Instruction.cpp revision 280031
1//===-- Instruction.cpp - Implement the Instruction class -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Instruction class for the IR library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Instruction.h"
15#include "llvm/IR/CallSite.h"
16#include "llvm/IR/Constants.h"
17#include "llvm/IR/Instructions.h"
18#include "llvm/IR/Module.h"
19#include "llvm/IR/Operator.h"
20#include "llvm/IR/Type.h"
21using namespace llvm;
22
23Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
24                         Instruction *InsertBefore)
25  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
26
27  // If requested, insert this instruction into a basic block...
28  if (InsertBefore) {
29    assert(InsertBefore->getParent() &&
30           "Instruction to insert before is not in a basic block!");
31    InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
32  }
33}
34
35const DataLayout *Instruction::getDataLayout() const {
36  return getParent()->getDataLayout();
37}
38
39Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
40                         BasicBlock *InsertAtEnd)
41  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
42
43  // append this instruction into the basic block
44  assert(InsertAtEnd && "Basic block to append to may not be NULL!");
45  InsertAtEnd->getInstList().push_back(this);
46}
47
48
49// Out of line virtual method, so the vtable, etc has a home.
50Instruction::~Instruction() {
51  assert(!Parent && "Instruction still linked in the program!");
52  if (hasMetadataHashEntry())
53    clearMetadataHashEntries();
54}
55
56
57void Instruction::setParent(BasicBlock *P) {
58  Parent = P;
59}
60
61void Instruction::removeFromParent() {
62  getParent()->getInstList().remove(this);
63}
64
65void Instruction::eraseFromParent() {
66  getParent()->getInstList().erase(this);
67}
68
69/// insertBefore - Insert an unlinked instructions into a basic block
70/// immediately before the specified instruction.
71void Instruction::insertBefore(Instruction *InsertPos) {
72  InsertPos->getParent()->getInstList().insert(InsertPos, this);
73}
74
75/// insertAfter - Insert an unlinked instructions into a basic block
76/// immediately after the specified instruction.
77void Instruction::insertAfter(Instruction *InsertPos) {
78  InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
79}
80
81/// moveBefore - Unlink this instruction from its current basic block and
82/// insert it into the basic block that MovePos lives in, right before
83/// MovePos.
84void Instruction::moveBefore(Instruction *MovePos) {
85  MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
86                                             this);
87}
88
89/// Set or clear the unsafe-algebra flag on this instruction, which must be an
90/// operator which supports this flag. See LangRef.html for the meaning of this
91/// flag.
92void Instruction::setHasUnsafeAlgebra(bool B) {
93  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
94  cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
95}
96
97/// Set or clear the NoNaNs flag on this instruction, which must be an operator
98/// which supports this flag. See LangRef.html for the meaning of this flag.
99void Instruction::setHasNoNaNs(bool B) {
100  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
101  cast<FPMathOperator>(this)->setHasNoNaNs(B);
102}
103
104/// Set or clear the no-infs flag on this instruction, which must be an operator
105/// which supports this flag. See LangRef.html for the meaning of this flag.
106void Instruction::setHasNoInfs(bool B) {
107  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
108  cast<FPMathOperator>(this)->setHasNoInfs(B);
109}
110
111/// Set or clear the no-signed-zeros flag on this instruction, which must be an
112/// operator which supports this flag. See LangRef.html for the meaning of this
113/// flag.
114void Instruction::setHasNoSignedZeros(bool B) {
115  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
116  cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
117}
118
119/// Set or clear the allow-reciprocal flag on this instruction, which must be an
120/// operator which supports this flag. See LangRef.html for the meaning of this
121/// flag.
122void Instruction::setHasAllowReciprocal(bool B) {
123  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
124  cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
125}
126
127/// Convenience function for setting all the fast-math flags on this
128/// instruction, which must be an operator which supports these flags. See
129/// LangRef.html for the meaning of these flats.
130void Instruction::setFastMathFlags(FastMathFlags FMF) {
131  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
132  cast<FPMathOperator>(this)->setFastMathFlags(FMF);
133}
134
135void Instruction::copyFastMathFlags(FastMathFlags FMF) {
136  assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
137  cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
138}
139
140/// Determine whether the unsafe-algebra flag is set.
