ExternalFunctions.cpp revision 276479
1193323Sed//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed//  This file contains both code to deal with invoking "external" functions, but
11193323Sed//  also contains code that implements "exported" external functions.
12193323Sed//
13193323Sed//  There are currently two mechanisms for handling external functions in the
14193323Sed//  Interpreter.  The first is to implement lle_* wrapper functions that are
15193323Sed//  specific to well-known library functions which manually translate the
16193323Sed//  arguments from GenericValues and make the call.  If such a wrapper does
17193323Sed//  not exist, and libffi is available, then the Interpreter will attempt to
18193323Sed//  invoke the function using libffi, after finding its address.
19193323Sed//
20193323Sed//===----------------------------------------------------------------------===//
21193323Sed
22193323Sed#include "Interpreter.h"
23193323Sed#include "llvm/Config/config.h"     // Detect libffi
24249423Sdim#include "llvm/IR/DataLayout.h"
25249423Sdim#include "llvm/IR/DerivedTypes.h"
26249423Sdim#include "llvm/IR/Module.h"
27249423Sdim#include "llvm/Support/DynamicLibrary.h"
28198090Srdivacky#include "llvm/Support/ErrorHandling.h"
29193323Sed#include "llvm/Support/ManagedStatic.h"
30218893Sdim#include "llvm/Support/Mutex.h"
31249423Sdim#include <cmath>
32193323Sed#include <csignal>
33193323Sed#include <cstdio>
34249423Sdim#include <cstring>
35193323Sed#include <map>
36193323Sed
37193323Sed#ifdef HAVE_FFI_CALL
38193323Sed#ifdef HAVE_FFI_H
39193323Sed#include <ffi.h>
40193323Sed#define USE_LIBFFI
41193323Sed#elif HAVE_FFI_FFI_H
42193323Sed#include <ffi/ffi.h>
43193323Sed#define USE_LIBFFI
44193323Sed#endif
45193323Sed#endif
46193323Sed
47193323Sedusing namespace llvm;
48193323Sed
49194710Sedstatic ManagedStatic<sys::Mutex> FunctionsLock;
50194710Sed
51226633Sdimtypedef GenericValue (*ExFunc)(FunctionType *,
52193323Sed                               const std::vector<GenericValue> &);
53193323Sedstatic ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
54193323Sedstatic std::map<std::string, ExFunc> FuncNames;
55193323Sed
56193323Sed#ifdef USE_LIBFFI
57198090Srdivackytypedef void (*RawFunc)();
58193323Sedstatic ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
59193323Sed#endif
60193323Sed
61193323Sedstatic Interpreter *TheInterpreter;
62193323Sed
63226633Sdimstatic char getTypeID(Type *Ty) {
64193323Sed  switch (Ty->getTypeID()) {
65193323Sed  case Type::VoidTyID:    return 'V';
66193323Sed  case Type::IntegerTyID:
67193323Sed    switch (cast<IntegerType>(Ty)->getBitWidth()) {
68193323Sed      case 1:  return 'o';
69193323Sed      case 8:  return 'B';
70193323Sed      case 16: return 'S';
71193323Sed      case 32: return 'I';
72193323Sed      case 64: return 'L';
73193323Sed      default: return 'N';
74193323Sed    }
75193323Sed  case Type::FloatTyID:   return 'F';
76193323Sed  case Type::DoubleTyID:  return 'D';
77193323Sed  case Type::PointerTyID: return 'P';
78193323Sed  case Type::FunctionTyID:return 'M';
79193323Sed  case Type::StructTyID:  return 'T';
80193323Sed  case Type::ArrayTyID:   return 'A';
81193323Sed  default: return 'U';
82193323Sed  }
83193323Sed}
84193323Sed
85193323Sed// Try to find address of external function given a Function object.
86193323Sed// Please note, that interpreter doesn't know how to assemble a
87193323Sed// real call in general case (this is JIT job), that's why it assumes,
88193323Sed// that all external functions has the same (and pretty "general") signature.
89193323Sed// The typical example of such functions are "lle_X_" ones.
