Dominators.cpp revision 314564
1//===- Dominators.cpp - Dominator Calculation -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements simple dominator construction algorithms for finding
11// forward dominators.  Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed.  Forward dominators are
13// needed to support the Verifier pass.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/IR/Dominators.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/IR/CFG.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/PassManager.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/GenericDomTreeConstruction.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace llvm;
29
30// Always verify dominfo if expensive checking is enabled.
31#ifdef EXPENSIVE_CHECKS
32static bool VerifyDomInfo = true;
33#else
34static bool VerifyDomInfo = false;
35#endif
36static cl::opt<bool,true>
37VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
38               cl::desc("Verify dominator info (time consuming)"));
39
40bool BasicBlockEdge::isSingleEdge() const {
41  const TerminatorInst *TI = Start->getTerminator();
42  unsigned NumEdgesToEnd = 0;
43  for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
44    if (TI->getSuccessor(i) == End)
45      ++NumEdgesToEnd;
46    if (NumEdgesToEnd >= 2)
47      return false;
48  }
49  assert(NumEdgesToEnd == 1);
50  return true;
51}
52
53//===----------------------------------------------------------------------===//
54//  DominatorTree Implementation
55//===----------------------------------------------------------------------===//
56//
57// Provide public access to DominatorTree information.  Implementation details
58// can be found in Dominators.h, GenericDomTree.h, and
59// GenericDomTreeConstruction.h.
60//
61//===----------------------------------------------------------------------===//
62
63template class llvm::DomTreeNodeBase<BasicBlock>;
64template class llvm::DominatorTreeBase<BasicBlock>;
65
66template void llvm::Calculate<Function, BasicBlock *>(
67    DominatorTreeBase<
68        typename std::remove_pointer<GraphTraits<BasicBlock *>::NodeRef>::type>
69        &DT,
70    Function &F);
71template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
72    DominatorTreeBase<typename std::remove_pointer<
73        GraphTraits<Inverse<BasicBlock *>>::NodeRef>::type> &DT,
74    Function &F);
75
76// dominates - Return true if Def dominates a use in User. This performs
77// the special checks necessary if Def and User are in the same basic block.
78// Note that Def doesn't dominate a use in Def itself!
79bool DominatorTree::dominates(const Instruction *Def,
80                              const Instruction *User) const {
81  const BasicBlock *UseBB = User->getParent();
82  const BasicBlock *DefBB = Def->getParent();
83
84  // Any unreachable use is dominated, even if Def == User.
85  if (!isReachableFromEntry(UseBB))
86    return true;
87
88  // Unreachable definitions don't dominate anything.
89  if (!isReachableFromEntry(DefBB))
90    return false;
91
92  // An instruction doesn't dominate a use in itself.
93  if (Def == User)
94    return false;
95
96  // The value defined by an invoke dominates an instruction only if it
97  // dominates every instruction in UseBB.
98  // A PHI is dominated only if the instruction dominates every possible use in
99  // the UseBB.
100  if (isa<InvokeInst>(Def) || isa<PHINode>(User))
101    return dominates(Def, UseBB);
102
103  if (DefBB != UseBB)
104    return dominates(DefBB, UseBB);
105
106  // Loop through the basic block until we find Def or User.
107  BasicBlock::const_iterator I = DefBB->begin();
108  for (; &*I != Def && &*I != User; ++I)
109    /*empty*/;
110
111  return &*I == Def;
112}
113
114// true if Def would dominate a use in any instruction in UseBB.
115// note that dominates(Def, Def->getParent()) is false.
116bool DominatorTree::dominates(const Instruction *Def,
117                              const BasicBlock *UseBB) const {
118  const BasicBlock *DefBB = Def->getParent();
119
120  // Any unreachable use is dominated, even if DefBB == UseBB.
121  if (!isReachableFromEntry(UseBB))
122    return true;
123
124  // Unreachable definitions don't dominate anything.
