Dominators.cpp revision 344779
15992SN/A//===- Dominators.cpp - Dominator Calculation -----------------------------===//
25992SN/A//
35992SN/A//                     The LLVM Compiler Infrastructure
45992SN/A//
55992SN/A// This file is distributed under the University of Illinois Open Source
65992SN/A// License. See LICENSE.TXT for details.
75992SN/A//
85992SN/A//===----------------------------------------------------------------------===//
95992SN/A//
105992SN/A// This file implements simple dominator construction algorithms for finding
115992SN/A// forward dominators.  Postdominators are available in libanalysis, but are not
125992SN/A// included in libvmcore, because it's not needed.  Forward dominators are
135992SN/A// needed to support the Verifier pass.
145992SN/A//
155992SN/A//===----------------------------------------------------------------------===//
165992SN/A
175992SN/A#include "llvm/IR/Dominators.h"
185992SN/A#include "llvm/ADT/DepthFirstIterator.h"
195992SN/A#include "llvm/ADT/SmallPtrSet.h"
205992SN/A#include "llvm/Config/llvm-config.h"
215992SN/A#include "llvm/IR/CFG.h"
225992SN/A#include "llvm/IR/Constants.h"
235992SN/A#include "llvm/IR/Instructions.h"
245992SN/A#include "llvm/IR/PassManager.h"
255992SN/A#include "llvm/Support/CommandLine.h"
265992SN/A#include "llvm/Support/Debug.h"
275992SN/A#include "llvm/Support/GenericDomTreeConstruction.h"
285992SN/A#include "llvm/Support/raw_ostream.h"
295992SN/A#include <algorithm>
305992SN/Ausing namespace llvm;
315992SN/A
325992SN/Abool llvm::VerifyDomInfo = false;
335992SN/Astatic cl::opt<bool, true>
345992SN/A    VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden,
355992SN/A                   cl::desc("Verify dominator info (time consuming)"));
365992SN/A
375992SN/A#ifdef EXPENSIVE_CHECKS
385992SN/Astatic constexpr bool ExpensiveChecksEnabled = true;
395992SN/A#else
405992SN/Astatic constexpr bool ExpensiveChecksEnabled = false;
415992SN/A#endif
425992SN/A
435992SN/Abool BasicBlockEdge::isSingleEdge() const {
445992SN/A  const Instruction *TI = Start->getTerminator();
455992SN/A  unsigned NumEdgesToEnd = 0;
465992SN/A  for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
475992SN/A    if (TI->getSuccessor(i) == End)
485992SN/A      ++NumEdgesToEnd;
495992SN/A    if (NumEdgesToEnd >= 2)
505992SN/A      return false;
515992SN/A  }
525992SN/A  assert(NumEdgesToEnd == 1);
535992SN/A  return true;
545992SN/A}
555992SN/A
565992SN/A//===----------------------------------------------------------------------===//
575992SN/A//  DominatorTree Implementation
585992SN/A//===----------------------------------------------------------------------===//
595992SN/A//
605992SN/A// Provide public access to DominatorTree information.  Implementation details
615992SN/A// can be found in Dominators.h, GenericDomTree.h, and
625992SN/A// GenericDomTreeConstruction.h.
635992SN/A//
645992SN/A//===----------------------------------------------------------------------===//
655992SN/A
665992SN/Atemplate class llvm::DomTreeNodeBase<BasicBlock>;
675992SN/Atemplate class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
685992SN/Atemplate class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
695992SN/A
705992SN/Atemplate class llvm::cfg::Update<BasicBlock *>;
715992SN/A
725992SN/Atemplate void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>(
735992SN/A    DomTreeBuilder::BBDomTree &DT);
745992SN/Atemplate void
757084SN/Allvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>(
767084SN/A    DomTreeBuilder::BBDomTree &DT, BBUpdates U);
777084SN/A
787084SN/Atemplate void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>(
795992SN/A    DomTreeBuilder::BBPostDomTree &DT);
805992SN/A// No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
815992SN/A
825992SN/Atemplate void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>(
835992SN/A    DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
845992SN/Atemplate void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>(
855992SN/A    DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
865992SN/A
87template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>(
88    DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
89template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>(
90    DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
91
92template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>(
93    DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates);
94template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>(
95    DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates);
96
97template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
98    const DomTreeBuilder::BBDomTree &DT,
99    DomTreeBuilder::BBDomTree::VerificationLevel VL);
100template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
101    const DomTreeBuilder::BBPostDomTree &DT,
102    DomTreeBuilder::BBPostDomTree::VerificationLevel VL);
103
104bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
105                               FunctionAnalysisManager::Invalidator &) {
106  // Check whether the analysis, all analyses on functions, or the function's
107  // CFG have been preserved.
