Instruction.cpp revision 296417
1//===-- Instruction.cpp - Implement the Instruction class -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Instruction class for the IR library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Instruction.h"
15#include "llvm/IR/CallSite.h"
16#include "llvm/IR/Constants.h"
17#include "llvm/IR/Instructions.h"
18#include "llvm/IR/Module.h"
19#include "llvm/IR/Operator.h"
20#include "llvm/IR/Type.h"
21using namespace llvm;
22
23Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
24                         Instruction *InsertBefore)
25  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
26
27  // If requested, insert this instruction into a basic block...
28  if (InsertBefore) {
29    BasicBlock *BB = InsertBefore->getParent();
30    assert(BB && "Instruction to insert before is not in a basic block!");
31    BB->getInstList().insert(InsertBefore->getIterator(), this);
32  }
33}
34
35Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
36                         BasicBlock *InsertAtEnd)
37  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
38
39  // append this instruction into the basic block
40  assert(InsertAtEnd && "Basic block to append to may not be NULL!");
41  InsertAtEnd->getInstList().push_back(this);
42}
43
44
45// Out of line virtual method, so the vtable, etc has a home.
46Instruction::~Instruction() {
47  assert(!Parent && "Instruction still linked in the program!");
48  if (hasMetadataHashEntry())
49    clearMetadataHashEntries();
50}
51
52
53void Instruction::setParent(BasicBlock *P) {
54  Parent = P;
55}
56
57const Module *Instruction::getModule() const {
58  return getParent()->getModule();
59}
60
61Module *Instruction::getModule() {
62  return getParent()->getModule();
63}
64
65Function *Instruction::getFunction() { return getParent()->getParent(); }
66
67const Function *Instruction::getFunction() const {
68  return getParent()->getParent();
69}
70
71void Instruction::removeFromParent() {
72  getParent()->getInstList().remove(getIterator());
73}
74
75iplist<Instruction>::iterator Instruction::eraseFromParent() {
76  return getParent()->getInstList().erase(getIterator());
77}
78
79/// Insert an unlinked instruction into a basic block immediately before the
80/// specified instruction.
81void Instruction::insertBefore(Instruction *InsertPos) {
82  InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this);
83}
84
85/// Insert an unlinked instruction into a basic block immediately after the
86/// specified instruction.
87void Instruction::insertAfter(Instruction *InsertPos) {
88  InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(),
89                                                    this);
90}
91
92/// Unlink this instruction from its current basic block and insert it into the
93/// basic block that MovePos lives in, right before MovePos.
94void Instruction::moveBefore(Instruction *MovePos) {
95  MovePos->getParent()->getInstList().splice(
96      MovePos->getIterator(), getParent()->getInstList(), getIterator());
97}
98
99/// Set or clear the unsafe-algebra flag on this instruction, which must be an
100/// operator which supports this flag. See LangRef.html for the meaning of this
101/// flag.
102void Instruction::setHasUnsafeAlgebra(bool B) {
103  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
104  cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
105}
106
107/// Set or clear the NoNaNs flag on this instruction, which must be an operator
108/// which supports this flag. See LangRef.html for the meaning of this flag.
109void Instruction::setHasNoNaNs(bool B) {
110  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
111  cast<FPMathOperator>(this)->setHasNoNaNs(B);
112}
113
114/// Set or clear the no-infs flag on this instruction, which must be an operator
115/// which supports this flag. See LangRef.html for the meaning of this flag.
116void Instruction::setHasNoInfs(bool B) {
117  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
118  cast<FPMathOperator>(this)->setHasNoInfs(B);
119}
120
121/// Set or clear the no-signed-zeros flag on this instruction, which must be an
122/// operator which supports this flag. See LangRef.html for the meaning of this
123/// flag.
124void Instruction::setHasNoSignedZeros(bool B) {
125  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
126  cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
127}
128
129/// Set or clear the allow-reciprocal flag on this instruction, which must be an
130/// operator which supports this flag. See LangRef.html for the meaning of this
131/// flag.
132void Instruction::setHasAllowReciprocal(bool B) {
133  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
134  cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
135}
136
137/// Convenience function for setting all the fast-math flags on this
138/// instruction, which must be an operator which supports these flags. See
139/// LangRef.html for the meaning of these flats.
140void Instruction::setFastMathFlags(FastMathFlags FMF) {
141  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
142  cast<FPMathOperator>(this)->setFastMathFlags(FMF);
143}
144
145void Instruction::copyFastMathFlags(FastMathFlags FMF) {
146  assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
147  cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
148}
149
150/// Determine whether the unsafe-algebra flag is set.