125  if (!isReachableFromEntry(DefBB))
126    return false;
127
128  if (DefBB == UseBB)
129    return false;
130
131  // Invoke results are only usable in the normal destination, not in the
132  // exceptional destination.
133  if (const auto *II = dyn_cast<InvokeInst>(Def)) {
134    BasicBlock *NormalDest = II->getNormalDest();
135    BasicBlockEdge E(DefBB, NormalDest);
136    return dominates(E, UseBB);
137  }
138
139  return dominates(DefBB, UseBB);
140}
141
142bool DominatorTree::dominates(const BasicBlockEdge &BBE,
143                              const BasicBlock *UseBB) const {
144  // Assert that we have a single edge. We could handle them by simply
145  // returning false, but since isSingleEdge is linear on the number of
146  // edges, the callers can normally handle them more efficiently.
147  assert(BBE.isSingleEdge() &&
148         "This function is not efficient in handling multiple edges");
149
150  // If the BB the edge ends in doesn't dominate the use BB, then the
151  // edge also doesn't.
152  const BasicBlock *Start = BBE.getStart();
153  const BasicBlock *End = BBE.getEnd();
154  if (!dominates(End, UseBB))
155    return false;
156
157  // Simple case: if the end BB has a single predecessor, the fact that it
158  // dominates the use block implies that the edge also does.
159  if (End->getSinglePredecessor())
160    return true;
161
162  // The normal edge from the invoke is critical. Conceptually, what we would
163  // like to do is split it and check if the new block dominates the use.
164  // With X being the new block, the graph would look like:
165  //
166  //        DefBB
167  //          /\      .  .
168  //         /  \     .  .
169  //        /    \    .  .
170  //       /      \   |  |
171  //      A        X  B  C
172  //      |         \ | /
173  //      .          \|/
174  //      .      NormalDest
175  //      .
176  //
177  // Given the definition of dominance, NormalDest is dominated by X iff X
178  // dominates all of NormalDest's predecessors (X, B, C in the example). X
179  // trivially dominates itself, so we only have to find if it dominates the
180  // other predecessors. Since the only way out of X is via NormalDest, X can
181  // only properly dominate a node if NormalDest dominates that node too.
182  for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
183       PI != E; ++PI) {
184    const BasicBlock *BB = *PI;
185    if (BB == Start)
186      continue;
187
188    if (!dominates(End, BB))
189      return false;
190  }
191  return true;
192}
193
194bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
195  // Assert that we have a single edge. We could handle them by simply
196  // returning false, but since isSingleEdge is linear on the number of
197  // edges, the callers can normally handle them more efficiently.
198  assert(BBE.isSingleEdge() &&
199         "This function is not efficient in handling multiple edges");
200
201  Instruction *UserInst = cast<Instruction>(U.getUser());
202  // A PHI in the end of the edge is dominated by it.
203  PHINode *PN = dyn_cast<PHINode>(UserInst);
204  if (PN && PN->getParent() == BBE.getEnd() &&
205      PN->getIncomingBlock(U) == BBE.getStart())
206    return true;
207
208  // Otherwise use the edge-dominates-block query, which
209  // handles the crazy critical edge cases properly.
210  const BasicBlock *UseBB;
211  if (PN)
212    UseBB = PN->getIncomingBlock(U);
213  else
214    UseBB = UserInst->getParent();
215  return dominates(BBE, UseBB);
216}
217
218bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
219  Instruction *UserInst = cast<Instruction>(U.getUser());
220  const BasicBlock *DefBB = Def->getParent();
221
222  // Determine the block in which the use happens. PHI nodes use
223  // their operands on edges; simulate this by thinking of the use
224  // happening at the end of the predecessor block.
225  const BasicBlock *UseBB;
226  if (PHINode *PN = dyn_cast<PHINode>(UserInst))
227    UseBB = PN->getIncomingBlock(U);
228  else
229    UseBB = UserInst->getParent();
230
231  // Any unreachable use is dominated, even if Def == User.
232  if (!isReachableFromEntry(UseBB))
233    return true;
234
235  // Unreachable definitions don't dominate anything.
