RuntimeDyldELF.cpp revision 360784
1//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of ELF support for the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "RuntimeDyldELF.h"
14#include "RuntimeDyldCheckerImpl.h"
15#include "Targets/RuntimeDyldELFMips.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/Triple.h"
19#include "llvm/BinaryFormat/ELF.h"
20#include "llvm/Object/ELFObjectFile.h"
21#include "llvm/Object/ObjectFile.h"
22#include "llvm/Support/Endian.h"
23#include "llvm/Support/MemoryBuffer.h"
24
25using namespace llvm;
26using namespace llvm::object;
27using namespace llvm::support::endian;
28
29#define DEBUG_TYPE "dyld"
30
31static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32
33static void or32AArch64Imm(void *L, uint64_t Imm) {
34  or32le(L, (Imm & 0xFFF) << 10);
35}
36
37template <class T> static void write(bool isBE, void *P, T V) {
38  isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
39}
40
41static void write32AArch64Addr(void *L, uint64_t Imm) {
42  uint32_t ImmLo = (Imm & 0x3) << 29;
43  uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44  uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45  write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
46}
47
48// Return the bits [Start, End] from Val shifted Start bits.
49// For instance, getBits(0xF0, 4, 8) returns 0xF.
50static uint64_t getBits(uint64_t Val, int Start, int End) {
51  uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52  return (Val >> Start) & Mask;
53}
54
55namespace {
56
57template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
59
60  typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
61  typedef Elf_Sym_Impl<ELFT> Elf_Sym;
62  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
63  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
64
65  typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
66
67  typedef typename ELFT::uint addr_type;
68
69  DyldELFObject(ELFObjectFile<ELFT> &&Obj);
70
71public:
72  static Expected<std::unique_ptr<DyldELFObject>>
73  create(MemoryBufferRef Wrapper);
74
75  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
76
77  void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
78
79  // Methods for type inquiry through isa, cast and dyn_cast
80  static bool classof(const Binary *v) {
81    return (isa<ELFObjectFile<ELFT>>(v) &&
82            classof(cast<ELFObjectFile<ELFT>>(v)));
83  }
84  static bool classof(const ELFObjectFile<ELFT> *v) {
85    return v->isDyldType();
86  }
87};
88
89
90
91// The MemoryBuffer passed into this constructor is just a wrapper around the
92// actual memory.  Ultimately, the Binary parent class will take ownership of
93// this MemoryBuffer object but not the underlying memory.
94template <class ELFT>
95DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
96    : ELFObjectFile<ELFT>(std::move(Obj)) {
97  this->isDyldELFObject = true;
98}
99
100template <class ELFT>
101Expected<std::unique_ptr<DyldELFObject<ELFT>>>
102DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
103  auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
104  if (auto E = Obj.takeError())
105    return std::move(E);
106  std::unique_ptr<DyldELFObject<ELFT>> Ret(
107      new DyldELFObject<ELFT>(std::move(*Obj)));
108  return std::move(Ret);
109}
110
111template <class ELFT>
112void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
113                                               uint64_t Addr) {
114  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
115  Elf_Shdr *shdr =
116      const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
117
118  // This assumes the address passed in matches the target address bitness
119  // The template-based type cast handles everything else.
120  shdr->sh_addr = static_cast<addr_type>(Addr);
121}
122
123template <class ELFT>
124void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
125                                              uint64_t Addr) {
126
127  Elf_Sym *sym = const_cast<Elf_Sym *>(
128      ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
129
130  // This assumes the address passed in matches the target address bitness
131  // The template-based type cast handles everything else.
132  sym->st_value = static_cast<addr_type>(Addr);
133}
134
135class LoadedELFObjectInfo final
136    : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
137                                    RuntimeDyld::LoadedObjectInfo> {
138public:
139  LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
140      : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
141
142  OwningBinary<ObjectFile>
143  getObjectForDebug(const ObjectFile &Obj) const override;
144};
145
146template <typename ELFT>
147static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
148createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
149                      const LoadedELFObjectInfo &L) {
150  typedef typename ELFT::Shdr Elf_Shdr;
151  typedef typename ELFT::uint addr_type;
152
153  Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
154      DyldELFObject<ELFT>::create(Buffer);
155  if (Error E = ObjOrErr.takeError())
156    return std::move(E);
157
158  std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
159
160  // Iterate over all sections in the object.
161  auto SI = SourceObject.section_begin();
162  for (const auto &Sec : Obj->sections()) {
163    Expected<StringRef> NameOrErr = Sec.getName();
164    if (!NameOrErr) {
165      consumeError(NameOrErr.takeError());
166      continue;
167    }
168
169    if (*NameOrErr != "") {
170      DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
171      Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
172          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
173
174      if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
175        // This assumes that the address passed in matches the target address
176        // bitness. The template-based type cast handles everything else.
177        shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
178      }
179    }
180    ++SI;
181  }
182
183  return std::move(Obj);
184}
185
186static OwningBinary<ObjectFile>
187createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
188  assert(Obj.isELF() && "Not an ELF object file.");
189
190  std::unique_ptr<MemoryBuffer> Buffer =
191    MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
192
193  Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
194  handleAllErrors(DebugObj.takeError());
195  if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
196    DebugObj =
197        createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
198  else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
199    DebugObj =
200        createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
201  else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
202    DebugObj =
203        createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
204  else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
205    DebugObj =
206        createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
207  else
208    llvm_unreachable("Unexpected ELF format");
209
210  handleAllErrors(DebugObj.takeError());
211  return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
212}
213
214OwningBinary<ObjectFile>
215LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
216  return createELFDebugObject(Obj, *this);
217}
218
219} // anonymous namespace
220
221namespace llvm {
222
223RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
224                               JITSymbolResolver &Resolver)
225    : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
226RuntimeDyldELF::~RuntimeDyldELF() {}
227
228void RuntimeDyldELF::registerEHFrames() {
229  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
230    SID EHFrameSID = UnregisteredEHFrameSections[i];
231    uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
232    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
233    size_t EHFrameSize = Sections[EHFrameSID].getSize();
234    MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
235  }
236  UnregisteredEHFrameSections.clear();
237}
238
239std::unique_ptr<RuntimeDyldELF>
240llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
241                             RuntimeDyld::MemoryManager &MemMgr,
242                             JITSymbolResolver &Resolver) {
243  switch (Arch) {
244  default:
245    return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
246  case Triple::mips:
247  case Triple::mipsel:
248  case Triple::mips64:
249  case Triple::mips64el:
250    return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
251  }
252}
253
254std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
255RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
256  if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
257    return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
258  else {
259    HasError = true;
260    raw_string_ostream ErrStream(ErrorStr);
261    logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
262    return nullptr;
263  }
264}
265
266void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
267                                             uint64_t Offset, uint64_t Value,
268                                             uint32_t Type, int64_t Addend,
269                                             uint64_t SymOffset) {
270  switch (Type) {
271  default:
272    llvm_unreachable("Relocation type not implemented yet!");
273    break;
274  case ELF::R_X86_64_NONE:
275    break;
276  case ELF::R_X86_64_64: {
277    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
278        Value + Addend;
279    LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
280                      << format("%p\n", Section.getAddressWithOffset(Offset)));
281    break;
282  }
283  case ELF::R_X86_64_32:
284  case ELF::R_X86_64_32S: {
285    Value += Addend;
286    assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
287           (Type == ELF::R_X86_64_32S &&
288            ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
289    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
290    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
291        TruncatedAddr;
292    LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
293                      << format("%p\n", Section.getAddressWithOffset(Offset)));
294    break;
295  }
296  case ELF::R_X86_64_PC8: {
297    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
298    int64_t RealOffset = Value + Addend - FinalAddress;
299    assert(isInt<8>(RealOffset));
300    int8_t TruncOffset = (RealOffset & 0xFF);
301    Section.getAddress()[Offset] = TruncOffset;
302    break;
303  }
304  case ELF::R_X86_64_PC32: {
305    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
306    int64_t RealOffset = Value + Addend - FinalAddress;
307    assert(isInt<32>(RealOffset));
308    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
309    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
310        TruncOffset;
311    break;
312  }
313  case ELF::R_X86_64_PC64: {
314    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
315    int64_t RealOffset = Value + Addend - FinalAddress;
316    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
317        RealOffset;
318    LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
319                      << format("%p\n", FinalAddress));
320    break;
321  }
322  case ELF::R_X86_64_GOTOFF64: {
323    // Compute Value - GOTBase.