151bool Instruction::hasUnsafeAlgebra() const {
152  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
153  return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
154}
155
156/// Determine whether the no-NaNs flag is set.
157bool Instruction::hasNoNaNs() const {
158  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
159  return cast<FPMathOperator>(this)->hasNoNaNs();
160}
161
162/// Determine whether the no-infs flag is set.
163bool Instruction::hasNoInfs() const {
164  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
165  return cast<FPMathOperator>(this)->hasNoInfs();
166}
167
168/// Determine whether the no-signed-zeros flag is set.
169bool Instruction::hasNoSignedZeros() const {
170  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
171  return cast<FPMathOperator>(this)->hasNoSignedZeros();
172}
173
174/// Determine whether the allow-reciprocal flag is set.
175bool Instruction::hasAllowReciprocal() const {
176  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
177  return cast<FPMathOperator>(this)->hasAllowReciprocal();
178}
179
180/// Convenience function for getting all the fast-math flags, which must be an
181/// operator which supports these flags. See LangRef.html for the meaning of
182/// these flags.
183FastMathFlags Instruction::getFastMathFlags() const {
184  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
185  return cast<FPMathOperator>(this)->getFastMathFlags();
186}
187
188/// Copy I's fast-math flags
189void Instruction::copyFastMathFlags(const Instruction *I) {
190  copyFastMathFlags(I->getFastMathFlags());
191}
192
193
194const char *Instruction::getOpcodeName(unsigned OpCode) {
195  switch (OpCode) {
196  // Terminators
197  case Ret:    return "ret";
198  case Br:     return "br";
199  case Switch: return "switch";
200  case IndirectBr: return "indirectbr";
201  case Invoke: return "invoke";
202  case Resume: return "resume";
203  case Unreachable: return "unreachable";
204  case CleanupRet: return "cleanupret";
205  case CatchRet: return "catchret";
206  case CatchPad: return "catchpad";
207  case CatchSwitch: return "catchswitch";
208
209  // Standard binary operators...
210  case Add: return "add";
211  case FAdd: return "fadd";
212  case Sub: return "sub";
213  case FSub: return "fsub";
214  case Mul: return "mul";
215  case FMul: return "fmul";
216  case UDiv: return "udiv";
217  case SDiv: return "sdiv";
218  case FDiv: return "fdiv";
219  case URem: return "urem";
220  case SRem: return "srem";
221  case FRem: return "frem";
222
223  // Logical operators...
224  case And: return "and";
225  case Or : return "or";
226  case Xor: return "xor";
227
228  // Memory instructions...
229  case Alloca:        return "alloca";
230  case Load:          return "load";
231  case Store:         return "store";
232  case AtomicCmpXchg: return "cmpxchg";
233  case AtomicRMW:     return "atomicrmw";
234  case Fence:         return "fence";
235  case GetElementPtr: return "getelementptr";
236
237  // Convert instructions...
238  case Trunc:         return "trunc";
239  case ZExt:          return "zext";
240  case SExt:          return "sext";
241  case FPTrunc:       return "fptrunc";
242  case FPExt:         return "fpext";
243  case FPToUI:        return "fptoui";
244  case FPToSI:        return "fptosi";
245  case UIToFP:        return "uitofp";
246  case SIToFP:        return "sitofp";
247  case IntToPtr:      return "inttoptr";
248  case PtrToInt:      return "ptrtoint";
249  case BitCast:       return "bitcast";
250  case AddrSpaceCast: return "addrspacecast";
251
252  // Other instructions...
253  case ICmp:           return "icmp";
254  case FCmp:           return "fcmp";
255  case PHI:            return "phi";
256  case Select:         return "select";
257  case Call:           return "call";
258  case Shl:            return "shl";
259  case LShr:           return "lshr";
260  case AShr:           return "ashr";
261  case VAArg:          return "va_arg";
262  case ExtractElement: return "extractelement";
263  case InsertElement:  return "insertelement";
264  case ShuffleVector:  return "shufflevector";
265  case ExtractValue:   return "extractvalue";
266  case InsertValue:    return "insertvalue";
267  case LandingPad:     return "landingpad";
268  case CleanupPad:     return "cleanuppad";
269
270  default: return "<Invalid operator> ";
271  }
272}
273
274/// Return true if both instructions have the same special state
275/// This must be kept in sync with lib/Transforms/IPO/MergeFunctions.cpp.
