ExternalFunctions.cpp revision 344779
1193323Sed//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed//  This file contains both code to deal with invoking "external" functions, but
11193323Sed//  also contains code that implements "exported" external functions.
12193323Sed//
13193323Sed//  There are currently two mechanisms for handling external functions in the
14193323Sed//  Interpreter.  The first is to implement lle_* wrapper functions that are
15193323Sed//  specific to well-known library functions which manually translate the
16193323Sed//  arguments from GenericValues and make the call.  If such a wrapper does
17193323Sed//  not exist, and libffi is available, then the Interpreter will attempt to
18193323Sed//  invoke the function using libffi, after finding its address.
19193323Sed//
20193323Sed//===----------------------------------------------------------------------===//
21193323Sed
22193323Sed#include "Interpreter.h"
23314564Sdim#include "llvm/ADT/APInt.h"
24314564Sdim#include "llvm/ADT/ArrayRef.h"
25321369Sdim#include "llvm/Config/config.h" // Detect libffi
26314564Sdim#include "llvm/ExecutionEngine/GenericValue.h"
27249423Sdim#include "llvm/IR/DataLayout.h"
28249423Sdim#include "llvm/IR/DerivedTypes.h"
29314564Sdim#include "llvm/IR/Function.h"
30314564Sdim#include "llvm/IR/Type.h"
31314564Sdim#include "llvm/Support/Casting.h"
32249423Sdim#include "llvm/Support/DynamicLibrary.h"
33198090Srdivacky#include "llvm/Support/ErrorHandling.h"
34193323Sed#include "llvm/Support/ManagedStatic.h"
35218893Sdim#include "llvm/Support/Mutex.h"
36321369Sdim#include "llvm/Support/UniqueLock.h"
37314564Sdim#include "llvm/Support/raw_ostream.h"
38314564Sdim#include <cassert>
39249423Sdim#include <cmath>
40193323Sed#include <csignal>
41314564Sdim#include <cstdint>
42193323Sed#include <cstdio>
43249423Sdim#include <cstring>
44193323Sed#include <map>
45314564Sdim#include <string>
46314564Sdim#include <utility>
47314564Sdim#include <vector>
48193323Sed
49193323Sed#ifdef HAVE_FFI_CALL
50193323Sed#ifdef HAVE_FFI_H
51193323Sed#include <ffi.h>
52193323Sed#define USE_LIBFFI
53193323Sed#elif HAVE_FFI_FFI_H
54193323Sed#include <ffi/ffi.h>
55193323Sed#define USE_LIBFFI
56193323Sed#endif
57193323Sed#endif
58193323Sed
59193323Sedusing namespace llvm;
60193323Sed
61194710Sedstatic ManagedStatic<sys::Mutex> FunctionsLock;
62194710Sed
63288943Sdimtypedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
64193323Sedstatic ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
65280031Sdimstatic ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
66193323Sed
67193323Sed#ifdef USE_LIBFFI
68198090Srdivackytypedef void (*RawFunc)();
69193323Sedstatic ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
70193323Sed#endif
71193323Sed
72193323Sedstatic Interpreter *TheInterpreter;
73193323Sed
74226633Sdimstatic char getTypeID(Type *Ty) {
75193323Sed  switch (Ty->getTypeID()) {
76193323Sed  case Type::VoidTyID:    return 'V';
77193323Sed  case Type::IntegerTyID:
78193323Sed    switch (cast<IntegerType>(Ty)->getBitWidth()) {
79193323Sed      case 1:  return 'o';
80193323Sed      case 8:  return 'B';
81193323Sed      case 16: return 'S';
82193323Sed      case 32: return 'I';
83193323Sed      case 64: return 'L';
84193323Sed      default: return 'N';
85193323Sed    }
86193323Sed  case Type::FloatTyID:   return 'F';
87193323Sed  case Type::DoubleTyID:  return 'D';
88193323Sed  case Type::PointerTyID: return 'P';
89193323Sed  case Type::FunctionTyID:return 'M';
90193323Sed  case Type::StructTyID:  return 'T';
91193323Sed  case Type::ArrayTyID:   return 'A';
92193323Sed  default: return 'U';
93193323Sed  }
94193323Sed}
95193323Sed
96193323Sed// Try to find address of external function given a Function object.
