAndAttributes()));
282    if (IterBool.second) {
283      NameAndAttributes &info = IterBool.first->second;
284      info.name = IterBool.first->first().data();
285      info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
286      info.isFunction = false;
287      info.symbol = clgv;
288    }
289  }
290
291  // third slot in __OBJC,__class is pointer to class name
292  std::string className;
293  if (objcClassNameFromExpression(c->getOperand(2), className)) {
294    auto Iter = _defines.insert(className).first;
295
296    NameAndAttributes info;
297    info.name = Iter->first().data();
298    info.attributes = LTO_SYMBOL_PERMISSIONS_DATA |
299      LTO_SYMBOL_DEFINITION_REGULAR | LTO_SYMBOL_SCOPE_DEFAULT;
300    info.isFunction = false;
301    info.symbol = clgv;
302    _symbols.push_back(info);
303  }
304}
305
306/// addObjCCategory - Parse i386/ppc ObjC category data structure.
307void LTOModule::addObjCCategory(const GlobalVariable *clgv) {
308  const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
309  if (!c) return;
310
311  // second slot in __OBJC,__category is pointer to target class name
312  std::string targetclassName;
313  if (!objcClassNameFromExpression(c->getOperand(1), targetclassName))
314    return;
315
316  auto IterBool =
317      _undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
318
319  if (!IterBool.second)
320    return;
321
322  NameAndAttributes &info = IterBool.first->second;
323  info.name = IterBool.first->first().data();
324  info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
325  info.isFunction = false;
326  info.symbol = clgv;
327}
328
329/// addObjCClassRef - Parse i386/ppc ObjC class list data structure.
330void LTOModule::addObjCClassRef(const GlobalVariable *clgv) {
331  std::string targetclassName;
332  if (!objcClassNameFromExpression(clgv->getInitializer(), targetclassName))
333    return;
334
335  auto IterBool =
336      _undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
337
338  if (!IterBool.second)
339    return;
340
341  NameAndAttributes &info = IterBool.first->second;
342  info.name = IterBool.first->first().data();
343  info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
344  info.isFunction = false;
345  info.symbol = clgv;
346}
347
348void LTOModule::addDefinedDataSymbol(const object::BasicSymbolRef &Sym) {
349  SmallString<64> Buffer;
350  {
351    raw_svector_ostream OS(Buffer);
352    Sym.printName(OS);
353  }
354
355  const GlobalValue *V = IRFile->getSymbolGV(Sym.getRawDataRefImpl());
356  addDefinedDataSymbol(Buffer.c_str(), V);
357}
358
359void LTOModule::addDefinedDataSymbol(const char *Name, const GlobalValue *v) {
360  // Add to list of defined symbols.
361  addDefinedSymbol(Name, v, false);
362
363  if (!v->hasSection() /* || !isTargetDarwin */)
364    return;
365
366  // Special case i386/ppc ObjC data structures in magic sections:
367  // The issue is that the old ObjC object format did some strange
368  // contortions to avoid real linker symbols.  For instance, the
369  // ObjC class data structure is allocated statically in the executable
370  // that defines that class.  That data structures contains a pointer to
371  // its superclass.  But instead of just initializing that part of the
372  // struct to the address of its superclass, and letting the static and
373  // dynamic linkers do the rest, the runtime works by having that field
374  // instead point to a C-string that is the name of the superclass.
375  // At runtime the objc initialization updates that pointer and sets
376  // it to point to the actual super class.  As far as the linker
377  // knows it is just a pointer to a string.  But then someone wanted the
378  // linker to issue errors at build time if the superclass was not found.
379  // So they figured out a way in mach-o object format to use an absolute
380  // symbols (.objc_class_name_Foo = 0) and a floating reference
381  // (.reference .objc_class_name_Bar) to cause the linker into erroring when
382  // a class was missing.
383  // The following synthesizes the implicit .objc_* symbols for the linker
384  // from the ObjC data structures generated by the front end.