90193323Sedstatic ExFunc lookupFunction(const Function *F) {
91193323Sed  // Function not found, look it up... start by figuring out what the
92193323Sed  // composite function name should be.
93193323Sed  std::string ExtName = "lle_";
94226633Sdim  FunctionType *FT = F->getFunctionType();
95193323Sed  for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
96193323Sed    ExtName += getTypeID(FT->getContainedType(i));
97234353Sdim  ExtName += "_" + F->getName().str();
98193323Sed
99198090Srdivacky  sys::ScopedLock Writer(*FunctionsLock);
100193323Sed  ExFunc FnPtr = FuncNames[ExtName];
101276479Sdim  if (!FnPtr)
102234353Sdim    FnPtr = FuncNames["lle_X_" + F->getName().str()];
103276479Sdim  if (!FnPtr)  // Try calling a generic function... if it exists...
104198090Srdivacky    FnPtr = (ExFunc)(intptr_t)
105234353Sdim      sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" +
106234353Sdim                                                    F->getName().str());
107276479Sdim  if (FnPtr)
108193323Sed    ExportedFunctions->insert(std::make_pair(F, FnPtr));  // Cache for later
109193323Sed  return FnPtr;
110193323Sed}
111193323Sed
112193323Sed#ifdef USE_LIBFFI
113226633Sdimstatic ffi_type *ffiTypeFor(Type *Ty) {
114193323Sed  switch (Ty->getTypeID()) {
115193323Sed    case Type::VoidTyID: return &ffi_type_void;
116193323Sed    case Type::IntegerTyID:
117193323Sed      switch (cast<IntegerType>(Ty)->getBitWidth()) {
118193323Sed        case 8:  return &ffi_type_sint8;
119193323Sed        case 16: return &ffi_type_sint16;
120193323Sed        case 32: return &ffi_type_sint32;
121193323Sed        case 64: return &ffi_type_sint64;
122193323Sed      }
123193323Sed    case Type::FloatTyID:   return &ffi_type_float;
124193323Sed    case Type::DoubleTyID:  return &ffi_type_double;
125193323Sed    case Type::PointerTyID: return &ffi_type_pointer;
126193323Sed    default: break;
127193323Sed  }
128193323Sed  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
129207618Srdivacky  report_fatal_error("Type could not be mapped for use with libffi.");
130193323Sed  return NULL;
131193323Sed}
132193323Sed
133226633Sdimstatic void *ffiValueFor(Type *Ty, const GenericValue &AV,
134193323Sed                         void *ArgDataPtr) {
135193323Sed  switch (Ty->getTypeID()) {
136193323Sed    case Type::IntegerTyID:
137193323Sed      switch (cast<IntegerType>(Ty)->getBitWidth()) {
138193323Sed        case 8: {
139193323Sed          int8_t *I8Ptr = (int8_t *) ArgDataPtr;
140193323Sed          *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
141193323Sed          return ArgDataPtr;
142193323Sed        }
143193323Sed        case 16: {
144193323Sed          int16_t *I16Ptr = (int16_t *) ArgDataPtr;
145193323Sed          *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
146193323Sed          return ArgDataPtr;
147193323Sed        }
148193323Sed        case 32: {
149193323Sed          int32_t *I32Ptr = (int32_t *) ArgDataPtr;
150193323Sed          *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
151193323Sed          return ArgDataPtr;
152193323Sed        }
153193323Sed        case 64: {
154193323Sed          int64_t *I64Ptr = (int64_t *) ArgDataPtr;
155193323Sed          *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
156193323Sed          return ArgDataPtr;
157193323Sed        }
158193323Sed      }
159193323Sed    case Type::FloatTyID: {
160193323Sed      float *FloatPtr = (float *) ArgDataPtr;
161199481Srdivacky      *FloatPtr = AV.FloatVal;
162193323Sed      return ArgDataPtr;
163193323Sed    }
164193323Sed    case Type::DoubleTyID: {
165193323Sed      double *DoublePtr = (double *) ArgDataPtr;
166193323Sed      *DoublePtr = AV.DoubleVal;
167193323Sed      return ArgDataPtr;
168193323Sed    }
169193323Sed    case Type::PointerTyID: {
170193323Sed      void **PtrPtr = (void **) ArgDataPtr;
171193323Sed      *PtrPtr = GVTOP(AV);
172193323Sed      return ArgDataPtr;
173193323Sed    }
174193323Sed    default: break;
175193323Sed  }
176193323Sed  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
177207618Srdivacky  report_fatal_error("Type value could not be mapped for use with libffi.");
178193323Sed  return NULL;
179193323Sed}
180193323Sed
181193323Sedstatic bool ffiInvoke(RawFunc Fn, Function *F,
182193323Sed                      const std::vector<GenericValue> &ArgVals,
183243830Sdim                      const DataLayout *TD, GenericValue &Result) {
184193323Sed  ffi_cif cif;
185226633Sdim  FunctionType *FTy = F->getFunctionType();
186193323Sed  const unsigned NumArgs = F->arg_size();
187193323Sed
188193323Sed  // TODO: We don't have type information about the remaining arguments, because
189193323Sed  // this information is never passed into ExecutionEngine::runFunction().