97193323Sed// Please note, that interpreter doesn't know how to assemble a
98193323Sed// real call in general case (this is JIT job), that's why it assumes,
99193323Sed// that all external functions has the same (and pretty "general") signature.
100193323Sed// The typical example of such functions are "lle_X_" ones.
101193323Sedstatic ExFunc lookupFunction(const Function *F) {
102193323Sed  // Function not found, look it up... start by figuring out what the
103193323Sed  // composite function name should be.
104193323Sed  std::string ExtName = "lle_";
105226633Sdim  FunctionType *FT = F->getFunctionType();
106344779Sdim  ExtName += getTypeID(FT->getReturnType());
107344779Sdim  for (Type *T : FT->params())
108344779Sdim    ExtName += getTypeID(T);
109288943Sdim  ExtName += ("_" + F->getName()).str();
110193323Sed
111198090Srdivacky  sys::ScopedLock Writer(*FunctionsLock);
112280031Sdim  ExFunc FnPtr = (*FuncNames)[ExtName];
113276479Sdim  if (!FnPtr)
114288943Sdim    FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
115276479Sdim  if (!FnPtr)  // Try calling a generic function... if it exists...
116288943Sdim    FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
117288943Sdim        ("lle_X_" + F->getName()).str());
118276479Sdim  if (FnPtr)
119193323Sed    ExportedFunctions->insert(std::make_pair(F, FnPtr));  // Cache for later
120193323Sed  return FnPtr;
121193323Sed}
122193323Sed
123193323Sed#ifdef USE_LIBFFI
124226633Sdimstatic ffi_type *ffiTypeFor(Type *Ty) {
125193323Sed  switch (Ty->getTypeID()) {
126193323Sed    case Type::VoidTyID: return &ffi_type_void;
127193323Sed    case Type::IntegerTyID:
128193323Sed      switch (cast<IntegerType>(Ty)->getBitWidth()) {
129193323Sed        case 8:  return &ffi_type_sint8;
130193323Sed        case 16: return &ffi_type_sint16;
131193323Sed        case 32: return &ffi_type_sint32;
132193323Sed        case 64: return &ffi_type_sint64;
133193323Sed      }
134193323Sed    case Type::FloatTyID:   return &ffi_type_float;
135193323Sed    case Type::DoubleTyID:  return &ffi_type_double;
136193323Sed    case Type::PointerTyID: return &ffi_type_pointer;
137193323Sed    default: break;
138193323Sed  }
139193323Sed  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
140207618Srdivacky  report_fatal_error("Type could not be mapped for use with libffi.");
141193323Sed  return NULL;
142193323Sed}
143193323Sed
144226633Sdimstatic void *ffiValueFor(Type *Ty, const GenericValue &AV,
145193323Sed                         void *ArgDataPtr) {
146193323Sed  switch (Ty->getTypeID()) {
147193323Sed    case Type::IntegerTyID:
148193323Sed      switch (cast<IntegerType>(Ty)->getBitWidth()) {
149193323Sed        case 8: {
150193323Sed          int8_t *I8Ptr = (int8_t *) ArgDataPtr;
151193323Sed          *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
152193323Sed          return ArgDataPtr;
153193323Sed        }
154193323Sed        case 16: {
155193323Sed          int16_t *I16Ptr = (int16_t *) ArgDataPtr;
156193323Sed          *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
157193323Sed          return ArgDataPtr;
158193323Sed        }
159193323Sed        case 32: {
160193323Sed          int32_t *I32Ptr = (int32_t *) ArgDataPtr;
161193323Sed          *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
162193323Sed          return ArgDataPtr;
163193323Sed        }
164193323Sed        case 64: {
165193323Sed          int64_t *I64Ptr = (int64_t *) ArgDataPtr;
166193323Sed          *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
167193323Sed          return ArgDataPtr;
168193323Sed        }
169193323Sed      }
170193323Sed    case Type::FloatTyID: {
171193323Sed      float *FloatPtr = (float *) ArgDataPtr;
172199481Srdivacky      *FloatPtr = AV.FloatVal;
173193323Sed      return ArgDataPtr;
174193323Sed    }
175193323Sed    case Type::DoubleTyID: {
176193323Sed      double *DoublePtr = (double *) ArgDataPtr;
177193323Sed      *DoublePtr = AV.DoubleVal;
178193323Sed      return ArgDataPtr;
179193323Sed    }
180193323Sed    case Type::PointerTyID: {