385
386  // special case if this data blob is an ObjC class definition
387  std::string Section = v->getSection();
388  if (Section.compare(0, 15, "__OBJC,__class,") == 0) {
389    if (const GlobalVariable *gv = dyn_cast<GlobalVariable>(v)) {
390      addObjCClass(gv);
391    }
392  }
393
394  // special case if this data blob is an ObjC category definition
395  else if (Section.compare(0, 18, "__OBJC,__category,") == 0) {
396    if (const GlobalVariable *gv = dyn_cast<GlobalVariable>(v)) {
397      addObjCCategory(gv);
398    }
399  }
400
401  // special case if this data blob is the list of referenced classes
402  else if (Section.compare(0, 18, "__OBJC,__cls_refs,") == 0) {
403    if (const GlobalVariable *gv = dyn_cast<GlobalVariable>(v)) {
404      addObjCClassRef(gv);
405    }
406  }
407}
408
409void LTOModule::addDefinedFunctionSymbol(const object::BasicSymbolRef &Sym) {
410  SmallString<64> Buffer;
411  {
412    raw_svector_ostream OS(Buffer);
413    Sym.printName(OS);
414  }
415
416  const Function *F =
417      cast<Function>(IRFile->getSymbolGV(Sym.getRawDataRefImpl()));
418  addDefinedFunctionSymbol(Buffer.c_str(), F);
419}
420
421void LTOModule::addDefinedFunctionSymbol(const char *Name, const Function *F) {
422  // add to list of defined symbols
423  addDefinedSymbol(Name, F, true);
424}
425
426void LTOModule::addDefinedSymbol(const char *Name, const GlobalValue *def,
427                                 bool isFunction) {
428  // set alignment part log2() can have rounding errors
429  uint32_t align = def->getAlignment();
430  uint32_t attr = align ? countTrailingZeros(align) : 0;
431
432  // set permissions part
433  if (isFunction) {
434    attr |= LTO_SYMBOL_PERMISSIONS_CODE;
435  } else {
436    const GlobalVariable *gv = dyn_cast<GlobalVariable>(def);
437    if (gv && gv->isConstant())
438      attr |= LTO_SYMBOL_PERMISSIONS_RODATA;
439    else
440      attr |= LTO_SYMBOL_PERMISSIONS_DATA;
441  }
442
443  // set definition part
444  if (def->hasWeakLinkage() || def->hasLinkOnceLinkage())
445    attr |= LTO_SYMBOL_DEFINITION_WEAK;
446  else if (def->hasCommonLinkage())
447    attr |= LTO_SYMBOL_DEFINITION_TENTATIVE;
448  else
449    attr |= LTO_SYMBOL_DEFINITION_REGULAR;
450
451  // set scope part
452  if (def->hasLocalLinkage())
453    // Ignore visibility if linkage is local.
454    attr |= LTO_SYMBOL_SCOPE_INTERNAL;
455  else if (def->hasHiddenVisibility())
456    attr |= LTO_SYMBOL_SCOPE_HIDDEN;
457  else if (def->hasProtectedVisibility())
458    attr |= LTO_SYMBOL_SCOPE_PROTECTED;
459  else if (canBeOmittedFromSymbolTable(def))
460    attr |= LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN;
461  else
462    attr |= LTO_SYMBOL_SCOPE_DEFAULT;
463
464  if (def->hasComdat())
465    attr |= LTO_SYMBOL_COMDAT;
466
467  if (isa<GlobalAlias>(def))
468    attr |= LTO_SYMBOL_ALIAS;
469
470  auto Iter = _defines.insert(Name).first;
471
472  // fill information structure
473  NameAndAttributes info;
474  StringRef NameRef = Iter->first();
475  info.name = NameRef.data();
476  assert(info.name[NameRef.size()] == '\0');
477  info.attributes = attr;
478  info.isFunction = isFunction;
479  info.symbol = def;
480
481  // add to table of symbols
482  _symbols.push_back(info);
483}
484
485/// addAsmGlobalSymbol - Add a global symbol from module-level ASM to the
486/// defined list.
487void LTOModule::addAsmGlobalSymbol(const char *name,
488                                   lto_symbol_attributes scope) {
489  auto IterBool = _defines.insert(name);
490
491  // only add new define if not already defined
492  if (!IterBool.second)
493    return;
494
495  NameAndAttributes &info = _undefines[IterBool.first->first().data()];
496
497  if (info.symbol == nullptr) {
498    // FIXME: This is trying to take care of module ASM like this:
499    //
500    //   module asm ".zerofill __FOO, __foo, _bar_baz_qux, 0"
501    //
502    // but is gross and its mother dresses it funny. Have the ASM parser give us
503    // more details for this type of situation so that we're not guessing so
504    // much.
505
506    // fill information structure
507    info.name = IterBool.first->first().data();
508    info.attributes =
509      LTO_SYMBOL_PERMISSIONS_DATA | LTO_SYMBOL_DEFINITION_REGULAR | scope;
510    info.isFunction = false;
511    info.symbol = nullptr;
512
513    // add to table of symbols
514    _symbols.push_back(info);
515    return;
516  }
517
518  if (info.isFunction)
519    addDefinedFunctionSymbol(info.name, cast<Function>(info.symbol));
520  else
521    addDefinedDataSymbol(info.name, info.symbol);
522
523  _symbols.back().attributes &= ~LTO_SYMBOL_SCOPE_MASK;
524  _symbols.back().attributes |= scope;
525}
526
527/// addAsmGlobalSymbolUndef - Add a global symbol from module-level ASM to the
528/// undefined list.