324    uint64_t GOTBase = 0;
325    for (const auto &Section : Sections) {
326      if (Section.getName() == ".got") {
327        GOTBase = Section.getLoadAddressWithOffset(0);
328        break;
329      }
330    }
331    assert(GOTBase != 0 && "missing GOT");
332    int64_t GOTOffset = Value - GOTBase + Addend;
333    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
334    break;
335  }
336  }
337}
338
339void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
340                                          uint64_t Offset, uint32_t Value,
341                                          uint32_t Type, int32_t Addend) {
342  switch (Type) {
343  case ELF::R_386_32: {
344    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
345        Value + Addend;
346    break;
347  }
348  // Handle R_386_PLT32 like R_386_PC32 since it should be able to
349  // reach any 32 bit address.
350  case ELF::R_386_PLT32:
351  case ELF::R_386_PC32: {
352    uint32_t FinalAddress =
353        Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
354    uint32_t RealOffset = Value + Addend - FinalAddress;
355    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
356        RealOffset;
357    break;
358  }
359  default:
360    // There are other relocation types, but it appears these are the
361    // only ones currently used by the LLVM ELF object writer
362    llvm_unreachable("Relocation type not implemented yet!");
363    break;
364  }
365}
366
367void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
368                                              uint64_t Offset, uint64_t Value,
369                                              uint32_t Type, int64_t Addend) {
370  uint32_t *TargetPtr =
371      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
372  uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
373  // Data should use target endian. Code should always use little endian.
374  bool isBE = Arch == Triple::aarch64_be;
375
376  LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
377                    << format("%llx", Section.getAddressWithOffset(Offset))
378                    << " FinalAddress: 0x" << format("%llx", FinalAddress)
379                    << " Value: 0x" << format("%llx", Value) << " Type: 0x"
380                    << format("%x", Type) << " Addend: 0x"
381                    << format("%llx", Addend) << "\n");
382
383  switch (Type) {
384  default:
385    llvm_unreachable("Relocation type not implemented yet!");
386    break;
387  case ELF::R_AARCH64_ABS16: {
388    uint64_t Result = Value + Addend;
389    assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
390    write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
391    break;
392  }
393  case ELF::R_AARCH64_ABS32: {
394    uint64_t Result = Value + Addend;
395    assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
396    write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
397    break;
398  }
399  case ELF::R_AARCH64_ABS64:
400    write(isBE, TargetPtr, Value + Addend);
401    break;
402  case ELF::R_AARCH64_PREL32: {
403    uint64_t Result = Value + Addend - FinalAddress;
404    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
405           static_cast<int64_t>(Result) <= UINT32_MAX);
406    write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
407    break;
408  }
409  case ELF::R_AARCH64_PREL64:
410    write(isBE, TargetPtr, Value + Addend - FinalAddress);
411    break;
412  case ELF::R_AARCH64_CALL26: // fallthrough
413  case ELF::R_AARCH64_JUMP26: {
414    // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
415    // calculation.
416    uint64_t BranchImm = Value + Addend - FinalAddress;
417
418    // "Check that -2^27 <= result < 2^27".
419    assert(isInt<28>(BranchImm));
420    or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
421    break;
422  }
423  case ELF::R_AARCH64_MOVW_UABS_G3:
424    or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
425    break;
426  case ELF::R_AARCH64_MOVW_UABS_G2_NC:
427    or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
428    break;
429  case ELF::R_AARCH64_MOVW_UABS_G1_NC:
430    or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
431    break;
432  case ELF::R_AARCH64_MOVW_UABS_G0_NC:
433    or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
434    break;
435  case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
436    // Operation: Page(S+A) - Page(P)
437    uint64_t Result =
438        ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
439
440    // Check that -2^32 <= X < 2^32
441    assert(isInt<33>(Result) && "overflow check failed for relocation");
442
443    // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
444    // from bits 32:12 of X.
445    write32AArch64Addr(TargetPtr, Result >> 12);
446    break;
447  }
448  case ELF::R_AARCH64_ADD_ABS_LO12_NC:
449    // Operation: S + A
450    // Immediate goes in bits 21:10 of LD/ST instruction, taken
451    // from bits 11:0 of X
452    or32AArch64Imm(TargetPtr, Value + Addend);
453    break;
454  case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
455    // Operation: S + A
456    // Immediate goes in bits 21:10 of LD/ST instruction, taken
457    // from bits 11:0 of X
458    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
459    break;
460  case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
461    // Operation: S + A
462    // Immediate goes in bits 21:10 of LD/ST instruction, taken
463    // from bits 11:1 of X
464    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
465    break;
466  case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
467    // Operation: S + A
468    // Immediate goes in bits 21:10 of LD/ST instruction, taken
469    // from bits 11:2 of X
470    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
471    break;
472  case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
473    // Operation: S + A
474    // Immediate goes in bits 21:10 of LD/ST instruction, taken
475    // from bits 11:3 of X
476    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
477    break;
478  case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
479    // Operation: S + A
480    // Immediate goes in bits 21:10 of LD/ST instruction, taken
481    // from bits 11:4 of X
482    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
483    break;
484  }
485}
486
487void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
488                                          uint64_t Offset, uint32_t Value,
489                                          uint32_t Type, int32_t Addend) {
490  // TODO: Add Thumb relocations.
491  uint32_t *TargetPtr =
492      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
493  uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
494  Value += Addend;
495
496  LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
497                    << Section.getAddressWithOffset(Offset)
498                    << " FinalAddress: " << format("%p", FinalAddress)
499                    << " Value: " << format("%x", Value)
500                    << " Type: " << format("%x", Type)
501                    << " Addend: " << format("%x", Addend) << "\n");
502
503  switch (Type) {
504  default:
505    llvm_unreachable("Not implemented relocation type!");
506
507  case ELF::R_ARM_NONE:
508    break;
509    // Write a 31bit signed offset
510  case ELF::R_ARM_PREL31:
511    support::ulittle32_t::ref{TargetPtr} =
512        (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
513        ((Value - FinalAddress) & ~0x80000000);
514    break;
515  case ELF::R_ARM_TARGET1:
516  case ELF::R_ARM_ABS32:
517    support::ulittle32_t::ref{TargetPtr} = Value;
518    break;
519    // Write first 16 bit of 32 bit value to the mov instruction.
520    // Last 4 bit should be shifted.
521  case ELF::R_ARM_MOVW_ABS_NC:
522  case ELF::R_ARM_MOVT_ABS:
523    if (Type == ELF::R_ARM_MOVW_ABS_NC)
524      Value = Value & 0xFFFF;
525    else if (Type == ELF::R_ARM_MOVT_ABS)
526      Value = (Value >> 16) & 0xFFFF;
527    support::ulittle32_t::ref{TargetPtr} =
528        (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
529        (((Value >> 12) & 0xF) << 16);
530    break;
531    // Write 24 bit relative value to the branch instruction.
532  case ELF::R_ARM_PC24: // Fall through.
533  case ELF::R_ARM_CALL: // Fall through.
534  case ELF::R_ARM_JUMP24:
535    int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
536    RelValue = (RelValue & 0x03FFFFFC) >> 2;
537    assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
538    support::ulittle32_t::ref{TargetPtr} =
539        (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
540    break;
541  }
542}
543
544void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
545  if (Arch == Triple::UnknownArch ||
546      !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
547    IsMipsO32ABI = false;
548    IsMipsN32ABI = false;
549    IsMipsN64ABI = false;
550    return;
551  }
552  if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
553    unsigned AbiVariant = E->getPlatformFlags();
554    IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
555    IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
556  }
557  IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
558}
559
560// Return the .TOC. section and offset.
561Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
562                                          ObjSectionToIDMap &LocalSections,
563                                          RelocationValueRef &Rel) {
564  // Set a default SectionID in case we do not find a TOC section below.
565  // This may happen for references to TOC base base (sym@toc, .odp
566  // relocation) without a .toc directive.  In this case just use the
567  // first section (which is usually the .odp) since the code won't
568  // reference the .toc base directly.