181193323Sed      void **PtrPtr = (void **) ArgDataPtr;
182193323Sed      *PtrPtr = GVTOP(AV);
183193323Sed      return ArgDataPtr;
184193323Sed    }
185193323Sed    default: break;
186193323Sed  }
187193323Sed  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
188207618Srdivacky  report_fatal_error("Type value could not be mapped for use with libffi.");
189193323Sed  return NULL;
190193323Sed}
191193323Sed
192288943Sdimstatic bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
193296417Sdim                      const DataLayout &TD, GenericValue &Result) {
194193323Sed  ffi_cif cif;
195226633Sdim  FunctionType *FTy = F->getFunctionType();
196193323Sed  const unsigned NumArgs = F->arg_size();
197193323Sed
198193323Sed  // TODO: We don't have type information about the remaining arguments, because
199193323Sed  // this information is never passed into ExecutionEngine::runFunction().
200193323Sed  if (ArgVals.size() > NumArgs && F->isVarArg()) {
201207618Srdivacky    report_fatal_error("Calling external var arg function '" + F->getName()
202198090Srdivacky                      + "' is not supported by the Interpreter.");
203193323Sed  }
204193323Sed
205193323Sed  unsigned ArgBytes = 0;
206193323Sed
207193323Sed  std::vector<ffi_type*> args(NumArgs);
208193323Sed  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
209193323Sed       A != E; ++A) {
210193323Sed    const unsigned ArgNo = A->getArgNo();
211226633Sdim    Type *ArgTy = FTy->getParamType(ArgNo);
212193323Sed    args[ArgNo] = ffiTypeFor(ArgTy);
213296417Sdim    ArgBytes += TD.getTypeStoreSize(ArgTy);
214193323Sed  }
215193323Sed
216198090Srdivacky  SmallVector<uint8_t, 128> ArgData;
217198090Srdivacky  ArgData.resize(ArgBytes);
218198090Srdivacky  uint8_t *ArgDataPtr = ArgData.data();
219198090Srdivacky  SmallVector<void*, 16> values(NumArgs);
220193323Sed  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
221193323Sed       A != E; ++A) {
222193323Sed    const unsigned ArgNo = A->getArgNo();
223226633Sdim    Type *ArgTy = FTy->getParamType(ArgNo);
224193323Sed    values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
225296417Sdim    ArgDataPtr += TD.getTypeStoreSize(ArgTy);
226193323Sed  }
227193323Sed
228226633Sdim  Type *RetTy = FTy->getReturnType();
229193323Sed  ffi_type *rtype = ffiTypeFor(RetTy);
230193323Sed
231344779Sdim  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) ==
232344779Sdim      FFI_OK) {
233198090Srdivacky    SmallVector<uint8_t, 128> ret;
234193323Sed    if (RetTy->getTypeID() != Type::VoidTyID)
235296417Sdim      ret.resize(TD.getTypeStoreSize(RetTy));
236198090Srdivacky    ffi_call(&cif, Fn, ret.data(), values.data());
237193323Sed    switch (RetTy->getTypeID()) {
238193323Sed      case Type::IntegerTyID:
239193323Sed        switch (cast<IntegerType>(RetTy)->getBitWidth()) {
240198090Srdivacky          case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
241198090Srdivacky          case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
242198090Srdivacky          case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
243198090Srdivacky          case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
244193323Sed        }
245193323Sed        break;
246198090Srdivacky      case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
247198090Srdivacky      case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
248198090Srdivacky      case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
249193323Sed      default: break;
250193323Sed    }
251193323Sed    return true;
252193323Sed  }
253193323Sed
254193323Sed  return false;
255193323Sed}
256193323Sed#endif // USE_LIBFFI
257193323Sed
258193323SedGenericValue Interpreter::callExternalFunction(Function *F,
259288943Sdim                                               ArrayRef<GenericValue> ArgVals) {
260193323Sed  TheInterpreter = this;
261193323Sed
262280031Sdim  unique_lock<sys::Mutex> Guard(*FunctionsLock);
263194710Sed
264193323Sed  // Do a lookup to see if the function is in our cache... this should just be a
265193323Sed  // deferred annotation!