190193323Sed  if (ArgVals.size() > NumArgs && F->isVarArg()) {
191207618Srdivacky    report_fatal_error("Calling external var arg function '" + F->getName()
192198090Srdivacky                      + "' is not supported by the Interpreter.");
193193323Sed  }
194193323Sed
195193323Sed  unsigned ArgBytes = 0;
196193323Sed
197193323Sed  std::vector<ffi_type*> args(NumArgs);
198193323Sed  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
199193323Sed       A != E; ++A) {
200193323Sed    const unsigned ArgNo = A->getArgNo();
201226633Sdim    Type *ArgTy = FTy->getParamType(ArgNo);
202193323Sed    args[ArgNo] = ffiTypeFor(ArgTy);
203193323Sed    ArgBytes += TD->getTypeStoreSize(ArgTy);
204193323Sed  }
205193323Sed
206198090Srdivacky  SmallVector<uint8_t, 128> ArgData;
207198090Srdivacky  ArgData.resize(ArgBytes);
208198090Srdivacky  uint8_t *ArgDataPtr = ArgData.data();
209198090Srdivacky  SmallVector<void*, 16> values(NumArgs);
210193323Sed  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
211193323Sed       A != E; ++A) {
212193323Sed    const unsigned ArgNo = A->getArgNo();
213226633Sdim    Type *ArgTy = FTy->getParamType(ArgNo);
214193323Sed    values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
215193323Sed    ArgDataPtr += TD->getTypeStoreSize(ArgTy);
216193323Sed  }
217193323Sed
218226633Sdim  Type *RetTy = FTy->getReturnType();
219193323Sed  ffi_type *rtype = ffiTypeFor(RetTy);
220193323Sed
221193323Sed  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
222198090Srdivacky    SmallVector<uint8_t, 128> ret;
223193323Sed    if (RetTy->getTypeID() != Type::VoidTyID)
224198090Srdivacky      ret.resize(TD->getTypeStoreSize(RetTy));
225198090Srdivacky    ffi_call(&cif, Fn, ret.data(), values.data());
226193323Sed    switch (RetTy->getTypeID()) {
227193323Sed      case Type::IntegerTyID:
228193323Sed        switch (cast<IntegerType>(RetTy)->getBitWidth()) {
229198090Srdivacky          case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
230198090Srdivacky          case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
231198090Srdivacky          case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
232198090Srdivacky          case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
233193323Sed        }
234193323Sed        break;
235198090Srdivacky      case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
236198090Srdivacky      case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
237198090Srdivacky      case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
238193323Sed      default: break;
239193323Sed    }
240193323Sed    return true;
241193323Sed  }
242193323Sed
243193323Sed  return false;
244193323Sed}
245193323Sed#endif // USE_LIBFFI
246193323Sed
247193323SedGenericValue Interpreter::callExternalFunction(Function *F,
248193323Sed                                     const std::vector<GenericValue> &ArgVals) {
249193323Sed  TheInterpreter = this;
250193323Sed
251194710Sed  FunctionsLock->acquire();
252194710Sed
253193323Sed  // Do a lookup to see if the function is in our cache... this should just be a
254193323Sed  // deferred annotation!