569  Rel.SymbolName = nullptr;
570  Rel.SectionID = 0;
571
572  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
573  // order. The TOC starts where the first of these sections starts.
574  for (auto &Section : Obj.sections()) {
575    Expected<StringRef> NameOrErr = Section.getName();
576    if (!NameOrErr)
577      return NameOrErr.takeError();
578    StringRef SectionName = *NameOrErr;
579
580    if (SectionName == ".got"
581        || SectionName == ".toc"
582        || SectionName == ".tocbss"
583        || SectionName == ".plt") {
584      if (auto SectionIDOrErr =
585            findOrEmitSection(Obj, Section, false, LocalSections))
586        Rel.SectionID = *SectionIDOrErr;
587      else
588        return SectionIDOrErr.takeError();
589      break;
590    }
591  }
592
593  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
594  // thus permitting a full 64 Kbytes segment.
595  Rel.Addend = 0x8000;
596
597  return Error::success();
598}
599
600// Returns the sections and offset associated with the ODP entry referenced
601// by Symbol.
602Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
603                                          ObjSectionToIDMap &LocalSections,
604                                          RelocationValueRef &Rel) {
605  // Get the ELF symbol value (st_value) to compare with Relocation offset in
606  // .opd entries
607  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
608       si != se; ++si) {
609
610    Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
611    if (!RelSecOrErr)
612      report_fatal_error(toString(RelSecOrErr.takeError()));
613
614    section_iterator RelSecI = *RelSecOrErr;
615    if (RelSecI == Obj.section_end())
616      continue;
617
618    Expected<StringRef> NameOrErr = RelSecI->getName();
619    if (!NameOrErr)
620      return NameOrErr.takeError();
621    StringRef RelSectionName = *NameOrErr;
622
623    if (RelSectionName != ".opd")
624      continue;
625
626    for (elf_relocation_iterator i = si->relocation_begin(),
627                                 e = si->relocation_end();
628         i != e;) {
629      // The R_PPC64_ADDR64 relocation indicates the first field
630      // of a .opd entry
631      uint64_t TypeFunc = i->getType();
632      if (TypeFunc != ELF::R_PPC64_ADDR64) {
633        ++i;
634        continue;
635      }
636
637      uint64_t TargetSymbolOffset = i->getOffset();
638      symbol_iterator TargetSymbol = i->getSymbol();
639      int64_t Addend;
640      if (auto AddendOrErr = i->getAddend())
641        Addend = *AddendOrErr;
642      else
643        return AddendOrErr.takeError();
644
645      ++i;
646      if (i == e)
647        break;
648
649      // Just check if following relocation is a R_PPC64_TOC
650      uint64_t TypeTOC = i->getType();
651      if (TypeTOC != ELF::R_PPC64_TOC)
652        continue;
653
654      // Finally compares the Symbol value and the target symbol offset
655      // to check if this .opd entry refers to the symbol the relocation
656      // points to.
657      if (Rel.Addend != (int64_t)TargetSymbolOffset)
658        continue;
659
660      section_iterator TSI = Obj.section_end();
661      if (auto TSIOrErr = TargetSymbol->getSection())
662        TSI = *TSIOrErr;
663      else
664        return TSIOrErr.takeError();
665      assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
666
667      bool IsCode = TSI->isText();
668      if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
669                                                  LocalSections))
670        Rel.SectionID = *SectionIDOrErr;
671      else
672        return SectionIDOrErr.takeError();
673      Rel.Addend = (intptr_t)Addend;
674      return Error::success();
675    }
676  }
677  llvm_unreachable("Attempting to get address of ODP entry!");
678}
679
680// Relocation masks following the #lo(value), #hi(value), #ha(value),
681// #higher(value), #highera(value), #highest(value), and #highesta(value)
682// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
683// document.
684
685static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
686
687static inline uint16_t applyPPChi(uint64_t value) {
688  return (value >> 16) & 0xffff;
689}
690
691static inline uint16_t applyPPCha (uint64_t value) {
692  return ((value + 0x8000) >> 16) & 0xffff;
693}
694
695static inline uint16_t applyPPChigher(uint64_t value) {
696  return (value >> 32) & 0xffff;
697}
698
699static inline uint16_t applyPPChighera (uint64_t value) {
700  return ((value + 0x8000) >> 32) & 0xffff;
701}
702
703static inline uint16_t applyPPChighest(uint64_t value) {
704  return (value >> 48) & 0xffff;
705}
706
707static inline uint16_t applyPPChighesta (uint64_t value) {
708  return ((value + 0x8000) >> 48) & 0xffff;
709}
710
711void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
712                                            uint64_t Offset, uint64_t Value,
713                                            uint32_t Type, int64_t Addend) {
714  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
715  switch (Type) {
716  default:
717    llvm_unreachable("Relocation type not implemented yet!");
718    break;
719  case ELF::R_PPC_ADDR16_LO:
720    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
721    break;
722  case ELF::R_PPC_ADDR16_HI:
723    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
724    break;
725  case ELF::R_PPC_ADDR16_HA:
726    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
727    break;
728  }
729}
730
731void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
732                                            uint64_t Offset, uint64_t Value,
733                                            uint32_t Type, int64_t Addend) {
734  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
735  switch (Type) {
736  default:
737    llvm_unreachable("Relocation type not implemented yet!");
738    break;
739  case ELF::R_PPC64_ADDR16:
740    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
741    break;
742  case ELF::R_PPC64_ADDR16_DS:
743    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
744    break;
745  case ELF::R_PPC64_ADDR16_LO:
746    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
747    break;
748  case ELF::R_PPC64_ADDR16_LO_DS:
749    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
750    break;
751  case ELF::R_PPC64_ADDR16_HI:
752  case ELF::R_PPC64_ADDR16_HIGH:
753    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
754    break;
755  case ELF::R_PPC64_ADDR16_HA:
756  case ELF::R_PPC64_ADDR16_HIGHA:
757    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
758    break;
759  case ELF::R_PPC64_ADDR16_HIGHER:
760    writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
761    break;
762  case ELF::R_PPC64_ADDR16_HIGHERA:
763    writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
764    break;
765  case ELF::R_PPC64_ADDR16_HIGHEST:
766    writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
767    break;
768  case ELF::R_PPC64_ADDR16_HIGHESTA:
769    writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
770    break;
771  case ELF::R_PPC64_ADDR14: {
772    assert(((Value + Addend) & 3) == 0);
773    // Preserve the AA/LK bits in the branch instruction
774    uint8_t aalk = *(LocalAddress + 3);
775    writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
776  } break;
777  case ELF::R_PPC64_REL16_LO: {
778    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
779    uint64_t Delta = Value - FinalAddress + Addend;
780    writeInt16BE(LocalAddress, applyPPClo(Delta));
781  } break;
782  case ELF::R_PPC64_REL16_HI: {
783    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
784    uint64_t Delta = Value - FinalAddress + Addend;
785    writeInt16BE(LocalAddress, applyPPChi(Delta));
786  } break;
787  case ELF::R_PPC64_REL16_HA: {
788    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
789    uint64_t Delta = Value - FinalAddress + Addend;
790    writeInt16BE(LocalAddress, applyPPCha(Delta));
791  } break;
792  case ELF::R_PPC64_ADDR32: {
793    int64_t Result = static_cast<int64_t>(Value + Addend);
794    if (SignExtend64<32>(Result) != Result)
795      llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
796    writeInt32BE(LocalAddress, Result);
797  } break;
798  case ELF::R_PPC64_REL24: {
799    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
800    int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
801    if (SignExtend64<26>(delta) != delta)
802      llvm_unreachable("Relocation R_PPC64_REL24 overflow");
803    // We preserve bits other than LI field, i.e. PO and AA/LK fields.