266193323Sed  std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
267193323Sed  if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
268194710Sed                                                   : FI->second) {
269280031Sdim    Guard.unlock();
270193323Sed    return Fn(F->getFunctionType(), ArgVals);
271194710Sed  }
272193323Sed
273193323Sed#ifdef USE_LIBFFI
274193323Sed  std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
275193323Sed  RawFunc RawFn;
276193323Sed  if (RF == RawFunctions->end()) {
277193323Sed    RawFn = (RawFunc)(intptr_t)
278193323Sed      sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
279206083Srdivacky    if (!RawFn)
280210299Sed      RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
281193323Sed    if (RawFn != 0)
282193323Sed      RawFunctions->insert(std::make_pair(F, RawFn));  // Cache for later
283193323Sed  } else {
284193323Sed    RawFn = RF->second;
285193323Sed  }
286198090Srdivacky
287280031Sdim  Guard.unlock();
288193323Sed
289193323Sed  GenericValue Result;
290243830Sdim  if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
291193323Sed    return Result;
292193323Sed#endif // USE_LIBFFI
293193323Sed
294198090Srdivacky  if (F->getName() == "__main")
295198090Srdivacky    errs() << "Tried to execute an unknown external function: "
296224145Sdim      << *F->getType() << " __main\n";
297198090Srdivacky  else
298207618Srdivacky    report_fatal_error("Tried to execute an unknown external function: " +
299224145Sdim                       F->getName());
300199481Srdivacky#ifndef USE_LIBFFI
301199481Srdivacky  errs() << "Recompiling LLVM with --enable-libffi might help.\n";
302199481Srdivacky#endif
303193323Sed  return GenericValue();
304193323Sed}
305193323Sed
306193323Sed//===----------------------------------------------------------------------===//
307193323Sed//  Functions "exported" to the running application...
308193323Sed//
309198090Srdivacky
310193323Sed// void atexit(Function*)
311288943Sdimstatic GenericValue lle_X_atexit(FunctionType *FT,
312288943Sdim                                 ArrayRef<GenericValue> Args) {
313193323Sed  assert(Args.size() == 1);
314193323Sed  TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
315193323Sed  GenericValue GV;
316193323Sed  GV.IntVal = 0;
317193323Sed  return GV;
318193323Sed}
319193323Sed
320193323Sed// void exit(int)
321288943Sdimstatic GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
322193323Sed  TheInterpreter->exitCalled(Args[0]);
323193323Sed  return GenericValue();
324193323Sed}
325193323Sed
326193323Sed// void abort(void)
327288943Sdimstatic GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
328198090Srdivacky  //FIXME: should we report or raise here?
329207618Srdivacky  //report_fatal_error("Interpreted program raised SIGABRT");
330193323Sed  raise (SIGABRT);
331193323Sed  return GenericValue();
332193323Sed}
333193323Sed
334193323Sed// int sprintf(char *, const char *, ...) - a very rough implementation to make
335193323Sed// output useful.
336288943Sdimstatic GenericValue lle_X_sprintf(FunctionType *FT,
337288943Sdim                                  ArrayRef<GenericValue> Args) {
338193323Sed  char *OutputBuffer = (char *)GVTOP(Args[0]);
339193323Sed  const char *FmtStr = (const char *)GVTOP(Args[1]);
340193323Sed  unsigned ArgNo = 2;
341193323Sed
342193323Sed  // printf should return # chars printed.  This is completely incorrect, but
343193323Sed  // close enough for now.
344198090Srdivacky  GenericValue GV;
345193323Sed  GV.IntVal = APInt(32, strlen(FmtStr));
346314564Sdim  while (true) {
347193323Sed    switch (*FmtStr) {
348193323Sed    case 0: return GV;             // Null terminator...