255193323Sed  std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
256193323Sed  if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
257194710Sed                                                   : FI->second) {
258194710Sed    FunctionsLock->release();
259193323Sed    return Fn(F->getFunctionType(), ArgVals);
260194710Sed  }
261193323Sed
262193323Sed#ifdef USE_LIBFFI
263193323Sed  std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
264193323Sed  RawFunc RawFn;
265193323Sed  if (RF == RawFunctions->end()) {
266193323Sed    RawFn = (RawFunc)(intptr_t)
267193323Sed      sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
268206083Srdivacky    if (!RawFn)
269210299Sed      RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
270193323Sed    if (RawFn != 0)
271193323Sed      RawFunctions->insert(std::make_pair(F, RawFn));  // Cache for later
272193323Sed  } else {
273193323Sed    RawFn = RF->second;
274193323Sed  }
275198090Srdivacky
276194710Sed  FunctionsLock->release();
277193323Sed
278193323Sed  GenericValue Result;
279243830Sdim  if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
280193323Sed    return Result;
281193323Sed#endif // USE_LIBFFI
282193323Sed
283198090Srdivacky  if (F->getName() == "__main")
284198090Srdivacky    errs() << "Tried to execute an unknown external function: "
285224145Sdim      << *F->getType() << " __main\n";
286198090Srdivacky  else
287207618Srdivacky    report_fatal_error("Tried to execute an unknown external function: " +
288224145Sdim                       F->getName());
289199481Srdivacky#ifndef USE_LIBFFI
290199481Srdivacky  errs() << "Recompiling LLVM with --enable-libffi might help.\n";
291199481Srdivacky#endif
292193323Sed  return GenericValue();
293193323Sed}
294193323Sed
295193323Sed
296193323Sed//===----------------------------------------------------------------------===//
297193323Sed//  Functions "exported" to the running application...
298193323Sed//
299198090Srdivacky
300193323Sed// void atexit(Function*)
301234353Sdimstatic
302226633SdimGenericValue lle_X_atexit(FunctionType *FT,
303193323Sed                          const std::vector<GenericValue> &Args) {
304193323Sed  assert(Args.size() == 1);
305193323Sed  TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
306193323Sed  GenericValue GV;
307193323Sed  GV.IntVal = 0;
308193323Sed  return GV;
309193323Sed}
310193323Sed
311193323Sed// void exit(int)
312234353Sdimstatic
313226633SdimGenericValue lle_X_exit(FunctionType *FT,
314193323Sed                        const std::vector<GenericValue> &Args) {
315193323Sed  TheInterpreter->exitCalled(Args[0]);
316193323Sed  return GenericValue();
317193323Sed}
318193323Sed
319193323Sed// void abort(void)
320234353Sdimstatic
321226633SdimGenericValue lle_X_abort(FunctionType *FT,
322193323Sed                         const std::vector<GenericValue> &Args) {
323198090Srdivacky  //FIXME: should we report or raise here?
324207618Srdivacky  //report_fatal_error("Interpreted program raised SIGABRT");
325193323Sed  raise (SIGABRT);
326193323Sed  return GenericValue();
327193323Sed}
328193323Sed
329193323Sed// int sprintf(char *, const char *, ...) - a very rough implementation to make
330193323Sed// output useful.
331234353Sdimstatic
332226633SdimGenericValue lle_X_sprintf(FunctionType *FT,
333193323Sed                           const std::vector<GenericValue> &Args) {
334193323Sed  char *OutputBuffer = (char *)GVTOP(Args[0]);
335193323Sed  const char *FmtStr = (const char *)GVTOP(Args[1]);
336193323Sed  unsigned ArgNo = 2;
337193323Sed
338193323Sed  // printf should return # chars printed.  This is completely incorrect, but
339193323Sed  // close enough for now.