276static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
277                                 bool IgnoreAlignment = false) {
278  assert(I1->getOpcode() == I2->getOpcode() &&
279         "Can not compare special state of different instructions");
280
281  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
282    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
283           (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
284            IgnoreAlignment) &&
285           LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
286           LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
287  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
288    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
289           (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
290            IgnoreAlignment) &&
291           SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
292           SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
293  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
294    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
295  if (const CallInst *CI = dyn_cast<CallInst>(I1))
296    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
297           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
298           CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
299           CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
300  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
301    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
302           CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
303           CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
304  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
305    return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
306  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
307    return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
308  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
309    return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
310           FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
311  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
312    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
313           CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
314           CXI->getSuccessOrdering() ==
315               cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
316           CXI->getFailureOrdering() ==
317               cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
318           CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
319  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
320    return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
321           RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
322           RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
323           RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
324
325  return true;
326}
327
328/// isIdenticalTo - Return true if the specified instruction is exactly
329/// identical to the current one.  This means that all operands match and any
330/// extra information (e.g. load is volatile) agree.
331bool Instruction::isIdenticalTo(const Instruction *I) const {
332  return isIdenticalToWhenDefined(I) &&
333         SubclassOptionalData == I->SubclassOptionalData;
334}
335
336/// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
337/// ignores the SubclassOptionalData flags, which specify conditions
338/// under which the instruction's result is undefined.
339bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
340  if (getOpcode() != I->getOpcode() ||
341      getNumOperands() != I->getNumOperands() ||
342      getType() != I->getType())
343    return false;
344
345  // If both instructions have no operands, they are identical.
346  if (getNumOperands() == 0 && I->getNumOperands() == 0)
347    return haveSameSpecialState(this, I);
348
349  // We have two instructions of identical opcode and #operands.  Check to see
350  // if all operands are the same.
351  if (!std::equal(op_begin(), op_end(), I->op_begin()))
352    return false;
353
354  if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
355    const PHINode *otherPHI = cast<PHINode>(I);
356    return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
357                      otherPHI->block_begin());
358  }
359
360  return haveSameSpecialState(this, I);
361}
362
363// isSameOperationAs
364// This should be kept in sync with isEquivalentOperation in
365// lib/Transforms/IPO/MergeFunctions.cpp.
366bool Instruction::isSameOperationAs(const Instruction *I,
367                                    unsigned flags) const {
368  bool IgnoreAlignment = flags & CompareIgnoringAlignment;
369  bool UseScalarTypes  = flags & CompareUsingScalarTypes;
370
371  if (getOpcode() != I->getOpcode() ||
372      getNumOperands() != I->getNumOperands() ||
373      (UseScalarTypes ?
374       getType()->getScalarType() != I->getType()->getScalarType() :
375       getType() != I->getType()))
376    return false;
377
378  // We have two instructions of identical opcode and #operands.  Check to see
379  // if all operands are the same type
380  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
381    if (UseScalarTypes ?
382        getOperand(i)->getType()->getScalarType() !=
383          I->getOperand(i)->getType()->getScalarType() :
384        getOperand(i)->getType() != I->getOperand(i)->getType())
385      return false;
386
387  return haveSameSpecialState(this, I, IgnoreAlignment);
388}
389
390/// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
391/// specified block.  Note that PHI nodes are considered to evaluate their
392/// operands in the corresponding predecessor block.
393bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
394  for (const Use &U : uses()) {
395    // PHI nodes uses values in the corresponding predecessor block.  For other
396    // instructions, just check to see whether the parent of the use matches up.
397    const Instruction *I = cast<Instruction>(U.getUser());
398    const PHINode *PN = dyn_cast<PHINode>(I);
399    if (!PN) {
400      if (I->getParent() != BB)
401        return true;
402      continue;
403    }
404
405    if (PN->getIncomingBlock(U) != BB)
406      return true;
407  }
408  return false;
409}
410
411/// mayReadFromMemory - Return true if this instruction may read memory.
412///
413bool Instruction::mayReadFromMemory() const {
414  switch (getOpcode()) {
415  default: return false;
416  case Instruction::VAArg:
417  case Instruction::Load:
418  case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
419  case Instruction::AtomicCmpXchg:
420  case Instruction::AtomicRMW:
421  case Instruction::CatchPad:
422  case Instruction::CatchRet:
423    return true;
424  case Instruction::Call:
425    return !cast<CallInst>(this)->doesNotAccessMemory();
426  case Instruction::Invoke:
427    return !cast<InvokeInst>(this)->doesNotAccessMemory();
428  case Instruction::Store:
429    return !cast<StoreInst>(this)->isUnordered();
430  }
431}
432
433/// mayWriteToMemory - Return true if this instruction may modify memory.