141bool Instruction::hasUnsafeAlgebra() const {
142  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
143  return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
144}
145
146/// Determine whether the no-NaNs flag is set.
147bool Instruction::hasNoNaNs() const {
148  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
149  return cast<FPMathOperator>(this)->hasNoNaNs();
150}
151
152/// Determine whether the no-infs flag is set.
153bool Instruction::hasNoInfs() const {
154  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
155  return cast<FPMathOperator>(this)->hasNoInfs();
156}
157
158/// Determine whether the no-signed-zeros flag is set.
159bool Instruction::hasNoSignedZeros() const {
160  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
161  return cast<FPMathOperator>(this)->hasNoSignedZeros();
162}
163
164/// Determine whether the allow-reciprocal flag is set.
165bool Instruction::hasAllowReciprocal() const {
166  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
167  return cast<FPMathOperator>(this)->hasAllowReciprocal();
168}
169
170/// Convenience function for getting all the fast-math flags, which must be an
171/// operator which supports these flags. See LangRef.html for the meaning of
172/// these flags.
173FastMathFlags Instruction::getFastMathFlags() const {
174  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
175  return cast<FPMathOperator>(this)->getFastMathFlags();
176}
177
178/// Copy I's fast-math flags
179void Instruction::copyFastMathFlags(const Instruction *I) {
180  copyFastMathFlags(I->getFastMathFlags());
181}
182
183
184const char *Instruction::getOpcodeName(unsigned OpCode) {
185  switch (OpCode) {
186  // Terminators
187  case Ret:    return "ret";
188  case Br:     return "br";
189  case Switch: return "switch";
190  case IndirectBr: return "indirectbr";
191  case Invoke: return "invoke";
192  case Resume: return "resume";
193  case Unreachable: return "unreachable";
194
195  // Standard binary operators...
196  case Add: return "add";
197  case FAdd: return "fadd";
198  case Sub: return "sub";
199  case FSub: return "fsub";
200  case Mul: return "mul";
201  case FMul: return "fmul";
202  case UDiv: return "udiv";
203  case SDiv: return "sdiv";
204  case FDiv: return "fdiv";
205  case URem: return "urem";
206  case SRem: return "srem";
207  case FRem: return "frem";
208
209  // Logical operators...
210  case And: return "and";
211  case Or : return "or";
212  case Xor: return "xor";
213
214  // Memory instructions...
215  case Alloca:        return "alloca";
216  case Load:          return "load";
217  case Store:         return "store";
218  case AtomicCmpXchg: return "cmpxchg";
219  case AtomicRMW:     return "atomicrmw";
220  case Fence:         return "fence";
221  case GetElementPtr: return "getelementptr";
222
223  // Convert instructions...
224  case Trunc:         return "trunc";
225  case ZExt:          return "zext";
226  case SExt:          return "sext";
227  case FPTrunc:       return "fptrunc";
228  case FPExt:         return "fpext";
229  case FPToUI:        return "fptoui";
230  case FPToSI:        return "fptosi";
231  case UIToFP:        return "uitofp";
232  case SIToFP:        return "sitofp";
233  case IntToPtr:      return "inttoptr";
234  case PtrToInt:      return "ptrtoint";
235  case BitCast:       return "bitcast";
236  case AddrSpaceCast: return "addrspacecast";
237
238  // Other instructions...
239  case ICmp:           return "icmp";
240  case FCmp:           return "fcmp";
241  case PHI:            return "phi";
242  case Select:         return "select";
243  case Call:           return "call";
244  case Shl:            return "shl";
245  case LShr:           return "lshr";
246  case AShr:           return "ashr";
247  case VAArg:          return "va_arg";
248  case ExtractElement: return "extractelement";
249  case InsertElement:  return "insertelement";
250  case ShuffleVector:  return "shufflevector";
251  case ExtractValue:   return "extractvalue";
252  case InsertValue:    return "insertvalue";
253  case LandingPad:     return "landingpad";
254
255  default: return "<Invalid operator> ";
256  }
257}
258
259/// Return true if both instructions have the same special state
260/// This must be kept in sync with lib/Transforms/IPO/MergeFunctions.cpp.