340198090Srdivacky  GenericValue GV;
341193323Sed  GV.IntVal = APInt(32, strlen(FmtStr));
342193323Sed  while (1) {
343193323Sed    switch (*FmtStr) {
344193323Sed    case 0: return GV;             // Null terminator...
345193323Sed    default:                       // Normal nonspecial character
346193323Sed      sprintf(OutputBuffer++, "%c", *FmtStr++);
347193323Sed      break;
348193323Sed    case '\\': {                   // Handle escape codes
349193323Sed      sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
350193323Sed      FmtStr += 2; OutputBuffer += 2;
351193323Sed      break;
352193323Sed    }
353193323Sed    case '%': {                    // Handle format specifiers
354193323Sed      char FmtBuf[100] = "", Buffer[1000] = "";
355193323Sed      char *FB = FmtBuf;
356193323Sed      *FB++ = *FmtStr++;
357193323Sed      char Last = *FB++ = *FmtStr++;
358193323Sed      unsigned HowLong = 0;
359193323Sed      while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
360193323Sed             Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
361193323Sed             Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
362193323Sed             Last != 'p' && Last != 's' && Last != '%') {
363193323Sed        if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
364193323Sed        Last = *FB++ = *FmtStr++;
365193323Sed      }
366193323Sed      *FB = 0;
367193323Sed
368193323Sed      switch (Last) {
369193323Sed      case '%':
370203954Srdivacky        memcpy(Buffer, "%", 2); break;
371193323Sed      case 'c':
372193323Sed        sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
373193323Sed        break;
374193323Sed      case 'd': case 'i':
375193323Sed      case 'u': case 'o':
376193323Sed      case 'x': case 'X':
377193323Sed        if (HowLong >= 1) {
378193323Sed          if (HowLong == 1 &&
379243830Sdim              TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 &&
380193323Sed              sizeof(long) < sizeof(int64_t)) {
381193323Sed            // Make sure we use %lld with a 64 bit argument because we might be
382193323Sed            // compiling LLI on a 32 bit compiler.
383193323Sed            unsigned Size = strlen(FmtBuf);
384193323Sed            FmtBuf[Size] = FmtBuf[Size-1];
385193323Sed            FmtBuf[Size+1] = 0;
386193323Sed            FmtBuf[Size-1] = 'l';
387193323Sed          }
388193323Sed          sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
389193323Sed        } else
390193323Sed          sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
391193323Sed        break;
392193323Sed      case 'e': case 'E': case 'g': case 'G': case 'f':
393193323Sed        sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
394193323Sed      case 'p':
395193323Sed        sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
396193323Sed      case 's':
397193323Sed        sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
398198090Srdivacky      default:
399198090Srdivacky        errs() << "<unknown printf code '" << *FmtStr << "'!>";
400193323Sed        ArgNo++; break;
401193323Sed      }
402203954Srdivacky      size_t Len = strlen(Buffer);
403203954Srdivacky      memcpy(OutputBuffer, Buffer, Len + 1);
404203954Srdivacky      OutputBuffer += Len;
405193323Sed      }
406193323Sed      break;
407193323Sed    }
408193323Sed  }
409261991Sdim  return GV;
410193323Sed}
411193323Sed
412193323Sed// int printf(const char *, ...) - a very rough implementation to make output
413193323Sed// useful.