804    uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
805    writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
806  } break;
807  case ELF::R_PPC64_REL32: {
808    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
809    int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
810    if (SignExtend64<32>(delta) != delta)
811      llvm_unreachable("Relocation R_PPC64_REL32 overflow");
812    writeInt32BE(LocalAddress, delta);
813  } break;
814  case ELF::R_PPC64_REL64: {
815    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
816    uint64_t Delta = Value - FinalAddress + Addend;
817    writeInt64BE(LocalAddress, Delta);
818  } break;
819  case ELF::R_PPC64_ADDR64:
820    writeInt64BE(LocalAddress, Value + Addend);
821    break;
822  }
823}
824
825void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
826                                              uint64_t Offset, uint64_t Value,
827                                              uint32_t Type, int64_t Addend) {
828  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
829  switch (Type) {
830  default:
831    llvm_unreachable("Relocation type not implemented yet!");
832    break;
833  case ELF::R_390_PC16DBL:
834  case ELF::R_390_PLT16DBL: {
835    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
836    assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
837    writeInt16BE(LocalAddress, Delta / 2);
838    break;
839  }
840  case ELF::R_390_PC32DBL:
841  case ELF::R_390_PLT32DBL: {
842    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
843    assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
844    writeInt32BE(LocalAddress, Delta / 2);
845    break;
846  }
847  case ELF::R_390_PC16: {
848    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
849    assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
850    writeInt16BE(LocalAddress, Delta);
851    break;
852  }
853  case ELF::R_390_PC32: {
854    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
855    assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
856    writeInt32BE(LocalAddress, Delta);
857    break;
858  }
859  case ELF::R_390_PC64: {
860    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
861    writeInt64BE(LocalAddress, Delta);
862    break;
863  }
864  case ELF::R_390_8:
865    *LocalAddress = (uint8_t)(Value + Addend);
866    break;
867  case ELF::R_390_16:
868    writeInt16BE(LocalAddress, Value + Addend);
869    break;
870  case ELF::R_390_32:
871    writeInt32BE(LocalAddress, Value + Addend);
872    break;
873  case ELF::R_390_64:
874    writeInt64BE(LocalAddress, Value + Addend);
875    break;
876  }
877}
878
879void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
880                                          uint64_t Offset, uint64_t Value,
881                                          uint32_t Type, int64_t Addend) {
882  bool isBE = Arch == Triple::bpfeb;
883
884  switch (Type) {
885  default:
886    llvm_unreachable("Relocation type not implemented yet!");
887    break;
888  case ELF::R_BPF_NONE:
889    break;
890  case ELF::R_BPF_64_64: {
891    write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
892    LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
893                      << format("%p\n", Section.getAddressWithOffset(Offset)));
894    break;
895  }
896  case ELF::R_BPF_64_32: {
897    Value += Addend;
898    assert(Value <= UINT32_MAX);
899    write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
900    LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
901                      << format("%p\n", Section.getAddressWithOffset(Offset)));
902    break;
903  }
904  }
905}
906
907// The target location for the relocation is described by RE.SectionID and
908// RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
909// SectionEntry has three members describing its location.
910// SectionEntry::Address is the address at which the section has been loaded
911// into memory in the current (host) process.  SectionEntry::LoadAddress is the
912// address that the section will have in the target process.
913// SectionEntry::ObjAddress is the address of the bits for this section in the
914// original emitted object image (also in the current address space).
915//
916// Relocations will be applied as if the section were loaded at
917// SectionEntry::LoadAddress, but they will be applied at an address based
918// on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
919// Target memory contents if they are required for value calculations.
920//
921// The Value parameter here is the load address of the symbol for the
922// relocation to be applied.  For relocations which refer to symbols in the
923// current object Value will be the LoadAddress of the section in which
924// the symbol resides (RE.Addend provides additional information about the
925// symbol location).  For external symbols, Value will be the address of the
926// symbol in the target address space.
927void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
928                                       uint64_t Value) {
929  const SectionEntry &Section = Sections[RE.SectionID];
930  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
931                           RE.SymOffset, RE.SectionID);
932}
933
934void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
935                                       uint64_t Offset, uint64_t Value,
936                                       uint32_t Type, int64_t Addend,
937                                       uint64_t SymOffset, SID SectionID) {
938  switch (Arch) {
939  case Triple::x86_64:
940    resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
941    break;
942  case Triple::x86:
943    resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
944                         (uint32_t)(Addend & 0xffffffffL));
945    break;
946  case Triple::aarch64:
947  case Triple::aarch64_be:
948    resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
949    break;
950  case Triple::arm: // Fall through.
951  case Triple::armeb:
952  case Triple::thumb:
953  case Triple::thumbeb:
954    resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
955                         (uint32_t)(Addend & 0xffffffffL));
956    break;
957  case Triple::ppc:
958    resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
959    break;
960  case Triple::ppc64: // Fall through.
961  case Triple::ppc64le:
962    resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
963    break;
964  case Triple::systemz:
965    resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
966    break;
967  case Triple::bpfel:
968  case Triple::bpfeb:
969    resolveBPFRelocation(Section, Offset, Value, Type, Addend);
970    break;
971  default:
972    llvm_unreachable("Unsupported CPU type!");
973  }
974}
975
976void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
977  return (void *)(Sections[SectionID].getObjAddress() + Offset);
978}
979
980void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
981  RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
982  if (Value.SymbolName)
983    addRelocationForSymbol(RE, Value.SymbolName);
984  else
985    addRelocationForSection(RE, Value.SectionID);
986}
987
988uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
989                                                 bool IsLocal) const {
990  switch (RelType) {
991  case ELF::R_MICROMIPS_GOT16:
992    if (IsLocal)
993      return ELF::R_MICROMIPS_LO16;
994    break;
995  case ELF::R_MICROMIPS_HI16:
996    return ELF::R_MICROMIPS_LO16;
997  case ELF::R_MIPS_GOT16:
998    if (IsLocal)
999      return ELF::R_MIPS_LO16;
1000    break;
1001  case ELF::R_MIPS_HI16:
1002    return ELF::R_MIPS_LO16;
1003  case ELF::R_MIPS_PCHI16:
1004    return ELF::R_MIPS_PCLO16;
1005  default:
1006    break;
1007  }
1008  return ELF::R_MIPS_NONE;
1009}
1010
1011// Sometimes we don't need to create thunk for a branch.
1012// This typically happens when branch target is located
1013// in the same object file. In such case target is either
1014// a weak symbol or symbol in a different executable section.
1015// This function checks if branch target is located in the
1016// same object file and if distance between source and target
1017// fits R_AARCH64_CALL26 relocation. If both conditions are
1018// met, it emits direct jump to the target and returns true.
1019// Otherwise false is returned and thunk is created.
1020bool RuntimeDyldELF::resolveAArch64ShortBranch(
1021    unsigned SectionID, relocation_iterator RelI,
1022    const RelocationValueRef &Value) {
1023  uint64_t Address;
1024  if (Value.SymbolName) {
1025    auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1026
1027    // Don't create direct branch for external symbols.
1028    if (Loc == GlobalSymbolTable.end())
1029      return false;
1030
1031    const auto &SymInfo = Loc->second;
1032    Address =
1033        uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1034            SymInfo.getOffset()));
1035  } else {
1036    Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1037  }
1038  uint64_t Offset = RelI->getOffset();
1039  uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1040
1041  // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1042  // If distance between source and target is out of range then we should
1043  // create thunk.
1044  if (!isInt<28>(Address + Value.Addend - SourceAddress))
1045    return false;
1046
1047  resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1048                    Value.Addend);
1049
1050  return true;
1051}
1052
1053void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1054                                          const RelocationValueRef &Value,
1055                                          relocation_iterator RelI,
1056                                          StubMap &Stubs) {
1057
1058  LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1059  SectionEntry &Section = Sections[SectionID];
1060
1061  uint64_t Offset = RelI->getOffset();
1062  unsigned RelType = RelI->getType();
1063  // Look for an existing stub.
1064  StubMap::const_iterator i = Stubs.find(Value);
1065  if (i != Stubs.end()) {
1066    resolveRelocation(Section, Offset,
1067                      (uint64_t)Section.getAddressWithOffset(i->second),
1068                      RelType, 0);
1069    LLVM_DEBUG(dbgs() << " Stub function found\n");
1070  } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1071    // Create a new stub function.
