Dominators.cpp revision 309124
1//===- Dominators.cpp - Dominator Calculation -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements simple dominator construction algorithms for finding
11// forward dominators.  Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed.  Forward dominators are
13// needed to support the Verifier pass.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/IR/Dominators.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/IR/CFG.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/PassManager.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/GenericDomTreeConstruction.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace llvm;
29
30// Always verify dominfo if expensive checking is enabled.
31#ifdef EXPENSIVE_CHECKS
32static bool VerifyDomInfo = true;
33#else
34static bool VerifyDomInfo = false;
35#endif
36static cl::opt<bool,true>
37VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
38               cl::desc("Verify dominator info (time consuming)"));
39
40bool BasicBlockEdge::isSingleEdge() const {
41  const TerminatorInst *TI = Start->getTerminator();
42  unsigned NumEdgesToEnd = 0;
43  for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
44    if (TI->getSuccessor(i) == End)
45      ++NumEdgesToEnd;
46    if (NumEdgesToEnd >= 2)
47      return false;
48  }
49  assert(NumEdgesToEnd == 1);
50  return true;
51}
52
53//===----------------------------------------------------------------------===//
54//  DominatorTree Implementation
55//===----------------------------------------------------------------------===//
56//
57// Provide public access to DominatorTree information.  Implementation details
58// can be found in Dominators.h, GenericDomTree.h, and
59// GenericDomTreeConstruction.h.
60//
61//===----------------------------------------------------------------------===//
62
63template class llvm::DomTreeNodeBase<BasicBlock>;
64template class llvm::DominatorTreeBase<BasicBlock>;
65
66template void llvm::Calculate<Function, BasicBlock *>(
67    DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
68template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
69    DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
70    Function &F);
71
72// dominates - Return true if Def dominates a use in User. This performs
73// the special checks necessary if Def and User are in the same basic block.
74// Note that Def doesn't dominate a use in Def itself!
75bool DominatorTree::dominates(const Instruction *Def,
76                              const Instruction *User) const {
77  const BasicBlock *UseBB = User->getParent();
78  const BasicBlock *DefBB = Def->getParent();
79
80  // Any unreachable use is dominated, even if Def == User.
81  if (!isReachableFromEntry(UseBB))
82    return true;
83
84  // Unreachable definitions don't dominate anything.
85  if (!isReachableFromEntry(DefBB))
86    return false;
87
88  // An instruction doesn't dominate a use in itself.
89  if (Def == User)
90    return false;
91
92  // The value defined by an invoke dominates an instruction only if it
93  // dominates every instruction in UseBB.
94  // A PHI is dominated only if the instruction dominates every possible use in
95  // the UseBB.
96  if (isa<InvokeInst>(Def) || isa<PHINode>(User))
97    return dominates(Def, UseBB);
98
99  if (DefBB != UseBB)
100    return dominates(DefBB, UseBB);
101
102  // Loop through the basic block until we find Def or User.
103  BasicBlock::const_iterator I = DefBB->begin();
104  for (; &*I != Def && &*I != User; ++I)
105    /*empty*/;
106
107  return &*I == Def;
108}
109
110// true if Def would dominate a use in any instruction in UseBB.
111// note that dominates(Def, Def->getParent()) is false.
112bool DominatorTree::dominates(const Instruction *Def,
113                              const BasicBlock *UseBB) const {
114  const BasicBlock *DefBB = Def->getParent();
115
116  // Any unreachable use is dominated, even if DefBB == UseBB.
117  if (!isReachableFromEntry(UseBB))
118    return true;
119
120  // Unreachable definitions don't dominate anything.
121  if (!isReachableFromEntry(DefBB))
122    return false;
123
124  if (DefBB == UseBB)
125    return false;
126
127  // Invoke results are only usable in the normal destination, not in the
128  // exceptional destination.