108  auto PAC = PA.getChecker<DominatorTreeAnalysis>();
109  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
110           PAC.preservedSet<CFGAnalyses>());
111}
112
113// dominates - Return true if Def dominates a use in User. This performs
114// the special checks necessary if Def and User are in the same basic block.
115// Note that Def doesn't dominate a use in Def itself!
116bool DominatorTree::dominates(const Instruction *Def,
117                              const Instruction *User) const {
118  const BasicBlock *UseBB = User->getParent();
119  const BasicBlock *DefBB = Def->getParent();
120
121  // Any unreachable use is dominated, even if Def == User.
122  if (!isReachableFromEntry(UseBB))
123    return true;
124
125  // Unreachable definitions don't dominate anything.
126  if (!isReachableFromEntry(DefBB))
127    return false;
128
129  // An instruction doesn't dominate a use in itself.
130  if (Def == User)
131    return false;
132
133  // The value defined by an invoke dominates an instruction only if it
134  // dominates every instruction in UseBB.
135  // A PHI is dominated only if the instruction dominates every possible use in
136  // the UseBB.
137  if (isa<InvokeInst>(Def) || isa<PHINode>(User))
138    return dominates(Def, UseBB);
139
140  if (DefBB != UseBB)
141    return dominates(DefBB, UseBB);
142
143  // Loop through the basic block until we find Def or User.
144  BasicBlock::const_iterator I = DefBB->begin();
145  for (; &*I != Def && &*I != User; ++I)
146    /*empty*/;
147
148  return &*I == Def;
149}
150
151// true if Def would dominate a use in any instruction in UseBB.
152// note that dominates(Def, Def->getParent()) is false.
153bool DominatorTree::dominates(const Instruction *Def,
154                              const BasicBlock *UseBB) const {
155  const BasicBlock *DefBB = Def->getParent();
156
157  // Any unreachable use is dominated, even if DefBB == UseBB.
158  if (!isReachableFromEntry(UseBB))
159    return true;
160
161  // Unreachable definitions don't dominate anything.
162  if (!isReachableFromEntry(DefBB))
163    return false;
164
165  if (DefBB == UseBB)
166    return false;
167
168  // Invoke results are only usable in the normal destination, not in the
169  // exceptional destination.
170  if (const auto *II = dyn_cast<InvokeInst>(Def)) {
171    BasicBlock *NormalDest = II->getNormalDest();
172    BasicBlockEdge E(DefBB, NormalDest);
173    return dominates(E, UseBB);
174  }
175
176  return dominates(DefBB, UseBB);
177}
178
179bool DominatorTree::dominates(const BasicBlockEdge &BBE,
180                              const BasicBlock *UseBB) const {
181  // If the BB the edge ends in doesn't dominate the use BB, then the
182  // edge also doesn't.
183  const BasicBlock *Start = BBE.getStart();
184  const BasicBlock *End = BBE.getEnd();
185  if (!dominates(End, UseBB))
186    return false;
187
188  // Simple case: if the end BB has a single predecessor, the fact that it
189  // dominates the use block implies that the edge also does.
190  if (End->getSinglePredecessor())
191    return true;
192
193  // The normal edge from the invoke is critical. Conceptually, what we would
194  // like to do is split it and check if the new block dominates the use.
195  // With X being the new block, the graph would look like:
196  //
197  //        DefBB
198  //          /\      .  .
199  //         /  \     .  .
200  //        /    \    .  .
201  //       /      \   |  |
202  //      A        X  B  C
203  //      |         \ | /
204  //      .          \|/
205  //      .      NormalDest
206  //      .
207  //
208  // Given the definition of dominance, NormalDest is dominated by X iff X
209  // dominates all of NormalDest's predecessors (X, B, C in the example). X
210  // trivially dominates itself, so we only have to find if it dominates the
211  // other predecessors. Since the only way out of X is via NormalDest, X can
212  // only properly dominate a node if NormalDest dominates that node too.
213  int IsDuplicateEdge = 0;
214  for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
215       PI != E; ++PI) {
216    const BasicBlock *BB = *PI;
217    if (BB == Start) {
218      // If there are multiple edges between Start and End, by definition they
219      // can't dominate anything.
220      if (IsDuplicateEdge++)
221        return false;
222      continue;
223    }
224
225    if (!dominates(End, BB))
226      return false;
227  }
228  return true;
229}
230
231bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
232  Instruction *UserInst = cast<Instruction>(U.getUser());
233  // A PHI in the end of the edge is dominated by it.
234  PHINode *PN = dyn_cast<PHINode>(UserInst);
235  if (PN && PN->getParent() == BBE.getEnd() &&
236      PN->getIncomingBlock(U) == BBE.getStart())
237    return true;
238
239  // Otherwise use the edge-dominates-block query, which
240  // handles the crazy critical edge cases properly.