349193323Sed    default:                       // Normal nonspecial character
350193323Sed      sprintf(OutputBuffer++, "%c", *FmtStr++);
351193323Sed      break;
352193323Sed    case '\\': {                   // Handle escape codes
353193323Sed      sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
354193323Sed      FmtStr += 2; OutputBuffer += 2;
355193323Sed      break;
356193323Sed    }
357193323Sed    case '%': {                    // Handle format specifiers
358193323Sed      char FmtBuf[100] = "", Buffer[1000] = "";
359193323Sed      char *FB = FmtBuf;
360193323Sed      *FB++ = *FmtStr++;
361193323Sed      char Last = *FB++ = *FmtStr++;
362193323Sed      unsigned HowLong = 0;
363193323Sed      while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
364193323Sed             Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
365193323Sed             Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
366193323Sed             Last != 'p' && Last != 's' && Last != '%') {
367193323Sed        if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
368193323Sed        Last = *FB++ = *FmtStr++;
369193323Sed      }
370193323Sed      *FB = 0;
371193323Sed
372193323Sed      switch (Last) {
373193323Sed      case '%':
374203954Srdivacky        memcpy(Buffer, "%", 2); break;
375193323Sed      case 'c':
376193323Sed        sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
377193323Sed        break;
378193323Sed      case 'd': case 'i':
379193323Sed      case 'u': case 'o':
380193323Sed      case 'x': case 'X':
381193323Sed        if (HowLong >= 1) {
382193323Sed          if (HowLong == 1 &&
383296417Sdim              TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
384193323Sed              sizeof(long) < sizeof(int64_t)) {
385193323Sed            // Make sure we use %lld with a 64 bit argument because we might be
386193323Sed            // compiling LLI on a 32 bit compiler.
387193323Sed            unsigned Size = strlen(FmtBuf);
388193323Sed            FmtBuf[Size] = FmtBuf[Size-1];
389193323Sed            FmtBuf[Size+1] = 0;
390193323Sed            FmtBuf[Size-1] = 'l';
391193323Sed          }
392193323Sed          sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
393193323Sed        } else
394193323Sed          sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
395193323Sed        break;
396193323Sed      case 'e': case 'E': case 'g': case 'G': case 'f':
397193323Sed        sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
398193323Sed      case 'p':
399193323Sed        sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
400193323Sed      case 's':
401193323Sed        sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
402198090Srdivacky      default:
403198090Srdivacky        errs() << "<unknown printf code '" << *FmtStr << "'!>";
404193323Sed        ArgNo++; break;
405193323Sed      }
406203954Srdivacky      size_t Len = strlen(Buffer);
407203954Srdivacky      memcpy(OutputBuffer, Buffer, Len + 1);
408203954Srdivacky      OutputBuffer += Len;
409193323Sed      }
410193323Sed      break;
411193323Sed    }
412193323Sed  }
413261991Sdim  return GV;
414193323Sed}
415193323Sed
416193323Sed// int printf(const char *, ...) - a very rough implementation to make output
417193323Sed// useful.
418288943Sdimstatic GenericValue lle_X_printf(FunctionType *FT,
419288943Sdim                                 ArrayRef<GenericValue> Args) {
420193323Sed  char Buffer[10000];
421193323Sed  std::vector<GenericValue> NewArgs;
422193323Sed  NewArgs.push_back(PTOGV((void*)&Buffer[0]));
423193323Sed  NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
424193323Sed  GenericValue GV = lle_X_sprintf(FT, NewArgs);
425198090Srdivacky  outs() << Buffer;
426193323Sed  return GV;
427193323Sed}
428193323Sed
429193323Sed// int sscanf(const char *format, ...);
430288943Sdimstatic GenericValue lle_X_sscanf(FunctionType *FT,
431288943Sdim                                 ArrayRef<GenericValue> args) {
432193323Sed  assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
433193323Sed
434193323Sed  char *Args[10];
435193323Sed  for (unsigned i = 0; i < args.size(); ++i)
436193323Sed    Args[i] = (char*)GVTOP(args[i]);
437193323Sed
438193323Sed  GenericValue GV;
439193323Sed  GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
440261991Sdim                    Args[5], Args[6], Args[7], Args[8], Args[9]));
441193323Sed  return GV;
442193323Sed}
443193323Sed
444193323Sed// int scanf(const char *format, ...);
445288943Sdimstatic GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
446193323Sed  assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
447193323Sed
448193323Sed  char *Args[10];
449193323Sed  for (unsigned i = 0; i < args.size(); ++i)
450193323Sed    Args[i] = (char*)GVTOP(args[i]);
451193323Sed
452193323Sed  GenericValue GV;
453193323Sed  GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
454261991Sdim                    Args[5], Args[6], Args[7], Args[8], Args[9]));
455193323Sed  return GV;
456193323Sed}
457193323Sed
458193323Sed// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
459193323Sed// output useful.