261static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
262                                 bool IgnoreAlignment = false) {
263  assert(I1->getOpcode() == I2->getOpcode() &&
264         "Can not compare special state of different instructions");
265
266  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
267    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
268           (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
269            IgnoreAlignment) &&
270           LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
271           LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
272  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
273    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
274           (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
275            IgnoreAlignment) &&
276           SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
277           SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
278  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
279    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
280  if (const CallInst *CI = dyn_cast<CallInst>(I1))
281    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
282           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
283           CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
284  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
285    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
286           CI->getAttributes() ==
287             cast<InvokeInst>(I2)->getAttributes();
288  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
289    return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
290  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
291    return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
292  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
293    return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
294           FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
295  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
296    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
297           CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
298           CXI->getSuccessOrdering() ==
299               cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
300           CXI->getFailureOrdering() ==
301               cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
302           CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
303  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
304    return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
305           RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
306           RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
307           RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
308
309  return true;
310}
311
312/// isIdenticalTo - Return true if the specified instruction is exactly
313/// identical to the current one.  This means that all operands match and any
314/// extra information (e.g. load is volatile) agree.
315bool Instruction::isIdenticalTo(const Instruction *I) const {
316  return isIdenticalToWhenDefined(I) &&
317         SubclassOptionalData == I->SubclassOptionalData;
318}
319
320/// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
321/// ignores the SubclassOptionalData flags, which specify conditions
322/// under which the instruction's result is undefined.
323bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
324  if (getOpcode() != I->getOpcode() ||
325      getNumOperands() != I->getNumOperands() ||
326      getType() != I->getType())
327    return false;
328
329  // If both instructions have no operands, they are identical.
330  if (getNumOperands() == 0 && I->getNumOperands() == 0)
331    return haveSameSpecialState(this, I);
332
333  // We have two instructions of identical opcode and #operands.  Check to see
334  // if all operands are the same.
335  if (!std::equal(op_begin(), op_end(), I->op_begin()))
336    return false;
337
338  if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
339    const PHINode *otherPHI = cast<PHINode>(I);
340    return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
341                      otherPHI->block_begin());
342  }
343
344  return haveSameSpecialState(this, I);
345}
346
347// isSameOperationAs
348// This should be kept in sync with isEquivalentOperation in
349// lib/Transforms/IPO/MergeFunctions.cpp.
350bool Instruction::isSameOperationAs(const Instruction *I,
351                                    unsigned flags) const {
352  bool IgnoreAlignment = flags & CompareIgnoringAlignment;
353  bool UseScalarTypes  = flags & CompareUsingScalarTypes;
354
355  if (getOpcode() != I->getOpcode() ||
356      getNumOperands() != I->getNumOperands() ||
357      (UseScalarTypes ?
358       getType()->getScalarType() != I->getType()->getScalarType() :
359       getType() != I->getType()))
360    return false;
361
362  // We have two instructions of identical opcode and #operands.  Check to see
363  // if all operands are the same type
364  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
365    if (UseScalarTypes ?
366        getOperand(i)->getType()->getScalarType() !=
367          I->getOperand(i)->getType()->getScalarType() :
368        getOperand(i)->getType() != I->getOperand(i)->getType())
369      return false;
370
371  return haveSameSpecialState(this, I, IgnoreAlignment);
372}
373
374/// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
375/// specified block.  Note that PHI nodes are considered to evaluate their
376/// operands in the corresponding predecessor block.
377bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
378  for (const Use &U : uses()) {
379    // PHI nodes uses values in the corresponding predecessor block.  For other
380    // instructions, just check to see whether the parent of the use matches up.
381    const Instruction *I = cast<Instruction>(U.getUser());
382    const PHINode *PN = dyn_cast<PHINode>(I);
383    if (!PN) {
384      if (I->getParent() != BB)
385        return true;
386      continue;
387    }
388
389    if (PN->getIncomingBlock(U) != BB)
390      return true;
391  }
392  return false;
393}
394
395/// mayReadFromMemory - Return true if this instruction may read memory.
396///
397bool Instruction::mayReadFromMemory() const {
398  switch (getOpcode()) {
399  default: return false;
400  case Instruction::VAArg:
401  case Instruction::Load:
402  case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
403  case Instruction::AtomicCmpXchg:
404  case Instruction::AtomicRMW:
405    return true;
406  case Instruction::Call:
407    return !cast<CallInst>(this)->doesNotAccessMemory();
408  case Instruction::Invoke:
409    return !cast<InvokeInst>(this)->doesNotAccessMemory();
410  case Instruction::Store:
411    return !cast<StoreInst>(this)->isUnordered();
412  }
413}
414
415/// mayWriteToMemory - Return true if this instruction may modify memory.