1072    LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1073    Stubs[Value] = Section.getStubOffset();
1074    uint8_t *StubTargetAddr = createStubFunction(
1075        Section.getAddressWithOffset(Section.getStubOffset()));
1076
1077    RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1078                              ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1079    RelocationEntry REmovk_g2(SectionID,
1080                              StubTargetAddr - Section.getAddress() + 4,
1081                              ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1082    RelocationEntry REmovk_g1(SectionID,
1083                              StubTargetAddr - Section.getAddress() + 8,
1084                              ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1085    RelocationEntry REmovk_g0(SectionID,
1086                              StubTargetAddr - Section.getAddress() + 12,
1087                              ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1088
1089    if (Value.SymbolName) {
1090      addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1091      addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1092      addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1093      addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1094    } else {
1095      addRelocationForSection(REmovz_g3, Value.SectionID);
1096      addRelocationForSection(REmovk_g2, Value.SectionID);
1097      addRelocationForSection(REmovk_g1, Value.SectionID);
1098      addRelocationForSection(REmovk_g0, Value.SectionID);
1099    }
1100    resolveRelocation(Section, Offset,
1101                      reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1102                          Section.getStubOffset())),
1103                      RelType, 0);
1104    Section.advanceStubOffset(getMaxStubSize());
1105  }
1106}
1107
1108Expected<relocation_iterator>
1109RuntimeDyldELF::processRelocationRef(
1110    unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1111    ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1112  const auto &Obj = cast<ELFObjectFileBase>(O);
1113  uint64_t RelType = RelI->getType();
1114  int64_t Addend = 0;
1115  if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1116    Addend = *AddendOrErr;
1117  else
1118    consumeError(AddendOrErr.takeError());
1119  elf_symbol_iterator Symbol = RelI->getSymbol();
1120
1121  // Obtain the symbol name which is referenced in the relocation
1122  StringRef TargetName;
1123  if (Symbol != Obj.symbol_end()) {
1124    if (auto TargetNameOrErr = Symbol->getName())
1125      TargetName = *TargetNameOrErr;
1126    else
1127      return TargetNameOrErr.takeError();
1128  }
1129  LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1130                    << " TargetName: " << TargetName << "\n");
1131  RelocationValueRef Value;
1132  // First search for the symbol in the local symbol table
1133  SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1134
1135  // Search for the symbol in the global symbol table
1136  RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1137  if (Symbol != Obj.symbol_end()) {
1138    gsi = GlobalSymbolTable.find(TargetName.data());
1139    Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1140    if (!SymTypeOrErr) {
1141      std::string Buf;
1142      raw_string_ostream OS(Buf);
1143      logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1144      OS.flush();
1145      report_fatal_error(Buf);
1146    }
1147    SymType = *SymTypeOrErr;
1148  }
1149  if (gsi != GlobalSymbolTable.end()) {
1150    const auto &SymInfo = gsi->second;
1151    Value.SectionID = SymInfo.getSectionID();
1152    Value.Offset = SymInfo.getOffset();
1153    Value.Addend = SymInfo.getOffset() + Addend;
1154  } else {
1155    switch (SymType) {
1156    case SymbolRef::ST_Debug: {
1157      // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1158      // and can be changed by another developers. Maybe best way is add
1159      // a new symbol type ST_Section to SymbolRef and use it.
1160      auto SectionOrErr = Symbol->getSection();
1161      if (!SectionOrErr) {
1162        std::string Buf;
1163        raw_string_ostream OS(Buf);
1164        logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1165        OS.flush();
1166        report_fatal_error(Buf);
1167      }
1168      section_iterator si = *SectionOrErr;
1169      if (si == Obj.section_end())
1170        llvm_unreachable("Symbol section not found, bad object file format!");
1171      LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1172      bool isCode = si->isText();
1173      if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1174                                                  ObjSectionToID))
1175        Value.SectionID = *SectionIDOrErr;
1176      else
1177        return SectionIDOrErr.takeError();
1178      Value.Addend = Addend;
1179      break;
1180    }
1181    case SymbolRef::ST_Data:
1182    case SymbolRef::ST_Function:
1183    case SymbolRef::ST_Unknown: {
1184      Value.SymbolName = TargetName.data();
1185      Value.Addend = Addend;
1186
1187      // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1188      // will manifest here as a NULL symbol name.
1189      // We can set this as a valid (but empty) symbol name, and rely
1190      // on addRelocationForSymbol to handle this.
1191      if (!Value.SymbolName)
1192        Value.SymbolName = "";
1193      break;
1194    }
1195    default:
1196      llvm_unreachable("Unresolved symbol type!");
1197      break;
1198    }
1199  }
1200
1201  uint64_t Offset = RelI->getOffset();
1202
1203  LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1204                    << "\n");
1205  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1206    if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1207      resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1208    } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1209      // Craete new GOT entry or find existing one. If GOT entry is
1210      // to be created, then we also emit ABS64 relocation for it.
1211      uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1212      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1213                                 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1214
1215    } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1216      uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1217      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1218                                 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1219    } else {
1220      processSimpleRelocation(SectionID, Offset, RelType, Value);
1221    }
1222  } else if (Arch == Triple::arm) {
1223    if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1224      RelType == ELF::R_ARM_JUMP24) {
1225      // This is an ARM branch relocation, need to use a stub function.
1226      LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1227      SectionEntry &Section = Sections[SectionID];
1228
1229      // Look for an existing stub.
1230      StubMap::const_iterator i = Stubs.find(Value);
1231      if (i != Stubs.end()) {
1232        resolveRelocation(
1233            Section, Offset,
1234            reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1235            RelType, 0);
1236        LLVM_DEBUG(dbgs() << " Stub function found\n");
1237      } else {
1238        // Create a new stub function.
1239        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1240        Stubs[Value] = Section.getStubOffset();
1241        uint8_t *StubTargetAddr = createStubFunction(
1242            Section.getAddressWithOffset(Section.getStubOffset()));
1243        RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1244                           ELF::R_ARM_ABS32, Value.Addend);
1245        if (Value.SymbolName)
1246          addRelocationForSymbol(RE, Value.SymbolName);
1247        else
1248          addRelocationForSection(RE, Value.SectionID);
1249
1250        resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1251                                               Section.getAddressWithOffset(
1252                                                   Section.getStubOffset())),
1253                          RelType, 0);
1254        Section.advanceStubOffset(getMaxStubSize());
1255      }
1256    } else {
1257      uint32_t *Placeholder =
1258        reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1259      if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1260          RelType == ELF::R_ARM_ABS32) {
1261        Value.Addend += *Placeholder;
1262      } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1263        // See ELF for ARM documentation
1264        Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1265      }
1266      processSimpleRelocation(SectionID, Offset, RelType, Value);
1267    }
1268  } else if (IsMipsO32ABI) {
1269    uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1270        computePlaceholderAddress(SectionID, Offset));
1271    uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1272    if (RelType == ELF::R_MIPS_26) {
1273      // This is an Mips branch relocation, need to use a stub function.
1274      LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1275      SectionEntry &Section = Sections[SectionID];
1276
1277      // Extract the addend from the instruction.
1278      // We shift up by two since the Value will be down shifted again
1279      // when applying the relocation.
1280      uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1281
1282      Value.Addend += Addend;
1283
1284      //  Look up for existing stub.
1285      StubMap::const_iterator i = Stubs.find(Value);
1286      if (i != Stubs.end()) {
1287        RelocationEntry RE(SectionID, Offset, RelType, i->second);
1288        addRelocationForSection(RE, SectionID);
1289        LLVM_DEBUG(dbgs() << " Stub function found\n");
1290      } else {
1291        // Create a new stub function.
1292        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1293        Stubs[Value] = Section.getStubOffset();
1294
1295        unsigned AbiVariant = Obj.getPlatformFlags();
1296
1297        uint8_t *StubTargetAddr = createStubFunction(
1298            Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1299
1300        // Creating Hi and Lo relocations for the filled stub instructions.