236  if (!isReachableFromEntry(DefBB))
237    return false;
238
239  // Invoke instructions define their return values on the edges to their normal
240  // successors, so we have to handle them specially.
241  // Among other things, this means they don't dominate anything in
242  // their own block, except possibly a phi, so we don't need to
243  // walk the block in any case.
244  if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
245    BasicBlock *NormalDest = II->getNormalDest();
246    BasicBlockEdge E(DefBB, NormalDest);
247    return dominates(E, U);
248  }
249
250  // If the def and use are in different blocks, do a simple CFG dominator
251  // tree query.
252  if (DefBB != UseBB)
253    return dominates(DefBB, UseBB);
254
255  // Ok, def and use are in the same block. If the def is an invoke, it
256  // doesn't dominate anything in the block. If it's a PHI, it dominates
257  // everything in the block.
258  if (isa<PHINode>(UserInst))
259    return true;
260
261  // Otherwise, just loop through the basic block until we find Def or User.
262  BasicBlock::const_iterator I = DefBB->begin();
263  for (; &*I != Def && &*I != UserInst; ++I)
264    /*empty*/;
265
266  return &*I != UserInst;
267}
268
269bool DominatorTree::isReachableFromEntry(const Use &U) const {
270  Instruction *I = dyn_cast<Instruction>(U.getUser());
271
272  // ConstantExprs aren't really reachable from the entry block, but they
273  // don't need to be treated like unreachable code either.
274  if (!I) return true;
275
276  // PHI nodes use their operands on their incoming edges.
277  if (PHINode *PN = dyn_cast<PHINode>(I))
278    return isReachableFromEntry(PN->getIncomingBlock(U));
279
280  // Everything else uses their operands in their own block.
281  return isReachableFromEntry(I->getParent());
282}
283
284void DominatorTree::verifyDomTree() const {
285  Function &F = *getRoot()->getParent();
286
287  DominatorTree OtherDT;
288  OtherDT.recalculate(F);
289  if (compare(OtherDT)) {
290    errs() << "DominatorTree is not up to date!\nComputed:\n";
291    print(errs());
292    errs() << "\nActual:\n";
293    OtherDT.print(errs());
294    abort();
295  }
296}
297
298//===----------------------------------------------------------------------===//
299//  DominatorTreeAnalysis and related pass implementations
300//===----------------------------------------------------------------------===//
301//
302// This implements the DominatorTreeAnalysis which is used with the new pass
303// manager. It also implements some methods from utility passes.
304//
305//===----------------------------------------------------------------------===//
306
307DominatorTree DominatorTreeAnalysis::run(Function &F,
308                                         FunctionAnalysisManager &) {
309  DominatorTree DT;
310  DT.recalculate(F);
311  return DT;
312}
313
314AnalysisKey DominatorTreeAnalysis::Key;
315
316DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
317
318PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
319                                                FunctionAnalysisManager &AM) {
320  OS << "DominatorTree for function: " << F.getName() << "\n";
321  AM.getResult<DominatorTreeAnalysis>(F).print(OS);
322
323  return PreservedAnalyses::all();
324}
325
326PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
327                                                 FunctionAnalysisManager &AM) {
328  AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
329
330  return PreservedAnalyses::all();
331}
332
333//===----------------------------------------------------------------------===//
334//  DominatorTreeWrapperPass Implementation
335//===----------------------------------------------------------------------===//
336//
337// The implementation details of the wrapper pass that holds a DominatorTree
338// suitable for use with the legacy pass manager.
339//
340//===----------------------------------------------------------------------===//
341
342char DominatorTreeWrapperPass::ID = 0;
343INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
344                "Dominator Tree Construction", true, true)
345
346bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
347  DT.recalculate(F);
348  return false;
349}
350
351void DominatorTreeWrapperPass::verifyAnalysis() const {
352    if (VerifyDomInfo)
353      DT.verifyDomTree();
354}
355
356void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
357  DT.print(OS);
358}
359
360