129  if (const auto *II = dyn_cast<InvokeInst>(Def)) {
130    BasicBlock *NormalDest = II->getNormalDest();
131    BasicBlockEdge E(DefBB, NormalDest);
132    return dominates(E, UseBB);
133  }
134
135  return dominates(DefBB, UseBB);
136}
137
138bool DominatorTree::dominates(const BasicBlockEdge &BBE,
139                              const BasicBlock *UseBB) const {
140  // Assert that we have a single edge. We could handle them by simply
141  // returning false, but since isSingleEdge is linear on the number of
142  // edges, the callers can normally handle them more efficiently.
143  assert(BBE.isSingleEdge() &&
144         "This function is not efficient in handling multiple edges");
145
146  // If the BB the edge ends in doesn't dominate the use BB, then the
147  // edge also doesn't.
148  const BasicBlock *Start = BBE.getStart();
149  const BasicBlock *End = BBE.getEnd();
150  if (!dominates(End, UseBB))
151    return false;
152
153  // Simple case: if the end BB has a single predecessor, the fact that it
154  // dominates the use block implies that the edge also does.
155  if (End->getSinglePredecessor())
156    return true;
157
158  // The normal edge from the invoke is critical. Conceptually, what we would
159  // like to do is split it and check if the new block dominates the use.
160  // With X being the new block, the graph would look like:
161  //
162  //        DefBB
163  //          /\      .  .
164  //         /  \     .  .
165  //        /    \    .  .
166  //       /      \   |  |
167  //      A        X  B  C
168  //      |         \ | /
169  //      .          \|/
170  //      .      NormalDest
171  //      .
172  //
173  // Given the definition of dominance, NormalDest is dominated by X iff X
174  // dominates all of NormalDest's predecessors (X, B, C in the example). X
175  // trivially dominates itself, so we only have to find if it dominates the
176  // other predecessors. Since the only way out of X is via NormalDest, X can
177  // only properly dominate a node if NormalDest dominates that node too.
178  for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
179       PI != E; ++PI) {
180    const BasicBlock *BB = *PI;
181    if (BB == Start)
182      continue;
183
184    if (!dominates(End, BB))
185      return false;
186  }
187  return true;
188}
189
190bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
191  // Assert that we have a single edge. We could handle them by simply
192  // returning false, but since isSingleEdge is linear on the number of
193  // edges, the callers can normally handle them more efficiently.
194  assert(BBE.isSingleEdge() &&
195         "This function is not efficient in handling multiple edges");
196
197  Instruction *UserInst = cast<Instruction>(U.getUser());
198  // A PHI in the end of the edge is dominated by it.
199  PHINode *PN = dyn_cast<PHINode>(UserInst);
200  if (PN && PN->getParent() == BBE.getEnd() &&
201      PN->getIncomingBlock(U) == BBE.getStart())
202    return true;
203
204  // Otherwise use the edge-dominates-block query, which
205  // handles the crazy critical edge cases properly.
206  const BasicBlock *UseBB;
207  if (PN)
208    UseBB = PN->getIncomingBlock(U);
209  else
210    UseBB = UserInst->getParent();
211  return dominates(BBE, UseBB);
212}
213
214bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
215  Instruction *UserInst = cast<Instruction>(U.getUser());
216  const BasicBlock *DefBB = Def->getParent();
217
218  // Determine the block in which the use happens. PHI nodes use
219  // their operands on edges; simulate this by thinking of the use
220  // happening at the end of the predecessor block.
221  const BasicBlock *UseBB;
222  if (PHINode *PN = dyn_cast<PHINode>(UserInst))
223    UseBB = PN->getIncomingBlock(U);
224  else
225    UseBB = UserInst->getParent();
226
227  // Any unreachable use is dominated, even if Def == User.
228  if (!isReachableFromEntry(UseBB))
229    return true;
230
231  // Unreachable definitions don't dominate anything.