414234353Sdimstatic
415226633SdimGenericValue lle_X_printf(FunctionType *FT,
416193323Sed                          const std::vector<GenericValue> &Args) {
417193323Sed  char Buffer[10000];
418193323Sed  std::vector<GenericValue> NewArgs;
419193323Sed  NewArgs.push_back(PTOGV((void*)&Buffer[0]));
420193323Sed  NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
421193323Sed  GenericValue GV = lle_X_sprintf(FT, NewArgs);
422198090Srdivacky  outs() << Buffer;
423193323Sed  return GV;
424193323Sed}
425193323Sed
426193323Sed// int sscanf(const char *format, ...);
427234353Sdimstatic
428226633SdimGenericValue lle_X_sscanf(FunctionType *FT,
429193323Sed                          const std::vector<GenericValue> &args) {
430193323Sed  assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
431193323Sed
432193323Sed  char *Args[10];
433193323Sed  for (unsigned i = 0; i < args.size(); ++i)
434193323Sed    Args[i] = (char*)GVTOP(args[i]);
435193323Sed
436193323Sed  GenericValue GV;
437193323Sed  GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
438261991Sdim                    Args[5], Args[6], Args[7], Args[8], Args[9]));
439193323Sed  return GV;
440193323Sed}
441193323Sed
442193323Sed// int scanf(const char *format, ...);
443234353Sdimstatic
444226633SdimGenericValue lle_X_scanf(FunctionType *FT,
445193323Sed                         const std::vector<GenericValue> &args) {
446193323Sed  assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
447193323Sed
448193323Sed  char *Args[10];
449193323Sed  for (unsigned i = 0; i < args.size(); ++i)
450193323Sed    Args[i] = (char*)GVTOP(args[i]);
451193323Sed
452193323Sed  GenericValue GV;
453193323Sed  GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
454261991Sdim                    Args[5], Args[6], Args[7], Args[8], Args[9]));
455193323Sed  return GV;
456193323Sed}
457193323Sed
458193323Sed// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
459193323Sed// output useful.
460234353Sdimstatic
461226633SdimGenericValue lle_X_fprintf(FunctionType *FT,
462193323Sed                           const std::vector<GenericValue> &Args) {
463193323Sed  assert(Args.size() >= 2);
464193323Sed  char Buffer[10000];
465193323Sed  std::vector<GenericValue> NewArgs;
466193323Sed  NewArgs.push_back(PTOGV(Buffer));
467193323Sed  NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
468193323Sed  GenericValue GV = lle_X_sprintf(FT, NewArgs);
469193323Sed
470193323Sed  fputs(Buffer, (FILE *) GVTOP(Args[0]));
471193323Sed  return GV;
472193323Sed}
473193323Sed
474261991Sdimstatic GenericValue lle_X_memset(FunctionType *FT,
475261991Sdim                                 const std::vector<GenericValue> &Args) {
476261991Sdim  int val = (int)Args[1].IntVal.getSExtValue();
477261991Sdim  size_t len = (size_t)Args[2].IntVal.getZExtValue();
478261991Sdim  memset((void *)GVTOP(Args[0]), val, len);
479261991Sdim  // llvm.memset.* returns void, lle_X_* returns GenericValue,
480261991Sdim  // so here we return GenericValue with IntVal set to zero
481261991Sdim  GenericValue GV;
482261991Sdim  GV.IntVal = 0;
483261991Sdim  return GV;
484261991Sdim}
485261991Sdim
486261991Sdimstatic GenericValue lle_X_memcpy(FunctionType *FT,
487261991Sdim                                 const std::vector<GenericValue> &Args) {
488261991Sdim  memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
489261991Sdim         (size_t)(Args[2].IntVal.getLimitedValue()));
490261991Sdim
491261991Sdim  // llvm.memcpy* returns void, lle_X_* returns GenericValue,
492261991Sdim  // so here we return GenericValue with IntVal set to zero
493261991Sdim  GenericValue GV;
494261991Sdim  GV.IntVal = 0;
495261991Sdim  return GV;
496261991Sdim}
497261991Sdim
498193323Sedvoid Interpreter::initializeExternalFunctions() {
499198090Srdivacky  sys::ScopedLock Writer(*FunctionsLock);
500193323Sed  FuncNames["lle_X_atexit"]       = lle_X_atexit;
501193323Sed  FuncNames["lle_X_exit"]         = lle_X_exit;
502193323Sed  FuncNames["lle_X_abort"]        = lle_X_abort;
503193323Sed
504193323Sed  FuncNames["lle_X_printf"]       = lle_X_printf;
505193323Sed  FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
506193323Sed  FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
507193323Sed  FuncNames["lle_X_scanf"]        = lle_X_scanf;
508193323Sed  FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
509261991Sdim  FuncNames["lle_X_memset"]       = lle_X_memset;
510261991Sdim  FuncNames["lle_X_memcpy"]       = lle_X_memcpy;
511193323Sed}
512