241  const BasicBlock *UseBB;
242  if (PN)
243    UseBB = PN->getIncomingBlock(U);
244  else
245    UseBB = UserInst->getParent();
246  return dominates(BBE, UseBB);
247}
248
249bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
250  Instruction *UserInst = cast<Instruction>(U.getUser());
251  const BasicBlock *DefBB = Def->getParent();
252
253  // Determine the block in which the use happens. PHI nodes use
254  // their operands on edges; simulate this by thinking of the use
255  // happening at the end of the predecessor block.
256  const BasicBlock *UseBB;
257  if (PHINode *PN = dyn_cast<PHINode>(UserInst))
258    UseBB = PN->getIncomingBlock(U);
259  else
260    UseBB = UserInst->getParent();
261
262  // Any unreachable use is dominated, even if Def == User.
263  if (!isReachableFromEntry(UseBB))
264    return true;
265
266  // Unreachable definitions don't dominate anything.
267  if (!isReachableFromEntry(DefBB))
268    return false;
269
270  // Invoke instructions define their return values on the edges to their normal
271  // successors, so we have to handle them specially.
272  // Among other things, this means they don't dominate anything in
273  // their own block, except possibly a phi, so we don't need to
274  // walk the block in any case.
275  if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
276    BasicBlock *NormalDest = II->getNormalDest();
277    BasicBlockEdge E(DefBB, NormalDest);
278    return dominates(E, U);
279  }
280
281  // If the def and use are in different blocks, do a simple CFG dominator
282  // tree query.
283  if (DefBB != UseBB)
284    return dominates(DefBB, UseBB);
285
286  // Ok, def and use are in the same block. If the def is an invoke, it
287  // doesn't dominate anything in the block. If it's a PHI, it dominates
288  // everything in the block.
289  if (isa<PHINode>(UserInst))
290    return true;
291
292  // Otherwise, just loop through the basic block until we find Def or User.
293  BasicBlock::const_iterator I = DefBB->begin();
294  for (; &*I != Def && &*I != UserInst; ++I)
295    /*empty*/;
296
297  return &*I != UserInst;
298}
299
300bool DominatorTree::isReachableFromEntry(const Use &U) const {
301  Instruction *I = dyn_cast<Instruction>(U.getUser());
302
303  // ConstantExprs aren't really reachable from the entry block, but they
304  // don't need to be treated like unreachable code either.
305  if (!I) return true;
306
307  // PHI nodes use their operands on their incoming edges.
308  if (PHINode *PN = dyn_cast<PHINode>(I))
309    return isReachableFromEntry(PN->getIncomingBlock(U));
310
311  // Everything else uses their operands in their own block.
312  return isReachableFromEntry(I->getParent());
313}
314
315//===----------------------------------------------------------------------===//
316//  DominatorTreeAnalysis and related pass implementations
317//===----------------------------------------------------------------------===//
318//
319// This implements the DominatorTreeAnalysis which is used with the new pass
320// manager. It also implements some methods from utility passes.
321//
322//===----------------------------------------------------------------------===//
323
324DominatorTree DominatorTreeAnalysis::run(Function &F,
325                                         FunctionAnalysisManager &) {
326  DominatorTree DT;
327  DT.recalculate(F);
328  return DT;
329}
330
331AnalysisKey DominatorTreeAnalysis::Key;
332
333DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
334
335PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
336                                                FunctionAnalysisManager &AM) {
337  OS << "DominatorTree for function: " << F.getName() << "\n";
338  AM.getResult<DominatorTreeAnalysis>(F).print(OS);
339
340  return PreservedAnalyses::all();
341}
342
343PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
344                                                 FunctionAnalysisManager &AM) {
345  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
346  assert(DT.verify());
347  (void)DT;
348  return PreservedAnalyses::all();
349}
350
351//===----------------------------------------------------------------------===//
352//  DominatorTreeWrapperPass Implementation
353//===----------------------------------------------------------------------===//
354//
355// The implementation details of the wrapper pass that holds a DominatorTree
356// suitable for use with the legacy pass manager.
357//
358//===----------------------------------------------------------------------===//
359
360char DominatorTreeWrapperPass::ID = 0;
361INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
362                "Dominator Tree Construction", true, true)
363
364bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
365  DT.recalculate(F);
366  return false;
367}
368
369void DominatorTreeWrapperPass::verifyAnalysis() const {
370  if (VerifyDomInfo)
371    assert(DT.verify(DominatorTree::VerificationLevel::Full));
372  else if (ExpensiveChecksEnabled)
373    assert(DT.verify(DominatorTree::VerificationLevel::Basic));
374}
375
376void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
377  DT.print(OS);
378}
379
380