1301        RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1302                             ELF::R_MIPS_HI16, Value.Addend);
1303        RelocationEntry RELo(SectionID,
1304                             StubTargetAddr - Section.getAddress() + 4,
1305                             ELF::R_MIPS_LO16, Value.Addend);
1306
1307        if (Value.SymbolName) {
1308          addRelocationForSymbol(REHi, Value.SymbolName);
1309          addRelocationForSymbol(RELo, Value.SymbolName);
1310        } else {
1311          addRelocationForSection(REHi, Value.SectionID);
1312          addRelocationForSection(RELo, Value.SectionID);
1313        }
1314
1315        RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1316        addRelocationForSection(RE, SectionID);
1317        Section.advanceStubOffset(getMaxStubSize());
1318      }
1319    } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1320      int64_t Addend = (Opcode & 0x0000ffff) << 16;
1321      RelocationEntry RE(SectionID, Offset, RelType, Addend);
1322      PendingRelocs.push_back(std::make_pair(Value, RE));
1323    } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1324      int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1325      for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1326        const RelocationValueRef &MatchingValue = I->first;
1327        RelocationEntry &Reloc = I->second;
1328        if (MatchingValue == Value &&
1329            RelType == getMatchingLoRelocation(Reloc.RelType) &&
1330            SectionID == Reloc.SectionID) {
1331          Reloc.Addend += Addend;
1332          if (Value.SymbolName)
1333            addRelocationForSymbol(Reloc, Value.SymbolName);
1334          else
1335            addRelocationForSection(Reloc, Value.SectionID);
1336          I = PendingRelocs.erase(I);
1337        } else
1338          ++I;
1339      }
1340      RelocationEntry RE(SectionID, Offset, RelType, Addend);
1341      if (Value.SymbolName)
1342        addRelocationForSymbol(RE, Value.SymbolName);
1343      else
1344        addRelocationForSection(RE, Value.SectionID);
1345    } else {
1346      if (RelType == ELF::R_MIPS_32)
1347        Value.Addend += Opcode;
1348      else if (RelType == ELF::R_MIPS_PC16)
1349        Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1350      else if (RelType == ELF::R_MIPS_PC19_S2)
1351        Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1352      else if (RelType == ELF::R_MIPS_PC21_S2)
1353        Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1354      else if (RelType == ELF::R_MIPS_PC26_S2)
1355        Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1356      processSimpleRelocation(SectionID, Offset, RelType, Value);
1357    }
1358  } else if (IsMipsN32ABI || IsMipsN64ABI) {
1359    uint32_t r_type = RelType & 0xff;
1360    RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1361    if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1362        || r_type == ELF::R_MIPS_GOT_DISP) {
1363      StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1364      if (i != GOTSymbolOffsets.end())
1365        RE.SymOffset = i->second;
1366      else {
1367        RE.SymOffset = allocateGOTEntries(1);
1368        GOTSymbolOffsets[TargetName] = RE.SymOffset;
1369      }
1370      if (Value.SymbolName)
1371        addRelocationForSymbol(RE, Value.SymbolName);
1372      else
1373        addRelocationForSection(RE, Value.SectionID);
1374    } else if (RelType == ELF::R_MIPS_26) {
1375      // This is an Mips branch relocation, need to use a stub function.
1376      LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1377      SectionEntry &Section = Sections[SectionID];
1378
1379      //  Look up for existing stub.
1380      StubMap::const_iterator i = Stubs.find(Value);
1381      if (i != Stubs.end()) {
1382        RelocationEntry RE(SectionID, Offset, RelType, i->second);
1383        addRelocationForSection(RE, SectionID);
1384        LLVM_DEBUG(dbgs() << " Stub function found\n");
1385      } else {
1386        // Create a new stub function.
1387        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1388        Stubs[Value] = Section.getStubOffset();
1389
1390        unsigned AbiVariant = Obj.getPlatformFlags();
1391
1392        uint8_t *StubTargetAddr = createStubFunction(
1393            Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1394
1395        if (IsMipsN32ABI) {
1396          // Creating Hi and Lo relocations for the filled stub instructions.
1397          RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1398                               ELF::R_MIPS_HI16, Value.Addend);
1399          RelocationEntry RELo(SectionID,
1400                               StubTargetAddr - Section.getAddress() + 4,
1401                               ELF::R_MIPS_LO16, Value.Addend);
1402          if (Value.SymbolName) {
1403            addRelocationForSymbol(REHi, Value.SymbolName);
1404            addRelocationForSymbol(RELo, Value.SymbolName);
1405          } else {
1406            addRelocationForSection(REHi, Value.SectionID);
1407            addRelocationForSection(RELo, Value.SectionID);
1408          }
1409        } else {
1410          // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1411          // instructions.
1412          RelocationEntry REHighest(SectionID,
1413                                    StubTargetAddr - Section.getAddress(),
1414                                    ELF::R_MIPS_HIGHEST, Value.Addend);
1415          RelocationEntry REHigher(SectionID,
1416                                   StubTargetAddr - Section.getAddress() + 4,
1417                                   ELF::R_MIPS_HIGHER, Value.Addend);
1418          RelocationEntry REHi(SectionID,
1419                               StubTargetAddr - Section.getAddress() + 12,
1420                               ELF::R_MIPS_HI16, Value.Addend);
1421          RelocationEntry RELo(SectionID,
1422                               StubTargetAddr - Section.getAddress() + 20,
1423                               ELF::R_MIPS_LO16, Value.Addend);
1424          if (Value.SymbolName) {
1425            addRelocationForSymbol(REHighest, Value.SymbolName);
1426            addRelocationForSymbol(REHigher, Value.SymbolName);
1427            addRelocationForSymbol(REHi, Value.SymbolName);
1428            addRelocationForSymbol(RELo, Value.SymbolName);
1429          } else {
1430            addRelocationForSection(REHighest, Value.SectionID);
1431            addRelocationForSection(REHigher, Value.SectionID);
1432            addRelocationForSection(REHi, Value.SectionID);
1433            addRelocationForSection(RELo, Value.SectionID);
1434          }
1435        }
1436        RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1437        addRelocationForSection(RE, SectionID);
1438        Section.advanceStubOffset(getMaxStubSize());
1439      }
1440    } else {
1441      processSimpleRelocation(SectionID, Offset, RelType, Value);
1442    }
1443
1444  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1445    if (RelType == ELF::R_PPC64_REL24) {
1446      // Determine ABI variant in use for this object.
1447      unsigned AbiVariant = Obj.getPlatformFlags();
1448      AbiVariant &= ELF::EF_PPC64_ABI;
1449      // A PPC branch relocation will need a stub function if the target is
1450      // an external symbol (either Value.SymbolName is set, or SymType is
1451      // Symbol::ST_Unknown) or if the target address is not within the
1452      // signed 24-bits branch address.
1453      SectionEntry &Section = Sections[SectionID];
1454      uint8_t *Target = Section.getAddressWithOffset(Offset);
1455      bool RangeOverflow = false;
1456      bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1457      if (!IsExtern) {
1458        if (AbiVariant != 2) {
1459          // In the ELFv1 ABI, a function call may point to the .opd entry,
1460          // so the final symbol value is calculated based on the relocation
1461          // values in the .opd section.
1462          if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1463            return std::move(Err);
1464        } else {
1465          // In the ELFv2 ABI, a function symbol may provide a local entry
1466          // point, which must be used for direct calls.
1467          if (Value.SectionID == SectionID){
1468            uint8_t SymOther = Symbol->getOther();
1469            Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1470          }
1471        }
1472        uint8_t *RelocTarget =
1473            Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1474        int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1475        // If it is within 26-bits branch range, just set the branch target
1476        if (SignExtend64<26>(delta) != delta) {
1477          RangeOverflow = true;
1478        } else if ((AbiVariant != 2) ||
1479                   (AbiVariant == 2  && Value.SectionID == SectionID)) {
1480          RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1481          addRelocationForSection(RE, Value.SectionID);
1482        }
1483      }
1484      if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1485          RangeOverflow) {
1486        // It is an external symbol (either Value.SymbolName is set, or
1487        // SymType is SymbolRef::ST_Unknown) or out of range.
1488        StubMap::const_iterator i = Stubs.find(Value);
1489        if (i != Stubs.end()) {
1490          // Symbol function stub already created, just relocate to it
1491          resolveRelocation(Section, Offset,
1492                            reinterpret_cast<uint64_t>(
1493                                Section.getAddressWithOffset(i->second)),
1494                            RelType, 0);
1495          LLVM_DEBUG(dbgs() << " Stub function found\n");
1496        } else {
1497          // Create a new stub function.