416///
417bool Instruction::mayWriteToMemory() const {
418  switch (getOpcode()) {
419  default: return false;
420  case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
421  case Instruction::Store:
422  case Instruction::VAArg:
423  case Instruction::AtomicCmpXchg:
424  case Instruction::AtomicRMW:
425    return true;
426  case Instruction::Call:
427    return !cast<CallInst>(this)->onlyReadsMemory();
428  case Instruction::Invoke:
429    return !cast<InvokeInst>(this)->onlyReadsMemory();
430  case Instruction::Load:
431    return !cast<LoadInst>(this)->isUnordered();
432  }
433}
434
435bool Instruction::isAtomic() const {
436  switch (getOpcode()) {
437  default:
438    return false;
439  case Instruction::AtomicCmpXchg:
440  case Instruction::AtomicRMW:
441  case Instruction::Fence:
442    return true;
443  case Instruction::Load:
444    return cast<LoadInst>(this)->getOrdering() != NotAtomic;
445  case Instruction::Store:
446    return cast<StoreInst>(this)->getOrdering() != NotAtomic;
447  }
448}
449
450bool Instruction::mayThrow() const {
451  if (const CallInst *CI = dyn_cast<CallInst>(this))
452    return !CI->doesNotThrow();
453  return isa<ResumeInst>(this);
454}
455
456bool Instruction::mayReturn() const {
457  if (const CallInst *CI = dyn_cast<CallInst>(this))
458    return !CI->doesNotReturn();
459  return true;
460}
461
462/// isAssociative - Return true if the instruction is associative:
463///
464///   Associative operators satisfy:  x op (y op z) === (x op y) op z
465///
466/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
467///
468bool Instruction::isAssociative(unsigned Opcode) {
469  return Opcode == And || Opcode == Or || Opcode == Xor ||
470         Opcode == Add || Opcode == Mul;
471}
472
473bool Instruction::isAssociative() const {
474  unsigned Opcode = getOpcode();
475  if (isAssociative(Opcode))
476    return true;
477
478  switch (Opcode) {
479  case FMul:
480  case FAdd:
481    return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
482  default:
483    return false;
484  }
485}
486
487/// isCommutative - Return true if the instruction is commutative:
488///
489///   Commutative operators satisfy: (x op y) === (y op x)
490///
491/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
492/// applied to any type.
493///
494bool Instruction::isCommutative(unsigned op) {
495  switch (op) {
496  case Add:
497  case FAdd:
498  case Mul:
499  case FMul:
500  case And:
501  case Or:
502  case Xor:
503    return true;
504  default:
505    return false;
506  }
507}
508
509/// isIdempotent - Return true if the instruction is idempotent:
510///
511///   Idempotent operators satisfy:  x op x === x
512///
513/// In LLVM, the And and Or operators are idempotent.
514///
515bool Instruction::isIdempotent(unsigned Opcode) {
516  return Opcode == And || Opcode == Or;
517}
518
519/// isNilpotent - Return true if the instruction is nilpotent:
520///
521///   Nilpotent operators satisfy:  x op x === Id,
522///
523///   where Id is the identity for the operator, i.e. a constant such that
524///     x op Id === x and Id op x === x for all x.
525///
526/// In LLVM, the Xor operator is nilpotent.
527///
528bool Instruction::isNilpotent(unsigned Opcode) {
529  return Opcode == Xor;
530}
531
532Instruction *Instruction::clone() const {
533  Instruction *New = clone_impl();
534  New->SubclassOptionalData = SubclassOptionalData;
535  if (!hasMetadata())
536    return New;
537
538  // Otherwise, enumerate and copy over metadata from the old instruction to the
539  // new one.
540  SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
541  getAllMetadataOtherThanDebugLoc(TheMDs);
542  for (const auto &MD : TheMDs)
543    New->setMetadata(MD.first, MD.second);
544
545  New->setDebugLoc(getDebugLoc());
546  return New;
547}
548