232  if (!isReachableFromEntry(DefBB))
233    return false;
234
235  // Invoke instructions define their return values on the edges to their normal
236  // successors, so we have to handle them specially.
237  // Among other things, this means they don't dominate anything in
238  // their own block, except possibly a phi, so we don't need to
239  // walk the block in any case.
240  if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
241    BasicBlock *NormalDest = II->getNormalDest();
242    BasicBlockEdge E(DefBB, NormalDest);
243    return dominates(E, U);
244  }
245
246  // If the def and use are in different blocks, do a simple CFG dominator
247  // tree query.
248  if (DefBB != UseBB)
249    return dominates(DefBB, UseBB);
250
251  // Ok, def and use are in the same block. If the def is an invoke, it
252  // doesn't dominate anything in the block. If it's a PHI, it dominates
253  // everything in the block.
254  if (isa<PHINode>(UserInst))
255    return true;
256
257  // Otherwise, just loop through the basic block until we find Def or User.
258  BasicBlock::const_iterator I = DefBB->begin();
259  for (; &*I != Def && &*I != UserInst; ++I)
260    /*empty*/;
261
262  return &*I != UserInst;
263}
264
265bool DominatorTree::isReachableFromEntry(const Use &U) const {
266  Instruction *I = dyn_cast<Instruction>(U.getUser());
267
268  // ConstantExprs aren't really reachable from the entry block, but they
269  // don't need to be treated like unreachable code either.
270  if (!I) return true;
271
272  // PHI nodes use their operands on their incoming edges.
273  if (PHINode *PN = dyn_cast<PHINode>(I))
274    return isReachableFromEntry(PN->getIncomingBlock(U));
275
276  // Everything else uses their operands in their own block.
277  return isReachableFromEntry(I->getParent());
278}
279
280void DominatorTree::verifyDomTree() const {
281  Function &F = *getRoot()->getParent();
282
283  DominatorTree OtherDT;
284  OtherDT.recalculate(F);
285  if (compare(OtherDT)) {
286    errs() << "DominatorTree is not up to date!\nComputed:\n";
287    print(errs());
288    errs() << "\nActual:\n";
289    OtherDT.print(errs());
290    abort();
291  }
292}
293
294//===----------------------------------------------------------------------===//
295//  DominatorTreeAnalysis and related pass implementations
296//===----------------------------------------------------------------------===//
297//
298// This implements the DominatorTreeAnalysis which is used with the new pass
299// manager. It also implements some methods from utility passes.
300//
301//===----------------------------------------------------------------------===//
302
303DominatorTree DominatorTreeAnalysis::run(Function &F,
304                                         AnalysisManager<Function> &) {
305  DominatorTree DT;
306  DT.recalculate(F);
307  return DT;
308}
309
310char DominatorTreeAnalysis::PassID;
311
312DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
313
314PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
315                                                FunctionAnalysisManager &AM) {
316  OS << "DominatorTree for function: " << F.getName() << "\n";
317  AM.getResult<DominatorTreeAnalysis>(F).print(OS);
318
319  return PreservedAnalyses::all();
320}
321
322PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
323                                                 FunctionAnalysisManager &AM) {
324  AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
325
326  return PreservedAnalyses::all();
327}
328
329//===----------------------------------------------------------------------===//
330//  DominatorTreeWrapperPass Implementation
331//===----------------------------------------------------------------------===//
332//
333// The implementation details of the wrapper pass that holds a DominatorTree
334// suitable for use with the legacy pass manager.
335//
336//===----------------------------------------------------------------------===//
337
338char DominatorTreeWrapperPass::ID = 0;
339INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
340                "Dominator Tree Construction", true, true)
341
342bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
343  DT.recalculate(F);
344  return false;
345}
346
347void DominatorTreeWrapperPass::verifyAnalysis() const {
348    if (VerifyDomInfo)
349      DT.verifyDomTree();
350}
351
352void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
353  DT.print(OS);
354}
355
356