1498          LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1499          Stubs[Value] = Section.getStubOffset();
1500          uint8_t *StubTargetAddr = createStubFunction(
1501              Section.getAddressWithOffset(Section.getStubOffset()),
1502              AbiVariant);
1503          RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1504                             ELF::R_PPC64_ADDR64, Value.Addend);
1505
1506          // Generates the 64-bits address loads as exemplified in section
1507          // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1508          // apply to the low part of the instructions, so we have to update
1509          // the offset according to the target endianness.
1510          uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1511          if (!IsTargetLittleEndian)
1512            StubRelocOffset += 2;
1513
1514          RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1515                                ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1516          RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1517                               ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1518          RelocationEntry REh(SectionID, StubRelocOffset + 12,
1519                              ELF::R_PPC64_ADDR16_HI, Value.Addend);
1520          RelocationEntry REl(SectionID, StubRelocOffset + 16,
1521                              ELF::R_PPC64_ADDR16_LO, Value.Addend);
1522
1523          if (Value.SymbolName) {
1524            addRelocationForSymbol(REhst, Value.SymbolName);
1525            addRelocationForSymbol(REhr, Value.SymbolName);
1526            addRelocationForSymbol(REh, Value.SymbolName);
1527            addRelocationForSymbol(REl, Value.SymbolName);
1528          } else {
1529            addRelocationForSection(REhst, Value.SectionID);
1530            addRelocationForSection(REhr, Value.SectionID);
1531            addRelocationForSection(REh, Value.SectionID);
1532            addRelocationForSection(REl, Value.SectionID);
1533          }
1534
1535          resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1536                                                 Section.getAddressWithOffset(
1537                                                     Section.getStubOffset())),
1538                            RelType, 0);
1539          Section.advanceStubOffset(getMaxStubSize());
1540        }
1541        if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1542          // Restore the TOC for external calls
1543          if (AbiVariant == 2)
1544            writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1545          else
1546            writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1547        }
1548      }
1549    } else if (RelType == ELF::R_PPC64_TOC16 ||
1550               RelType == ELF::R_PPC64_TOC16_DS ||
1551               RelType == ELF::R_PPC64_TOC16_LO ||
1552               RelType == ELF::R_PPC64_TOC16_LO_DS ||
1553               RelType == ELF::R_PPC64_TOC16_HI ||
1554               RelType == ELF::R_PPC64_TOC16_HA) {
1555      // These relocations are supposed to subtract the TOC address from
1556      // the final value.  This does not fit cleanly into the RuntimeDyld
1557      // scheme, since there may be *two* sections involved in determining
1558      // the relocation value (the section of the symbol referred to by the
1559      // relocation, and the TOC section associated with the current module).
1560      //
1561      // Fortunately, these relocations are currently only ever generated
1562      // referring to symbols that themselves reside in the TOC, which means
1563      // that the two sections are actually the same.  Thus they cancel out
1564      // and we can immediately resolve the relocation right now.
1565      switch (RelType) {
1566      case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1567      case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1568      case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1569      case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1570      case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1571      case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1572      default: llvm_unreachable("Wrong relocation type.");
1573      }
1574
1575      RelocationValueRef TOCValue;
1576      if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1577        return std::move(Err);
1578      if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1579        llvm_unreachable("Unsupported TOC relocation.");
1580      Value.Addend -= TOCValue.Addend;
1581      resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1582    } else {
1583      // There are two ways to refer to the TOC address directly: either
1584      // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1585      // ignored), or via any relocation that refers to the magic ".TOC."
1586      // symbols (in which case the addend is respected).
1587      if (RelType == ELF::R_PPC64_TOC) {
1588        RelType = ELF::R_PPC64_ADDR64;
1589        if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1590          return std::move(Err);
1591      } else if (TargetName == ".TOC.") {
1592        if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1593          return std::move(Err);
1594        Value.Addend += Addend;
1595      }
1596
1597      RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1598
1599      if (Value.SymbolName)
1600        addRelocationForSymbol(RE, Value.SymbolName);
1601      else
1602        addRelocationForSection(RE, Value.SectionID);
1603    }
1604  } else if (Arch == Triple::systemz &&
1605             (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1606    // Create function stubs for both PLT and GOT references, regardless of
1607    // whether the GOT reference is to data or code.  The stub contains the
1608    // full address of the symbol, as needed by GOT references, and the
1609    // executable part only adds an overhead of 8 bytes.
1610    //
1611    // We could try to conserve space by allocating the code and data
1612    // parts of the stub separately.  However, as things stand, we allocate
1613    // a stub for every relocation, so using a GOT in JIT code should be
1614    // no less space efficient than using an explicit constant pool.
1615    LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1616    SectionEntry &Section = Sections[SectionID];
1617
1618    // Look for an existing stub.
1619    StubMap::const_iterator i = Stubs.find(Value);
1620    uintptr_t StubAddress;
1621    if (i != Stubs.end()) {
1622      StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1623      LLVM_DEBUG(dbgs() << " Stub function found\n");
1624    } else {
1625      // Create a new stub function.
1626      LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1627
1628      uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1629      uintptr_t StubAlignment = getStubAlignment();
1630      StubAddress =
1631          (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1632          -StubAlignment;
1633      unsigned StubOffset = StubAddress - BaseAddress;
1634
1635      Stubs[Value] = StubOffset;
1636      createStubFunction((uint8_t *)StubAddress);
1637      RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1638                         Value.Offset);
1639      if (Value.SymbolName)
1640        addRelocationForSymbol(RE, Value.SymbolName);
1641      else
1642        addRelocationForSection(RE, Value.SectionID);
1643      Section.advanceStubOffset(getMaxStubSize());
1644    }
1645
1646    if (RelType == ELF::R_390_GOTENT)
1647      resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1648                        Addend);
1649    else
1650      resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1651  } else if (Arch == Triple::x86_64) {
1652    if (RelType == ELF::R_X86_64_PLT32) {
1653      // The way the PLT relocations normally work is that the linker allocates
1654      // the
1655      // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1656      // entry will then jump to an address provided by the GOT.  On first call,
1657      // the
1658      // GOT address will point back into PLT code that resolves the symbol. After
1659      // the first call, the GOT entry points to the actual function.
1660      //
1661      // For local functions we're ignoring all of that here and just replacing
1662      // the PLT32 relocation type with PC32, which will translate the relocation
1663      // into a PC-relative call directly to the function. For external symbols we
1664      // can't be sure the function will be within 2^32 bytes of the call site, so
1665      // we need to create a stub, which calls into the GOT.  This case is
1666      // equivalent to the usual PLT implementation except that we use the stub
1667      // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1668      // rather than allocating a PLT section.
1669      if (Value.SymbolName) {
1670        // This is a call to an external function.
1671        // Look for an existing stub.
1672        SectionEntry &Section = Sections[SectionID];
1673        StubMap::const_iterator i = Stubs.find(Value);
1674        uintptr_t StubAddress;
1675        if (i != Stubs.end()) {
1676          StubAddress = uintptr_t(Section.getAddress()) + i->second;
1677          LLVM_DEBUG(dbgs() << " Stub function found\n");
1678        } else {
1679          // Create a new stub function (equivalent to a PLT entry).
1680          LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1681
1682          uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1683          uintptr_t StubAlignment = getStubAlignment();
1684          StubAddress =
1685              (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1686              -StubAlignment;
1687          unsigned StubOffset = StubAddress - BaseAddress;
1688          Stubs[Value] = StubOffset;
1689          createStubFunction((uint8_t *)StubAddress);
1690
1691          // Bump our stub offset counter
1692          Section.advanceStubOffset(getMaxStubSize());
1693
1694          // Allocate a GOT Entry
1695          uint64_t GOTOffset = allocateGOTEntries(1);
1696
1697          // The load of the GOT address has an addend of -4
1698          resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1699                                     ELF::R_X86_64_PC32);
1700
1701          // Fill in the value of the symbol we're targeting into the GOT
1702          addRelocationForSymbol(
1703              computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1704              Value.SymbolName);
1705        }
1706
1707        // Make the target call a call into the stub table.