460288943Sdimstatic GenericValue lle_X_fprintf(FunctionType *FT,
461288943Sdim                                  ArrayRef<GenericValue> Args) {
462193323Sed  assert(Args.size() >= 2);
463193323Sed  char Buffer[10000];
464193323Sed  std::vector<GenericValue> NewArgs;
465193323Sed  NewArgs.push_back(PTOGV(Buffer));
466193323Sed  NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
467193323Sed  GenericValue GV = lle_X_sprintf(FT, NewArgs);
468193323Sed
469193323Sed  fputs(Buffer, (FILE *) GVTOP(Args[0]));
470193323Sed  return GV;
471193323Sed}
472193323Sed
473261991Sdimstatic GenericValue lle_X_memset(FunctionType *FT,
474288943Sdim                                 ArrayRef<GenericValue> Args) {
475261991Sdim  int val = (int)Args[1].IntVal.getSExtValue();
476261991Sdim  size_t len = (size_t)Args[2].IntVal.getZExtValue();
477261991Sdim  memset((void *)GVTOP(Args[0]), val, len);
478261991Sdim  // llvm.memset.* returns void, lle_X_* returns GenericValue,
479261991Sdim  // so here we return GenericValue with IntVal set to zero
480261991Sdim  GenericValue GV;
481261991Sdim  GV.IntVal = 0;
482261991Sdim  return GV;
483261991Sdim}
484261991Sdim
485261991Sdimstatic GenericValue lle_X_memcpy(FunctionType *FT,
486288943Sdim                                 ArrayRef<GenericValue> Args) {
487261991Sdim  memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
488261991Sdim         (size_t)(Args[2].IntVal.getLimitedValue()));
489261991Sdim
490261991Sdim  // llvm.memcpy* returns void, lle_X_* returns GenericValue,
491261991Sdim  // so here we return GenericValue with IntVal set to zero
492261991Sdim  GenericValue GV;
493261991Sdim  GV.IntVal = 0;
494261991Sdim  return GV;
495261991Sdim}
496261991Sdim
497193323Sedvoid Interpreter::initializeExternalFunctions() {
498198090Srdivacky  sys::ScopedLock Writer(*FunctionsLock);
499280031Sdim  (*FuncNames)["lle_X_atexit"]       = lle_X_atexit;
500280031Sdim  (*FuncNames)["lle_X_exit"]         = lle_X_exit;
501280031Sdim  (*FuncNames)["lle_X_abort"]        = lle_X_abort;
502193323Sed
503280031Sdim  (*FuncNames)["lle_X_printf"]       = lle_X_printf;
504280031Sdim  (*FuncNames)["lle_X_sprintf"]      = lle_X_sprintf;
505280031Sdim  (*FuncNames)["lle_X_sscanf"]       = lle_X_sscanf;
506280031Sdim  (*FuncNames)["lle_X_scanf"]        = lle_X_scanf;
507280031Sdim  (*FuncNames)["lle_X_fprintf"]      = lle_X_fprintf;
508280031Sdim  (*FuncNames)["lle_X_memset"]       = lle_X_memset;
509280031Sdim  (*FuncNames)["lle_X_memcpy"]       = lle_X_memcpy;
510193323Sed}
511