434///
435bool Instruction::mayWriteToMemory() const {
436  switch (getOpcode()) {
437  default: return false;
438  case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
439  case Instruction::Store:
440  case Instruction::VAArg:
441  case Instruction::AtomicCmpXchg:
442  case Instruction::AtomicRMW:
443  case Instruction::CatchPad:
444  case Instruction::CatchRet:
445    return true;
446  case Instruction::Call:
447    return !cast<CallInst>(this)->onlyReadsMemory();
448  case Instruction::Invoke:
449    return !cast<InvokeInst>(this)->onlyReadsMemory();
450  case Instruction::Load:
451    return !cast<LoadInst>(this)->isUnordered();
452  }
453}
454
455bool Instruction::isAtomic() const {
456  switch (getOpcode()) {
457  default:
458    return false;
459  case Instruction::AtomicCmpXchg:
460  case Instruction::AtomicRMW:
461  case Instruction::Fence:
462    return true;
463  case Instruction::Load:
464    return cast<LoadInst>(this)->getOrdering() != NotAtomic;
465  case Instruction::Store:
466    return cast<StoreInst>(this)->getOrdering() != NotAtomic;
467  }
468}
469
470bool Instruction::mayThrow() const {
471  if (const CallInst *CI = dyn_cast<CallInst>(this))
472    return !CI->doesNotThrow();
473  if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
474    return CRI->unwindsToCaller();
475  if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this))
476    return CatchSwitch->unwindsToCaller();
477  return isa<ResumeInst>(this);
478}
479
480bool Instruction::mayReturn() const {
481  if (const CallInst *CI = dyn_cast<CallInst>(this))
482    return !CI->doesNotReturn();
483  return true;
484}
485
486/// isAssociative - Return true if the instruction is associative:
487///
488///   Associative operators satisfy:  x op (y op z) === (x op y) op z
489///
490/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
491///
492bool Instruction::isAssociative(unsigned Opcode) {
493  return Opcode == And || Opcode == Or || Opcode == Xor ||
494         Opcode == Add || Opcode == Mul;
495}
496
497bool Instruction::isAssociative() const {
498  unsigned Opcode = getOpcode();
499  if (isAssociative(Opcode))
500    return true;
501
502  switch (Opcode) {
503  case FMul:
504  case FAdd:
505    return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
506  default:
507    return false;
508  }
509}
510
511/// isCommutative - Return true if the instruction is commutative:
512///
513///   Commutative operators satisfy: (x op y) === (y op x)
514///
515/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
516/// applied to any type.
517///
518bool Instruction::isCommutative(unsigned op) {
519  switch (op) {
520  case Add:
521  case FAdd:
522  case Mul:
523  case FMul:
524  case And:
525  case Or:
526  case Xor:
527    return true;
528  default:
529    return false;
530  }
531}
532
533/// isIdempotent - Return true if the instruction is idempotent:
534///
535///   Idempotent operators satisfy:  x op x === x
536///
537/// In LLVM, the And and Or operators are idempotent.
538///
539bool Instruction::isIdempotent(unsigned Opcode) {
540  return Opcode == And || Opcode == Or;
541}
542
543/// isNilpotent - Return true if the instruction is nilpotent:
544///
545///   Nilpotent operators satisfy:  x op x === Id,
546///
547///   where Id is the identity for the operator, i.e. a constant such that
548///     x op Id === x and Id op x === x for all x.
549///
550/// In LLVM, the Xor operator is nilpotent.
551///
552bool Instruction::isNilpotent(unsigned Opcode) {
553  return Opcode == Xor;
554}
555
556Instruction *Instruction::cloneImpl() const {
557  llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
558}
559
560Instruction *Instruction::clone() const {
561  Instruction *New = nullptr;
562  switch (getOpcode()) {
563  default:
564    llvm_unreachable("Unhandled Opcode.");
565#define HANDLE_INST(num, opc, clas)                                            \
566  case Instruction::opc:                                                       \
567    New = cast<clas>(this)->cloneImpl();                                       \
568    break;
569#include "llvm/IR/Instruction.def"
570#undef HANDLE_INST
571  }
572
573  New->SubclassOptionalData = SubclassOptionalData;
574  if (!hasMetadata())
575    return New;
576
577  // Otherwise, enumerate and copy over metadata from the old instruction to the
578  // new one.
579  SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
580  getAllMetadataOtherThanDebugLoc(TheMDs);
581  for (const auto &MD : TheMDs)
582    New->setMetadata(MD.first, MD.second);
583
584  New->setDebugLoc(getDebugLoc());
585  return New;
586}
587