1708        resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1709                          Addend);
1710      } else {
1711        RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1712                  Value.Offset);
1713        addRelocationForSection(RE, Value.SectionID);
1714      }
1715    } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1716               RelType == ELF::R_X86_64_GOTPCRELX ||
1717               RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1718      uint64_t GOTOffset = allocateGOTEntries(1);
1719      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1720                                 ELF::R_X86_64_PC32);
1721
1722      // Fill in the value of the symbol we're targeting into the GOT
1723      RelocationEntry RE =
1724          computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1725      if (Value.SymbolName)
1726        addRelocationForSymbol(RE, Value.SymbolName);
1727      else
1728        addRelocationForSection(RE, Value.SectionID);
1729    } else if (RelType == ELF::R_X86_64_GOT64) {
1730      // Fill in a 64-bit GOT offset.
1731      uint64_t GOTOffset = allocateGOTEntries(1);
1732      resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1733                        ELF::R_X86_64_64, 0);
1734
1735      // Fill in the value of the symbol we're targeting into the GOT
1736      RelocationEntry RE =
1737          computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1738      if (Value.SymbolName)
1739        addRelocationForSymbol(RE, Value.SymbolName);
1740      else
1741        addRelocationForSection(RE, Value.SectionID);
1742    } else if (RelType == ELF::R_X86_64_GOTPC64) {
1743      // Materialize the address of the base of the GOT relative to the PC.
1744      // This doesn't create a GOT entry, but it does mean we need a GOT
1745      // section.
1746      (void)allocateGOTEntries(0);
1747      resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1748    } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1749      // GOTOFF relocations ultimately require a section difference relocation.
1750      (void)allocateGOTEntries(0);
1751      processSimpleRelocation(SectionID, Offset, RelType, Value);
1752    } else if (RelType == ELF::R_X86_64_PC32) {
1753      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1754      processSimpleRelocation(SectionID, Offset, RelType, Value);
1755    } else if (RelType == ELF::R_X86_64_PC64) {
1756      Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1757      processSimpleRelocation(SectionID, Offset, RelType, Value);
1758    } else {
1759      processSimpleRelocation(SectionID, Offset, RelType, Value);
1760    }
1761  } else {
1762    if (Arch == Triple::x86) {
1763      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1764    }
1765    processSimpleRelocation(SectionID, Offset, RelType, Value);
1766  }
1767  return ++RelI;
1768}
1769
1770size_t RuntimeDyldELF::getGOTEntrySize() {
1771  // We don't use the GOT in all of these cases, but it's essentially free
1772  // to put them all here.
1773  size_t Result = 0;
1774  switch (Arch) {
1775  case Triple::x86_64:
1776  case Triple::aarch64:
1777  case Triple::aarch64_be:
1778  case Triple::ppc64:
1779  case Triple::ppc64le:
1780  case Triple::systemz:
1781    Result = sizeof(uint64_t);
1782    break;
1783  case Triple::x86:
1784  case Triple::arm:
1785  case Triple::thumb:
1786    Result = sizeof(uint32_t);
1787    break;
1788  case Triple::mips:
1789  case Triple::mipsel:
1790  case Triple::mips64:
1791  case Triple::mips64el:
1792    if (IsMipsO32ABI || IsMipsN32ABI)
1793      Result = sizeof(uint32_t);
1794    else if (IsMipsN64ABI)
1795      Result = sizeof(uint64_t);
1796    else
1797      llvm_unreachable("Mips ABI not handled");
1798    break;
1799  default:
1800    llvm_unreachable("Unsupported CPU type!");
1801  }
1802  return Result;
1803}
1804
1805uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1806  if (GOTSectionID == 0) {
1807    GOTSectionID = Sections.size();
1808    // Reserve a section id. We'll allocate the section later
1809    // once we know the total size
1810    Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1811  }
1812  uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1813  CurrentGOTIndex += no;
1814  return StartOffset;
1815}
1816
1817uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1818                                             unsigned GOTRelType) {
1819  auto E = GOTOffsetMap.insert({Value, 0});
1820  if (E.second) {
1821    uint64_t GOTOffset = allocateGOTEntries(1);
1822
1823    // Create relocation for newly created GOT entry
1824    RelocationEntry RE =
1825        computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1826    if (Value.SymbolName)
1827      addRelocationForSymbol(RE, Value.SymbolName);
1828    else
1829      addRelocationForSection(RE, Value.SectionID);
1830
1831    E.first->second = GOTOffset;
1832  }
1833
1834  return E.first->second;
1835}
1836
1837void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1838                                                uint64_t Offset,
1839                                                uint64_t GOTOffset,
1840                                                uint32_t Type) {
1841  // Fill in the relative address of the GOT Entry into the stub
1842  RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1843  addRelocationForSection(GOTRE, GOTSectionID);
1844}
1845
1846RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1847                                                   uint64_t SymbolOffset,
1848                                                   uint32_t Type) {
1849  return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1850}
1851
1852Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1853                                  ObjSectionToIDMap &SectionMap) {
1854  if (IsMipsO32ABI)
1855    if (!PendingRelocs.empty())
1856      return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1857
1858  // If necessary, allocate the global offset table
1859  if (GOTSectionID != 0) {
1860    // Allocate memory for the section
1861    size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1862    uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1863                                                GOTSectionID, ".got", false);
1864    if (!Addr)
1865      return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1866
1867    Sections[GOTSectionID] =
1868        SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1869
1870    // For now, initialize all GOT entries to zero.  We'll fill them in as
1871    // needed when GOT-based relocations are applied.
1872    memset(Addr, 0, TotalSize);
1873    if (IsMipsN32ABI || IsMipsN64ABI) {
1874      // To correctly resolve Mips GOT relocations, we need a mapping from
1875      // object's sections to GOTs.
1876      for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1877           SI != SE; ++SI) {
1878        if (SI->relocation_begin() != SI->relocation_end()) {
1879          Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
1880          if (!RelSecOrErr)
1881            return make_error<RuntimeDyldError>(
1882                toString(RelSecOrErr.takeError()));
1883
1884          section_iterator RelocatedSection = *RelSecOrErr;
1885          ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1886          assert (i != SectionMap.end());
1887          SectionToGOTMap[i->second] = GOTSectionID;
1888        }
1889      }
1890      GOTSymbolOffsets.clear();
1891    }
1892  }
1893
1894  // Look for and record the EH frame section.
1895  ObjSectionToIDMap::iterator i, e;
1896  for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1897    const SectionRef &Section = i->first;
1898
1899    StringRef Name;
1900    Expected<StringRef> NameOrErr = Section.getName();
1901    if (NameOrErr)
1902      Name = *NameOrErr;
1903    else
1904      consumeError(NameOrErr.takeError());
1905
1906    if (Name == ".eh_frame") {
1907      UnregisteredEHFrameSections.push_back(i->second);
1908      break;
1909    }
1910  }
1911
1912  GOTSectionID = 0;
1913  CurrentGOTIndex = 0;
1914
1915  return Error::success();
1916}
1917
1918bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1919  return Obj.isELF();
1920}
1921
1922bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1923  unsigned RelTy = R.getType();
1924  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1925    return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1926           RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1927
1928  if (Arch == Triple::x86_64)
1929    return RelTy == ELF::R_X86_64_GOTPCREL ||
1930           RelTy == ELF::R_X86_64_GOTPCRELX ||
1931           RelTy == ELF::R_X86_64_GOT64 ||
1932           RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1933  return false;
1934}
1935
1936bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1937  if (Arch != Triple::x86_64)
1938    return true;  // Conservative answer
1939
1940  switch (R.getType()) {
1941  default:
1942    return true;  // Conservative answer
1943
1944
1945  case ELF::R_X86_64_GOTPCREL:
1946  case ELF::R_X86_64_GOTPCRELX:
1947  case ELF::R_X86_64_REX_GOTPCRELX:
1948  case ELF::R_X86_64_GOTPC64:
1949  case ELF::R_X86_64_GOT64:
1950  case ELF::R_X86_64_GOTOFF64:
1951  case ELF::R_X86_64_PC32:
1952  case ELF::R_X86_64_PC64:
1953  case ELF::R_X86_64_64:
1954    // We know that these reloation types won't need a stub function.  This list
1955    // can be extended as needed.
1956    return false;
1957  }
1958}
1959
1960} // namespace llvm
1961