529void LTOModule::addAsmGlobalSymbolUndef(const char *name) {
530  auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
531
532  _asm_undefines.push_back(IterBool.first->first().data());
533
534  // we already have the symbol
535  if (!IterBool.second)
536    return;
537
538  uint32_t attr = LTO_SYMBOL_DEFINITION_UNDEFINED;
539  attr |= LTO_SYMBOL_SCOPE_DEFAULT;
540  NameAndAttributes &info = IterBool.first->second;
541  info.name = IterBool.first->first().data();
542  info.attributes = attr;
543  info.isFunction = false;
544  info.symbol = nullptr;
545}
546
547/// Add a symbol which isn't defined just yet to a list to be resolved later.
548void LTOModule::addPotentialUndefinedSymbol(const object::BasicSymbolRef &Sym,
549                                            bool isFunc) {
550  SmallString<64> name;
551  {
552    raw_svector_ostream OS(name);
553    Sym.printName(OS);
554  }
555
556  auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
557
558  // we already have the symbol
559  if (!IterBool.second)
560    return;
561
562  NameAndAttributes &info = IterBool.first->second;
563
564  info.name = IterBool.first->first().data();
565
566  const GlobalValue *decl = IRFile->getSymbolGV(Sym.getRawDataRefImpl());
567
568  if (decl->hasExternalWeakLinkage())
569    info.attributes = LTO_SYMBOL_DEFINITION_WEAKUNDEF;
570  else
571    info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
572
573  info.isFunction = isFunc;
574  info.symbol = decl;
575}
576
577void LTOModule::parseSymbols() {
578  for (auto &Sym : IRFile->symbols()) {
579    const GlobalValue *GV = IRFile->getSymbolGV(Sym.getRawDataRefImpl());
580    uint32_t Flags = Sym.getFlags();
581    if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
582      continue;
583
584    bool IsUndefined = Flags & object::BasicSymbolRef::SF_Undefined;
585
586    if (!GV) {
587      SmallString<64> Buffer;
588      {
589        raw_svector_ostream OS(Buffer);
590        Sym.printName(OS);
591      }
592      const char *Name = Buffer.c_str();
593
594      if (IsUndefined)
595        addAsmGlobalSymbolUndef(Name);
596      else if (Flags & object::BasicSymbolRef::SF_Global)
597        addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_DEFAULT);
598      else
599        addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_INTERNAL);
600      continue;
601    }
602
603    auto *F = dyn_cast<Function>(GV);
604    if (IsUndefined) {
605      addPotentialUndefinedSymbol(Sym, F != nullptr);
606      continue;
607    }
608
609    if (F) {
610      addDefinedFunctionSymbol(Sym);
611      continue;
612    }
613
614    if (isa<GlobalVariable>(GV)) {
615      addDefinedDataSymbol(Sym);
616      continue;
617    }
618
619    assert(isa<GlobalAlias>(GV));
620    addDefinedDataSymbol(Sym);
621  }
622
623  // make symbols for all undefines
624  for (StringMap<NameAndAttributes>::iterator u =_undefines.begin(),
625         e = _undefines.end(); u != e; ++u) {
626    // If this symbol also has a definition, then don't make an undefine because
627    // it is a tentative definition.
628    if (_defines.count(u->getKey())) continue;
629    NameAndAttributes info = u->getValue();
630    _symbols.push_back(info);
631  }
632}
633
634/// parseMetadata - Parse metadata from the module
635void LTOModule::parseMetadata() {
636  raw_string_ostream OS(LinkerOpts);
637
638  // Linker Options
639  if (Metadata *Val = getModule().getModuleFlag("Linker Options")) {
640    MDNode *LinkerOptions = cast<MDNode>(Val);
641    for (unsigned i = 0, e = LinkerOptions->getNumOperands(); i != e; ++i) {
642      MDNode *MDOptions = cast<MDNode>(LinkerOptions->getOperand(i));
643      for (unsigned ii = 0, ie = MDOptions->getNumOperands(); ii != ie; ++ii) {
644        MDString *MDOption = cast<MDString>(MDOptions->getOperand(ii));
645        OS << " " << MDOption->getString();
646      }
647    }
648  }
649
650  // Globals
651  Mangler Mang;
652  for (const NameAndAttributes &Sym : _symbols) {
653    if (!Sym.symbol)
654      continue;
655    _target->getObjFileLowering()->emitLinkerFlagsForGlobal(OS, Sym.symbol,
656                                                            Mang);
657  }
658
659  // Add other interesting metadata here.
660}
661